in

Soil moisture-constrained East Asian Monsoon meridional patterns over China from observations

[adace-ad id="91168"]
  • Zhu, S. et al. Distinct impacts of spring soil moisture over the Indo-China Peninsula on summer precipitation in the Yangtze River basin under different SST backgrounds. Clim. Dyn. 56, 1895–1918 (2021).

    Google Scholar 

  • Shi, P. et al. Significant land contributions to interannual predictability of East Asian summer monsoon rainfall. Earth’s Futur 9, 1–16 (2021).

    Google Scholar 

  • Wu, G. et al. Thermal controls on the Asian summer monsoon. Sci. Rep. 2, 404 (2012).

    Google Scholar 

  • Wei, W., Zhang, R., Wen, M., Rong, X. & Li, T. Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China. Clim. Dyn. 43, 1257–1269 (2014).

    Google Scholar 

  • Wang, B., Xiang, B. & Lee, J. Y. Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl Acad. Sci. USA 110, 2718–2722 (2013).

    Google Scholar 

  • Kundzewicz, Z. W. et al. Climate variability and floods in China—a review. Earth-Sci. Rev. 211, 103434 (2020).

    Google Scholar 

  • Wang, C., Yang, K., Li, Y., Wu, D. & Bo, Y. Impacts of spatiotemporal anomalies of Tibetan plateau snow cover on summer precipitation in Eastern China. J. Clim. 30, 885–903 (2017).

    Google Scholar 

  • Ding, T. & Gao, H. Relationship between winter snow cover days in Northeast China and rainfall near the Yangtze river basin in the following summer. J. Meteorol. Res. 29, 400–411 (2015).

    Google Scholar 

  • Kundzewicz, Z. W. et al. Flood risk and its reduction in China. Adv. Water Resour. 130, 37–45 (2019).

    Google Scholar 

  • Jiang, T. et al. Each 0.5 °C of warming increases annual flood losses in China by more than US$60 billion. Bull. Am. Meteorol. Soc. 101, E1464–E1474 (2021).

    Google Scholar 

  • Su, B. et al. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Natl Acad. Sci. USA 115, 10600–10605 (2018).

    Google Scholar 

  • Li, Z., Sun, Y., Li, T., Ding, Y. & Hu, T. Future Changes in East Asian Summer Monsoon Circulation and Precipitation Under 1.5 to 5 °C of Warming. Earth’s Futur 7, 1391–1406 (2019).

    Google Scholar 

  • Zhang, R. H. Natural and human-induced changes in summer climate over the East Asian Monsoon region in the last half century: a review. Adv. Clim. Chang. Res. 6, 131–140 (2015).

    Google Scholar 

  • Almazroui, M. et al. Projected changes in climate extremes using CMIP6 simulations over SREX regions. Earth Syst. Environ. 5, 481–497 (2021).

    Google Scholar 

  • Huang, J. J., Zhang, N., Choi, G., McBean, E. A. & Zhang, Q. Spatiotemporal patterns and trends of precipitation and their correlations with related meteorological factors by two sets of reanalysis data in China. Hydrol. Earth Syst. Sci. Discuss 5, 1–35 (2018).

    Google Scholar 

  • Ha, K. J., Heo, K. Y., Lee, S. S., Yun, K. S. & Jhun, J. G. Variability in the East Asian Monsoon: a review. Meteorol. Appl. 19, 200–215 (2012).

    Google Scholar 

  • Wang, P. X. et al. The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Sci. Rev. 174, 84–121 (2017).

    Google Scholar 

  • Wu, G. et al. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeorol. 8, 770–789 (2007).

    Google Scholar 

  • Abe, M., Hori, M., Yasunari, T. & Kitoh, A. Effects of the Tibetan Plateau on the onsetof the summer monsoon in South Asia: The role of the air-sea interaction. J. Geophys. Res. Atmos. 118, 1760–1776 (2013).

