in

Caravan – A global community dataset for large-sample hydrology

  • Goodrich, D. et al. The usda-ars experimental watershed network: Evolution, lessons learned, societal benefits, and moving forward. Water Resources Research 57, e2019WR026473 (2021).

    Article 
    ADS 

    Google Scholar 

  • Likens, G. E. The watershed-ecosystem approach. Hydrological Processes 35, e13977, https://doi.org/10.1002/hyp.13977 (2021).

    Article 

    Google Scholar 

  • Goodman, K. J., Parker, S. M., Edmonds, J. W. & Zeglin, L. H. Expanding the scale of aquatic sciences: the role of the national ecological observatory network (neon). Freshwater Science 34, 377–385 (2015).

    Article 

    Google Scholar 

  • Kovács, G. Proposal to construct a coordinating matrix for comparative hydrology. Hydrological Sciences Journal 29, 435–443 (1984).

    Article 

    Google Scholar 

  • Falkenmark, M. & Chapman, T. Comparative hydrology: An ecological approach to land and water resources (Unesco, 1989).

  • Andreassian, V., Hall, A., Chahinian, N. & Schaake, J. Introduction and synthesis: Why should hydrologists work on a large number of basin data sets? In Andreassian, V., Hall, A., Chahinian, N. & Schaake, J. (eds.) Large sample basin experiments for hydrological model parameterization: results of the model parameter experiment–MOPEX, vol. IAHS Publ. 307, 1–5 (Wallingford: IAHS Press, 2006).

  • Blöschl, G. et al. Twenty-three unsolved problems in hydrology (uph)–a community perspective. Hydrological sciences journal 64, 1141–1158 (2019).

    Article 

    Google Scholar 

  • Gupta, H. V. et al. Large-sample hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences 18, 463–477 (2014).

    Article 
    ADS 

    Google Scholar 

  • Stahl, K. et al. Streamflow trends in europe: evidence from a dataset of near-natural catchments. Hydrology and Earth System Sciences 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010 (2010).

    Article 
    ADS 

    Google Scholar 

  • Gudmundsson, L., Seneviratne, S. I. & Zhang, X. Anthropogenic climate change detected in european renewable freshwater resources. Nature Climate Change 7, 813–816 (2017).

    Article 
    ADS 

    Google Scholar 

  • Gudmundsson, L., Leonard, M., Do, H. X., Westra, S. & Seneviratne, S. I. Observed trends in global indicators of mean and extreme streamflow. Geophysical Research Letters 46, 756–766, https://doi.org/10.1029/2018GL079725 (2019).

    Article 
    ADS 

    Google Scholar 

  • Gudmundsson, L. et al. Globally observed trends in mean and extreme river flow attributed to climate change. Science 371, 1159–1162, https://doi.org/10.1126/science.aba3996 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kratzert, F. et al. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019 (2019).

    Article 
    ADS 

    Google Scholar 

  • Kratzert, F. et al. Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resources Research 55, 11344–11354, https://doi.org/10.1029/2019WR026065 (2019).

    Article 
    ADS 

    Google Scholar 

  • Ghiggi, G., Humphrey, V., Seneviratne, S. I. & Gudmundsson, L. Grun: an observation-based global gridded runoff dataset from 1902 to 2014. Earth System Science Data 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019 (2019).

    Article 
    ADS 

    Google Scholar 

  • Ghiggi, G., Humphrey, V., Seneviratne, S. I. & Gudmundsson, L. G-run ensemble: A multi-forcing observation-based global runoff reanalysis. Water Resources Research 57, e2020WR028787, https://doi.org/10.1029/2020WR028787 (2021).

    Article 
    ADS 

    Google Scholar 

  • Addor, N. et al. Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges. Hydrological Sciences Journal 65, 712–725 (2020).

    Article 
    CAS 

    Google Scholar 

  • Schaake, J., Cong, S. & Duan, Q. The US MOPEX data set. In Andreassian, V., Hall, A., Chahinian, N. & Schaake, J. (eds.) Large sample basin experiments for hydrological model parameterization: results of the model parameter experiment–MOPEX, vol. IAHS Publ. 307, 9–28 (Wallingford: IAHS Press, 2006).

  • Fowler, K. J., Acharya, S. C., Addor, N., Chou, C. & Peel, M. C. CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in australia. Earth System Science Data 13, 3847–3867 (2021).

