in

Large and inequitable flood risks in Los Angeles, California

  • Smith, A. B. U.S. Billion-dollar Weather and Climate Disasters, 1980–Present (NCEI, 2020); https://doi.org/10.25921/stkw-7w73

  • National Academies of Sciences, Engineering, and Medicine Framing the Challenge of Urban Flooding in the United States (National Academies Press, 2019).

  • Rainey, J. L., Brody, S. D., Galloway, G. E. & Highfield, W. E. Assessment of the growing threat of urban flooding: a case study of a national survey. Urban Water J. 18, 375–381 (2021).

    Article 

    Google Scholar 

  • Gall, M., Borden, K. A., Emrich, C. T. & Cutter, S. L. The unsustainable trend of natural hazard losses in the United States. Sustainability 3, 2157–2181 (2011).

    Article 

    Google Scholar 

  • Zhang, W., Villarini, G., Vecchi, G. A. & Smith, J. A. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature 563, 384–388 (2018).

    Article 
    CAS 

    Google Scholar 

  • Davenport, F. V., Burke, M. & Diffenbaugh, N. S. Contribution of historical precipitation change to US flood damages. Proc. Natl Acad. Sci. USA 118, e2017524118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hino, M. & Nance, E. Five ways to ensure flood-risk research helps the most vulnerable. Nature 595, 27–29 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bullard, R. D. & Wright, B. The Wrong Complexion for Protection: How the Government Response to Disaster Endangers African American Communities (New York Univ. Press, 2012).

  • Chambliss, S. E. et al. Local- and regional-scale racial and ethnic disparities in air pollution determined by long-term mobile monitoring. Proc. Natl Acad. Sci. USA 118, e2109249118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chakraborty, J., Collins, T. W. & Grineski, S. E. Exploring the environmental justice implications of Hurricane Harvey flooding in Greater Houston, Texas. Am. J. Public Health 109, 244–250 (2019).

    Article 

    Google Scholar 

  • Siders, A. R. & Keenan, J. M. Variables shaping coastal adaptation decisions to armor, nourish, and retreat in North Carolina. Ocean Coast. Manag. 183, 105023 (2020).

    Article 

    Google Scholar 

  • Wing, O. E. J. et al. Inequitable patterns of US flood risk in the Anthropocene. Nat. Clim. Change 12, 156–162 (2022).

    Article 

    Google Scholar 

  • Finch, C., Emrich, C. T. & Cutter, S. L. Disaster disparities and differential recovery in New Orleans. Popul. Environ. 31, 179–202 (2010).

    Article 

    Google Scholar 

  • WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) (World Meteorological Organization, 2021).

  • Brakenridge, R. Global Active Archive of Large Flood Events, 1985–Present (Dartmouth Flood Observatory, 2021); https://floodobservatory.colorado.edu/Archives/index.html

  • Tate, E., Rahman, M. A., Emrich, C. T. & Sampson, C. C. Flood exposure and social vulnerability in the United States. Nat. Hazards 106, 435–457 (2021).

    Article 

    Google Scholar 

  • Porter, K. et al. Overview of the ARkStorm Scenario (USGS, 2011); https://pubs.usgs.gov/of/2010/1312/

  • Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J. & Eylander, J. Defining “atmospheric river”: how the glossary of meteorology helped resolve a debate. Bull. Am. Meteorol. Soc. 99, 837–839 (2018).

    Article 

    Google Scholar 

  • Jones, L. M. The Big Ones: How Natural Disasters have Shaped Us (and What we can do About Them) (Anchor Books, 2019).

  • Population Estimates for Los Angeles County for July 1, 2021 (U.S. Census Bureau, accessed 1 February 2022); https://www.census.gov/quickfacts/losangelescountycalifornia

  • Regional Data, GDP and Personal Income for Los Angeles, CA (U.S. Bureau of Economic Analysis, accessed 1 February 2022); https://apps.bea.gov/itable/iTable.cfm?ReqID=70&step=1&acrdn=5

  • Orsi, J. Hazardous Metropolis: Flooding and Urban Ecology in Los Angeles (Univ. of California Press, 2004).

