in

Sedimentation strategies provide effective but limited mitigation of relative sea-level rise in the Mekong delta

  • 1.

    Hinkel, J. et al. Coastal flood damage and adaptation costs under 21st century sea-level rise. PNAS 111, 3292–3297 (2014).

    CAS 

    Google Scholar 

  • 2.

    Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

    CAS 

    Google Scholar 

  • 3.

    Hinkel, J. et al. The ability of societies to adapt to twenty-first-century sea-level rise. Nat. Clim. Change 8, 570–578 (2018).

    Google Scholar 

  • 4.

    Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G. & Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Change 50, 63–82 (2006).

    Google Scholar 

  • 5.

    Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2021).

    Google Scholar 

  • 6.

    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    CAS 

    Google Scholar 

  • 7.

    Evans, G. Deltas: the fertile dustbins of the continents. Proc. Geol. Assoc. 123, 397–418 (2012).

    Google Scholar 

  • 8.

    Li, X., Liu, J. P., Saito, Y. & Nguyen, V. L. Recent evolution of the Mekong Delta and the impacts of dams. Earth Sci. Rev. 175, 1–17 (2017).

    Google Scholar 

  • 9.

    Tamura, T. et al. Long-term sediment decline causes ongoing shrinkage of the Mekong megadelta, Vietnam. Sci. Rep. 10, 4–10 (2020).

    Google Scholar 

  • 10.

    Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).

    CAS 

    Google Scholar 

  • 11.

    Hoitink, A. J. F. et al. Resilience of river deltas in the Anthropocene. J. Geophys. Res. Earth. Surf. 125, e2019JF005201 (2020).

    Google Scholar 

  • 12.

    Nicholls, R. J., Adger, W. N., Hutton, C. W. & Hanson, S. E. Deltas in the Anthropocene p. 282 Springer Nature (2020).

  • 13.

    Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H. & Stouthamer, E. Mekong delta much lower than previously assumed in sea-level rise impact assessments. Nat. Commun. 10, 3847 (2019).

    CAS 

    Google Scholar 

  • 14.

    Anthony, E. J. et al. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 5, 1–12 (2015).

    Google Scholar 

  • 15.

    Schmitt, R. J. P., Rubin, Z. & Kondolf, G. M. Losing ground – scenarios of land loss as consequence of shifting sediment budgets in the Mekong Delta. Geomorphology 294, 58–69 (2017).

    Google Scholar 

  • 16.

    Eslami, S. et al. Tidal amplification and salt intrusion in the Mekong Delta driven by anthropogenic sediment starvation. Sci. Rep. 9, 18746 (2019).

    CAS 

    Google Scholar 

  • 17.

    Szabo, S. et al. Population dynamics, delta vulnerability and environmental change: Comparison of the Mekong, Ganges-Brahmaputra and Amazon delta regions. Sustain. Sci. 11, 539–554 (2016).

    Google Scholar 

  • 18.

    Kondolf, G. M. et al. Changing sediment budget of the Mekong: cumulative threats and management strategies for a large river basin. Sci. Total Environ. 625, 114–134 (2018).

    CAS 

    Google Scholar 

  • 19.

    Van Binh, D., Kantoush, S. & Sumi, T. Changes to long-term discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams. Geomorphology 353, 107011 (2020).

    Google Scholar 

  • 20.

    Kondolf, G., Rubin, Z. & Minear, J. Dams on the Mekong: cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).

    Google Scholar 

  • 21.

    Hackney, C. et al. River bank instability is induced by unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3, 217–225 (2020).

    Google Scholar 

  • 22.

    Triet, N. V. K. et al. Has dyke development in the Vietnamese Mekong Delta shifted flood hazard downstream? Hydrol. Earth Syst. Sci. Discuss. 2017, 1–27 (2017).

    Google Scholar 

  • 23.

    Park, E. et al. Dramatic decrease of flood frequency in the Mekong Delta due to river-bed mining and dyke construction. Sci. Total Environ. 723, 138066 (2020).

    CAS 

    Google Scholar 

  • 24.

    Minderhoud, P. S. J. et al. Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ. Res. Lett. 12, aa7146 (2017).

  • 25.

    Minderhoud, P. S. J., Middelkoop, H., Erkens, G. & Stouthamer, E. Groundwater extraction may drown mega-delta: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21th century. Environ. Commun. 2, 011005 (2020).

    Google Scholar 

  • 26.

