in

The efficacy of chlorine-based disinfectants against planktonic and biofilm bacteria for decentralised point-of-use drinking water

  • 1.

    Prüss-Ustün, A. et al. Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries. Trop. Med. Int. Heal. 19, 894–905 (2014).

    Article 

    Google Scholar 

  • 2.

    WHO & UNICEF. Progress on Drinking Water, Sanitation and Hygiene in Households 2000-2020: Five Years into the SDGs (WHO & UNICEF, 2021).

  • 3.

    World Health Organization. Guidelines for Drinking-water Quality 4th edn. (WHO, 2011) https://doi.org/10.1016/S1462-0758(00)00006-6.

  • 4.

    Gil, M. I., Gómez-López, V. M., Hung, Y.-C. & Allende, A. Potential of electrolyzed water as an alternative disinfectant agent in the fresh-cut industry. Food Bioprocess Technol. 8, 1336–1348 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Drinking Water Inspectorate. Guidance on the implementation of the water supply (water quality) regulations 2000 (as amended) in England. Drinking Water Inspectorate vol. 2000 (Drinking Water Inspectorate, 2012).

  • 6.

    Chowdhury, S. Trihalomethanes in drinking water: effect of natural organic matter distribution. Water SA 39, 1–8 (2013).

    CAS 

    Google Scholar 

  • 7.

    Grunwald, A., Nikolaou, A. D., Golfinopoulos, S. K. & Lekkas, T. D. Formation of organic by-products during chlorination of natural waters. J. Environ. Monit. 4, 910–916 (2002).

    Article 

    Google Scholar 

  • 8.

    Clayton, G. E., Thorn, R. M. S. & Reynolds, D. M. Comparison of trihalomethane formation using chlorine-based disinfectants within a model system; applications within point-of-use drinking water treatment. Front. Environ. Sci. 7, 35 (2019).

    Article 

    Google Scholar 

  • 9.

    Malliarou, E., Collins, C., Graham, N. & Nieuwenhuijsen, M. J. Haloacetic acids in drinking water in the United Kingdom. Water Res. 39, 2722–2730 (2005).

    CAS 
    Article 

    Google Scholar 

  • 10.

    World Health Organization. Trihalomethanes in Drinking-water (World Health Organization, 2005).

  • 11.

    Fawell, J. & Nieuwenhuijsen, M. J. Contaminants in drinking water. Br. Med. Bull. 68, 199–208 (2003).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Carratalà, A. et al. Solar disinfection of viruses in polyethylene terephthalate bottles. Appl. Environ. Microbiol. 82, 279–288 (2016).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Zhu, J., Fan, X. J., Tao, Y., Wei, D. Q. & Zhang, X. H. Study on an integrated process combining ozonation with ceramic ultra-filtration for decentralized supply of drinking water. J. Environ. Sci. Heal. 49, 1296–1303 (2014).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Glaze, W. H., Kang, J.-W. & Chapin, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 9, 335–352 (1987).

    CAS 
    Article 

    Google Scholar 

  • 15.

    McGuire, M. J. Drinking Water Chlorination (American Chemistry Council, 2016). https://chlorine.americanchemistry.com/Chlorine-Benefits/Safe-Water/Disinfection-Practices.pdf 10.1002/(SICI)1521-401X(199902)27:2<100::AID-AHEH100>3.3.CO;2-1.

  • 16.

    Han, Q. et al. Removal of foodborne pathogen biofilms by acidic electrolyzed water. Front. Microbiol. 8, 1–12 (2017).

    Google Scholar 

  • 17.

    Thorn, R. M. S., Pendred, J. & Reynolds, D. M. Assessing the antimicrobial potential of aerosolised electrochemically activated solutions (ECAS) for reducing the microbial bio-burden on fresh food produce held under cooled or cold storage conditions. Food Microbiol. 68, 41–50 (2017).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Kirkpatrick, R. D. The mechanism of antimicrobial action of Electro-Chemically Activated (ECA) water and its healthcare applications (University of Pretoria, 2009).

  • 19.