    Google Scholar 

  • Abbas, A., Waseem, M., Ullah, W., Zhao, C. & Zhu, J. Spatiotemporal analysis of meteorological and hydrological droughts and their propagations. Water 13, 2237 (2021).

    Google Scholar 

  • Zhu, C., Lee, W. S., Kang, H. & Park, C. K. A proper monsoon index for seasonal and interannual variations of the East Asian Monsoon. Geophys. Res. Lett. 32, 1–5 (2005).

    Google Scholar 

  • Wu, L. & Zhang, J. The relationship between spring soil moisture and summer hot extremes over North China. Adv. Atmos. Sci. 32, 1660–1668 (2015).

    Google Scholar 

  • Gao, C. et al. Land–atmosphere interaction over the Indo-China Peninsula during spring and its effect on the following summer climate over the Yangtze River basin. Clim. Dyn. 53, 6181–6198 (2019).

    Google Scholar 

  • Wang, B. & Fan, Z. Choice of South Asian summer monsoon indices. Bull. Am. Meteorol. Soc. 80, 629–638 (1999).

    Google Scholar 

  • Lv, A., Qu, B., Jia, S. & Zhu, W. Influence of three phases of El Niño-Southern Oscillation on daily precipitation regimes in China. Hydrol. Earth Syst. Sci. 23, 883–896 (2019).

    Google Scholar 

  • Wu, Z., Li, J., Jiang, Z. & Ma, T. Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: from the East Asian summer monsoon perspective. J. Clim. 25, 2481–2489 (2012).

    Google Scholar 

  • Liu, D., Wang, G., Mei, R., Yu, Z. & Yu, M. Impact of initial soil moisture anomalies on climate mean and extremes over Asia. J. Geophys. Res. 119, 529–545 (2014).

    Google Scholar 

  • Ullah, W. et al. Observed linkage between Tibetan plateau soil moisture and South Asian summer precipitation and the possible mechanism. J. Clim. 34, 361–377 (2021).

    Google Scholar 

  • Koster, R. D., Chang, Y., Wang, H. & Schubert, S. D. Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: a comprehensive analysis over North America. J. Clim. 29, 7345–7364 (2016).

    Google Scholar 

  • Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).

    Google Scholar 

  • Mei, R. & Wang, G. Impact of sea surface temperature and soil moisture on summer precipitation in the united states based on observational data. J. Hydrometeorol. 12, 1086–1099 (2011).

    Google Scholar 

  • Alessandri, A. & Navarra, A. On the coupling between vegetation and rainfall inter-annual anomalies: possible contributions to seasonal rainfall predictability over land areas. Geophys. Res. Lett. 35, 1–6 (2008).

    Google Scholar 

  • Dorigo, W. et al. ESA CCI soil moisture for improved Earth system understanding: state-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).

    Google Scholar 

  • Santanello, J. A. et al. Land-atmosphere interactions the LoCo perspective. Bull. Am. Meteorol. Soc. 99, 1253–1272 (2018).

    Google Scholar 

  • Rasmijn, L. M. et al. Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints. Nat. Clim. Chang. 8, 381–385 (2018).

    Google Scholar 

  • Denissen, J. M. C. et al. Soil moisture signature in global weather balloon soundings. npj Clim. Atmos. Sci. 4, 13 (2021).

    Google Scholar 

  • Lau, W. K. M. & Kim, K. M. The 2010 Pakistan flood and Russian heat wave: teleconnection of hydrometeorological extremes. J. Hydrometeorol. 13, 392–403 (2012).

    Google Scholar 

  • Mann, M. E. et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7, 12 (2017).

    Google Scholar 

  • Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C. & De Arellano, J. V. G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).

    Google Scholar 

  • Dong, X., Zhou, Y., Chen, H., Zhou, B. & Sun, S. Lag impacts of the anomalous July soil moisture over Southern China on the August rainfall over the Huang–Huai River Basin. Clim. Dyn. 58, 1737–1754 (2022).

