Parsons, S. & Jefferson, B. Introduction to Potable Water Treatment Processes (Wiley, 2006).
World Health Organization. Boron in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality (World Health Organization, 2009).
Zodrow, K. R. et al. Advanced materials, technologies, and complex systems analyses: emerging opportunities to enhance urban water security. Environ. Sci. Technol. 51, 10274–10281 (2017).
Google Scholar
Suss, M. E. et al. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296–2319 (2015).
Google Scholar
Zhang, X., Zuo, K., Zhang, X., Zhang, C. & Liang, P. Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review. Environ. Sci. Water Res. Technol. 6, 243–257 (2020).
Google Scholar
Su, X. et al. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nat. Commun. 9, 4701 (2018).
Google Scholar
Swain, B. Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017).
Google Scholar
Schaible, G. Understanding Irrigated Agriculture (United States Department of Agriculture, Economic Research Service, 2017).
Ayers, R. S. & Westcot, D. W. Water Quality for Agriculture. Vol. 29 (Food and Agriculture Organization of the United Nations, 1985).
Singh, R. B., Minhas, P. S., Chauhan, C. P. S. & Gupta, R. K. Effect of high salinity and SAR waters on salinization, sodication and yields of pearl-millet and wheat. Agric. Water Manag. 21, 93–105 (1992).
Google Scholar
Mau, Y. & Porporato, A. A dynamical system approach to soil salinity and sodicity. Adv. Water Resour. 83, 68–76 (2015).
Google Scholar
Baker, R. W. Membrane Technology and Applications (Wiley, 2012).
Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).
Google Scholar
Nativ, P., Fridman-Bishop, N. & Gendel, Y. Ion transport and selectivity in thin film composite membranes in pressure-driven and electrochemical processes. J. Membr. Sci. 584, 46–55 (2019).
Google Scholar
Wormser, E. M., Nir, O. & Edri, E. Low-resistance monovalent-selective cation exchange membranes prepared using molecular layer deposition for energy-efficient ion separations. RSC Adv. 11, 2427–2436 (2021).
Luo, T., Abdu, S. & Wessling, M. Selectivity of ion exchange membranes: a review. J. Membr. Sci. 555, 429–454 (2018).
Google Scholar
Cohen, B., Lazarovitch, N. & Gilron, J. Upgrading groundwater for irrigation using monovalent selective electrodialysis. Desalination 431, 126–139 (2018).
Google Scholar
Ouyang, L., Malaisamy, R. & Bruening, M. L. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. J. Membr. Sci. 310, 76–84 (2008).
Google Scholar
Nativ, P., Lahav, O. & Gendel, Y. Separation of divalent and monovalent ions using flow-electrode capacitive deionization with nanofiltration membranes. Desalination 425, 123–129 (2018).
Google Scholar
Mohammad, A. W. et al. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015).
Google Scholar
Shi, W. et al. Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane. Sep. Purif. Technol. 210, 885–890 (2019).
Google Scholar
Choi, J., Dorji, P., Shon, H. K. & Hong, S. Applications of capacitive deionization: desalination, softening, selective removal, and energy efficiency. Desalination 449, 118–130 (2019).
Google Scholar
Gamaethiralalage, J. G. et al. Recent advances in ion selectivity with capacitive deionization. Energy Environ. Sci. https://doi.org/10.1039/D0EE03145C (2021).
Porada, S., Zhao, R., Van Der Wal, A., Presser, V. & Biesheuvel, P. M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013).
Google Scholar
Hand, S., Guest, J. S. & Cusick, R. D. Technoeconomic analysis of brackish water capacitive deionization: navigating tradeoffs between performance, lifetime, and material costs. Environ. Sci. Technol. 53, 13353–13363 (2019).
Google Scholar
Gao, X., Omosebi, A., Landon, J. & Liu, K. Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes. Environ. Sci. Technol. 49, 10920–10926 (2015).
Google Scholar
Gao, X., Omosebi, A., Holubowitch, N., Landon, J. & Liu, K. Capacitive deionization using alternating polarization: effect of surface charge on salt removal. Electrochim. Acta 233, 249–255 (2017).
Google Scholar
Kang, J. S. et al. Rapid inversion of surface charges in heteroatom-doped porous carbon: a route to robust electrochemical desalination. Adv. Funct. Mater. 30, 1909387 (2020).
