in

Scalable and switchable CO2-responsive membranes with high wettability for separation of various oil/water systems

[adace-ad id="91168"]
  • Dai, H., Dong, Z. & Jiang, L. Directional liquid dynamics of interfaces with superwettability. Sci. Adv. 6, eabb5528 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kwon, G. et al. Visible light guided manipulation of liquid wettability on photoresponsive surfaces. Nat. Commun. 8, 14968 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, M., Wang, S. & Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chu, K. H., Xiao, R. & Wang, E. N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 9, 413–417 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kota, A. K., Kwon, G., Choi, W., Mabry, J. M. & Tuteja, A. Hygro-responsive membranes for effective oil–water separation. Nat. Commun. 3, 1025 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Zhang, G. et al. Processing supramolecular framework for free interconvertible liquid separation. Nat. Commun. 11, 425 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, B., Liang, W., Guo, Z. & Liu, W. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem. Soc. Rev. 44, 336–361 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Jiang, Y. et al. Crystal structural and mechanism of a calcium-gated potassium channel. Nature 417, 523–526 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z., Wang, W., Xie, R., Ju, X. J. & Chu, L. Y. Stimuli-responsive smart gating membranes. Chem. Soc. Rev. 45, 460–475 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hou, X. Smart gating multi-scale pore/channel-based membranes. Adv. Mater. 28, 7049–7064 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Qu, R. et al. Aminoazobenzene@Ag modified meshes with large extent photo-response: towards reversible oil/water removal from oil/water mixtures. Chem. Sci. 10, 4089–4096 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qu, R. et al. Photothermally induced in situ double emulsion separation by a carbon nanotube/poly(Nisopropylacrylamide) modified membrane with superwetting properties. J. Mater. Chem. A 8, 7677–7686 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hu, L. et al. Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano 9, 4835–4842 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, B. et al. Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation. J. Membr. Sci. 534, 1–8 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L., Zhang, Z. & Wang, P. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation. NPG Asia Mater. 4, e8 (2012).

    Article 

    Google Scholar 

  • Li, J. J., Zhou, Y. N. & Luo, Z. H. Smart fiber membrane for pH-induced oil/water separation. ACS Appl. Mater. Inter. 7, 19643–19650 (2015).

    Article 
    CAS 

    Google Scholar 

  • Kwon, G. et al. On-demand separation of oil-water mixtures. Adv. Mater. 24, 3666 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y., Zhao, L., Lin, J. & Yang, S. Electrodeposited surfaces with reversibly switching interfacial properties. Sci. Adv. 5, eaax0380 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, W. et al. Thermo-driven controllable emulsion separation by a polymer-decorated membrane with switchable wettability. Angew. Chem. Int. Ed. 57, 5740 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ou, R., Wei, J., Jiang, L., Simon, G. P. & Wang, H. Robust thermos-responsive polymer composite membrane with switchable superhydrophilicity and superhydrophobicity for efficient oil-water separation. Environ. Sci. Technol. 50, 906–914 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rana, D. & Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dutta, K. & De, S. Smart responsive materials for water purification: an overview. J. Mater. Chem. A 5, 22095–22112 (2017).

    Article 
    CAS 

    Google Scholar 

  • Dong, L. & Zhao, Y. CO2-switchable membranes: structures, functions, and separation applications in aqueous medium. J. Mater. Chem. A 8, 16738–16746 (2020).

    Article 
    CAS 

    Google Scholar 

  • Cunningham, M. F. & Jessop, P. G. Carbon dioxide-switchable polymers: where are the future opportunities? Macromolecules 52, 6801–6816 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, Q., Lei, L. & Zhu, S. Gas-responsive polymers. ACS Macro Lett. 6, 515–522 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, H., Lin, S., Feng, Y. & Theato, P. CO2-responsive polymer materials. Polym. Chem. 8, 12–23 (2017).

    Article 

    Google Scholar 

  • Lin, S. J., Shang, J. J. & Theato, P. Facile fabrication of CO2‑responsive nanofibers from photo-cross-linked poly(pentafluorophenyl acrylate) nanofibers. ACS Macro Lett. 7, 431–436 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, S. J. & Theato, P. CO2-responsive polymers. Macromol. Rapid Commun. 34, 1118–1133 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, Q. & Zhao, Y. Block copolymer self-assembly controlled by the “green” gas stimulus of carbon dioxide. Chem. Commun. 50, 11631–11641 (2014).

