in

Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes

  • 1.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article 
    CAS 

    Google Scholar 

  • 3.

    IPCC. Intergovernmental Panel on Climate Change). 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group I to IPCC AR5. (Cambridge University Press, 2014).

  • 4.

    Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125 LP–125128 (2001).

    Article 

    Google Scholar 

  • 5.

    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).

  • 7.

    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).

  • 8.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645 LP–11611650 (2017).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Keith, D. A. et al. The IUCN red list of ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).

    Article 

    Google Scholar 

  • 10.

    Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, 1–9 (2020).

    Article 

    Google Scholar 

  • 11.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article 

    Google Scholar 

  • 12.

    Chauvenet, A. L. M. et al. To achieve big wins for terrestrial conservation, prioritize protection of ecoregions closest to meeting targets. One Earth 2, 479–486 (2020).

    Article 

    Google Scholar 

  • 13.

    Wilson, E. O. Half Earth: Our Planets Fight for Life (W.W. Norton and Company, 2016).

  • 14.

    Polak, T. et al. Efficient expansion of global protected areas requires simultaneous planning for species and ecosystems. R. Soc. Open Sci. 2, 150107 (2015).

    Article 

    Google Scholar 

  • 15.

    Visconti, B. P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    CAS 

    Google Scholar 

  • 16.

    Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Finsinger, W., Giesecke, T., Brewer, S. & Leydet, M. Emergence patterns of novelty in European vegetation assemblages over the past 15 000 years. Ecol. Lett. 20, 336–346 (2017).

    Article 

    Google Scholar 

  • 18.

    Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science 369 (2020).

  • 19.

    Jackson, S. T. Vegetation, environment, and time: the origination and termination of ecosystems. J. Veg. Sci. 17, 549–557 (2006).

    Article 

    Google Scholar 

  • 20.

    Hoffmann, S. & Beierkuhnlein, C. Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib. 26, 1496–1509 (2020).

    Article 

    Google Scholar 

  • 21.

    Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579–1247579 (2014).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10 (2020).

  • 23.

    Heubes, J. et al. Modelling biome shifts and tree cover change for 2050 in West Africa: Biome shifts and tree cover change in West Africa. J. Biogeogr. 38, 2248–2258 (2011).

    Article 

    Google Scholar 

  • 24.

    Scholze, M., Knorr, W., Arnell, N. W. & Prentice, I. C. A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. 103, 13116–13120 (2006).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Salazar, L. F. & Nobre, C. A. Climate change and thresholds of biome shifts in Amazonia: CLIMATE CHANGE AND AMAZON BIOME SHIFTS. Geophys. Res. Lett. 37, n/a–n/a (2010).

    Article 

    Google Scholar 

  • 26.

    Yu, D., Liu, Y., Shi, P. & Wu, J. Projecting impacts of climate change on global terrestrial ecoregions. Ecol. Indic. 103, 114–123 (2019).

    Article 

    Google Scholar 

  • 27.

    Iwamura, T., Guisan, A., Wilson, K. A. & Possingham, H. P. How robust are global conservation priorities to climate change? Glob. Environ. Change 23, 1277–1284 (2013).

    Article 

    Google Scholar 

  • 28.

    Littlefield, C. E., Krosby, M., Michalak, J. L. & Lawler, J. J. Connectivity for species on the move: supporting climate-driven range shifts. Front. Ecol. Environ. 17, 270–278 (2019).

    Article 

    Google Scholar 

  • 29.

    McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl. Acad. Sci. 113, 7195 LP–7197200 (2016).

    Article 
    CAS 

    Google Scholar 

  • 30.

    CBD. Zero Draft of post-2020 biodiversity framework. Secr. Conv. Biol. Divers. 1–14 (2020).

  • 31.

    Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6 (2020).

  • 32.

    Batllori, E., Parisien, M. A., Parks, S. A., Moritz, M. A. & Miller, C. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Glob. Change Biol. 23, 3219–3230 (2017).

    Article 

    Google Scholar 

  • 33.

    Hole, D. G. et al. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 12, 420–431 (2009).

    Article 

    Google Scholar 

  • 34.

    Corlett, R. T. & Tomlinson, K. W. Climate change and edaphic specialists: irresistible force meets immovable object? Trends Ecol. Evol. 35, 367–376 (2020).

    Article 

    Google Scholar 

  • 35.

    Svenning, J. C. et al. The influence of interspecific interactions on species range expansion rates. Ecography 37, 1198–1209 (2014).

    Article 

    Google Scholar 

  • 36.

    Urban, M. C., Zarnetske, P. L. & Skelly, D. K. Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann. N. Y. Acad. Sci. 1297, 44–60 (2013).

    Google Scholar 

  • 37.

    Alagador, D., Cerdeira, J. O. & Araújo, M. B. Shifting protected areas: scheduling spatial priorities under climate change. J. Appl. Ecol. 51, 703–713 (2014).

    Article 

    Google Scholar 

  • 38.

    Araujo. Climate Change and Spatial Conservation Planning. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford Univ. Press, 2009).