    Article 
    ADS 

    Google Scholar 

  • Klingler, C., Schulz, K. & Herrnegger, M. LamaH-CE: Large-sample data for hydrology and environmental sciences for central europe. Earth System Science Data 13, 4529–4565 (2021).

    Article 
    ADS 

    Google Scholar 

  • Chagas, V. B. et al. CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in brazil. Earth System Science Data 12, 2075–2096 (2020).

    Article 
    ADS 

    Google Scholar 

  • Arsenault, R. et al. A comprehensive, multisource database for hydrometeorological modeling of 14,425 north american watersheds. Scientific Data 7, 1–12 (2020).

    Article 

    Google Scholar 

  • Hao, Z. et al. CCAM: China catchment attributes and meteorology dataset. Earth System Science Data 13, 5591–5616 (2021).

    Article 
    ADS 

    Google Scholar 

  • Alvarez-Garreton, C. et al. The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies–chile dataset. Hydrology and Earth System Sciences 22, 5817–5846 (2018).

    Article 
    ADS 

    Google Scholar 

  • Kuentz, A., Arheimer, B., Hundecha, Y. & Wagener, T. Understanding hydrologic variability across europe through catchment classification. Hydrology and Earth System Sciences 21, 2863–2879 (2017).

    Article 
    ADS 

    Google Scholar 

  • Coxon, G. et al. CAMELS-GB: Hydrometeorological time series and landscape attributes for 671 catchments in great britain. Earth System Science Data 12, 2459–2483 (2020).

    Article 
    ADS 

    Google Scholar 

  • Newman, A. et al. Development of a large-sample watershed-scale hydrometeorological data set for the contiguous usa: data set characteristics and assessment of regional variability in hydrologic model performance. Hydrology and Earth System Sciences 19, 209–223 (2015).

    Article 
    ADS 

    Google Scholar 

  • Addor, N., Newman, A. J., Mizukami, N. & Clark, M. P. The CAMELS data set: catchment attributes and meteorology for large-sample studies. Hydrology and Earth System Sciences 21, 5293–5313 (2017).

    Article 
    ADS 

    Google Scholar 

  • Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. The global streamflow indices and metadata archive (gsim)–part 1: The production of a daily streamflow archive and metadata. Earth System Science Data 10, 765–785 (2018).

    Article 
    ADS 

    Google Scholar 

  • Gudmundsson, L., Do, H. X., Leonard, M. & Westra, S. The global streamflow indices and metadata archive (GSIM)–part 2: Quality control, time-series indices and homogeneity assessment. Earth System Science Data 10, 787–804 (2018).

    Article 
    ADS 

    Google Scholar 

  • Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Scientific data 6, 1–15, https://doi.org/10.1038/s41597-019-0300-6 (2019).

    Article 
    ADS 

    Google Scholar 

  • Beck, H. E. et al. Global-scale regionalization of hydrologic model parameters. Water Resources Research 52, 3599–3622 (2016).

    Article 
    ADS 

    Google Scholar 

  • Beck, H. E. et al. Global fully distributed parameter regionalization based on observed streamflow from 4,229 headwater catchments. Journal of Geophysical Research: Atmospheres 125, e2019JD031485 (2020).

    ADS 

    Google Scholar 

  • Blöschl, G. et al. Changing climate both increases and decreases european river floods. Nature 573, 108–111 (2019).

    Article 
    ADS 

    Google Scholar 

  • Wilkinson, M. D. et al. The fair guiding principles for scientific data management and stewardship. Scientific data 3, 1–9 (2016).

    Article 

    Google Scholar 

  • Metzger, M. J. et al. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecology and Biogeography 22, 630–638 (2013).

    Article 

    Google Scholar 

  • Muñoz-Sabater, J. et al. Era5-land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data 13, 4349–4383 (2021).

    Article 
    ADS 

    Google Scholar 

  • Lehner, B. Hydroatlas version 1.0 data download. Figshare https://doi.org/10.6084/m9.figshare.9890531.v1 (2022).

  • Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment https://doi.org/10.1016/j.rse.2017.06.031 (2017).

    Article 

    Google Scholar 

  • Kratzert, F. et al. Caravan – A global community dataset for large-sample hydrology (Version 1.0), Zenodo, https://doi.org/10.5281/ZENODO.7540792 (2022).