Google Scholar
Uwayid, R., Seraphim, N. M., Guyes, E. N., Eisenberg, D. & Suss, M. E. Characterizing and mitigating the degradation of oxidized cathodes during capacitive deionization cycling. Carbon 173, 1105–1114 (2021).
Google Scholar
Cohen, I., Avraham, E., Bouhadana, Y., Soffer, A. & Aurbach, D. Long term stability of capacitive de-ionization processes for water desalination: the challenge of positive electrodes corrosion. Electrochim. Acta 106, 91–100 (2013).
Google Scholar
He, D., Wong, C. E., Tang, W., Kovalsky, P. & Waite, T. D. Faradaic reactions in water desalination by batch-mode capacitive deionization. Environ. Sci. Technol. Lett. 3, 222–226 (2016).
Google Scholar
Srimuk, P., Su, X., Yoon, J., Aurbach, D. & Presser, V. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517–538 (2020).
Google Scholar
Su, X. et al. Asymmetric Faradaic systems for selective electrochemical separations. Energy Environ. Sci. 10, 1272–1283 (2017).
Google Scholar
Singh, K., Porada, S., de Gier, H. D., Biesheuvel, P. M. & de Smet, L. C. P. M. Timeline on the application of intercalation materials in capacitive deionization. Desalination 455, 115–134 (2019).
Google Scholar
Yu, F. et al. Faradaic reactions in capacitive deionization for desalination and ion separation. J. Mater. Chem. A 7, 15999–16027 (2019).
Google Scholar
Son, M. et al. Improving the thermodynamic energy efficiency of battery electrode deionization using flow-through electrodes. Environ. Sci. Technol. 54, 3628–3635 (2020).
Google Scholar
Pothanamkandathil, V., Fortunato, J. & Gorski, C. A. Electrochemical desalination using intercalating electrode materials: a comparison of energy demands. Environ. Sci. Technol. 54, 3653–3662 (2020).
Google Scholar
Srimuk, P. et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 4, 18265–18271 (2016).
Google Scholar
Gabelich, C. J., Tran, T. D. & Suffet, I. H. M. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ. Sci. Technol. 36, 3010–3019 (2002).
Google Scholar
Zhao, R. et al. Time-dependent ion selectivity in capacitive charging of porous electrodes. J. Colloid Interface Sci. 384, 38–44 (2012).
Google Scholar
Biesheuvel, P. M. & van Soestbergen, M. Counterion volume effects in mixed electrical double layers. J. Colloid Interface Sci. 316, 490–499 (2007).
Google Scholar
Suss, M. E. Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes. J. Electrochem. Soc. 164, E270–E275 (2017).
Google Scholar
Guyes, E. N., Malka, T. & Suss, M. E. Enhancing the ion-size-based selectivity of capacitive deionization electrodes. Environ. Sci. Technol. 53, 8447–8454 (2019).
Google Scholar
Hawks, S. A. et al. Using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization. Environ. Sci. Technol. 53, 10863–10870 (2019).
Google Scholar
Zhan, C. et al. Specific ion effects at graphitic interfaces. Nat. Commun. 10, 4858 (2019).
Google Scholar
Wang, L. & Lin, S. Mechanism of selective ion removal in membrane capacitive deionization for water softening. Environ. Sci. Technol. 53, 5797–5804 (2019).
Google Scholar
Giera, B., Henson, N., Kober, E. M., Shell, M. S. & Squires, T. M. Electric double-layer structure in primitive model electrolytes: comparing molecular dynamics with local-density approximations. Langmuir 31, 3553–3562 (2015).
Google Scholar
Hou, C., Taboada-Serrano, P., Yiacoumi, S. & Tsouris, C. Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores. J. Chem. Phys. 129, 224703 (2008).
Google Scholar
Seo, S.-J. et al. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 44, 2267–2275 (2010).
Google Scholar
Gabitto, J. & Tsouris, C. Electrosorption driven ion separation. hal-01966598 (2018).
Nordstrand, J. & Dutta, J. Predicting and enhancing the ion selectivity in multi-ion capacitive deionization. Langmuir 36, 8476–8484 (2020).
Google Scholar
Choi, J., Lee, H. & Hong, S. Capacitive deionization (CDI) integrated with monovalent cation selective membrane for producing divalent cation-rich solution. Desalination 400, 38–46 (2016).