    Zoccarato, C., Minderhoud, P. S. J. & Teatini, P. The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam. Sci. Rep. 8, 11437 (2018).

    Google Scholar 

  • 27.

    Minderhoud, P. S. J. et al. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ. 634, 715–726 (2018).

    CAS 

    Google Scholar 

  • 28.

    deWit, K. et al. Identifying Causes of Urban Differential Subsidence in the Vietnamese Mekong Delta by Combining InSAR and Field Observations. Remote Sens. 13, 20189 (2021).

  • 29.

    Eslami, S., et al. Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors. Nat. Commun. Earth Env. 1–11, 5 (2021).

  • 30.

    Erban, L. E., Gorelick, S. M. & Zebker, H. A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 9, 084010 (2014).

    Google Scholar 

  • 31.

    Minderhoud, P. S. J., Hlavacova, I., Kolomaznik, J. & Neussner, O. Towards unraveling total subsidence of a mega-delta – the potential of new PS InSAR data for the Mekong delta. Proc. IAHS 382, 327–332 (2020).

    Google Scholar 

  • 32.

    van Staveren, M. F., van Tatenhove, J. P. M. & Warner, J. F. The tenth dragon: controlled seasonal flooding in long-term policy plans for the Vietnamese Mekong delta. Journal of Environmental Policy & Planning 20, 267–281 (2018).

    Google Scholar 

  • 33.

    Government of Viet Nam, Government Resolution 120/NQ-CP on Sustainable and Climate-Resilient Development of the Mekong Delta of Viet Nam (2017).

  • 34.

    MoNRE, “Mekong Delta Plan” (Ministry of Natural Resources and Environment, Hanoi, Vietnam), p. 126 (2013).

  • 35.

    Giosan, L., Syvitski, J., Constantinescu, S. & Day, J. Climate change: Protect the world’s deltas. Nature 516, 31–33 (2014).

    CAS 

    Google Scholar 

  • 36.

    Islam, M. F. et al. Enhancing effectiveness of tidal river management in southwest Bangladesh polders by improving sedimentation and shortening inundation time. J. Hydrol. 590, 125228 (2020).

    Google Scholar 

  • 37.

    Seijger, C., Hoang, V. T. M., van Halsema, G., Douven, W. & Wyatt, A. Do strategic delta plans get implemented? The case of the Mekong Delta Plan. Reg. Environ. Change 19, 1131–1145 (2019).

    Google Scholar 

  • 38.

    Day, J. W. et al. Approaches to defining deltaic sustainability in the 21st century. Estuar. Coast. Shelf Sci. 183, 275–291 (2016).

    Google Scholar 

  • 39.

    Gain, A. K. et al. Tidal river management in the south west Ganges-Brahmaputra delta in Bangladesh: Moving towards a transdisciplinary approach? Environ. Sci. Policy 75, 111–120 (2017).

    Google Scholar 

  • 40.

    Coastal Protection and Restoration Authority. Coastal Protection and Restoration Authority: Strategic plan fiscal year 2017–2018 through fiscal year 2021–2022 (Strategic Fiscal Plan) https://coastal.la.gov/wp-content/uploads/2021/04/CPRA_FY22-AP_web.pdf (2017).

  • 41.

    Coastal Protection and Restoration Authority. 2017 Coastal Master Plan. 552 https://coastal.la.gov/our-plan/2017-coastal-master-plan/ (2017).

  • 42.

    Meselhe, E. A., Sadid, K. M. & Allison, M. A. Riverside morphological response to pulsed sediment diversions. Geomorphology 270, 184–202 (2016).

    Google Scholar 

  • 43.

    Gaweesh, A. & Meselhe, E. A. Evaluation of Sediment Diversion Design Attributes and Their Impact on the Capture Efficiency. J. Hydraul. Eng. 142, 04016002 (2016).

    Google Scholar 

  • 44.

    Chapman, A. & Darby, S. E. Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: rice agriculture in the Mekong Delta’s An Giang Province, Vietnam. Sci. Total Environ. 559, 326–338 (2016).

    CAS 

    Google Scholar 

  • 45.

    Minderhoud, P. S. J. The sinking mega-delta. Present and future subsidence of the Vietnamese Mekong delta. (PhD dissertation, Utrecht Studies of Earth Sciences 168, Utrecht University, The Netherlands, 2019).

    Google Scholar 

  • 46.

    IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. H. O. Pörtner, et al.), 2019.

  • 47.

    Kuenzer, C. et al. Flood mapping and flood dynamics of the Mekong delta: ENVISAT-ASAR-WSM based time series analyses. Remote Sens. 5, 687–715 (2013).

    Google Scholar 

  • 48.

    Dang, T. D., Cochrane, T. A., Arias, M. E., Van, P. D. T. & de Vries, T. T. Hydrological alterations from water infrastructure development in the Mekong floodplains. Hydrol. Proc. 30, 3824–3838 (2016).

    Google Scholar 

  • 49.

    Wagner, F., Tran, V. B. & Renaud, F. G. Groundwater Resources in the Mekong Delta: Availability, Utilization and Risks. In Renaud F. & Kuenzer C. (eds.) The Mekong Delta System. https://doi.org/10.1007/978-94-007-3962-8_7 (Springer Environmental Science and Engineering, Springer, Dordrecht, 2012).

  • 50.

    Kuchar, J. et al. The influence of sediment isostatic adjustment on sea level change and land motion along the U.S. Gulf Coast. J. Geophys. Res. Solid Earth 123, 780–796 (2018).

    Google Scholar 

  • 51.

    Lu, X., Kummu, M. & Oeurng, C. Reappraisal of sediment dynamics in the Lower Mekong River, Cambodia. Earth Surf. Process. Landf. 39, 1855–1865 (2014).

    Google Scholar 

  • 52.

    Darby, S. E. et al. Fluvial sediment supply to a mega-delta reduced by shifting tropical cyclone activity. Nature 539, 276–279 (2016).

    Google Scholar 

  • 53.

    Brunier, G., Anthony, E. J., Goichot, M., Provansal, M. & Dussouillez, P. Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: The marked impact of river-bed mining and implications for delta destabilisation. Geomorphology 224, 177–191 (2014).

    Google Scholar 

  • 54.

    Loc, H. H. et al. Intensifying saline water intrusion and drought in the Mekong Delta: From physical evidence to policy outlooks. Sci. Total Environ. 757, 143919 (2021).

    CAS 

    Google Scholar 

  • 55.

    Schmitt, R. J. P., Bizzi, S., Castelletti, A., Opperman, J. J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci. Adv. 5, 2175 (2019).

    Google Scholar 

  • 56.

    Nowacki, D. J., Ogston, A. S., Nittrouer, C. A., Fricke, A. T. & Van, P. D. T. Sediment dynamics in the lower Mekong River: transition from tidal river to estuary. J. Geophys. Res. Oceans 120, 6363–6383 (2015).

    Google Scholar 

  • 57.

    Sanks, K. M., Shaw, J. B. & Naithani, K. Field‐based estimate of the sediment deficit in coastal Louisiana. J. Geophys. Res. Earth. Surf. 125, e2019JF005389 (2020).

    Google Scholar 

  • 58.

    Post, W. M. & Kwon, K. C. Soil carbon sequestration and land‐use change: processes and potential. Glob. Change Biol. 6, 317–327 (2000).

    Google Scholar 

  • 59.

    Ha, D. T., Ouillon, S. & Vinh, G. V. Water and Suspended Sediment Budgets in the Lower Mekong from High-Frequency Measurements (2009–2016). Water 10, 846 (2018).

    Google Scholar 

  • 60.

    Dunn, F. E., & Minderhoud, P. S. J. Elevation projections for the Mekong delta (Vietnam) under sedimentation strategies, subsidence, compaction, and sea-level rise [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5645494 (2021).

  • 61.

    Foley, M. M. et al. Dam removal: Listening. In Water Resour. Res. 53, 5229–5246, (2017).

  • 62.

    Schmitt, R. J. P. et al. Strategic basin and delta planning increases the resilience of the Mekong Delta under future uncertainty. Proc. Natl. Acad. Sci. 118, 2026127 (2021).

  • 63.

    Thampanya, U., Vermaat, J. E., Sinsakul, S. & Panapitakkul, N. Coastal erosion and mangrove progradation of Southern Thailand. Estuar. Coast. Shelf Sci. 68, 75–85 (2006).

    Google Scholar 

  • 64.

    Willemsen, P. W. J. M., Horstman, E. M., Borsje, B. W., Friess, D. A. & Dohmen-Janssen, C. M. Sensitivity of the sediment trapping capacity of an estuarine mangrove forest. Geomorphology 273, 189–201 (2016).

