in

Pacific decadal variability over the last 2000 years and implications for climatic risk

  • Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Interdecadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).

    Google Scholar 

  • Mantua, N. & Hare, S. The Pacific decadal oscillation. J. Oceanogr. 58, 35–44 (2002).

    Google Scholar 

  • Kiem, A. S., Franks, S. W. & Kuczera, G. Multi-decadal variability of flood risk. Geophys. Res. Lett. 30, 1035 (2003).

    Google Scholar 

  • Kiem, A. S. & Franks, S. W. Multi-decadal variability of drought risk – Eastern Australia. Hydrol. Process. 18, 2039–2050 (2004).

    Google Scholar 

  • Verdon, D. C., Kiem, A. S. & Franks, S. W. Multi-decadal variability of forest fire risk – Eastern Australia. Int. J. Wildland Fire 13, 165–171 (2004).

    Google Scholar 

  • Parker, D. et al. Decadal to multidecadal variability and the climate change background. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD008411 (2007).

  • England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change https://doi.org/10.1038/NCLIMATE2106 (2014).

  • Dai, A., Fyfe, J. C., Xie, S.-P. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 5, 555–559 (2015).

    Google Scholar 

  • Henley, B. J. Pacific decadal variability: indices, patterns and tropical-extratropical interactions. Glob. Planet. Change 155, 42–55 (2017).

    Google Scholar 

  • Magee, A. D. & Verdon-Kidd, D. C. Historical variability of Southwest Pacific tropical cyclone counts since 1855. Geophys. Res. Lett. https://doi.org/10.1029/2019GL082900 (2019).

  • Gray, J. L., Verdon-Kidd, D. C., Callaghan, J. & English, N. B. On the recent hiatus of tropical cyclones landfalling in NSW, Australia. J. South. Hemisph. Earth Syst. Sci. 70, 180–192 (2020).

    Google Scholar 

  • Meehl, G., Arblaster, J., Bitz, C., Chung, C. & Teng, H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci. 9, 590–595 (2016).

    CAS 

    Google Scholar 

  • Clem, K. R. et al. Record warming at the South Pole during the past three decades. Nat. Clim. Change https://doi.org/10.1038/s41558-020-0815-z (2020).

  • Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).

    CAS 

    Google Scholar 

  • Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change 6, 917–926 (2016).

    Google Scholar 

  • Newman, M., Compo, G. P. & Alexander, M. A. ENSO-forced variability of the Pacific Decadal Oscillation. J. Clim. 16, 3853–3857 (2003).

    Google Scholar 

  • Liu, Z. Y. Dynamics of interdecadal climate variability: a historical perspective. J. Clim. 25, 1963–1995 (2012).

    Google Scholar 

  • Smith, D. M. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Change 6, 936–941 (2016).

    CAS 

    Google Scholar 

  • Lou, J., Holbrook, N. J. & O’Kane, T. J. South Pacific decadal climate variability and potential predictability. J. Clim. 32, 6051–6069 (2019).

    Google Scholar 

  • Mann, M. E., Steinman, B. A. & Miller, S. K. Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nat. Commun. 11, 49 (2020).

    CAS 

    Google Scholar 

  • Mann, M. E., Steinman, B. A., Brouillette, D. J. & Miller, S. K. Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science 371, 1014–1019 (2021).

    CAS 

    Google Scholar 

  • Folland, C. K., Renwick, J. A., Salinger, M. J. & Mullen, A. B. Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys. Res. Lett. 29, 1643 (2002).

    Google Scholar 

  • D’Arrigo, R. & Wilson, R. On the Asian expression of the PDO. Int. J. Climatol. 26, 1607–1617 (2006).

    Google Scholar 

  • Henley, B. et al. A tripole index for the Interdecadal Pacific Oscillation. Clim. Dyn. 45, 3077–3090 (2015).

    Google Scholar 

  • Bonfils, C. J. W. et al. Human influence on joint changes in temperature, rainfall and continental aridity. Nat. Clim. Change 10, 726–731 (2020).

    CAS 

    Google Scholar 

  • Zhang, L., Kuczera, G., Kiem, A. S. & Willgoose, G. R. Using paleoclimate reconstructions to analyse hydrological epochs associated with Pacific decadal variability. Hydrol. Earth Syst. Sci. 22, 6399–6414 (2018).