Google Scholar
Avraham, E., Yaniv, B., Soffer, A. & Aurbach, D. Developing ion electroadsorption stereoselectivity, by pore size adjustment with chemical vapor deposition onto active carbon fiber electrodes. Case of Ca2+/Na+ Separation in water capacitive desalination. J. Phys. Chem. C 112, 7385–7389 (2008).
Google Scholar
Cerón, M. R. et al. Cation selectivity in capacitive deionization: elucidating the role of pore size, electrode potential, and ion dehydration. ACS Appl. Mater. Interfaces 12, 42644–42652 (2020).
Google Scholar
Oyarzun, D. I., Hemmatifar, A., Palko, J. W., Stadermann, M. & Santiago, J. G. Adsorption and capacitive regeneration of nitrate using inverted capacitive deionization with surfactant functionalized carbon electrodes. Sep. Purif. Technol. 194, 410–415 (2018).
Google Scholar
Dong, Q. et al. Selective removal of lead ions through capacitive deionization: role of ion-exchange membrane. Chem. Eng. J. 361, 1535–1542 (2019).
Google Scholar
Wu, T. et al. Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode. Electrochim. Acta 176, 426–433 (2015).
Google Scholar
Gao, X. et al. Complementary surface charge for enhanced capacitive deionization. Water Res. 92, 275–282 (2016).
Google Scholar
Yang, J., Zou, L. & Choudhury, N. R. Ion-selective carbon nanotube electrodes in capacitive deionisation. Electrochim. Acta 91, 11–19 (2013).
Google Scholar
Cohen, I., Avraham, E., Noked, M., Soffer, A. & Aurbach, D. Enhanced charge efficiency in capacitive deionization achieved by surface-treated electrodes and by means of a third electrode. J. Phys. Chem. C 115, 19856–19863 (2011).
Google Scholar
Gao, X., Omosebi, A., Landon, J. & Liu, K. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption-desorption behavior. Energy Environ. Sci. 8, 897–909 (2015).
Google Scholar
Hemmatifar, A. et al. Thermodynamics of ion separation by electrosorption. Environ. Sci. Technol. 52, 10196–10204 (2018).
Google Scholar
Hemmatifar, A. et al. Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes. Water Res. 122, 387–397 (2017).
Google Scholar
Min, B. H., Choi, J.-H. & Jung, K. Y. Improved capacitive deionization of sulfonated carbon/titania hybrid electrode. Electrochim. Acta 270, 543–551 (2018).
Google Scholar
Qian, B. et al. Sulfonated graphene as cation-selective coating: a new strategy for high-performance membrane capacitive deionization. Adv. Mater. Interfaces 2, 1500372 (2015).
Google Scholar
Jia, B. & Zou, L. Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization. Chem. Phys. Lett. 548, 23–28 (2012).
Google Scholar
Lee, J.-Y., Seo, S.-J., Yun, S.-H. & Moon, S.-H. Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). Water Res. 45, 5375–5380 (2011).
Google Scholar
Yan, T., Xu, B., Zhang, J., Shi, L. & Zhang, D. Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization. RSC Adv. 8, 2490–2497 (2018).
Google Scholar
Park, H. R. et al. Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization. RSC Adv. 6, 69720–69727 (2016).
Google Scholar
Shocron, A. N. & Suss, M. E. Should we pose a closure problem for capacitive charging of porous electrodes? Europhys. Lett. 130, 34003 (2020).
Google Scholar
Singh, K. et al. Nickel hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization. Desalination 481, 114346 (2020).
Google Scholar
Oyarzun, D. I., Hemmatifar, A., Palko, J. W., Stadermann, M. & Santiago, J. G. Ion selectivity in capacitive deionization with functionalized electrode: theory and experimental validation. Water Res. X 1, 100008 (2018).
Google Scholar
Hawks, S. A. et al. Quantifying the flow efficiency in constant-current capacitive deionization. Water Res. 129, 327–336 (2018).
Google Scholar
Hawks, S. A. et al. Performance metrics for the objective assessment of capacitive deionization systems. Water Res. 152, 126–137 (2019).
Google Scholar
Kang, J. et al. Direct energy recovery system for membrane capacitive deionization. Desalination 398, 144–150 (2016).
Google Scholar
Długołecki, P. & Van Der Wal, A. Energy recovery in membrane capacitive deionization. Environ. Sci. Technol. 47, 4904–4910 (2013).