    Google Scholar 

  • 65.

    Ibáñez, C., Day, J. W. & Reyes, E. The response of deltas to sea-level rise: Natural mechanisms and management options to adapt to high-end scenarios. Ecol. Eng. 65, 122–130 (2014).

    Google Scholar 

  • 66.

    Cornwall, W. Unleashing big muddy. Science 372, 334–337 (2021).

    CAS 

    Google Scholar 

  • 67.

    Dunn, F. E. et al. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 14, 084034 (2019).

    Google Scholar 

  • 68.

    Syvitski, J. P. M. & Milliman, J. D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115, 1–19 (2007).

    Google Scholar 

  • 69.

    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  • 70.

    Lehner, B. et al. Global Reservoir andDam Database, Version 1 (GRanDv1): Dams, Revision 01. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC), https://doi.org/10.7927/H4N877QK (2011).

  • 71.

    Räsänen, T. A., Varis, O., Scherer, L. & Kummu, M. Greenhouse gas emissions of hydropower in the Mekong River basin. Environ. Res. Lett. 13, 034030 (2018).

    Google Scholar 

  • 72.

    WLE Mekong dam database Greater Mekong. (CGIAR Research Program on Water, Land and Ecosystems (WLE), Vientiane, Lao PDR, 2017).

  • 73.

    MRC Hydropower database (Vientiane, Lao PDR: Mekong River Commission (MRC) Secretariat, 2015).

  • 74.

    Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).

    Google Scholar 

  • 75.

    Van Manh, N. et al. Future sediment dynamics in the Mekong Delta floodplains: Impacts of hydropower development, climate change and sea level rise. Glob. Planet. Change 127, 22–33 (2015).

    Google Scholar 

  • 76.

    Esposito, C. R., Shen, Z., Törnqvist, T. E., Marshak, J. & White, C. Efficient retention of mud drives land building on the Mississippi Delta plain. Earth Surf. Dynam. 5, 387–397 (2017).

    Google Scholar 

  • 77.

    Kummu, M., Penny, D., Sarkkula, J. & Koponen, J. Sediment: Curse or Blessing for Tonle Sap Lake? Ambio 37, 158–163 (2008).

    Google Scholar 

  • 78.

    Krauss, K. W. et al. How mangrove forests adjust to rising sea level. New Phytologist 202, 19–34 (2014).

    Google Scholar 

  • 79.

    Liu, S. et al. Differential responses of crop yields and soil organic carbon stock to fertilization and rice straw incorporation in three cropping systems in the subtropics. Agric. Ecosyst. Environ. 184, 51–58 (2014).

    Google Scholar 

  • 80.

    Wang, W., Lai, D. Y. F., Wang, C., Pan, T. & Zeng, C. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil Till. Res. 152, 8–16 (2015).

    Google Scholar 

  • 81.

    Nisar, S. & Benbi, D. K. Stabilization of organic C in an Indo-Gangetic alluvial soil under long-term manure and compost management in a rice–wheat system. Carbon Manag. 11, 533–547 (2020).

    CAS 

    Google Scholar 

  • 82.

    Lee, S. B. et al. Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil Till. Res. 104, 227–232 (2009).

    Google Scholar 

  • 83.

    Benbi, D. K. & Yadav, S. K. Decomposition and Carbon Sequestration Potential of Different Rice-Residue-Derived By-products and Farmyard Manure in a Sandy Loam Soil. Commun Soil Sci Plant Anal. 46, 2201–2211 (2015).

    CAS 

    Google Scholar 

  • 84.

    Sodhi, G. P. S., Beri, V. & Benbi, D. K. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice–wheat system. Soil Till. Res. 103, 412–418 (2009).

    Google Scholar 

  • 85.

    Breitenbeck, G. A. & Schellinger, D. Calculating the reduction in material mass and volume during composting. Compost Sci. Util. 12, 365–371 (2004).

    Google Scholar 

  • 86.

    Wakeham, S. G. & Canuel, E. A. The nature of organic carbon in density‐fractionated sediments in the Sacramento‐San Joaquin River Delta (California). Biogeosciences 13, 567–582 (2016).

    Google Scholar 

  • 87.

    Hong Van, N. P. et al. Rice straw management by farmers in a triple rice production system in the Mekong Delta, Vietnam. Trop. Agr. Develop. 58, 155–162 (2014).