  • Wing, O. E. J. et al. Validation of a 30 m resolution flood hazard model of the conterminous United States. Water Resour. Res. 53, 7968–7986 (2017).

    Article 

    Google Scholar 

  • Bates, P. D. et al. Combined modeling of US fluvial, pluvial, and coastal flood hazard under current and future climates. Water Res. 57, e2020WR028673 (2021).

  • Sheng, J. & Wilson, J. P. Watershed urbanization and changing flood behavior across the Los Angeles metropolitan region. Nat. Hazards 48, 41–57 (2009).

    Article 

    Google Scholar 

  • Hydraulics Report. Floodplain Analysis, Los Angeles River: Barham Boulevard to First Street. Flood Plain Management Services Special Study. Los Angeles, California (U.S. Army Corps of Engineers, 2016); https://eng2.lacity.org/projects/LARIVER_Glendale_Narrows/docs/LAR_FPMS_Hydraulic_Report_FINAL_October2016_CompleteDocument.pdf

  • Levee Certification Program (Los Angeles County Department of Public Works, accessed 1 February 2022); https://dpw.lacounty.gov/wmd/nfip/dsp_LeveeCertificationFAQs.aspx

  • Levee Safety Program. Inspection Summaries for the Los Angeles River, San Gabriel River, Rio Hondo Channel, and Compton Creek (US Army Corps of Engineers, 2022); https://www.spl.usace.army.mil/Missions/Civil-Works/Levee-Safety-Program/

  • Engineering and Design, Safety of Dams—Policy and Procedures (US Army Corps of Engineers, 2011).

  • Kahl, D. T., Schubert, J. E., Jong-Levinger, A. & Sanders, B. F. Grid edge classification method to enhance levee resolution in dual-grid flood inundation models. Adv. Water Res. 168, 104287 (2022).

    Article 

    Google Scholar 

  • County of Los Angeles Open Data (County of Los Angeles, accessed 1 February 2022); https://data.lacounty.gov/

  • American Community Survey 5-Year Data (2009–2019): Detailed Tables (U.S. Census Bureau, 2020); https://www.census.gov/data/developers/data-sets/acs-5year.html

  • Messager, M. L., Ettinger, A. K., Murphy-Williams, M. & Levin, P. S. Fine-scale assessment of inequities in inland flood vulnerability. Appl. Geogr. 133, 102492 (2021).

    Article 

    Google Scholar 

  • Dorfman, R. A formula for the Gini coefficient. Rev. Econ. Stat. 61, 146 (1979).

    Article 

    Google Scholar 

  • Mach, K. J. et al. Managed retreat through voluntary buyouts of flood-prone properties. Sci. Adv. 5, eaax8995 (2019).

    Article 

    Google Scholar 

  • Lehmann, M., Major, D. C., Fitton, J. M., Doust, K. & O’Donoghue, S. Towards a typology for coastal towns and small cities for climate change adaptation planning. Ocean Coast. Manag. 212, 105784 (2021).

    Article 

    Google Scholar 

  • Sanders, B. F. & Grant, S. B. Re‐envisioning stormwater infrastructure for ultrahazardous flooding. WIREs Water 7, e1414 (2020).

  • Markhvida, M., Walsh, B., Hallegatte, S. & Baker, J. Quantification of disaster impacts through household well-being losses. Nat. Sustain. 3, 538–547 (2020).

    Article 

    Google Scholar 

  • Shi, L. From Progressive cities to resilient cities: lessons from history for new debates in equitable adaptation to climate change. Urban Aff. Rev. 57, 1442–1479 (2021).

    Article 

    Google Scholar 

  • Domingue, S. J. & Emrich, C. T. Social vulnerability and procedural equity: exploring the distribution of disaster aid across counties in the United States. Am. Rev. Public Admin. 49, 897–913 (2019).

    Article 

    Google Scholar 

  • Hornbeck, R. & Naidu, S. When the levee breaks: black migration and economic development in the American South. Am. Econ. Rev. 104, 963–990 (2014).

    Article 

    Google Scholar 

  • Smiley, K. T. Social inequalities in flooding inside and outside of floodplains during Hurricane Harvey. Environ. Res. Lett. 15, 0940b3 (2020).

