in

Environmental impact of direct lithium extraction from brines

  • Trahey, L. et al. Energy storage emerging: a perspective from the Joint Center for Energy Storage Research. Proc. Natl Acad. Sci. USA 117, 12550–12557 (2020).

    Article 

    Google Scholar 

  • Koohi-Fayegh, S. & Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 27, 101047 (2020).

    Article 

    Google Scholar 

  • Dehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B. & Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 104, 192–208 (2019).

    Article 

    Google Scholar 

  • Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017).

    Article 

    Google Scholar 

  • Global EV Outlook (IEA, 2021); https://www.iea.org/reports/global-ev-outlook-2021.

  • Tabelin, C. B. et al. Towards a low-carbon society: a review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng. 163, 106743 (2021).

    Article 

    Google Scholar 

  • The role of Critical World Energy Outlook Special Report Minerals in Clean Energy Transitions (IEA, 2022); https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf.

  • Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

    Article 

    Google Scholar 

  • Mineral Commodity Summaries. LITHIUM (USGS, 2021); https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-lithium.pdf.

  • Kesler, S. E. et al. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 48, 55–69 (2012).

    Article 

    Google Scholar 

  • Alessia, A., Alessandro, B., Maria, V. G., Carlos, V. A. & Francesca, B. Challenges for sustainable lithium supply: a critical review. J. Clean. Prod. 300, 126954 (2021).

    Article 

    Google Scholar 

  • Tadesse, B., Makuei, F., Albijanic, B. & Dyer, L. The beneficiation of lithium minerals from hard rock ores: a review. Miner. Eng. 131, 170–184 (2019).

    Article 

    Google Scholar 

  • Vikström, H., Davidsson, S. & Höök, M. Lithium availability and future production outlooks. Appl. Energy 110, 252–266 (2013).

    Article 

    Google Scholar 

  • Sanjuan, B. et al. Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation. Chem. Geol. 428, 27–47 (2016).

    Article 

    Google Scholar 

  • Sanjuan, B. et al. Lithium-rich geothermal brines in Europe: an up-date about geochemical characteristics and implications for potential Li resources. Geothermics 101, 102385 (2022).

    Article 

    Google Scholar 

  • Stringfellow, W. T. & Dobson, P. F. Technology for the recovery of lithium from geothermal brines. Energies 14, 6805 (2021).

    Article 

    Google Scholar 

  • Dugamin, E. J. M. et al. Groundwater in sedimentary basins as potential lithium resource: a global prospective study. Sci. Rep. 11, 21091 (2021).

    Article 

    Google Scholar 

  • Flexer, V., Baspineiro, C. F. & Galli, C. I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 639,, 1188–1204 (2018).

    Article 

    Google Scholar 

  • Garrett, D. E. Handbook of Lithium and Natural Calcium Chloride https://doi.org/10.1016/B978-0-12-276152-2.X5035-X (2004).

    Article 

    Google Scholar 

  • Mudd, G. M. Sustainable/responsible mining and ethical issues related to the Sustainable Development Goals. Geol. Soc. London, Spec. Publ. 508, 187 LP–199 (2021).

    Article 

    Google Scholar 

  • Jerez, B., Garcés, I. & Torres, R. Lithium extractivism and water injustices in the Salar de Atacama, Chile: the colonial shadow of green electromobility. Polit. Geogr. 87, 102382 (2021).

    Article 

    Google Scholar 

  • Alam, M. A. & Sepúlveda, R. Environmental degradation through mining for energy resources: the case of the shrinking Laguna Santa Rosa wetland in the Atacama Region of Chile. Energy Geosci. 3, 182–190 (2022).

    Article 

    Google Scholar 

  • Hailes, O. Lithium in international law: trade, investment, and the pursuit of supply chain justice. J. Int. Econ. Law 25, 148–170 (2022).

    Article 

    Google Scholar 

  • Bustos-Gallardo, B., Bridge, G. & Prieto, M. Harvesting lithium: water, brine and the industrial dynamics of production in the Salar de Atacama. Geoforum 119, 177–189 (2021).

    Article 

    Google Scholar 

  • Agusdinata, D. B., Liu, W., Eakin, H. & Romero, H. Socio-environmental impacts of lithium mineral extraction: towards a research agenda. Environ. Res. Lett. 13, 123001 (2018).

    Article 

    Google Scholar 

  • Liu, W. & Agusdinata, D. B. Interdependencies of lithium mining and communities sustainability in Salar de Atacama, Chile. J. Clean. Prod. 260, 120838 (2020).