    Google Scholar 

  • Bao, Q., Liu, Y., Shi, J. & Wu, G. Comparisons of soil moisture datasets over the Tibetan Plateau and application to the simulation of Asia summer monsoon onset. Adv. Atmos. Sci. 27, 303–314 (2010).

    Google Scholar 

  • Meng, X. et al. Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau. Clim. Dyn. 51, 4157–4168 (2018).

    Google Scholar 

  • Wei, J. & Dirmeyer, P. A. Sensitivity of land precipitation to surface evapotranspiration: a nonlocal perspective based on water vapor transport. Geophys. Res. Lett. 46, 12588–12597 (2019).

    Google Scholar 

  • Wei, J. & Dirmeyer, P. A. Dissecting soil moisture-precipitation coupling. Geophys. Res. Lett. 39, 1–6 (2012).

    Google Scholar 

  • Kim, Y. & Wang, G. Soil moisture-vegetation-precipitation feedback over North America: its sensitivity to soil moisture climatology. J. Geophys. Res. Atmos. 117, 1–18 (2012).

    Google Scholar 

  • Ullah, W., Wang, G., Gao, Z., Hagan, D. F. T. & Lou, D. Comparisons of remote sensing and reanalysis soil moisture products over the Tibetan Plateau, China. Cold Reg. Sci. Technol. 146, 110–121 (2018).

    Google Scholar 

  • Samuel, J., Coulibaly, P., Dumedah, G. & Moradkhani, H. Assessing model state and forecasts variation in hydrologic data assimilation. J. Hydrol. 513, 127–141 (2014).

    Google Scholar 

  • Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).

    Google Scholar 

  • Navarra, A. & Tribbia, J. The coupled manifold. J. Atmos. Sci. 62, 310–330 (2005).

    Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    Google Scholar 

  • Liu, B. et al. Asian summer monsoon onset barrier and its formation mechanism. Clim. Dyn. 45, 711–726 (2015).

    Google Scholar 

  • Liu, B., Wu, G., Mao, J. & He, J. Genesis of the South Asian high and its impact on the Asian summer monsoon onset. J. Clim. 26, 2976–2991 (2013).

    Google Scholar 

  • Li, J. et al. How to measure the strength of the East Asian Summer monsoon. J. Clim. 21, 4449–4463 (2008).

    Google Scholar 

  • Wang, B., LinHo, Zhang, Y. & Lu, M. M. Definition of South China Sea monsoon onset and commencement of the East Asian summer monsoon. J. Clim. 17, 699–710 (2004).

    Google Scholar 

  • Xing, N., Li, J. & Wang, L. Effect of the early and late onset of summer monsoon over the Bay of Bengal on Asian precipitation in May. Clim. Dyn. 47, 1961–1970 (2016).

    Google Scholar 

  • Khan, A. A. et al. Spatial and temporal analysis of rainfall and drought condition in Southwest Xinjiang in Northwest China, using various climate indices. Earth Syst. Environ. 5, 201–216 (2021).

    Google Scholar 

  • Zhang, Z., Sun, X. & Yang, X.-Q. Understanding the interdecadal variability of East Asian summer monsoon precipitation: joint influence of three oceanic signals. J. Clim. 31, 5485–5506 (2018).

    Google Scholar 

  • Liu, L., Zhang, R. & Zuo, Z. Effect of spring precipitation on summer precipitation in Eastern China: role of soil moisture. J. Clim. 30, 9183–9194 (2017).

    Google Scholar 

  • Chahine, M. T. The hydrological cycle and its influence on climate. Nature 359, 373–380 (1992).

    Google Scholar 

  • Zhang, R. & Zuo, Z. Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J. Clim. 24, 3309–3322 (2011).

    Google Scholar 

  • Berg, A., Lintner, B., Findell, K. & Giannini, A. Soil moisture influence on seasonality and large-scale circulation in simulations of the West African monsoon. J. Clim. 30, 2295–2317 (2017).

