in

High-resolution European daily soil moisture derived with machine learning (2003–2020)

  • Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev. 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bolten, J. D., Crow, W. T., Zhan, X., Jackson, T. J. & Reynolds, C. A. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3, 57–66, https://doi.org/10.1109/JSTARS.2009.2037163 (2010).

    Article 
    ADS 

    Google Scholar 

  • Orth, R. & Seneviratne, S. I. Using soil moisture forecasts for sub-seasonal summer temperature predictions in Europe. Clim Dyn. 43, 3403–3418, https://doi.org/10.1007/s00382-014-2112-x (2014).

    Article 

    Google Scholar 

  • Wanders, N., Karssenberg, D., de Roo, A., de Jong, S. M. & Bierkens, M. F. P. The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrol. Earth Syst. Sci. 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014 (2014).

    Article 
    ADS 

    Google Scholar 

  • Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A. & Herrero-Jiménez, C. Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 177, 277–286, https://doi.org/10.1016/j.rse.2016.02.064 (2016).

    Article 
    ADS 

    Google Scholar 

  • O, S., Hou, X. & Orth, R. Observational evidence of wildfire-promoting soil moisture anomalies. Sci. Rep. 10, 11008, https://doi.org/10.1038/s41598-020-67530-4 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kroll, J. et al. Spatially varying relevance of hydrometeorological hazards for vegetation productivity extremes. Biogeosciences 19, 477–489, https://doi.org/10.5194/bg-19-477-2022 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Famiglietti, J. S., Ryu, D., Berg, A. A., Rodell, M. & Jackson, T. J. Field observations of soil moisture variability across scales: Soil moisture variability across scales. Water Resour. Res. 44, https://doi.org/10.1029/2006WR005804 (2008).

  • Brocca, L., Ciabatta, L., Massari, C., Camici, S. & Tarpanelli, A. Soil moisture for hydrological applications: Open questions and new opportunities. Water 9, 140, https://doi.org/10.3390/w9020140 (2017).

    Article 

    Google Scholar 

  • Rodell, M. et al. The global land data assimilation system. Bull. Amer. Meteor. 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381 (2004).

    Article 
    ADS 

    Google Scholar 

  • Naz, B. S., Kollet, S., Franssen, H.-J. H., Montzka, C. & Kurtz, W. A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015. Sci. Data 7, 111, https://doi.org/10.1038/s41597-020-0450-6 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muñoz-Sabater, J. et al. ERA5-land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021 (2021).

    Article 
    ADS 

    Google Scholar 

  • Koster, R. D. et al. On the nature of soil moisture in land surface models. J. Clim. 22, 4322–4335, https://doi.org/10.1175/2009JCLI2832.1 (2009).

    Article 
    ADS 

    Google Scholar 

  • Petropoulos, G. P., Ireland, G. & Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth. 83-84, 36–56, https://doi.org/10.1016/j.pce.2015.02.009 (2015).

    Article 
    ADS 

    Google Scholar 

  • Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. Remote Sens. Environ. 203, 185–215, https://doi.org/10.1016/j.rse.2017.07.001 (2017).

    Article 
    ADS 

    Google Scholar 

  • Chan, S. et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 204, 931–941, https://doi.org/10.1016/j.rse.2017.08.025 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Yao, P. et al. A long term global daily soil moisture dataset derived from AMSR-E and AMSR2 (2002–2019). Sci. Data 8, 143, https://doi.org/10.1038/s41597-021-00925-8 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, S. et al. Downscaling GLDAS soil moisture data in East Asia through fusion of multi-sensors by optimizing modified regression trees. Water 9, 332, https://doi.org/10.3390/w9050332 (2017).

    Article 

    Google Scholar 

  • Mao, H., Kathuria, D., Duffield, N. & Mohanty, B. P. Gap filling of high–resolution soil moisture for SMAP/sentinel–1: A two–layer machine learning–based framework. Water Resour. Res. 55, 6986–7009, https://doi.org/10.1029/2019WR024902 (2019).

    Article 
    ADS 

    Google Scholar 

  • Guevara, M., Taufer, M. & Vargas, R. Gap-free global annual soil moisture: 15 km grids for 1991–2018. Earth Syst. Sci. Data 13, 1711–1735, https://doi.org/10.5194/essd-13-1711-2021 (2021).

    Article 
    ADS 

    Google Scholar 

  • O, S. & Orth, R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci. Data 8, 170, https://doi.org/10.1038/s41597-021-00964-1 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, Z., Dirmeyer, P. A., Gao, X. & Zhao, M. Improving the quality of simulated soil moisture with a multi-model ensemble approach. Q.J.R. Meteorol. Soc. 133, 731–747, https://doi.org/10.1002/qj.48 (2007).