    Article 

    Google Scholar 

  • Ellingsen, L. A. W., Singh, B. & Strømman, A. H. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ. Res. Lett. 11, 054010 (2016).

    Article 

    Google Scholar 

  • Ambrose, H. & Kendall, A. Understanding the future of lithium: part 2, temporally and spatially resolved life-cycle assessment modeling. J. Ind. Ecol. 24, 90–100 (2020).

    Article 

    Google Scholar 

  • Porzio, J. & Scown, C. D. Life-cycle assessment considerations for batteries and battery materials. Adv. Energy Mater. 11, 2100771 (2021).

    Article 

    Google Scholar 

  • Pell, R. et al. Towards sustainable extraction of technology materials through integrated approaches. Nat. Rev. Earth Environ. 2, 665–679 (2021).

    Article 

    Google Scholar 

  • Stamp, A., Lang, D. J. & Wäger, P. A. Environmental impacts of a transition toward e-mobility: the present and future role of lithium carbonate production. J. Clean. Prod. 23, 104–112 (2012).

    Article 

    Google Scholar 

  • Ejeian, M., Grant, A., Shon, H. K. & Razmjou, A. Is lithium brine water? Desalination 518, 115169 (2021). Discussion of why brine water should be considered in environmental assessments.

    Article 

    Google Scholar 

  • Marazuela, M. A., Vázquez-Suñé, E., Ayora, C. & García-Gil, A. Towards more sustainable brine extraction in salt flats: learning from the Salar de Atacama. Sci. Total. Environ. 703, 135605 (2020). Conceptual hydrogeological modelling, calibrated with field data, proposing clever strategies to minimize water impacts during brine pumping.

    Article 

    Google Scholar 

  • Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A. & Palma, T. Hydrodynamics of salt flat basins: the Salar de Atacama example. Sci. Total. Environ. 651, 668–683 (2019).

    Article 

    Google Scholar 

  • Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A. & Palma, T. The effect of brine pumping on the natural hydrodynamics of the Salar de Atacama: the damping capacity of salt flats. Sci. Total. Environ. 654, 1118–1131 (2019).

    Article 

    Google Scholar 

  • Houston, J., Butcher, A., Ehren, P., Evans, K. & Godfrey, L. The evaluation of brine prospects and the requirement for modifications to filing standards. Econ. Geol. 106, 1125–1239 (2011). Conceptual hydrogeological modelling about brine pumping and freshwater recharge.

    Article 

    Google Scholar 

  • Liu, W., Agusdinata, D. B. & Myint, S. W. Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile. Int. J. Appl. Earth Obs. Geoinf. 80, 145–156 (2019). Pioneering publication with solid data highlighting the environmental impacts related to lithium mining from continental brines.

    Google Scholar 

  • Gutierrez, J. S. et al. Climate change and lithium mining influence flamingo abundance in the Lithium Triangle. Proc. R. Soc. B Biol. Sci. 289, 20212388 (2022).

    Article 

    Google Scholar 

  • Marazuela, M. A. et al. 3D mapping, hydrodynamics and modelling of the freshwater-brine mixing zone in salt flats similar to the Salar de Atacama (Chile). J. Hydrol. 561, 223–235 (2018).

    Article 

    Google Scholar 

  • Rosen, M. R. The importance of groundwater in playas: a review of playa classifications and the sedimentology and hydrology of playas. in Paleoclimate and Basin Evolution of Playa Systems Vol. 289 (ed. Rosen, M. R.) (Geological Society of America, 1994).

  • Currey, D. R. & Sack, D. Hemiarid Lake Basins: Hydrographic Patterns BTGeomorphology of Desert Environments (eds Parsons, A. J. & Abrahams, A. D.) 471–487 (Springer Netherlands, 2009). https://doi.org/10.1007/978-1-4020-5719-9_15.

  • Marconi, P., Arengo, F. & Clark, A. The arid Andean plateau waterscapes and the Lithium Triangle: flamingos as flagships for conservation of high-altitude wetlands under pressure from mining development. Wetl. Ecol. Manag. https://doi.org/10.1007/s11273-022-09872-6 (2022).

    Article 

    Google Scholar 

  • Gajardo, G. & Redón, S. Andean hypersaline lakes in the Atacama Desert, northern Chile: between lithium exploitation and unique biodiversity conservation. Conserv. Sci. Pract. 1, e94 (2019).

    Google Scholar 

  • Boualleg, M. & Burdet, F. A. P. Method of preparing an adsorbent material shaped in the absence of binder and method of extracting lithium from saline solutions using said material. US patent WO/097202 Al. (2015).