    Thorn, R. M. S., Lee, S. W. H., Robinson, G. M., Greenman, J. & Reynolds, D. M. Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments. Eur. J. Clin. Microbiol. Infect. Dis. 31, 641–653 (2012).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Ghebremichael, K., Muchelemba, E., Petrusevski, B. & Amy, G. Electrochemically activated water as an alternative to chlorine for decentralized disinfection. J. Water Supply.: Res. Technol.—Aqua 60, 210–218 (2011).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Venczel, L. V., Likirdopulos, C. A., Robinson, C. E. & Sobsey, M. D. Inactivation of enteric microbes in water by electro-chemical oxidant from brine (NaCl) and free chlorine. Water Sci. Technol. 50, 141–146 (2004).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Kerwick, M. I., Reddy, S. M., Chamberlain, A. H. L. & Holt, D. M. Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? Electrochim. Acta 50, 5270–5277 (2005).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Liao, L. B., Chen, W. M. & Xiao, X. M. The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water. J. Food Eng. 78, 1326–1332 (2007).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Robinson, G. M., Lee, S. W.-H., Greenman, J., Salisbury, V. C. & Reynolds, D. M. Evaluation of the efficacy of electrochemically activated solutions against nosocomial pathogens and bacterial endospores. Lett. Appl. Microbiol. 50, 289–294 (2010).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Cherney, D. P., Duirk, S. E., Tarr, J. C. & Collette, T. W. Monitoring the speciation of aqueous free chlorine from pH 1 to 12 with Raman spectroscopy to determine the identity of the potent low-pH oxidant. Appl. Spectrosc. 60, 764–772 (2006).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Nakagawara, S. et al. Spectroscopic characterization and the pH dependence of bactericidal activity of the aqueous chlorine solution. Jpn. Soc. Anal. Sci. 14, 691–698 (1998).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Jeong, J., Kim, J. Y. & Yoon, J. The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ. Sci. Technol. 40, 3–4 (2006).

    Article 

    Google Scholar 

  • 28.

    Martínez-Huitle, C. A. A., Brillas, E., Martinez-Huitle, C. A. & Brillas, E. Electrochemical alternatives for drinking water disinfection. Angew. Chem. Int. Ed. 47, 1998–2005 (2008).

    Article 
    CAS 

    Google Scholar 

  • 29.

    Inoue, Y. et al. Trial of electrolyzed strong acid aqueous solution lavage in the treatment of peritonitis and intraperitoneal abscess. Artif. Organs 21, 28–31 (1997).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Bernstein, R. et al. ‘Should I stay or should I go?’ Bacterial attachment vs biofilm formation on surface-modified membranes. Biofouling 30, 367–376 (2014).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Schwering, M., Song, J., Louie, M., Turner, R. J. & Ceri, H. Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection. Biofouling 29, 917–928 (2013).

    CAS 
    Article 

    Google Scholar 

  • 32.

    O’Toole, G., Kaplan, H. B. & Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49–79 (2000).

    Article 

    Google Scholar 

  • 33.

    Flemming, H.-C. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Ashbolt, N. J. Microbial contamination of drinking water and human health from community water systems. Curr. Environ. Heal. Rep. 2, 95–106 (2015).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Skraber, S., Schijven, J., Gantzer, C. & de Roda Husman, A. M. Pathogenic viruses in drinking-water biofilms: a public health risk? Biofilms 2, 105–117 (2005).

    Article 

    Google Scholar 

  • 36.

    Crozes, G. F., Jacangelo, J. G., Anselme, C. & Laîné, J. M. Impact of ultrafiltration operating conditions on membrane irreversible fouling. J. Memb. Sci. 124, 63–76 (1997).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Sillanpää, M. In Natural Organic Matter in Water 1–15 (Butterworth-Heinemann, 2015). https://doi.org/10.1016/B978-0-12-801503-2.00001-X.

  • 38.

    Wingender, J. & Flemming, H.-C. Biofilms in drinking water and their role as reservoir for pathogens. Int. J. Hyg. Environ. Health 214, 417–423 (2011).

    Article 

    Google Scholar 

  • 39.

    De Beer, D., Srinivasan, R. & Stewart, P. S. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 60, 4339–4344 (1994).

    Article 

    Google Scholar 

  • 40.

    Stewart, P. S., Rayner, J., Roe, F. & Rees, W. M. Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J. Appl. Microbiol. 91, 525–532 (2001).

    CAS 
    Article 

    Google Scholar 

  • 41.

    British Standards Institution. Chemical disinfectants and antiseptics—quantitative suspension test for the evaluation of basic bactericidal activity of chemical disinfectants and antiseptics—test method and requirements (phase 1). European Committee for Standardization vol. 3 http://www.cen.eu/cen/Sectors/TechnicalCommitteesWorkshops/CENTechnicalCommittees/Pages/Standards.aspx?param=6197&title=Chemical disinfectants and antiseptics (2005).

  • 42.

    British Standards Institution. Chemical disinfectants and antiseptics—Quantitative suspension test for the evaluation of bactericidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic and institutional areas—Test method and requirements (phase 2, European Committee for Standardization vol. 3 http://www.cen.eu/cen/Sectors/TechnicalCommitteesWorkshops/CENTechnicalCommittees/Pages/Standards.aspx?param=6197&title=Chemical disinfectants and antiseptics (2009).