    Article 

    Google Scholar 

  • Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J. & Bouwman, A. A framework for global river flood risk assessments. Hydrol. Earth Syst. Sci. 17, 1871–1892 (2013).

    Article 

    Google Scholar 

  • Bakkensen, L. & Barrage, L. Flood Risk Belief Heterogeneity and Coastal Home Price Dynamics: Going Under Water? (NBER, 2017); http://www.nber.org/papers/w23854.pdf; https://doi.org/10.3386/w23854

  • 2015–2016 LARIAC Lidar: Los Angeles Region, CA. (OCM Partners, 2022); https://www.fisheries.noaa.gov/inport/item/55233

  • Galloway, G. E. Flood risk management in the United States and the impact of Hurricane Katrina. Int. J. River Basin Manag. 6, 301–306 (2008).

    Article 

    Google Scholar 

  • Sanders, B. F. et al. Collaborative modeling with fine‐resolution data enhances flood awareness, minimizes differences in flood perception, and produces actionable flood maps. Earth’s Future 8, 2019 (2020).

    Article 

    Google Scholar 

  • Goodrich, K. A. et al. Addressing pluvial flash flooding through community-based collaborative research in Tijuana, Mexico. Water 12, 1257 (2020).

    Article 

    Google Scholar 

  • Glossary (U.S. Census Bureau, 2022); https://www.census.gov/programs-surveys/geography/about/glossary.html

  • Carpiano, R. M. Neighborhood social capital and adult health: an empirical test of a Bourdieu-based model. Health Place 13, 639–655 (2007).

    Article 

    Google Scholar 

  • Sampson, R. J., Raudenbush, S. W. & Earls, F. Neighborhoods and violent crime: a multilevel study of collective efficacy. Science 277, 918–924 (1997).

    Article 
    CAS 

    Google Scholar 

  • Wodtke, G. T., Elwert, F. & Harding, D. J. Neighborhood effect heterogeneity by family income and developmental period. Am. J. Sociol. 121, 1168–1222 (2016).

    Article 

    Google Scholar 

  • Stata: Release 17 Multivariate Statistics Reference Manual (StataCorp, 2021).

  • The CDC/ATSDR Social Vulnerability Index (CDC/ATSDR SVI) (The Center for Disease Control and Agency for Toxic Substances and Disease Registry, accessed 1 February 2022); https://www.atsdr.cdc.gov/placeandhealth/svi/index.html

  • The Social Vulnerability Index (SoVI) 2010–2014 (The University of South Carolina Hazards and Vulnerability Research Institute, accessed 1 February 2022); https://www.sc.edu/study/colleges_schools/artsandsciences/centers_and_institutes/hvri/data_and_resources/sovi/index.php

  • Zuzak, C. et al. The national risk index: establishing a nationwide baseline for natural hazard risk in the US. Nat. Hazards https://doi.org/10.1007/s11069-022-05474-w (2022).

  • Sanders, B. F. & Schubert, J. E. PRIMo: parallel raster inundation model. Adv. Water Resour. 126, 79–95 (2019).

    Article 

    Google Scholar 

  • Los Angeles County Storm Drain (Los Angeles County Public Works, accessed 1 February 2022); https://pw.lacounty.gov/fcd/StormDrain/index.cfm

  • Perica, S. et al. Precipitation-Frequency Atlas of the United States, California NOAA Atlas 14 Vol. 6 v.2.3 (NOAA, 2014).

  • Ragno, E., AghaKouchak, A., Cheng, L. & Sadegh, M. A generalized framework for process-informed nonstationary extreme value analysis. Adv. Water Res. 130, 270–282 (2019).

    Article 

    Google Scholar 

  • Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew, R. A. & Sanders, B. F. Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries. Adv. Water Resour. 128, 28–38 (2019).

    Article 

    Google Scholar 

  • Sayers, P. et al. Believe it or not? The challenge of validating large scale probabilistic risk models. E3S Web Conf. 7, 11004 (2016).

    Article 

    Google Scholar 

  • World Terrain Base (ESRI, 2022); https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8


  • Source: Resources - nature.com

    Multiscale imaging on Saxifraga paniculata provides new insights into yttrium uptake by plants

    In nanotube science, is boron nitride the new carbon?