  • Chen, S., Zhang, Q., Andrews-Speed, P. & Mclellan, B. Quantitative assessment of the environmental risks of geothermal energy: a review. J. Environ. Manage. 276, 111287 (2020).

    Article 

    Google Scholar 

  • Megalooikonomou, K. G., Parolai, S. & Pittore, M. Toward performance-driven seismic risk monitoring for geothermal platforms: development of ad hoc fragility curves. Geotherm. Energy 6, 8 (2018).

    Article 

    Google Scholar 

  • Bosia, C., Mouchot, J., Ravier, G., Seibel, O. & Genter, A. Evolution of brine geochemical composition during operation of EGS geothermal plants (Alsace, France). In Proc. 46th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 15–17, 2021 SGP-TR-218 (2021).

  • Tyszer, M., Tomaszewska, B. & Kabay, N. Desalination of geothermal wastewaters by membrane processes: strategies for environmentally friendly use of retentate streams. Desalination 520, 115330 (2021).

    Article 

    Google Scholar 

  • Chagnes, A. & Światowska, J. Lithium Process Chemistry: Resources, Extraction, Batteries and Recycling (Elsevier, 2015).

  • Khalil, A., Mohammed, S., Hashaikeh, R. & Hilal, N. Lithium recovery from brine: recent developments and challenges. Desalination 528, 115611 (2022).

    Article 

    Google Scholar 

  • Meng, Z. et al. Highly flexible interconnected Li+ ion-sieve porous hydrogels with self-regulating nanonetwork structure for marine lithium recovery. Chem. Eng. J. 445, 136780 (2022).

    Article 

    Google Scholar 

  • Marthi, R. & Smith, Y. R. Application and limitations of a H2TiO3 — diatomaceous earth composite synthesized from titania slag as a selective lithium adsorbent. Sep. Purif. Technol. 254, 117580 (2021).

    Article 

    Google Scholar 

  • Li, X. et al. Amorphous TiO2-derived large-capacity lithium ion sieve for lithium recovery. Chem. Eng. Technol. 43, 1784–1791 (2020).

    Article 

    Google Scholar 

  • Zhou, Z. et al. Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent. Hydrometallurgy 191, 105244 (2020).

    Article 

    Google Scholar 

  • Song, J., Huang, T., Qiu, H., Li, X. M. & He, T. Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl4 2TBP] as extractant: thermodynamics, kinetics and processes. Hydrometallurgy 173, 63–70 (2017).

    Article 

    Google Scholar 

  • Li, R. et al. Novel ionic liquid as co-extractant for selective extraction of lithium ions from salt lake brines with high Mg/Li ratio. Sep. Purif. Technol. 277, 119471 (2021).

    Article 

    Google Scholar 

  • Shi, C. et al. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents. Sep. Purif. Technol. 172, 473–479 (2017).

    Article 

    Google Scholar 

  • Gmar, S. & Chagnes, A. Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources. Hydrometallurgy 189, 105124 (2019).

    Article 

    Google Scholar 

  • Li, X. et al. Membrane-based technologies for lithium recovery from water lithium resources: a review. J. Memb. Sci. 591, 117317 (2019).

    Article 

    Google Scholar 

  • Zhao, Z., Liu, G., Jia, H. & He, L. Sandwiched liquid-membrane electrodialysis: lithium selective recovery from salt lake brines with high Mg/Li ratio. J. Memb. Sci. 596, 117685 (2020).

    Article 

    Google Scholar 

  • Li, Q. et al. Efficiently rejecting and concentrating Li+ by nanofiltration membrane under a reversed electric field. Desalination 535, 115825 (2022).

    Article 

    Google Scholar 

  • Li, Y., Zhao, Y. J., Wang, H. & Wang, M. The application of nanofiltration membrane for recovering lithium from salt lake brine. Desalination 468, 114081 (2019).

    Article 

    Google Scholar 

  • He, R. et al. Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes. Desalination 525, 115492 (2022).

    Article 

    Google Scholar 

  • Calvo, E. J. Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling. Curr. Opin. Electrochem. 15, 102–108 (2019).

    Article 

    Google Scholar 

  • Battistel, A., Palagonia, M. S., Brogioli, D., La Mantia, F. & Trócoli, R. Electrochemical methods for lithium recovery: a comprehensive and critical review. Adv. Mater. 32, 1905440 (2020). Critical review about electrochemical ion pumping technologies, with suggestions about which experimental parameters need to be assessed. Not all electrochemical technologies are reviewed.

    Article 

    Google Scholar 

  • Calvo, E. J. Direct lithium recovery from aqueous electrolytes with electrochemical ion pumping and lithium intercalation. ACS Omega 6, 35213–35220 (2021).