    Google Scholar 

  • Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (Cambridge University Press, 2013).

  • Armstrong, M. S., Kiem, A. S. & Vance, T. R. Comparing instrumental, palaeoclimate and projected rainfall data: Implications for water resources management and hydrological modelling. J. Hydrol. 31, 100728 (2020).

    Google Scholar 

  • Buckley, B. M. et al. Interdecadal Pacific Oscillation reconstructed from trans-Pacific tree rings: 1350–2004 CE. Clim. Dyn. 53, 3181–3196 (2019).

    Google Scholar 

  • Verdon, D. C. & Franks, S. W. Long-term behaviour of ENSO: Interactions with the PDO over the past 400 years inferred from palaeoclimate records. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025052 (2006).

  • Porter, S. E., Mosley-Thompson, E., Thompson, L. G. & Wilson, A. B. Reconstructing a Pacific Interdecadal Oscillation Index from a Pacific basin-wide collection of ice core records. J. Clim. 34, 3839–3852 (2021).

    Google Scholar 

  • Vance, T. R., Roberts, J. L., Plummer, C. T., Kiem, A. S. & van Ommen, T. D. Interdecadal Pacific variability and eastern Australian megadroughts over the last millennium. Geophys. Res. Lett. 42, 129–137 (2015).

    Google Scholar 

  • Roberts, J. et al. A 2000-year annual record of snow accumulation rates for Law Dome, East Antarctica. Clim. Past 11, 697–707 (2015).

    Google Scholar 

  • van Ommen, T. D. & Morgan, V. Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought. Nat. Geosci. 3, 267 (2010).

    Google Scholar 

  • Vance, T. R., Ommen, T. D. V., Curran, M. A. J., Plummer, C. T. & Moy, A. D. A millennial proxy record of ENSO and Eastern Australian rainfall from the Law Dome Ice Core, East Antarctica. J. Clim. 26, 710–725 (2013).

    Google Scholar 

  • Vance, T. R. et al. Optimal site selection for a high-resolution ice core record in East Antarctica. Clim. Past 12, 595–610 (2016).

    Google Scholar 

  • Udy, D. G., Vance, T. R., Kiem, A. S., Holbrook, N. J. & Curran, M. A. J. Links between large-scale modes of climate variability and synoptic weather patterns in the southern Indian Ocean. J. Clim. 34, 883–899 (2021).

    Google Scholar 

  • Crockart, C. K. et al. El Niño-Southern Oscillation signal in a new East Antarctic ice core, Mount Brown South. Clim. Past 17, 1795–1818 (2021).

    Google Scholar 

  • Stevens, H. R. & Kiem, A. S. Developing hazard lines in response to coastal flooding and sea level change. Urban Pol. Res. 32, 341–360 (2014).

    Google Scholar 

  • Magee, A. D., Verdon-Kidd, D. C., Diamond, H. J. & Kiem, A. S. Influence of ENSO, ENSO Modoki, and the IPO on tropical cyclogenesis: a spatial analysis of the southwest Pacific region. Int. J. Climatol. 37, 1118–1137 (2017).

    Google Scholar 

  • McMahon, G. M. & Kiem, A. S. Large floods in South East Queensland, Australia: is it valid to assume they occur randomly? Austral. J. Water Resour. 22, 4–14 (2018).

    Google Scholar 

  • Deb, P. et al. Causes of the Widespread 2019–2020 Australian Bushfire Season. Earth’s Future 8, e2020EF001671 (2020).

    Google Scholar 

  • Magee, A. D. & Kiem, A. S. Using indicators of ENSO, IOD, and SAM to improve lead time and accuracy of tropical cyclone outlooks for Australia. J. Appl. Meteorol. Climatol. https://doi.org/10.1175/jamc-d-20-0131.1 (2020).

  • van Dijk, A. I. J. M. et al. The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy and society. Water Resour. Res. 49, 1–18 (2013).

    Google Scholar 

  • Johnson, F. et al. Natural hazards in Australia: floods. Clim. Change 139, 21–35 (2016).