  • Muñoz Sabater, J. et al. Era5-land hourly data from 1981 to present. ECMWF https://doi.org/10.24381/cds.e2161bac (2021).

  • Lehner, B., Linke, S. & Thieme, M. Hydroatlas version 1.0. Figshare https://doi.org/10.6084/m9.figshare.9890531.v1 (2019).

  • Fowler, K., Acharya, S. C., Addor, N., Chou, C. & Peel, M. CAMELS-AUS v1: Hydrometeorological time series and landscape attributes for 222 catchments in australia. PANGAEA https://doi.org/10.1594/PANGAEA.921850 (2020).

  • Chagas, V. B. P. et al. CAMELS-BR: Hydrometeorological time series and landscape attributes for 897 catchments in brazil. Zenodo https://doi.org/10.5281/zenodo.3964745 (2020).

  • Alvarez-Garreton, C. et al. The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – chile dataset. PANGAEA https://doi.org/10.1594/PANGAEA.894885 (2018).

  • Coxon, G. et al. Catchment attributes and hydro-meteorological timeseries for 671 catchments across great britain (CAMELS-GB). NERC Environmental Information Data Centre https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9 (2020).

  • Klingler, C., Kratzert, F., Schulz, K. & Herrnegger, M. LamaH-CE: Large-sample data for hydrology and environmental sciences for central europe. Zenodo https://doi.org/10.5281/zenodo.5153305 (2021).

  • Newman, A. et al. A large-sample watershed-scale hydrometeorological dataset for the contiguous usa. UCAR/NCAR – GDEX https://doi.org/10.5065/D6MW2F4D (2014).

  • McMillan, H. K., Westerberg, I. K. & Krueger, T. Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water 5, e1319 (2018).

    Google Scholar 

  • Beven, K. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal 61, 1652–1665 (2016).

    Article 

    Google Scholar 

  • Colliander, A. et al. Validation of smap surface soil moisture products with core validation sites. Remote Sensing of Environment 191, 215–231 (2017).

    Article 
    ADS 

    Google Scholar 

  • Habib, E. & Krajewski, W. F. Uncertainty analysis of the trmm ground-validation radar-rainfall products: Application to the teflun-b field campaign. Journal of applied meteorology 41, 558–572 (2002).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0450(2002)0412.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0450%282002%29041%3C0558%3AUAOTTG%3E2.0.CO%3B2″ aria-label=”Article reference 52″ data-doi=”10.1175/1520-0450(2002)0412.0.CO;2″>Article 
    ADS 

    Google Scholar 

  • Kumar, S. V., Dirmeyer, P. A., Peters-Lidard, C. D., Bindlish, R. & Bolten, J. Information theoretic evaluation of satellite soil moisture retrievals. Remote Sensing of Environment 204, 392–400 (2018).

    Article 
    ADS 

    Google Scholar 

  • Nearing, G. S. et al. Nonparametric triple collocation. Water Resources Research 53, 5516–5530 (2017).

    Article 
    ADS 

    Google Scholar 

  • Alemohammad, S. H., McColl, K. A., Konings, A. G., Entekhabi, D. & Stoffelen, A. Characterization of precipitation product errors across the united states using multiplicative triple collocation. Hydrology and Earth System Sciences 19, 3489–3503 (2015).

    Article 
    ADS 

    Google Scholar 

  • McMillan, H., Jackson, B., Clark, M., Kavetski, D. & Woods, R. Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models. Journal of Hydrology 400, 83–94 (2011).

    Article 
    ADS 

    Google Scholar 

  • Domeneghetti, A., Castellarin, A. & Brath, A. Assessing rating-curve uncertainty and its effects on hydraulic model calibration. Hydrology and Earth System Sciences 16, 1191–1202 (2012).

    Article 
    ADS 

    Google Scholar 

  • Koch, J. Caravan extension Denmark – Danish dataset for large-sample hydrology. Zenodo https://doi.org/10.5281/zenodo.6762361 (2022).

  • Knoben, W. J. M., Woods, R. A. & Freer, J. E. A quantitative hydrological climate classification evaluated with independent streamflow data. Water Resources Research 54, 5088–5109, https://doi.org/10.1029/2018WR022913 (2018).

    Article 
    ADS 

    Google Scholar 


  • Source: Resources - nature.com

    Chess players face a tough foe: air pollution

    To decarbonize the chemical industry, electrify it