    Article 

    Google Scholar 

  • He, L. et al. New insights into the application of lithium-ion battery materials: selective extraction of lithium from brines via a rocking-chair lithium-ion battery system. Glob. Chall. 2, 1700079 (2018).

    Article 

    Google Scholar 

  • Liu, D., Xu, W., Xiong, J., He, L. & Zhao, Z. Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics. Sep. Purif. Technol. 270, 118809 (2021).

    Article 

    Google Scholar 

  • Liu, D., Zhao, Z., Xu, W., Xiong, J. & He, L. A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation. Desalination 519, 115302 (2021).

    Article 

    Google Scholar 

  • Liu, D., Li, Z., He, L. & Zhao, Z. Facet engineered Li3PO4 for lithium recovery from brines. Desalination 514, 115186 (2021).

    Article 

    Google Scholar 

  • Lai, X., Xiong, P. & Zhong, H. Extraction of lithium from brines with high Mg/Li ratio by the crystallization–precipitation method. Hydrometallurgy 192, 105252 (2020).

    Article 

    Google Scholar 

  • Mendieta–George, D., Pérez–Garibay, R., Solís–Rodríguez, R., Fuentes–Aceituno, J. C. & Alvarado–Gómez, A. Study of the direct production of lithium phosphate with pure synthetic solutions and membrane electrolysis. Miner. Eng. 185, 107713 (2022).

    Article 

    Google Scholar 

  • Cerda, A. et al. Recovering water from lithium-rich brines by a fractionation process based on membrane distillation–crystallization. J. Water Process. Eng 41, 102063 (2021). Membrane distillation-based DLE proposal to recover freshwater during brine concentration from high-salinity brines.

    Article 

    Google Scholar 

  • Quist-Jensen, C. A., Ali, A., Mondal, S., Macedonio, F. & Drioli, E. A study of membrane distillation and crystallization for lithium recovery from high-concentrated aqueous solutions. J. Memb. Sci. 505, 167–173 (2016).

    Article 

    Google Scholar 

  • Zhou, G. et al. Progress in electrochemical lithium ion pumping for lithium recovery. J. Energy Chem. 59, 431–445 (2021).

    Article 

    Google Scholar 

  • Xu, P. et al. Materials for lithium recovery from salt lake brine. J. Mater. Sci. 56, 16–63 (2021).

    Article 

    Google Scholar 

  • Wang, J. et al. Electrochemical technologies for lithium recovery from liquid resources: a review. Renew. Sustain. Energy Rev. 154, 111813 (2022).

    Article 

    Google Scholar 

  • Sun, Y., Wang, Q., Wang, Y., Yun, R. & Xiang, X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol. 256, 117807 (2021).

    Article 

    Google Scholar 

  • Nie, X.-Y., Sun, S.-Y., Sun, Z., Song, X. & Yu, J.-G. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 403, 128–135 (2017).

    Article 

    Google Scholar 

  • Ding, D., Yaroshchuk, A. & Bruening, M. L. Electrodialysis through nafion membranes coated with polyelectrolyte multilayers yields >99% pure monovalent ions at high recoveries. J. Memb. Sci. 647, 120294 (2022).

    Article 

    Google Scholar 

  • Li, Q. et al. Ultrahigh-efficient separation of Mg2+/Li+ using an in-situ reconstructed positively charged nanofiltration membrane under an electric field. J. Memb. Sci. 641, 119880 (2022).

    Article 

    Google Scholar 

  • Qiu, Y. et al. Integration of selectrodialysis and selectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide. Desalination 465, 1–12 (2019).

    Article 

    Google Scholar 

  • Palagonia, M. S., Brogioli, D. & La Mantia, F. Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell. Desalination 475, 114192 (2020).

    Article 

    Google Scholar 

  • Palagonia, M. S., Brogioli, D. & Mantia, F. L. Effect of current density and mass loading on the performance of a flow-through electrodes cell for lithium recovery. J. Electrochem. Soc. 166, E286–E292 (2019).

    Article 

    Google Scholar 

  • Guo, Z.-Y. et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes. J. Clean. Prod. 193, 338–350 (2018).

    Article 

    Google Scholar 

  • Zhao, L.-M. et al. Separating and recovering lithium from brines using selective-electrodialysis: sensitivity to temperature. Chem. Eng. Res. Des. 140, 116–127 (2018).

    Article 

    Google Scholar 

  • Sharma, P. P. et al. Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis. Desalination 496, 114755 (2020).