    Article 
    ADS 

    Google Scholar 

  • Bai, W. et al. The performance of multiple model-simulated soil moisture datasets relative to ECV satellite data in China. Water 10, 1384, https://doi.org/10.3390/w10101384 (2018).

    Article 

    Google Scholar 

  • Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Geer, A. J. Learning earth system models from observations: machine learning or data assimilation. Phil. Trans. R. Soc. A. 379, 20200089, https://doi.org/10.1098/rsta.2020.0089 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Keenan, T. F. & Zhou, S. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat. Ecol. Evol. 5, 1490–1498, https://doi.org/10.1038/s41559-021-01551-8 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastos, A. et al. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dynam. 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021 (2021).

    Article 
    ADS 

    Google Scholar 

  • O, S. et al. The role of climate and vegetation in regulating drought-heat extremes. J. Clim. 35, 5677–5685, https://doi.org/10.1175/JCLI-D-21-0675.1 (2022).

  • Meng, X., Wang, H., Chen, J., Yang, M. & Pan, Z. High-resolution simulation and validation of soil moisture in the arid region of Northwest China. Sci. Rep. 9, 17227, https://doi.org/10.1038/s41598-019-52923-x (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, J. et al. A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements. Remote Sens. Environ. 252, 112162, https://doi.org/10.1016/j.rse.2020.112162 (2021).

    Article 
    ADS 

    Google Scholar 

  • Sabaghy, S., Walker, J. P., Renzullo, L. J. & Jackson, T. J. Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities. Remote Sens. Environ. 209, 551–580, https://doi.org/10.1016/j.rse.2018.02.065 (2018).

    Article 
    ADS 

    Google Scholar 

  • Nayak, H. P. et al. High-resolution gridded soil moisture and soil temperature datasets for the indian monsoon region. Sci. Data 5, 180264, https://doi.org/10.1038/sdata.2018.264 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vergopolan, N. et al. Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields. Hydrol. Earth Syst. Sci. 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021 (2021).

    Article 
    ADS 

    Google Scholar 

  • Abbaszadeh, P. et al. High-resolution SMAP satellite soil moisture product: Exploring the opportunities. Bull. Amer. Meteor. 102, 309–315, https://doi.org/10.1175/BAMS-D-21-0016.1 (2021).

    Article 
    ADS 

    Google Scholar 

  • Hochreiter, S. & Schmidhuber, J. Long Short-term memory. Neural Comput. 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, P. et al. Modeling for the prediction of soil moisture in litchi orchard with deep long short-term memory. Agriculture 12, 25, https://doi.org/10.3390/agriculture12010025 (2021).

    Article 

    Google Scholar 

  • Li, Q. et al. An attention-aware LSTM model for soil moisture and soil temperature prediction. Geoderma 409, 115651, https://doi.org/10.1016/j.geoderma.2021.115651 (2022).

    Article 
    ADS 

    Google Scholar 

  • Dorigo, W. A. et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011 (2011).

    Article 
    ADS 

    Google Scholar 

  • Dorigo, W. et al. The International Soil Moisture Network: serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021 (2021).

    Article 
    ADS 

    Google Scholar 

  • O, S., Dutra, E. & Orth, R. Robustness of process-based versus data-driven modeling in changing climatic conditions. J. Hydrometeorol. 21, 1929–1944, https://doi.org/10.1175/JHM-D-20-0072.1 (2020).

    Article 
    ADS 

    Google Scholar 

  • Beck, H. E. et al. Global-scale regionalization of hydrologic model parameters. Water Resour. Res. 52, 3599–3622, https://doi.org/10.1002/2015WR018247 (2016).

    Article 
    ADS 

    Google Scholar 

  • Mittelbach, H. & Seneviratne, S. I. A new perspective on the spatio-temporal variability of soil moisture: temporal dynamics versus time-invariant contributions. Hydrol. Earth Syst. Sci. 16, 2169–2179, https://doi.org/10.5194/hess-16-2169-2012 (2012).

    Article 
    ADS 

    Google Scholar 

  • Amante, C. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. National Geophysical Data Center, NOAA https://doi.org/10.7289/V5C8276M (2009).

  • Wieder, W. Regridded harmonized world soil database v1.2. ORNL Distributed Active Archive Center https://doi.org/10.3334/ORNLDAAC/1247 (2014).