    Article 
    CAS 

    Google Scholar 

  • Yan, Q. & Zhao, Y. CO2‑stimulated diversiform deformations of polymer assemblies. J. Am. Chem. Soc. 135, 16300–16303 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Darabi, A., Jessop, P. G. & Cunningham, M. F. CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem. Soc. Rev. 45, 4391–4436 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Che, H. et al. CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew. Chem. Int. Ed. 54, 8934–8938 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lei, L., Zhang, Q., Shi, S. & Zhu, S. Highly porous poly(high internal phase emulsion) membranes with “open-cell” structure and CO2‑switchable wettability used for controlled oil/water separation. Langmuir 33, 11936–11944 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mo, J., Sha, J., Li, D., Li, Z. & Chen, Y. Fluid release pressure for nanochannels: the Young-Laplace equation using the effective contact angle. Nanoscale 11, 8408–8415 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seveno, D., Blake, T. D. & Coninck, J. Young’s equation at the nanoscale. Phys. Rev. Lett. 111, 096101 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Yang, Z., He, C., Suia, H., He, L. & Li, X. Recent advances of CO2-responsive materials in separations. J. CO2 Util. 30, 79–99 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tauhardt, L. et al. Zwitterionic poly(2-oxazoline)s as promising candidates for blood contacting applications. Polym. Chem. 5, 5751 (2014).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Janus poly(vinylidene fluoride)-graft-(TiO2 nanoparticles and PFDS) membranes with loose architecture and asymmetric wettability for efficient switchable separation of surfactant-stabilized oil/water emulsions. J. Membr. Sci. 640, 119837 (2021).

    Article 
    CAS 

    Google Scholar 

  • Feng, X. & Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063–3078 (2006).

    Article 
    CAS 

    Google Scholar 

  • Tao, M., Xue, L., Liu, F. & Jiang, L. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Adv. Mater. 26, 2943–2948 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Universal and tunable liquid-liquid separation by nanoparticle-embedded gating membranes based on a self-defined interfacial parameter. Nat. Commun. 12, 80 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, B. et al. Cellulose-based materials in wastewater treatment of petroleum industry. Green. Energy Environ. 5, 37–49 (2020).

    Article 

    Google Scholar 

  • Huang, K. et al. Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil-water separation. Nat. Commun. 11, 1097 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haase, M. F. et al. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation. Nat. Commun. 8, 1234 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • J. Zhang, L. Liu, Y. Si, J. Yu, B. Ding. Electrospun nanofibrous membranes: an effective arsenal for the purification of emulsified oily wastewater. Adv. Funct. Mater. 30, 2002192 (2020).

  • Kim, S., Kim, K., Jun, G. & Hwang, W. Wood-nanotechnology-based membrane for the efficient purification of oil-in-water emulsions. ACS Nano 14, 17233–17240 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kralchevsky, P. A. & Nagayama, K. Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interfacace Sci. 85, 145–192 (2000).

    Article 
    CAS 

    Google Scholar 

  • Dehkordi, T. F., Shirin-Abadi, A. R., Karimipour, K. & Mahdavian, A. R. CO2-, electric potential-, and photo-switchable-hydrophilicity membrane (x-SHM) as an efficient color-changeable tool for oil/water separation. Polymer 212, 123250 (2021).

    Article 
    CAS 

    Google Scholar 

  • Huang, X., Mutlu, H. & Theato, P. A CO2-gated anodic aluminum oxide based nanocomposite membrane for de-emulsification. Nanoscale 12, 21316–21324 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shirin-Abadi, A. R., Gorji, M., Rezaee, S., Jessop, P. G. & Cunningham, M. F. CO2-Switchable-hydrophilicity membrane (CO2-SHM) triggered by electric potential: faster switching time along with efficient oil/water separation. Chem. Commun. 54, 8478–8481 (2018).