    Article 

    Google Scholar 

  • Chen, Q.-B. et al. Development of recovering lithium from brines by selective-electrodialysis: effect of coexisting cations on the migration of lithium. J. Memb. Sci. 548, 408–420 (2018).

    Article 

    Google Scholar 

  • Díaz Nieto, C. H. & Flexer, V. Is it possible to recover lithium compounds from complex brines employing electromembrane processes exclusively? Curr. Opin. Electrochem. 35, 101087 (2022).

    Article 

    Google Scholar 

  • Li, X. et al. Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene. Desalination 537, 115847 (2022).

    Article 

    Google Scholar 

  • Parker SS, et al. Potential lithium extraction in the United States: environmental, economic, and policy implications (The Nature Conservancy, 2022); https://www.scienceforconservation.org/assets/downloads/Lithium_Report_FINAL.pdf.

  • Arkansas Smackover Project. Standard Lithium https://www.standardlithium.com/projects/arkansas-smackover (2022).

  • Grant, A. Re-injection enhanced production for direct lithium extraction (DLE) projects. https://www.jadecove.com/research/brinereinjection.

  • Horne, R. N. Geothermal reinjection experience in Japan. J. Pet. Technol. 34, 495–503 (1982).

    Article 

    Google Scholar 

  • Boo, C., Billinge, I. H., Chen, X., Shah, K. M. & Yin Yip, N. Zero liquid discharge of ultrahigh-salinity brines with temperature swing solvent extraction. Environ. Sci. Technol. 54, 9124–9131 (2020).

    Article 

    Google Scholar 

  • Deshmukh, A. et al. Thermodynamics of solvent-driven water extraction from hypersaline brines using dimethyl ether. Chem. Eng. J. 434, 134391 (2022).

    Article 

    Google Scholar 

  • Panagopoulos, A. Brine management (saline water & wastewater effluents): sustainable utilization and resource recovery strategy through minimal and zero liquid discharge (MLD & ZLD) desalination systems. Chem. Eng. Process. Process Intensif. 176, 108944 (2022).

    Article 

    Google Scholar 

  • Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y. & Da’na, D. A. Produced water characteristics, treatment and reuse: a review. J. Water Process Eng. 28, 222–239 (2019).

    Article 

    Google Scholar 

  • Samuel, O. et al. Oilfield-produced water treatment using conventional and membrane-based technologies for beneficial reuse: a critical review. J. Environ. Manag. 308, 114556 (2022).

    Article 

    Google Scholar 

  • Arena, J. T. et al. Management and dewatering of brines extracted from geologic carbon storage sites. Int. J. Greenh. Gas Control 63, 194–214 (2017).

    Article 

    Google Scholar 

  • Ogden, D. D. & Trembly, J. P. Desalination of hypersaline brines via Joule-heating: experimental investigations and comparison of results to existing models. Desalination 424, 149–158 (2017).

    Article 

    Google Scholar 

  • Kaplan, R., Mamrosh, D., Salih, H. H. & Dastgheib, S. A. Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site. Desalination 404, 87–101 (2017).

    Article 

    Google Scholar 

  • Baspineiro, C. F., Franco, J. & Flexer, V. Potential water recovery during lithium mining from high salinity brines. Sci. Total Environ. 720, 137523 (2020).

    Article 

    Google Scholar 

  • Sustainable production. SQM https://www.sqmlithium.com/en/nosotros/produccion-sustentable/ (2022).

  • Sustainability Report (Orocobre, 2021); https://www.orocobre.com/wp/?mdocs-file=7259.

  • Grant, A. From Catamarca to Qinghai: the Commercial Scale Direct Lithium Extraction Operations. Jadecove https://www.jadecove.com/research/fromcatamarcatoqinghai (2020).

  • Sustainability report (Livent, 2021); https://livent.com/wp-content/uploads/2022/07/Livent_2021SustainabilityReport-English.pdf.

  • Park, S. H. et al. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J. Memb. Sci. 598, 117683 (2020). Pioneering DLE proposal to recover freshwater during brine concentration via nanofiltration followed by membrane distillation.

    Article 

    Google Scholar 

  • Pramanik, B. K., Asif, M. B., Kentish, S., Nghiem, L. D. & Hai, F. I. Lithium enrichment from a simulated salt lake brine using an integrated nanofiltration-membrane distillation process. J. Environ. Chem. Eng. 7, 103395 (2019).

    Article 

    Google Scholar 

  • Ko, C.-C. et al. Performance of ceramic membrane in vacuum membrane distillation and in vacuum membrane crystallization. Desalination 440, 48–58 (2018).