    Google Scholar 

  • Taylor, C. M. et al. New perspectives on land-atmosphere feedbacks from the African monsoon multidisciplinary analysis. Atmos. Sci. Lett. 12, 38–44 (2011).

    Google Scholar 

  • Zuo, Z. & Zhang, R. Influence of soil moisture in eastern China on the East Asian summer monsoon. Adv. Atmos. Sci. 33, 151–163 (2016).

    Google Scholar 

  • Yang, K., Wang, C. & Bao, H. Contribution of soil moisture variability to summer precipitation in the northern hemisphere. J. Geophys. Res. 121, 12,108–12,214 (2016).

    Google Scholar 

  • Min, J., Guo, Y. & Wang, G. Impacts of soil moisture on typical frontal rainstorm in Yangtze River Basin. Atmosphere 7, 0–24 (2016).

    Google Scholar 

  • Zhu, B., Xie, X., Meng, S., Lu, C. & Yao, Y. Sensitivity of soil moisture to precipitation and temperature over China: present state and future projection. Sci. Total Environ. 705, 135774 (2020).

    Google Scholar 

  • Cheng, S., Guan, X., Huang, J., Ji, F. & Guo, R. Long-term trend and variability of soil moisture over East Asia. J. Geophys. Res. 120, 8658–8670 (2015).

    Google Scholar 

  • AbdelRahman, M. A. E. & Arafat, S. M. An approach of agricultural courses for soil conservation based on crop soil suitability using geomatics. Earth Syst. Environ. 4, 273–285 (2020).

    Google Scholar 

  • Liu, Y. et al. Agriculture intensifies soil moisture decline in Northern China. Sci. Rep. 5, 11261 (2015).

    Google Scholar 

  • Yuan, Q. et al. Coupling of soil moisture and air temperature from multiyear data during 1980–2013 over china. Atmosphere 11, 0–14 (2020).

    Google Scholar 

  • Xu, Z., Chen, H., Guo, J. & Zhang, W. Contrasting effect of soil moisture on the daytime boundary layer under different thermodynamic conditions in summer over China. Geophys. Res. Lett. 48, 1–11 (2021).

    Google Scholar 

  • Xia, K., Li, L., Tang, Y. & Wang, B. Impact of soil freezing-thawing processes on August rainfall over Southern China. J. Geophys. Res. Atmos. 127, 1–16 (2022).

    Google Scholar 

  • Gu, X. et al. Extreme precipitation in China: a review on statistical methods and applications. Adv. Water Resour. 163, 104144 (2022).

    Google Scholar 

  • Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N. & Wood, E. F. Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons. Adv. Water Resour. 109, 236–252 (2017).

    Google Scholar 

  • Yuan, Z., Yang, Z., Yan, D. & Yin, J. Historical changes and future projection of extreme precipitation in China. Theor. Appl. Climatol. 127, 393–407 (2017).

    Google Scholar 

  • Ren, Z. et al. Changes in daily extreme precipitation events in South China from 1961 to 2011. J. Geogr. Sci. 25, 58–68 (2015).

    Google Scholar 

  • Dorigo, W. A. et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 162, 380–395 (2015).

    Google Scholar 

  • Wang, G., Garcia, D., Liu, Y., de Jeu, R. & Dolman, A. J. A three-dimensional gap filling method for large geophysical datasets: application to global satellite soil moisture observations. Environ. Model. Softw. 30, 139–142 (2012).

    Google Scholar 

  • Hersbach, H. et al. Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 17–24 (2019).

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  • Hagan, D. F. T., Parinussa, R. M., Wang, G. & Draper, C. S. An evaluation of soil moisture anomalies from global model-based datasets over the People’s Republic of China. Water 12, 1–15 (2020).

    Google Scholar 

  • Richman, M. B. & Vermette, S. J. The use of procrustes target analysis to discriminate dominant source regions of fine sulfur in the western USA. Atmos. Environ. Part A. Gen. Top. 27, 475–481 (1993).