    Article 

    Google Scholar 

  • Abraham, S., Kumaranab, S. K. & Montemagno, C. D. Gas-switchable carbon nanotube/polymer hybrid membrane for separation of oil-in-water emulsions. RSC Adv. 7, 39465–39470 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Separate reclamation of oil and surfactant from oil-in-water emulsion with a CO2-responsive material. Environ. Sci. Technol. 56, 9651–9660 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Q. et al. CO2‑Switchable membranes prepared by immobilization of CO2‑breathing microgels. ACS Appl. Mater. Inter. 9, 44146–44151 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kung, C. H., Zahiri, B., Sow, P. K. & Mérida, W. On-demand oil-water separation via low-voltage wettability switching of core-shell structures on copper substrates. Appl. Surf. Sci. 444, 15–27 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Du, L., Quan, X., Fan, X., Chen, S. & Yu, H. Electro-responsive carbon membranes with reversible superhydrophobicity/superhydrophilicity switch for efficient oil/water separation. Sep. Purif. Technol. 210, 891–899 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wu, J. et al. A 3D smart wood membrane with high flux and efficiency for separation of stabilized oil/water emulsions. J. Hazard. Mater. 441, 129900 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, C. et al. Facile fabrication of durable mesh with reversible photo-responsive wettability for smart oil/water separation. Prog. Org. Coat. 160, 106520 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, Z. et al. Smart light responsive polypropylene membrane switching reversibly between hydrophobicity and hydrophilicity for oily water separation. J. Membr. Sci. 638, 119704 (2021).

    Article 
    CAS 

    Google Scholar 

  • Li, J. J., Zhu, L. T. & Luo, Z. H. Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation. Chem. Eng. J. 287, 474–481 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Temperature-responsive nanofibers for controllable oil/water separation. RSC Adv. 5, 51078–51085 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ding, Y. et al. One-step fabrication of a micro/nanosphere-coordinated dual stimulus-responsive nanofibrous membrane for intelligent antifouling and ultrahigh permeability of viscous water-in-oil emulsions. ACS Appl. Mater. Inter. 13, 27635–27644 (2021).

    Article 
    CAS 

    Google Scholar 

  • Xiang, Y., Shen, J., Wang, Y., Liu, F. & Xue, L. A pH-responsive PVDF membrane with superwetting properties for the separation of oil and water. RSC Adv. 5, 23530–23539 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dou, Y. L. et al. Dual-responsive polyacrylonitrile-based electrospun membrane for controllable oil-water separation. J. Hazard. Mater. 438, 129565 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. J., Zhou, Y. N. & Luo, Z. H. Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation. Chem. Eng. J. 322, 693–701 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Y. N., Li, J. J. & Lu, Z. H. Toward efficient water/oil separation material: effect of copolymer composition on pH-responsive wettability and separation performance. AIChE J. 62, 1758–1770 (2016).

    Article 
    CAS 

    Google Scholar 

  • Xu, Z. et al. Fluorine-free superhydrophobic coatings with pH-induced wettability transition for controllable oil−water separation. ACS Appl. Mater. Inter. 8, 5661–5667 (2016).

    Article 
    CAS 

    Google Scholar 

  • Dang, Z., Liu, L., Li, Y., Xiang, Y. & Guo, G. In situ and ex situ pH-responsive coatings with switchable wettability for controllable oil/water separation. ACS Appl. Mater. Inter. 8, 31281–31288 (2016).

    Article 
    CAS 

    Google Scholar 

  • Cai, Y. et al. A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation. J. Membr. Sci. 555, 69–77 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Z. et al. A reusable, biomass-derived, and pH-responsive collagen fiber based oil absorbent material for effective separation of oil-in-water emulsions. Colloid Surf. A 633, 127906 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X., Liu, C., Yang, J., Huang, X. J. & Xu, Z. K. Wettability switchable membranes for separating both oil-in-water and water-in-oil emulsions. J. Membr. Sci. 624, 118976 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yang, W., Li, J., Zhou, P., Zhu, L. & Tang, H. Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling. Chem. Eng. J. 327, 849–854 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhai, H. et al. Crown ether modified membranes for Na+-responsive controllable emulsion separation suitable for hypersaline environments. J. Mater. Chem. A 8, 2684–2690 (2020).

    Article 
    CAS 

    Google Scholar 


  • Source: Resources - nature.com

    Composition, structure and robustness of Lichen guilds

    Q&A: Tod Machover on “Overstory Overture,” his new operatic work