    Article 

    Google Scholar 

  • Baspineiro, C. F., Franco, J. & Flexer, V. Performance of a double-slope solar still for the concentration of lithium rich brines with concomitant fresh water recovery. Sci. Total. Environ. 791, 148192 (2021).

    Article 

    Google Scholar 

  • Ling, Z. et al. Desalination and Li+ enrichment via formation of cyclopentane hydrate. Sep. Purif. Technol. 231, 115921 (2020).

    Article 

    Google Scholar 

  • Niu, J. et al. An electrically switched ion exchange system with self-electrical-energy recuperation for efficient and selective LiCl separation from brine lakes. Sep. Purif. Technol. 274, 118995 (2021).

    Article 

    Google Scholar 

  • Nie, X.-Y., Sun, S.-Y., Song, X. & Yu, J.-G. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis. J. Memb. Sci. 530, 185–191 (2017).

    Article 

    Google Scholar 

  • Jiang, C., Wang, Y., Wang, Q., Feng, H. & Xu, T. Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM). Ind. Eng. Chem. Res. 53, 6103–6112 (2014).

    Article 

    Google Scholar 

  • Díaz Nieto, C. H., Rabaey, K. & Flexer, V. Membrane electrolysis for the removal of Na+ from brines for the subsequent recovery of lithium salts. Sep. Purif. Technol. 252, 117410 (2020).

    Article 

    Google Scholar 

  • Díaz Nieto, C. H. et al. Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. Water Res. 154, 117–124 (2019).

    Article 

    Google Scholar 

  • Ji, P.-Y. et al. Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Sep. Purif. Technol. 207, 1–11 (2018).

    Article 

    Google Scholar 

  • Lee, D.-H. et al. Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system. Hydrometallurgy 173, 283–288 (2017).

    Article 

    Google Scholar 

  • Díaz Nieto, C. H., Kortsarz, J. A., Vera, M. L. & Flexer, V. Effect of temperature, current density and mass transport during the electrolytic removal of magnesium ions from lithium rich brines. Desalination 529, 115652 (2022).

    Article 

    Google Scholar 

  • Li, X. et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chem. Eng. J. 392, 123731 (2020).

    Article 

    Google Scholar 

  • Sun, J. et al. Preparation of high hydrophilic H2TiO3 ion sieve for lithium recovery from liquid lithium resources. Chem. Eng. J. 453, 139485 (2023).

    Article 

    Google Scholar 

  • Qian, F. et al. Trace doping by fluoride and sulfur to enhance adsorption capacity of manganese oxides for lithium recovery. Mater. Des. 194, 108867 (2020).

    Article 

    Google Scholar 

  • Taghvaei, N., Taghvaei, E. & Askari, M. Synthesis of anodized TiO2 nanotube arrays as ion sieve for lithium extraction. ChemistrySelect 5, 10339–10345 (2020).

    Article 

    Google Scholar 

  • Qian, F. et al. Highly lithium adsorption capacities of H1.6Mn1.6O4 ion-sieve by ordered array structure. ChemistrySelect 4, 10157–10163 (2019).

    Article 

    Google Scholar 

  • Sarmiento, N. et al. A solar irradiation GIS as decision support tool for the Province of Salta, Argentina. Renew. Energy 132, 68–80 (2019).

    Article 

    Google Scholar 

  • Dellicompagni, P., Franco, J. & Flexer, V. CO2 emission reduction by integrating concentrating solar power into lithium mining. Energy Fuels 35, 15879–15893 (2021).

    Article 

    Google Scholar 

  • Zavahir, S. et al. A review on lithium recovery using electrochemical capturing systems. Desalination 500, 114883 (2021).

    Article 

    Google Scholar 

  • Joo, H. et al. Pilot-scale demonstration of an electrochemical system for lithium recovery from the desalination concentrate. Environ. Sci. Water Res. Technol. 6, 290–295 (2020). Pilot-scale demonstration of processing 6 tonnes of brine daily using electrochemical ion pumping.

    Article 

    Google Scholar 

  • Song, J. F., Nghiem, L. D., Li, X.-M. & He, T. Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook. Environ. Sci. Water Res. Technol. 3, 593–597 (2017). Thorough review of pilot-scale projects for lithium mining from brines in China.

    Article 

    Google Scholar 

  • Yu, C. et al. Bio-inspired fabrication of ester-functionalized imprinted composite membrane for rapid and high-efficient recovery of lithium ion from seawater. J. Colloid Interf. Sci. 572, 340–353 (2020).

    Article 

    Google Scholar 

  • Lu, J. et al. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone. Appl. Surf. Sci. 427, 931–941 (2018).