    Google Scholar 

  • Wang, G., Dolman, A. J. & Alessandri, A. A summer climate regime over Europe modulated by the North Atlantic Oscillation. Hydrol. Earth Syst. Sci. 15, 57–64 (2011).

    Google Scholar 

  • Catalano, F., Alessandri, A., De Felice, M., Zhu, Z. & Myneni, R. B. Observationally based analysis of land-atmosphere coupling. Earth Syst. Dyn. 7, 251–266 (2016).

    Google Scholar 

  • Hannachi, A. A primer for EOF analysis of climate data. (United Kingdom: Department of Meteorology, University of Reading, 2004).

  • Lund, R. B., von Storch, H. & Zwiers, F. W. Statistical analysis in climate research. J. Am. Stat. Assoc. 95, 1375 (2000).

    Google Scholar 

  • Preisendorfer, R. W. Principal Component Analysis in Meteorology and Oceanography XVIII, 425 (Elsevier; Distributors for the U.S. and Canada, Elsevier Science Pub. Co., 1988).

  • Krishnamurti, T. N. Tropical East-West circulations during the Northern summer. J. Atmos. Sci. 28, 1342–1347 (1971).

    Google Scholar 

  • Mancuso, R. L. A numerical procedure for computing fields of stream function and velocity potential. J. Appl. Meteorol. 6, 994–1001 (1967).

    Google Scholar 

  • Kulkarni, P. L., Mitra, A. K., Narkhedkar, S. G., Bohra, A. K. & Rajamani, S. On the impact of divergent part of the wind computed from INSAT OLR data on global analysis and forecast fields. Meteorol. Atmos. Phys. 64, 61–82 (1997).

    Google Scholar 

  • Wei, J., Su, H. & Yang, Z. L. Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe. Clim. Dyn. 46, 467–481 (2016).

    Google Scholar 

  • Pal, J. S. et al. Regional Climate Modeling for the Developing World: The ICTP RegCM3 and RegCNET. Bull. Am. Meteorol. Soc. 88, 1395–1410 (2007).

    Google Scholar 

  • Dickinson, R. E., Henderson-Sellers, A. & Kennedy, P. J. Biosphere-atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model (No. NCAR/TN-387+STR). (University Corporation for Atmospheric Research, 1993). https://doi.org/10.5065/D67W6959.

  • Emanuel, K. A. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 48, 2313–2329 (1991).

    Google Scholar 

  • Pal, J. S., Small, E. E. & Eltahir, E. A. B. Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. Atmos. 105, 29579–29594 (2000).

    Google Scholar 

  • Dirmeyer, P. A., Zeng, F. J., Ducharne, A., Morrill, J. C. & Koster, R. D. The sensitivity of surface fluxes to soil water content in three land surface schemes. J. Hydrometeorol. 1, 121–134 (2000).

    Google Scholar 

  • Wei, J., Dickinson, R. E. & Chen, H. A negative soil moisture–precipitation relationship and its causes. J. Hydrometeorol. 9, 1364–1376 (2008).

    Google Scholar 

  • Bisselink, B., van Meijgaard, E., Dolman, A. J. & de Jeu, R. A. M. Initializing a regional climate model with satellite-derived soil moisture. J. Geophys. Res. Atmos. 116, 1–13 (2011).

  • Yang, K. & Wang, C. Seasonal persistence of soil moisture anomalies related to freeze–thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China. Clim. Dyn. 53, 2411–2424 (2019).

    Google Scholar 

  • Dickinson, R. E., Errico, R. M., Giorgi, F. & Bates, G. T. A regional climate model for the western United States. Clim. Change 15, 383–422 (1989).

    Google Scholar 

  • Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192 (2001).

    Google Scholar 


  • Source: Resources - nature.com

    MIT Solve announces 2023 global challenges and Indigenous Communities Fellowship

    Genomics discovery of giant fungal viruses from subsurface oceanic crustal fluids