in

Interannual temperature variability is a principal driver of low-frequency fluctuations in marine fish populations

  • 1.

    Caddy, J. F. & Gulland, J. A. Historical patterns of fish stocks. Mar. Policy 7, 267–278 (1983).

    Google Scholar 

  • 2.

    Steele, J. H. & Henderson, E. W. Coupling between physical and biological scales. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 343, 5–9 (1994).

    Google Scholar 

  • 3.

    Bjornstad, O. N., Fromentin, J. M., Stenseth, N. C. & Gjosaeter, J. Cycles and trends in cod populations. Proc. Natl Acad. Sci. USA 96, 5066–5071 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS One 15, e0226087 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Oremus, K. L. Climate variability reduces employment in New England fisheries. Proc. Natl Acad. Sci. USA 16, 26444–26449 (2018).

    Google Scholar 

  • 6.

    Shelton, A. O. & Mangel, M. Fluctuations of fish populations and the magnifying effect of fishing. Proc. Natl Acad. Sci. USA 108, 7075–7080 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Essington, T. E. et al. Fishing amplifies forage fish population collapses. Proc. Natl Acad. Sci. USA 112, 6648–6652 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Memarzadeha, M., Britten, G. L., Wormd, B. & Boettigere, C. Rebuilding global fisheries under uncertainty. Proc. Natl Acad. Sci. USA 116, 15985–15990 (2019).

    Google Scholar 

  • 9.

    Pauly, D. & Zeller, D. Sea Around Us Concepts, Design and Data (seaaroundus.org) (2015).

  • 10.

    Bjornstad, O. N., Nisbet, R. M. & Fromentin, J. M. Trends and cohort resonant effects in age-structured populations. J. Anim. Ecol. 73, 1157–1167 (2004).

    Google Scholar 

  • 11.

    Botsford, L. W., Holland, M. D., Field, J. C. & Hastings, A. Cohort resonance: a significant component of fluctuations in recruitment, egg production, and catch of fished populations. ICES J. Mar. Sci. 71, 2158–2170 (2014).

    Google Scholar 

  • 12.

    Di Lorenzo, E. & Ohman, M. D. A double-integration hypothesis to explain ocean ecosystem response to climate forcing. Proc. Natl Acad. Sci. USA 110, 2496–2499 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Bjorkvoll, E. et al. Stochastic population dynamics and life-history variation in marine fish species. Am. Naturalist 180, 372–387 (2012).

    Google Scholar 

  • 14.

    Hsieh, C. H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Beamish, R. J., McFarlane, G. A. & Benson, A. Longevity overfishing. Prog. Oceanogr. 68, 289–302 (2006).

    Google Scholar 

  • 16.

    Anderson, C. N. K. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Hutchings, J. A. & Myers, R. A. Effect of age on the seasonality of maturation and spawning of Atlantic cod, Gadus morhua, in the northwest Atlantic. Can. J. Fish. Aquat. Sci. 50, 2468–2474 (1993).

    Google Scholar 

  • 18.

    Bobko, S. J. & Berkeley, S. A. Maturity, ovarian cycle, fecundity, and age-specific parturition of black rockfish (Sebastes melanops). Fish. Bull. 102, 418–429 (2004).

    Google Scholar 

  • 19.

    Berkeley, S. A., Chapman, C. & Sogard, S. M. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85, 1258–1264 (2004).

    Google Scholar 

  • 20.

    Longhurst, A. Murphy’s law revisited: longevity as a factor in recruitment to fish populations. Fish. Res. 56, 125–131 (2002).

    Google Scholar 

  • 21.

    Stawitz, C. C. & Essington, T. E. Somatic growth contributes to population variation in marine fishes. J. Anim. Ecol. 88, 315–329 (2019).

    PubMed 

    Google Scholar 

  • 22.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Hollowed, A. B., Hare, S. R. & Wooster, W. S. Pacific basin climate variability and patterns of Northeast Pacific marine fish production. Prog. Oceanogr. 49, 257–282 (2001).

    Google Scholar 

  • 24.

    Holsman, K. K., Aydin, K., Sullivan, J., Hurst, T. & Kruse, G. H. Climate effects and bottom-up controls on growth and size-at-age of Pacific halibut (Hippoglossus stenolepis) in Alaska (USA). Fish. Oceanogr. 28, 345–358 (2019).

    Google Scholar 

  • 25.

    Whitten, A. R., Klaer, N. L., Tuck, G. N. & Day, R. W. Accounting for cohort-specific variable growth in fisheries stock assessments: A case study from south-eastern Australia. Fish. Res. 142, 27–36 (2013).

    Google Scholar 

  • 26.

    Heessen, H. J. L., Daan, N. & Ellis, J. R. Fish atlas of the Cebtic Sea, North Sea, and Baltic Sea (KNNV Publishing and Wageningen Academic Publishers, 2015).

  • 27.

    Froese, R. & Pauly, D. FishBase, version (01/2021) https://www.fishbase.org (2021).

  • 28.

    Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl Acad. Sci. USA 106, 13860–13864 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Beukhof, E. et al. Marine fish traits follow fast-slow continuum across oceans. Sci. Rep. 9, 17878 (2019).

  • 30.

    Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. int. Explor. Mer. 39, 175–192 (1980).

    Google Scholar 

  • 31.

    Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 1–6 (2020).

    Google Scholar 

  • 32.