    Article 

    Google Scholar 

  • Ryu, T. et al. Lithium recovery system using electrostatic field assistance. Hydrometallurgy 151, 78–83 (2015).

    Article 

    Google Scholar 

  • Sun, Y., Wang, Y., Liu, Y. & Xiang, X. Highly efficient lithium extraction from brine with a high sodium content by adsorption-coupled electrochemical technology. ACS Sustain. Chem. Eng. 9, 11022–11031 (2021).

    Article 

    Google Scholar 

  • Torres, W. R., Díaz Nieto, C. H., Prévoteau, A., Rabaey, K. & Flexer, V. Lithium carbonate recovery from brines using membrane electrolysis. J. Memb. Sci. 615, 118416 (2020). A DLE methodology with three consecutive electromembrane processes for the sequential recovery of magnesium, calcium and sodium by-products, together with lithium carbonate and concomitant fresh-water production in a circular economy framework.

    Article 

    Google Scholar 

  • Du, X. et al. A novel electroactive λ-MnO2/PPy/PSS core–shell nanorod coated electrode for selective recovery of lithium ions at low concentration. J. Mater. Chem. A 4, 13989–13996 (2016).

    Article 

    Google Scholar 

  • Luo, G. et al. Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3–ZrO2 coated LiMn2O4 electrode. J. Energy Chem. 69, 244–252 (2022).

    Article 

    Google Scholar 

  • Oyarce, E., Roa, K., Boulett, A., Salazar-Marconi, P. & Sánchez, J. Removal of lithium ions from aqueous solutions by an ultrafiltration membrane coupled to soluble functional polymer. Sep. Purif. Technol. 288, 120715 (2022).

    Article 

    Google Scholar 

  • Han, H. J., Qu, W., Zhang, Y. L., Lu, H. D. & Zhang, C. L. Enhanced performance of Li+ adsorption for H1.6Mn1.6O4 ion-sieves modified by Co doping and micro array morphology. Ceram. Int. 47, 21777–21784 (2021).

    Article 

    Google Scholar 

  • Zhu, X. et al. Study on adsorption extraction process of lithium ion from West Taijinar brine by shaped titanium-based lithium ion sieves. Sep. Purif. Technol. 274, 119099 (2021).

    Article 

    Google Scholar 

  • Meng, Z. et al. Highly flexible interconnected Li+ion-sieve porous hydrogels with self-regulating nanonetwork structure for marine lithium recovery. Chem. Eng. J. 445, 136780 (2022).

    Article 

    Google Scholar 

  • Xiong, J., Zhao, Z., Liu, D. & He, L. Direct lithium extraction from raw brine by chemical redox method with LiFePO4/FePO4 materials. Sep. Purif. Technol. 290, 120789 (2022).

    Article 

    Google Scholar 

  • Vera, M. L. et al. A strategy to avoid solid formation within the reactor during magnesium and calcium electrolytic removal from lithium-rich brines. J. Solid State Electrochem. https://doi.org/10.1007/s10008-022-05219-6 (2022).

    Article 

    Google Scholar 

  • Lide, D. R. CRC Handbook of Chemistry and Physics (CRC Press. Boca Raton, 2005).

  • Neumann, J. et al. Recycling of lithium-ion batteries — current state of the art, circular economy, and next generation recycling. Adv. Energy Mater. 12, 2102917 (2022).

    Article 

    Google Scholar 

  • Amici, J. et al. A roadmap for transforming research to invent the batteries of the future designed within the European large scale research initiative BATTERY 2030+. Adv. Energy Mater. 12, 2102785 (2022).

    Article 

    Google Scholar 

  • Graedel, T. E. et al. What do we know about metal recycling rates? J. Ind. Ecol. 15, 355–366 (2011).

    Article 

    Google Scholar 

  • Kinnunen, P. H.-M. & Kaksonen, A. H. Towards circular economy in mining: opportunities and bottlenecks for tailings valorization. J. Clean. Prod. 228, 153–160 (2019).

    Article 

    Google Scholar 

  • Falagán, C., Grail, B. M. & Johnson, D. B. New approaches for extracting and recovering metals from mine tailings. Miner. Eng. 106, 71–78 (2017).

    Article 

    Google Scholar 

  • Nwaila, G. T. et al. Valorisation of mine waste — part I: characteristics of, and sampling methodology for, consolidated mineralised tailings by using Witwatersrand gold mines (South Africa) as an example. J. Environ. Manage. 295, 113013 (2021).

    Article 

    Google Scholar 

  • Singh, S., Sukla, L. B. & Goyal, S. K. Mine waste & circular economy. Mater. Today Proc. 30, 332–339 (2020).

