Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
Google Scholar
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Google Scholar
IPCC. Intergovernmental Panel on Climate Change). 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group I to IPCC AR5. (Cambridge University Press, 2014).
Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125 LP–125128 (2001).
Google Scholar
Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).
Google Scholar
Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).
Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).
Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645 LP–11611650 (2017).
Google Scholar
Keith, D. A. et al. The IUCN red list of ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).
Google Scholar
Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, 1–9 (2020).
Google Scholar
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
Google Scholar
Chauvenet, A. L. M. et al. To achieve big wins for terrestrial conservation, prioritize protection of ecoregions closest to meeting targets. One Earth 2, 479–486 (2020).
Google Scholar
Wilson, E. O. Half Earth: Our Planets Fight for Life (W.W. Norton and Company, 2016).
Polak, T. et al. Efficient expansion of global protected areas requires simultaneous planning for species and ecosystems. R. Soc. Open Sci. 2, 150107 (2015).
Google Scholar
Visconti, B. P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).
Google Scholar
Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).
Google Scholar
Finsinger, W., Giesecke, T., Brewer, S. & Leydet, M. Emergence patterns of novelty in European vegetation assemblages over the past 15 000 years. Ecol. Lett. 20, 336–346 (2017).
Google Scholar
Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science 369 (2020).
Jackson, S. T. Vegetation, environment, and time: the origination and termination of ecosystems. J. Veg. Sci. 17, 549–557 (2006).
Google Scholar
Hoffmann, S. & Beierkuhnlein, C. Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib. 26, 1496–1509 (2020).
Google Scholar
Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579–1247579 (2014).
Google Scholar
Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10 (2020).
Heubes, J. et al. Modelling biome shifts and tree cover change for 2050 in West Africa: Biome shifts and tree cover change in West Africa. J. Biogeogr. 38, 2248–2258 (2011).
Google Scholar
Scholze, M., Knorr, W., Arnell, N. W. & Prentice, I. C. A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. 103, 13116–13120 (2006).
Google Scholar
Salazar, L. F. & Nobre, C. A. Climate change and thresholds of biome shifts in Amazonia: CLIMATE CHANGE AND AMAZON BIOME SHIFTS. Geophys. Res. Lett. 37, n/a–n/a (2010).
Google Scholar
Yu, D., Liu, Y., Shi, P. & Wu, J. Projecting impacts of climate change on global terrestrial ecoregions. Ecol. Indic. 103, 114–123 (2019).
Google Scholar
Iwamura, T., Guisan, A., Wilson, K. A. & Possingham, H. P. How robust are global conservation priorities to climate change? Glob. Environ. Change 23, 1277–1284 (2013).
Google Scholar
Littlefield, C. E., Krosby, M., Michalak, J. L. & Lawler, J. J. Connectivity for species on the move: supporting climate-driven range shifts. Front. Ecol. Environ. 17, 270–278 (2019).
Google Scholar
McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl. Acad. Sci. 113, 7195 LP–7197200 (2016).
Google Scholar
CBD. Zero Draft of post-2020 biodiversity framework. Secr. Conv. Biol. Divers. 1–14 (2020).
Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6 (2020).
Batllori, E., Parisien, M. A., Parks, S. A., Moritz, M. A. & Miller, C. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Glob. Change Biol. 23, 3219–3230 (2017).
Google Scholar
Hole, D. G. et al. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 12, 420–431 (2009).
Google Scholar
Corlett, R. T. & Tomlinson, K. W. Climate change and edaphic specialists: irresistible force meets immovable object? Trends Ecol. Evol. 35, 367–376 (2020).
Google Scholar
Svenning, J. C. et al. The influence of interspecific interactions on species range expansion rates. Ecography 37, 1198–1209 (2014).
Google Scholar
Urban, M. C., Zarnetske, P. L. & Skelly, D. K. Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann. N. Y. Acad. Sci. 1297, 44–60 (2013).
Alagador, D., Cerdeira, J. O. & Araújo, M. B. Shifting protected areas: scheduling spatial priorities under climate change. J. Appl. Ecol. 51, 703–713 (2014).