    Google Scholar 

  • 88.

    Diep, N. Q., Sakanishi, K., Nakagoshi, N., Fujimoto, S. & Minowa, T. Potential for rice straw ethanol production in the Mekong Delta, Vietnam. Renew. Energy 74, 456–463 (2015).

    Google Scholar 

  • 89.

    Diep, N. Q. & Sakanishi, K. Potential for bio-ethanol production from agriculture residues in the Mekong Delta, Vietnam. Int. Energy J. 12, 145–154 (2011).

    Google Scholar 

  • 90.

    Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sealevel rise. Nature 526, 559–217 (2015).

    CAS 

    Google Scholar 

  • 91.

    Nguyen, V. K., Le, X. T., Dao, H. H. & Do Van, L. Land surface subsidence in Mekong delta – due to the groundwater extraction? Tap Chi Dia Chat 10–110 (2015).

  • 92.

    Nguyen, V. L., Ta, T. K. O. & Tateishi, M. Late Holocene depositional environments and coastal evolution of the Mekong River Delta, Southern Vietnam. J. Asian Earth Sci. 18, 427–439 (2000).

    Google Scholar 

  • 93.

    Ta, T. K. O. et al. Holocene delta evolution and sediment discharge of the Mekong River, Southern Vietnam. Quat. Sci. Rev. 21, 1807–1819 (2002).

    Google Scholar 

  • 94.

    Tamura, T. et al. Luminescence dating of beach ridges for characterizing multi-decadal to centennial deltaic shoreline changes during Late Holocene, Mekong River delta. Mar. Geol. 326-328, 140–153 (2012).

    CAS 

    Google Scholar 

  • 95.

    Van Laarhoven, S. Subsidence potential of the Holocene deposits in the Mekong Delta, Vietnam (Masters dissertation supervised by P. S. J. Minderhoud & E. Stouthamer, Utrecht University, 2016).

  • 96.

    Zoccarato, C. & Teatini, P. Numerical simulations of Holocene salt-marsh dynamics under the hypothesis of large soil deformations. Adv. Water Resour. 110, 107–119 (2017).

    Google Scholar 

  • 97.

    Hung, N. N. et al. Sedimentation in the floodplains of the Mekong Delta, Vietnam Part II: deposition and erosion. Hydrol. Process. 28, 3145–3160 (2014).

    Google Scholar 

  • 98.

    Manh, N. V., Dung, N. V., Hung, N. N., Merz, B. & Apel, H. Large-scale suspended sediment transport and sediment deposition in the Mekong delta. Hydrol. Earth Syst. Sci. 18, 3033–3053 (2014).

    Google Scholar 

  • 99.

    Kuenzer, C. et al. Remote sensing of river delta inundation: Exploiting the potential of coarse spatial resolution, temporally-dense MODIS time series. Remote Sens. 7, 8516–8542 (2015).

    Google Scholar 

  • 100.

    Thanh, V. C. et al. Flooding in the Mekong Delta: The impact of dyke systems on downstream hydrodynamics. Hydrol. Earth Syst. Sci. 24, 189–212 (2020).

    Google Scholar 

  • 101.

    Duc Tran, D. et al. Assessing impacts of dike construction on the flood dynamics of the Mekong Delta. Hydrol. Earth Syst. Sci. 22, 1875–1896 (2018).

    Google Scholar 

  • 102.

    Fujihara, Y. et al. Analysis and attribution of trends in water levels in the Vietnamese Mekong Delta. Hydrol. Process. 30, 835–845 (2015).

    Google Scholar 

  • 103.

    Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H. & Stouthamer, E. Digital elevation model of the Vietnamese Mekong delta based on elevation points from a national topographical map. PANGAEA. https://doi.org/10.1594/PANGAEA.902136 (2019).

  • 104.

    Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes 27, 2171–2186, http://www.hydrosheds.org (2013).

    Google Scholar 

  • 105.

    Kummu, M., Lu, X. X., Wang, J. J. & Varis, O. Basin-wide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology 119, 181–197 (2010).

    Google Scholar 

  • 106.

    Bussi, G. et al. Impact of dams and climate change on suspended sediment flux to the Mekong delta. Sci. Total Environ. 755, 142468 (2021).

    CAS 

    Google Scholar 


  • Source: Resources - nature.com

    Understanding air pollution from space

    A dirt cheap solution? Common clay materials may help curb methane emissions