Google Scholar
Atlas, I., Abu Khalla, S. & Suss, M. E. Thermodynamic energy efficiency of electrochemical systems performing simultaneous water desalination and electricity generation. J. Electrochem. Soc. 167, 134517 (2020).
Google Scholar
Wang, L., Dykstra, J. E. & Lin, S. Energy efficiency of capacitive deionization. Environ. Sci. Technol. 53, 3366–3378 (2019).
Google Scholar
Biesheuvel, P. M. Thermodynamic cycle analysis for capacitive deionization. J. Colloid Interface Sci. 332, 258–264 (2009).
Google Scholar
Wang, L., Biesheuvel, P. M. & Lin, S. Reversible thermodynamic cycle analysis for capacitive deionization with modified Donnan model. J. Colloid Interface Sci. 512, 522–528 (2018).
Google Scholar
Qin, M. et al. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination 455, 100–114 (2019).
Google Scholar
Hatzell, M. C. & Hatzell, K. B. Blue refrigeration: capacitive de-ionization for brackish water treatment. J. Electrochem. Energy Convers. Storage 15, 1–6 (2018).
Google Scholar
Hemmatifar, A., Palko, J. W., Stadermann, M. & Santiago, J. G. Energy breakdown in capacitive deionization. Water Res. 104, 303–311 (2016).
Google Scholar
Dykstra, J. E., Zhao, R., Biesheuvel, P. M. & Van der Wal, A. Resistance identification and rational process design in capacitive deionization. Water Res. 88, 358–370 (2016).
Google Scholar
Gao, X., Omosebi, A., Landon, J. & Liu, K. Dependence of the capacitive deionization performance on potential of zero charge shifting of carbon xerogel electrodes during long-term operation. J. Electrochem. Soc. 161, E159–E166 (2014).
Google Scholar
Gao, X., Omosebi, A., Landon, J. & Liu, K. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy Environ. Sci. 8, 897–909 (2015).
Google Scholar
Gao, X., Omosebi, A., Landon, J. & Liu, K. Voltage-based stabilization of microporous carbon electrodes for inverted capacitive deionization. J. Phys. Chem. C 122, 1158–1168 (2018).
Google Scholar
Kim, M., Cerro, M., del, Hand, S. & Cusick, R. D. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders. Water Res. 148, 388–397 (2019).
Google Scholar
Krüner, B. et al. Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability. Carbon 117, 46–54 (2017).
Google Scholar
Biesheuvel, P. M., Zhao, R., Porada, S. & van der Wal, A. Theory of membrane capacitive deionization including the effect of the electrode pore space. J. Colloid Interface Sci. 360, 239–248 (2011).
Google Scholar
Tang, W., Kovalsky, P., Cao, B. & Waite, T. D. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization. Water Res. 99, 112–121 (2016).
Google Scholar
Boublík, T. Hard‐sphere equation of state. J. Chem. Phys. 53, 471–472 (1970).
Google Scholar
Mansoori, G. A. et al. Equilibrium thermodynamic properties of the mixture of hard spheres. J. Chem. Phys. 54, 1523–1525 (1971).
Google Scholar
Guyes, E. N., Shocron, A. N., Simanovski, A., Biesheuvel, P. M. & Suss, M. E. A one-dimensional model for water desalination by flow-through electrode capacitive deionization. Desalination 415, 8–13 (2017).
Google Scholar
Kim, C. et al. Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization. Carbon 122, 329–335 (2017).
Google Scholar
Bi, S. et al. Permselective ion electrosorption of subnanometer pores at high molar strength enables capacitive deionization of saline water. Sustain. Energy Fuels 4, 1285–1295 (2020).
Google Scholar
Rivin, D., Aron, J. & Donoian, H. Sulfonated carbon black pigmented compositions. 3519452 (1970).
Vanýsek, P. Equivalent conductivity of electrolytes in aqueous solution. In CRC Handbook of Chemistry and Physics 99th edn (ed. Rumble, J. R.) (CRC Press/Taylor & Francis, 2018).
Vanýsek, P. Ionic conductivity and diffusion at infinite dilution. In CRC Handbook of Chemistry and Physics 99th edn (ed. Rumble, J. R.) (CRC Press/Taylor & Francis, 2018).
Source: Resources - nature.com