  • 39.

    Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, 1987).

  • 40.

    Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).

    Article 

    Google Scholar 

  • 41.

    Burke, K. D. et al. Differing climatic mechanisms control transient and accumulated vegetation novelty in Europe and eastern North America. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190218 (2019).

  • 42.

    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. 104, 5738 LP–5735742 (2007).

    Article 
    CAS 

    Google Scholar 

  • 43.

    OECD. The post-2020 biodiversity framework: targets, indicators and measurability implications at global and national level. (2019).

  • 44.

    Carroll, C. & Noss, R. F. Rewilding in the face of climate change. Conserv. Biol. 00, 1–13 (2020).

    Google Scholar 

  • 45.

    Lovejoy, T. E. & Hannah, L. Avoiding the climate failsafe point. Sci. Adv. 4 (2018).

  • 46.

    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).

    Article 

    Google Scholar 

  • 47.

    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. 106, 9322–9327 (2009).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Franklin, J. F. & Lindenmayer, D. B. Importance of matrix habitats in maintaining biological diversity. Proc. Natl. Acad. Sci. 106, 349–350 (2009).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Boesing, A. L., Nichols, E. & Metzger, J. P. Biodiversity extinction thresholds are modulated by matrix type. Ecography 41, 1520–1533 (2018).

    Article 

    Google Scholar 

  • 51.

    Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).

  • 52.

    Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).

    Article 

    Google Scholar 

  • 53.

    Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7 (2016).

  • 54.

    Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26 (2020).

  • 55.

    Carroll, C., Parks, S. A., Dobrowski, S. Z. & Roberts, D. R. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Glob. Change Biol. 24 (2018).

  • 56.

    Vos, C. C. et al. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J. Appl. Ecol. 45, 1722–1731 (2008).

    Article 

    Google Scholar 

  • 57.

    Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390–397 (2014).

    Article 

    Google Scholar 

  • 58.

    Fitzpatrick, M. C. & Dunn, R. R. Contemporary climatic analogs for 540 North American urban areas in the late 21st century. Nat. Commun. 10, 614 (2019).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Beale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J. & Elston, D. A. Regression analysis of spatial data. Ecol. Lett. 13, 246–264 (2010).

    Article 

    Google Scholar 

  • 60.

    Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    Article 

    Google Scholar 

  • 61.

    Mahony, C. R., Cannon, A. J., Wang, T. & Aitken, S. N. A closer look at novel climates: new methods and insights at continental to landscape scales. Glob. Change Biol. 23, 3934–3955 (2017).

    Article 

    Google Scholar 

  • 62.

    Fitzpatrick, M. C. et al. How will climate novelty influence ecological forecasts? Using the quaternary to assess future reliability. Glob. Change Biol. 24, 3575–3586 (2018).

    Article 

    Google Scholar 

  • 63.

    Mahony, C. R., MacKenzie, W. H. & Aitken, S. N. Novel climates: trajectories of climate change beyond the boundaries of British Columbia’s forest management knowledge system. For. Ecol. Manag. 410, 35–47 (2018).

    Article 

    Google Scholar 

  • 64.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (1998).

    Article 

    Google Scholar 

  • 65.

    Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).

    Article 

    Google Scholar 

  • 66.

    Stephenson, N. L. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. 25, 855–870 (1998).

    Article 

    Google Scholar 

  • 67.

    Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).

    Article 

    Google Scholar 

  • 68.

    Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    Article 

    Google Scholar 

  • 69.

    Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. U.S.A. 116, 6193–6198 (2019).

  • 70.

    Rodriguez Mega, E. Apocalypic fires are ravaging the worlds largest tropical wetland. Nature 586, 20–21 (2020).

  • 71.

    van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. https://doi.org/10.5194/nhess-2020-69 (2020).

  • 72.

    Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. 116, 909 LP–909914 (2019).

    Article 
    CAS 

    Google Scholar 

  • 73.

    Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).

  • 74.

    Parks, S. A. et al. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 11, 035002 (2016).

  • 75.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5 (2018).

  • 76.

    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article 

    Google Scholar 

  • 77.

    Mitchell, T. D. Pattern scaling: an examination of the accuracy of the technique for describing future climates. Clim. Change 60, 217–242 (2003).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).

    Article 

    Google Scholar 

  • 79.

    Bowman, J., Jaeger, J. A. G. & Fahrig, L. Dispersal distance of mammal is proportional to home range size. Ecology 83, 2049–2055 (2002).

    Article 

    Google Scholar 

  • 80.

    Smith, A. M. & Green, D. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28, 110–128 (2005).

    Article 

    Google Scholar 

  • 81.

    Sutherland, G., Harestad, A. S., Price, K. & Lertzman, K. Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv. Ecol. 4 (2000).

  • 82.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 83.

    Michalak, J. L., Lawler, J. J., Roberts, D. R. & Carroll, C. Distribution and protection of climatic refugia in North America. Conserv. Biol. 32, 1414–1425 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Zeroing in on the origins of Earth’s “single most important evolutionary innovation”

    The language of change