  • 43.

    Clayton, G. E., Thorn, R. M. S. & Reynolds, D. M. Development of a novel off-grid drinking water production system integrating electrochemically activated solutions and ultrafiltration membranes. J. Water Process Eng. 30, (2019).

  • 44.

    Loret, J. F. et al. Comparison of disinfectants for biofilm, protozoa and Legionella control. J. Water Health 3, 423–433 (2005).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Diao, H., Li, X., Gu, J., Shi, H. & Xie, Z. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction. Process Biochem. 39, 1421–1426 (2004).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Clasen, T. & Edmondson, P. Sodium dichloroisocyanurate (NaDCC) tablets as an alternative to sodium hypochlorite for the routine treatment of drinking water at the household level. Int. J. Hyg. Environ. Health 209, 173–181 (2006).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Fukuzaki, S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 11, 147–157 (2006).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Bloomfield, S. F., Arthur, M., Looney, E., Begun, K. & Patel, H. Comparative testing of disinfectant and antiseptic products using proposed European suspension testing methods. Lett. Appl. Microbiol. 13, 233–237 (1991).

    CAS 
    Article 

    Google Scholar 

  • 49.

    European Chemicals Agency. Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products. Active chlorine released from sodium hypochloriteProduct-type 4 (Food and feed area). https://echa.europa.eu/documents/10162/3b7a78a9-9bda-f684-a088-418dc4a56adb (2017).

  • 50.

    Oomori, T., Oka, T., Inuta, T. & Arata, Y. The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials. Anal. Sci. 16, 365–369 (2005).

    Article 

    Google Scholar 

  • 51.

    Ayebah, B., Hung, Y.-C., Kim, C. & Frank, J. F. Efficacy of electrolyzed water in the inactivation of planktonic and biofilm Listeria monocytogenes in the presence of organic matter. J. Food Prot. 69, 2143–2150 (2006).

    Article 

    Google Scholar 

  • 52.

    Robinson, G., Thorn, R. & Reynolds, D. The effect of long-term storage on the physiochemical and bactericidal properties of electrochemically activated solutions. Int. J. Mol. Sci. 14, 457–469 (2013).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Ignatov, I. et al. The evaluation of the mathematical model of interaction of electrochemically activated water solutions (anolyte and catholyte) with water. Eur. Rev. Chem. Res. 4, 72–86 (2015).

    Article 

    Google Scholar 

  • 54.

    Cotruvo, J., Giddings, M., Jackson, P., Magara, Y. & Ohanian, E. Sodium Dichloroisocyanurate in Drinking-water (2007).

  • 55.

    Xuan, X. et al. Storage stability of slightly acidic electrolyzed water and circulating electrolyzed water and their property changes after application. J. Food Sci. 81, E610–E617 (2016).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Richards, J. J. & Melander, C. Controlling bacterial biofilms. ChemBioChem 10, 2287–2294 (2009).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Stewart, P. S. In Microbial Biofilms (eds. Mukherjee, P. K., Ghannoum, M., Whiteley, M. & Parsek, M.) 269–286 (American Society of Microbiology, 2015). https://doi.org/10.1128/9781555817466.

  • 58.

    Kim, C., Hung, Y.-C., Bracket, R. E. & Frank, J. F. Inactivation of listeria monocytogenes biofilms by electrolyzed oxidizing water. J. Food Process. Preserv. 25, 91–100 (2011).

    Article 

    Google Scholar 

  • 59.

    Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Zinkevich, V., Beech, I. B., Tapper, R. & Bogdarina, I. The effect of super-oxidized water on Escherichia coli. J. Hosp. Infect. 46, 153–156 (2000).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Cloete, T. E., Thantsha, M. S., Maluleke, M. R. & Kirkpatrick, R. The antimicrobial mechanism of electrochemically activated water against Pseudomonas aeruginosa and Escherichia coli as determined by SDS-PAGE analysis. J. Appl. Microbiol. 107, 379–384 (2009).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Ding, T., Oh, D. H. & Liu, D. Electrolyzed Water in Food: Fundamentals and Applications (2019). https://doi.org/10.1007/978-981-13-3807-6.

  • 63.

    Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    CAS 
    Article 

    Google Scholar 

  • 64.

    BioSurface Technologies Corp. CDC Biofilm Reactor Operator’ s Manual (BioSurface Technologies Corp.)


  • Source: Resources - nature.com

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity

    Assessing the origin, genetic structure and demographic history of the common pheasant (Phasianus colchicus) in the introduced European range