  • Kratzert, F. et al. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019 (2019).

    Article 
    ADS 

    Google Scholar 

  • LeCun, Y. A., Bottou, L., Orr, G. B. & Müller, K.-R. Efficient BackProp. In Neural networks: tricks of the trade, Second Edition, 9–48, https://doi.org/10.1007/978-3-642-35289-8_3 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012).

  • Gauch, M. et al. Rainfall–runoff prediction at multiple timescales with a single long short-term memory network. Hydrol. Earth Syst. Sci. 25, 2045–2062, https://doi.org/10.5194/hess-25-2045-2021 (2021).

    Article 
    ADS 

    Google Scholar 

  • O, S., Orth, R., Weber, U. & Park, S. K. High-resolution european daily soil moisture derived with machine learning (2003–2020). Figshare https://doi.org/10.6084/m9.figshare.c.5957127 (2022).

  • Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017 (2017).

    Article 
    ADS 

    Google Scholar 

  • Bogena, H. R. et al. COSMOS-europe: A european network of cosmic-ray neutron soil moisture sensors. Earth Syst. Sci. Data. 14, https://doi.org/10.5194/essd-14-1125-2022 (2022).

  • Koster, R. D. & Suarez, M. J. Soil moisture memory in climate models. J. Hydrometeorol. 2, 558–570, https://doi.org/10.1175/1525-7541(2001)0022.0.CO;2 (2001).

  • Orth, R., Koster, R. D. & Seneviratne, S. I. Inferring soil moisture memory from streamflow observations using a simple water balance model. J. Hydrometeorol. 14, 1773–1790, https://doi.org/10.1175/JHM-D-12-099.1 (2013).

    Article 
    ADS 

    Google Scholar 

  • Wu, W. & Dickinson, R. E. Time scales of layered soil moisture memory in the context of land–atmosphere interaction. J. Clim. 17, 2752–2764, 10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2 (2004).

  • McColl, K. A. et al. The global distribution and dynamics of surface soil moisture. Nature Geosci. 10, 100–104, https://doi.org/10.1038/ngeo2868 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Laaha, G. et al. The european 2015 drought from a hydrological perspective. Hydrol. Earth Syst. Sci. 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ionita, M. et al. The European 2015 drought from a climatological perspective. Hydrol. Earth Syst. Sci. 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017 (2017).

    Article 
    ADS 

    Google Scholar 

  • Meyer, H. & Pebesma, E. Predicting into unknown space? estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633, https://doi.org/10.1111/2041-210X.13650 (2021).

    Article 

    Google Scholar 

  • Ghiggi, G., Humphrey, V., Seneviratne, S. I. & Gudmundsson, L. GRUN: an observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. Data 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019 (2019).

    Article 
    ADS 

    Google Scholar 

  • Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 74, https://doi.org/10.1038/s41597-019-0076-8 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kraft, B., Jung, M., Körner, M., Koirala, S. & Reichstein, M. Towards hybrid modeling of the global hydrological cycle. Hydrol. Earth Syst. Sci. 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022 (2022).

    Article 
    ADS 

    Google Scholar 

  • Dabrowska-Zielinska, K. et al. Soil moisture in the Biebrza wetlands retrieved from Sentinel-1 imagery. Remote Sens. 10, https://doi.org/10.3390/rs10121979 (2018).

  • Brocca, L. et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 115, 3390–3408, https://doi.org/10.1016/j.rse.2011.08.003 (2011).

    Article 
    ADS 

    Google Scholar 

  • Zreda, M. et al. COSMOS: the COsmic-ray Soil Moisture Observing System. Hydrol Earth Syst Sci. 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012 (2012).

    Article 
    ADS 

    Google Scholar 

  • Ikonen, J. et al. The Sodankylä in situ soil moisture observation network: an example application of ESA CCI soil moisture product evaluation. Geosci. Instrum. Methods Data Syst. 5, 95–108, https://doi.org/10.5194/gi-5-95-2016 (2016).

    Article 
    ADS 

    Google Scholar 

  • Al-Yaari, A. et al. The AQUI soil moisture network for satellite microwave remote sensing validation in south-western France. Remote Sens. 10, https://doi.org/10.3390/rs10111839 (2018).

  • Cobley, A., Hemment, D., Rowan, J., Taylor, N. & Woods, M. GROW soil moisture data. University of Dundee https://doi.org/10.15132/10000156 (2020).