    Audzijonyte, A. et al. Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms? Glob. Ecol. Biogeogr. 28, 64–77 (2019).

    Google Scholar 

  • 33.

    Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl Acad. Sci. USA 109, 19310–19314 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    CAS 

    Google Scholar 

  • 36.

    Ives, A. R. Measuring resilience in stochastic-systems. Ecol. Monogr. 65, 217–233 (1995).

    Google Scholar 

  • 37.

    Alheit, J. & Niquen, M. Regime shifts in the Humboldt Current ecosystem. Prog. Oceanogr. 60, 201–222 (2004).

    Google Scholar 

  • 38.

    Pinsky, M. L., Jensen, O. P., Ricard, D. & Palumbi, S. R. Unexpected patterns of fisheries collapse in the world’s oceans. Proc. Natl Acad. Sci. USA 108, 8317–8322 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Spencer, P. D. & Collie, J. S. Patterns of population variability in marine fish stocks. Fish. Oceanogr. 6, 188–204 (1997).

    Google Scholar 

  • 40.

    FAO. The State of World Fisheries and Aquaculture 2018 – Meeting the Sustainable Development Goals. (Food and Agriculture Organization of the United Nations, Rome, 2018).

  • 41.

    Barnett, L. A. K., Branch, T. A., Ranasinghe, R. A. & Essington, T. E. Old-growth fishes become scarce under fishing. Curr. Biol. 27, 2843–2848 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Rouyer, T. et al. Shifting dynamic forces in fish stock fluctuations triggered by age truncation? Glob. Change Biol. 17, 3046–3057 (2011).

    Google Scholar 

  • 43.

    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

    Google Scholar 

  • 44.

    Easterling, D. R. et al. Climate extremes: Observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Portner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J. Fish. Biol. 77, 1745–1779 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    de Gee, A. & Kikkert, A. H. Analysis of the grey gurnard (Eutrigla gurnardus) samples collected during the 1991 international stomach sample project. ICES Document CM 1993/G:14, 25 (1993).

  • 48.

    Sparholt, H. In Fish Atlas of the Celtic Sea, North Sea, and Baltic Sea (eds Heessen, H., Daan, N., & Ellis, J. R.) 377–381 (KNNV Publishiing and Wageningen Academic Publishers, 2015).

  • 49.

    Arnott, S. A. & Ruxton, G. D. Sandeel recruitment in the North Sea: demographic, climate and trophic effects. Mar. Ecol. Prog. Ser. 238, 199–210 (2002).

    Google Scholar 

  • 50.

    van Deurs, M., van Hal, R., Tomczak, M. T., Jonasdottir, S. H. & Dolmer, P. Recruitment of lesser sandeel Ammodytes marinus in relation to density dependence and zooplakton composition. Mar. Ecol. Prog. Ser. 381, 249–258 (2009).

    Google Scholar 

  • 51.

    Capuzzo, E. et al. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Glob. Change Biol. 24, E352–E364 (2018).

    Google Scholar 

  • 52.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. D: Atmospheres 108, ACL 2-1–ACL 2–29 (2003).

    Google Scholar 

  • 53.

    Papworth, D. J., Marini, S. & Conversi, A. Novel, unbiased analysis approach for investigating population dynamics: A case study on Calanus finmarchicus and its decline in the North Sea. PLoS One 11, e0158230 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Bergstad, O. A., Hoines, A. S. & Jorgensen, T. Growth of sandeel Ammodytes marinus, in the northern North Sea and Norwegian coastal waters. Fish. Res. 56, 9–23 (2002).

    Google Scholar 

  • 55.

    Wright, P. J. Otolith microstructure of the lesser sandeel, Ammodytes marinus. J. Mar. Biol. Assoc. U.K. 73, 245–248 (1993).

    Google Scholar 

  • 56.

    Sell, A. & Heessen, H. in Fish atlas of the Celtic Sea, North Sea, and Baltic Sea (eds Heessen, H., Daan, N., & Ellis, J. R.) 295−299 (KNNV Publishing and Wageningen Academic Publishers, 2015).

  • 57.

    Bergstad, O. A., Hoines, A. S. & Kruger-Johnsen, E. M. Spawning time, age and size at maturity, and fecundity of sandeel, Ammodytes marinus, in the north-eastern North Sea and in unfished coastal waters off Norway. Aquat. Living Resour. 14, 293–301 (2001).

    Google Scholar 

  • 58.

    Pyper, B. J. & Peterman, R. M. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci. 55, 2127–2140 (1998).

    Google Scholar 

  • 59.

    van der Sleen, P. et al. Non-stationary responses in anchovy (Engraulis encrasicolus) recruitment to coastal upwelling in the Southern Benguela. Mar. Ecol. Prog. Ser. 596, 155–164 (2018).

    Google Scholar 

  • 60.

    Cushing, D. H. Upwelling and production on fish. Adv. Mar. Biol. 9, 255–334 (1971).

    Google Scholar 

  • 61.

    Pauly, D. & Lam, V. W. Y. In Large marine ecosystems: Status and Trends (eds IOC-UNESCO and UNEP) 113–137 (United Nations Environmental Programme, 2016).


  • Source: Ecology - nature.com

    Courtney Lesoon and Elizabeth Yarina win Fulbright-Hays Scholarships

    Overcoming a bottleneck in carbon dioxide conversion