Google Scholar
Araujo. Climate Change and Spatial Conservation Planning. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford Univ. Press, 2009).
Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, 1987).
Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).
Google Scholar
Burke, K. D. et al. Differing climatic mechanisms control transient and accumulated vegetation novelty in Europe and eastern North America. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190218 (2019).
Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. 104, 5738 LP–5735742 (2007).
Google Scholar
OECD. The post-2020 biodiversity framework: targets, indicators and measurability implications at global and national level. (2019).
Carroll, C. & Noss, R. F. Rewilding in the face of climate change. Conserv. Biol. 00, 1–13 (2020).
Lovejoy, T. E. & Hannah, L. Avoiding the climate failsafe point. Sci. Adv. 4 (2018).
Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).
Google Scholar
Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. 106, 9322–9327 (2009).
Google Scholar
Franklin, J. F. & Lindenmayer, D. B. Importance of matrix habitats in maintaining biological diversity. Proc. Natl. Acad. Sci. 106, 349–350 (2009).
Google Scholar
Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).
Google Scholar
Boesing, A. L., Nichols, E. & Metzger, J. P. Biodiversity extinction thresholds are modulated by matrix type. Ecography 41, 1520–1533 (2018).
Google Scholar
Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).
Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).
Google Scholar
Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7 (2016).
Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26 (2020).
Carroll, C., Parks, S. A., Dobrowski, S. Z. & Roberts, D. R. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Glob. Change Biol. 24 (2018).
Vos, C. C. et al. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J. Appl. Ecol. 45, 1722–1731 (2008).
Google Scholar
Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390–397 (2014).
Google Scholar
Fitzpatrick, M. C. & Dunn, R. R. Contemporary climatic analogs for 540 North American urban areas in the late 21st century. Nat. Commun. 10, 614 (2019).
Google Scholar
Beale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J. & Elston, D. A. Regression analysis of spatial data. Ecol. Lett. 13, 246–264 (2010).
Google Scholar
Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).
Google Scholar
Mahony, C. R., Cannon, A. J., Wang, T. & Aitken, S. N. A closer look at novel climates: new methods and insights at continental to landscape scales. Glob. Change Biol. 23, 3934–3955 (2017).
Google Scholar
Fitzpatrick, M. C. et al. How will climate novelty influence ecological forecasts? Using the quaternary to assess future reliability. Glob. Change Biol. 24, 3575–3586 (2018).
Google Scholar
Mahony, C. R., MacKenzie, W. H. & Aitken, S. N. Novel climates: trajectories of climate change beyond the boundaries of British Columbia’s forest management knowledge system. For. Ecol. Manag. 410, 35–47 (2018).
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (1998).
Google Scholar
Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).
Google Scholar
Stephenson, N. L. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. 25, 855–870 (1998).
Google Scholar
Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).
Google Scholar
Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).
Google Scholar
Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. U.S.A. 116, 6193–6198 (2019).
Rodriguez Mega, E. Apocalypic fires are ravaging the worlds largest tropical wetland. Nature 586, 20–21 (2020).
van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. https://doi.org/10.5194/nhess-2020-69 (2020).
Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. 116, 909 LP–909914 (2019).
Google Scholar
Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).
Parks, S. A. et al. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 11, 035002 (2016).
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5 (2018).
Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).
Google Scholar
Mitchell, T. D. Pattern scaling: an examination of the accuracy of the technique for describing future climates. Clim. Change 60, 217–242 (2003).
Google Scholar
Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).
Google Scholar
Bowman, J., Jaeger, J. A. G. & Fahrig, L. Dispersal distance of mammal is proportional to home range size. Ecology 83, 2049–2055 (2002).
Google Scholar
Smith, A. M. & Green, D. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28, 110–128 (2005).
Google Scholar
Sutherland, G., Harestad, A. S., Price, K. & Lertzman, K. Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv. Ecol. 4 (2000).
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
Google Scholar
Michalak, J. L., Lawler, J. J., Roberts, D. R. & Carroll, C. Distribution and protection of climatic refugia in North America. Conserv. Biol. 32, 1414–1425 (2018).
Google Scholar
Source: Ecology - nature.com