  • Bircher, S., Skou, N., Jensen, K. H., Walker, J. P. & Rasmussen, L. A soil moisture and temperature network for SMOS validation in Western Denmark. Hydrol. Earth Syst. Sci. 16, 1445–1463, https://doi.org/10.5194/hess-16-1445-2012 (2012).

    Article 
    ADS 

    Google Scholar 

  • Morbidelli, R., Saltalippi, C., Flammini, A., Rossi, E. & Corradini, C. Soil water content vertical profiles under natural conditions: matching of experiments and simulations by a conceptual model. Hydrol. Process. 28, 4732–4742, https://doi.org/10.1002/hyp.9973 (2014).

    Article 
    ADS 

    Google Scholar 

  • Biddoccu, M., Ferraris, S., Opsi, F. & Cavallo, E. Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North–West Italy. Soil Tillage Res. 155, 176–189, https://doi.org/10.1016/j.still.2015.07.005 (2016).

    Article 

    Google Scholar 

  • Beyrich, F. & Adam, W. Site and Data Report for the Lindenberg Reference Site in CEOP – Phase 1. Berichte des Deutschen Wetterdienstes (2007).

  • Sanchez, N., Martinez-Fernandez, J., Scaini, A. & Perez-Gutierrez, C. Validation of the SMOS L2 soil moisture data in the REMEDHUS network (Spain. IEEE Trans. Geosci. Remote Sens. 50, 1602–1611, https://doi.org/10.1109/TGRS.2012.2186971 (2012).

    Article 
    ADS 

    Google Scholar 

  • Schaefer, G. L., Cosh, M. H. & Jackson, T. J. The USDA natural resources conservation service soil climate analysis network (SCAN. J. Atmos. Ocean. Technol. 24, 2073–2077, https://doi.org/10.1175/2007JTECHA930.1 (2007).

    Article 
    ADS 

    Google Scholar 

  • Calvet, J.-C. et al. In situ soil moisture observations for the CAL/VAL of SMOS: the SMOSMANIA network. In 2007 IEEE International Geoscience and Remote Sensing Symposium, 1196–1199, https://doi.org/10.1109/IGARSS.2007.4423019 (IEEE, 2007).

  • Marczewski, W. et al. Strategies for validating and directions for employing SMOS data, in the Cal-Val project SWEX (3275) for wetlands. Hydrol. Earth Syst. Sci. Discuss. 7, 7007–7057, https://doi.org/10.5194/hessd-7-7007-2010 (2010).

    Article 
    ADS 

    Google Scholar 

  • Zacharias, S. et al. A network of terrestrial environmental observatories in Germany. Vadose Zone J. 10, 955–973, https://doi.org/10.2136/vzj2010.0139 (2011).

    Article 

    Google Scholar 

  • Schlenz, F., dall’Amico, J. T., Loew, A. & Mauser, W. Uncertainty assessment of the SMOS validation in the upper Danube catchment. IEEE Trans. Geosci. Remote Sens. 50, 1517–1529, https://doi.org/10.1109/TGRS.2011.2171694 (2012).

    Article 
    ADS 

    Google Scholar 

  • Bell, J. E. et al. U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeor. 14, 977–988, https://doi.org/10.1175/JHM-D-12-0146.1 (2013).

    Article 
    ADS 

    Google Scholar 

  • Kirchengast, G., Kabas, T., Leuprecht, A., Bichler, C. & Truhetz, H. WegenerNet: a pioneering high-resolution network for monitoring weather and climate. Bull. Amer. Meteor. 95, 227–242, https://doi.org/10.1175/BAMS-D-11-00161.1 (2014).

    Article 
    ADS 

    Google Scholar 

  • Petropoulos, G. P. & McCalmont, J. P. An operational in situ soil moisture & soil temperature monitoring network for West Wales, UK: The WSMN network. Sensors 95, 227–242, https://doi.org/10.3390/s17071481 (2014).

    Article 

    Google Scholar 

  • Beck, H. E. et al. MSWX: Global 3-hourly 0.1° bias-corrected meteorological data including near-real-time updates and forecast ensembles. Bull. Amer. Meteor. 103, E710–E732, https://doi.org/10.1175/BAMS-D-21-0145.1 (2022).

    Article 

    Google Scholar 

  • Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1 (2019).

    Article 
    ADS 

    Google Scholar 

  • Fischer, G. et al. Global agro-ecological zones assessment for agriculture (gaez 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy (2008).


  • Source: Resources - nature.com

    Crop diversification and parasitic weed abundance: a global meta-analysis

    With new heat treatment, 3D-printed metals can withstand extreme conditions