    Article 

    Google Scholar 

  • Purnell, P., Velenturf, A. P. M. & Marshall, R. New Governance for Circular Economy: Policy, Regulation and Market Contexts for Resource Recovery from Waste. (eds. Macaskie, L. E. et al.) Ch. 16 (Royal Society of Chemistry, 2019).

  • Velenturf, A. P. M. et al. Circular economy and the matter of integrated resources. Sci. Total Environ. 689, 963–969 (2019).

    Article 

    Google Scholar 

  • Yang, Y. et al. Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloy. 9, 705–747 (2021).

    Article 

    Google Scholar 

  • Løvik, A. N., Hagelüken, C. & Wäger, P. Improving supply security of critical metals: current developments and research in the EU. Sustain. Mater. Technol. 15, 9–18 (2018).

    Google Scholar 

  • Potash. Albemarle https://www.albemarle.com/businesses/lithium/products/pot-ash (2023).

  • Production processes. SQM https://www.sqm.com/en/acerca-de-sqm/recursos-naturales/proceso-de-produccion/ (2018).

  • Thiel, G. P. & Lienhard V, J. H. Treating produced water from hydraulic fracturing: composition effects on scale formation and desalination system selection. Desalination 346, 54–69 (2014).

    Article 

    Google Scholar 

  • Shaffer, D. L. et al. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environ. Sci. Technol. 47, 9569–9583 (2013).

    Article 

    Google Scholar 

  • Ogunbiyi, O. et al. Sustainable brine management from the perspectives of water, energy and mineral recovery: a comprehensive review. Desalination 513, 115055 (2021).

    Article 

    Google Scholar 

  • Kumar, A. et al. Metals recovery from seawater desalination brines: technologies, opportunities, and challenges. ACS Sustain. Chem. Eng. 9, 7704–7712 (2021).

    Article 

    Google Scholar 

  • Snæbjörnsdóttir, S. Ó. et al. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90–102 (2020).

    Article 

    Google Scholar 

  • Saccò, M. et al. Salt to conserve: a review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 96, 2828–2850 (2021).

    Article 

    Google Scholar 

  • Chiappero, M. F., Vaieretti, M. V. & Izquierdo, A. E. A baseline soil survey of two peatlands associated with a lithium-rich salt flat in the argentine puna: physico-chemical characteristics, carbon storage and biota. Mires Peat 27, 16 (2021).

    Google Scholar 

  • Batanero, G. L. et al. Flamingos and drought as drivers of nutrients and microbial dynamics in a saline lake. Sci. Rep. 7, 12173 (2017).

    Article 

    Google Scholar 

  • Avila-Arias, H., Nies, L. F., Gray, M. B. & Turco, R. F. Impacts of molybdenum-, nickel-, and lithium-oxide nanomaterials on soil activity and microbial community structure. Sci. Total. Environ. 652, 202–211 (2019).

    Article 

    Google Scholar 

  • Robinson, B. H., Yalamanchali, R., Reiser, R. & Dickinson, N. M. Lithium as an emerging environmental contaminant: mobility in the soil–plant system. Chemosphere 197, 1–6 (2018).

    Article 

    Google Scholar 

  • Bolan, N. et al. From mine to mind and mobiles — lithium contamination and its risk management. Environ. Pollut. 290, 118067 (2021).

    Article 

    Google Scholar 

  • Shokri-Kuehni, S. M. S., Norouzi Rad, M., Webb, C. & Shokri, N. Impact of type of salt and ambient conditions on saline water evaporation from porous media. Adv. Water Resour. 105, 154–161 (2017).

    Article 

    Google Scholar 

  • Obaya, M., López, A. & Pascuini, P. Curb your enthusiasm. Challenges to the development of lithium-based linkages in Argentina. Resour. Policy 70, 101912 (2021).

    Article 

    Google Scholar 

  • Risacher, F., Alonso, H. & Salazar, C. The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Sci. Rev. 63, 249–293 (2003).

    Article 

    Google Scholar 

  • Corenthal, L. G., Boutt, D. F., Hynek, S. A. & Munk, L. A. Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano. Geophys. Res. Lett. 43, 8017–8025 (2016).

    Article 

    Google Scholar 

  • Vásquez, C., Ortiz, C., Suárez, F. & Muñoz, J. F. Modeling flow and reactive transport to explain mineral zoning in the Atacama salt flat aquifer, Chile. J. Hydrol. 490, 114–125 (2013).

    Article 

    Google Scholar 


  • Source: Resources - nature.com

    Rethinking river water temperature in a changing, human-dominated world

    Improving health outcomes by targeting climate and air pollution simultaneously