    Google Scholar 

  • Holgate, C. M., van Dijk, A. I. J. M., Evans, J. P. & Pitman, A. J. Local and remote drivers of southeast Australian drought. Geophys. Res. Lett. https://doi.org/10.1029/2020GL090238 (2020).

  • Chiew, F. S. H. Estimation of rainfall elasticity of streamflow in Australia. Hydrol. Sci. J. 51, 613–625 (2006).

    Google Scholar 

  • Wooldridge, S. A., Franks, S. W. & Kalma, J. D. Hydrological implications of the Southern Oscillation: variability of the rainfall-runoff relationship. Hydrol. Sci. J. 46, 73–88 (2001).

    Google Scholar 

  • Kiem, A. S. & Verdon-Kidd, D. C. Climatic drivers of Victorian streamflow: is ENSO the dominant influence? Austral. J. Water Resour. 13, 17–29 (2009).

    Google Scholar 

  • Flack, A. L., Kiem, A. S., Vance, T. R., Tozer, C. R. & Roberts, J. L. Comparison of published palaeoclimate records suitable for reconstructing annual to sub-decadal hydroclimatic variability in eastern Australia: implications for water resource management and planning. Hydrol. Earth Syst. Sci. 24, 5699–5712 (2020).

    Google Scholar 

  • Barr, C. et al. Holocene El Niño–Southern Oscillation variability reflected in subtropical Australian precipitation. Sci. Rep. 9, 1627 (2019).

    CAS 

    Google Scholar 

  • Tozer, C. R. et al. Reconstructing pre-instrumental streamflow in Eastern Australia using a water balance approach. J. Hydrol. 558, 632–646 (2018).

    Google Scholar 

  • Etheridge, D. M., Steele, L. P., Lagenfelds, R. L. & Francey, R. J. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115–4128 (1996).

    CAS 

    Google Scholar 

  • Massom, R. A. et al. Precipitation over the Interior East Antarctic Ice Sheet related to midlatitude blocking-high activity. J. Clim. 17, 1914–1928 (2004).

    Google Scholar 

  • Morgan, V. et al. Site information and initial results from deep ice drilling on Law Dome. J. Glaciol. 43, 3–10 (1997).

    CAS 

    Google Scholar 

  • Plummer, C. T. et al. An independently dated 200-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the c. 1450s eruption of Kuwae, Vanuatu. Clim. Past 8, 1929–1940 (2012).

    Google Scholar 

  • Curran, M. A. J., van Ommen, T. D., Morgan, V. I., Phillips, K. L. & Palmer, A. S. Ice core evidence for Antarctic sea ice decline since the 1950s. Science 302, 1203–1206 (2003).

    CAS 

    Google Scholar 

  • Curran, M. A. J. & Palmer, A. S. Suppressed ion chromatography method for the routine determination of ultra low level anions and cations in ice cores. J. Chromatogr. A 919, 107–113 (2001).

    CAS 

    Google Scholar 

  • van Ommen, T. D. & Morgan, V. Peroxide concentrations in the Dome Summit South ice core, Law Dome, Antarctica. J. Geophys. Res. 101, 15,147–15,152 (1996).

    Google Scholar 

  • van Ommen, T. D. & Morgan, V. Calibrating the ice core paleothermometer using seasonality. J. Geophys. Res. 102, 9351–9357 (1997).

    Google Scholar 

  • Kiem, A. S. et al. Learning from the past – using palaeoclimate data to better understand and manage drought in South East Queensland (SEQ), Australia. J. Hydrol. Reg. Stud. https://doi.org/10.1016/j.ejrh.2020.100686 (2020).

  • Friedman, J. H. Multivariate adaptive regression spines. Ann. Stat. 19, 1–67 (1991).

    Google Scholar 

  • Roberts, J. L. et al. Reconciling unevenly sampled palaeoclimate proxies: a Gaussian kernel correlation multiproxy reconstruction. J. Environ. Inform. https://doi.org/10.3808/jei.201900420 (2019).

  • Mann, M. E. & Lees, J. Robust estimation of background noise and signal detection in climatic time series. Clim. Change 33, 409–455 (1996).

    Google Scholar 


  • Source: Resources - nature.com

    3 Questions: The future of international education

    Advancing public understanding of sea-level rise