Mora, C. et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Change 8, 1062–1071 (2018).
Google Scholar
Sahu, A., Yadav, N. & Sudhakar, K. Floating photovoltaic power plant: a review. Renew. Sustain. Energy Rev. 66, 815–824 (2016).
Google Scholar
Hernandez, R. R. et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 29, 766–779 (2014).
Google Scholar
van de Ven, D.-J. et al. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 11, 2907 (2021).
Google Scholar
Rauf, H., Gull, M. S. & Arshad, N. Integrating floating solar PV with hydroelectric power plant: analysis of Ghazi Barotha reservoir in Pakistan. Energy Procedia 158, 816–821 (2019).
Google Scholar
Solomin, E., Sirotkin, E., Cuce, E., Selvanathan, S. P. & Kumarasamy, S. Hybrid floating solar plant designs: a review. Energies 14, 2751 (2021).
Google Scholar
Bontempo Scavo, F., Tina, G. M., Gagliano, A. & Nižetić, S. An assessment study of evaporation rate models on a water basin with floating photovoltaic plants. Int. J. Energy Res. 45, 167–188 (2021).
Google Scholar
Where Sun Meets Water: Floating Solar Handbook for Practitioners (World Bank Group, ESMAP, SERIS, 2019).
Global Floating Solar Panels Industry (ReportLinker, 2022).
Almeida, R. M. et al. Floating solar power could help fight climate change—let’s get it right. Nature 606, 246–249 (2022).
Google Scholar
Gonzalez Sanchez, R., Kougias, I., Moner-Girona, M., Fahl, F. & Jäger-Waldau, A. Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa. Renew. Energy 169, 687–699 (2021).
Google Scholar
Mahmood, S., Deilami, S. & Taghizadeh, S. Floating solar PV and hydropower in Australia: feasibility, future investigations and challenges. In 2021 31st Australasian Universities Power Engineering Conference (AUPEC) (eds. Rajakaruna, S., Siada, A. A., et al.) 1–5 (IEEE, 2021).
Rahman, M. W., Mahmud, M. S., Ahmed, R., Rahman, M. S. & Arif, M. Z. Solar lanes and floating solar PV: new possibilities for source of energy generation in Bangladesh. In 2017 Innovations in Power and Advanced Computing Technologies (i-PACT) 1–6 (IEEE, 2017).
Padilha Campos Lopes, M., de Andrade Neto, S., Alves Castelo Branco, D., Vasconcelos de Freitas, M. A. & da Silva Fidelis, N. Water–energy nexus: floating photovoltaic systems promoting water security and energy generation in the semiarid region of Brazil. J. Clean. Prod. 273, 122010 (2020).
Google Scholar
Fereshtehpour, M., Javidi Sabbaghian, R., Farrokhi, A., Jovein, E. B. & Ebrahimi Sarindizaj, E. Evaluation of factors governing the use of floating solar system: a study on Iran’s important water infrastructures. Renew. Energy 171, 1171–1187 (2021).
Google Scholar
Nagananthini, R. & Nagavinothini, R. Investigation on floating photovoltaic covering system in rural Indian reservoir to minimize evaporation loss. Int. J. Sustain. Energy 40, 781–805 (2021).
Google Scholar
Sukarso, A. P. & Kim, K. N. Cooling effect on the floating solar PV: performance and economic analysis on the case of West Java province in Indonesia. Energies 13, 2126 (2020).
Google Scholar
Jamalludin, M. A. S. et al. Potential of floating solar technology in Malaysia. Int. J. Power Electron. Drive Syst. 10, 1638–1644 (2019).
Dellosa, J. & Palconit, E. V. Resource assessment of a floating solar photovoltaic (FSPV) system with artificial intelligence applications in Lake Mainit, Philippines. Eng. Technol. Appl. Sci. Res. 12, 8410–8415 (2022).
Google Scholar
Sapthanakorn, P. & Salakij, S. Evaluating the potential of using floating solar photovoltaic on 12 reservoirs of Electricity Generation Authority of Thailand hydropower plants. In 2021 International Conference on Smart City and Green Energy (ICSCGE) 41–45 (IEEE, 2021).
Sutton, M. The UK’s Floating Photovoltaic (FPV) Potential (Pagerpower, 2020); https://www.pagerpower.com/news/the-uks-floating-photovoltaic-fpv-potential/
Spencer, R. S., Macknick, J., Aznar, A., Warren, A. & Reese, M. O. Floating photovoltaic systems: assessing the technical potential of photovoltaic systems on man-made water bodies in the continental United States. Environ. Sci. Technol. 53, 1680–1689 (2019).
Google Scholar
Lee, N. et al. Hybrid floating solar photovoltaics–hydropower systems: benefits and global assessment of technical potential. Renew. Energy 162, 1415–1427 (2020).
Google Scholar
McKuin, B. et al. Energy and water co-benefits from covering canals with solar panels. Nat. Sustain. 4, 609–617 (2021).
Google Scholar
Liber, W. et al. Statewide Potential Study for the Implementation of Floating Solar Photovoltaic Arrays (Colorado Energy Office, 2020).
Andrews, R. W., Stein, J. S., Hansen, C. & Riley, D. Introduction to the open source PV LIB for python photovoltaic system modelling package. In 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) 0170–0174 (IEEE, 2014).
Ranjbaran, P., Yousefi, H., Gharehpetian, G. B. & Astaraei, F. R. A review on floating photovoltaic (FPV) power generation units. Renew. Sustain. Energy Rev. 110, 332–347 (2019).
Google Scholar
Liu, B. et al. Optimal power peak shaving using hydropower to complement wind and solar power uncertainty. Energy Convers. Manag. 209, 112628 (2020).
Google Scholar
Thorpe, D. How Cities Can Generate Their Own Clean Energy and Create Jobs and Income (Smartcities Dive, 2017); https://www.smartcitiesdive.com/ex/sustainablecitiescollective/how-cities-can-generate-their-own-energy-and-create-jobs-and-income/288521/
Mothilal Bhagavathy, S. & Pillai, G. PV microgrid design for rural electrification. Designs 2, 33 (2018).
Google Scholar
Das, K. & Jain, P. Floatovoltaic microgrids: new possibilities of decentralizing water–energy sector in India. Eng. Technol. 8, 9 (2020).
Gleick, P. H. Water use. Annu. Rev. Environ. Resour. 28, 275–314 (2003).
Google Scholar
Nkiaka, E., Okpara, U. T. & Okumah, M. Food–energy–water security in sub-Saharan Africa: quantitative and spatial assessments using an indicator-based approach. Environ. Dev. 40, 100655 (2021).
Google Scholar
International Energy Outlook (US Energy Information Administration, 2021).
Hydropower (International Energy Agency, 2021).
Net Zero by 2050 (International Energy Agency, 2021).
Global Energy Transformation: The REmap Transition Pathway (International Renewable Energy Agency, 2019).
Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’ energy? Trends Ecol. Evol. 32, 922–935 (2017).
Google Scholar
Gadzanku, S., Lee, N. & Dyreson, A. Enabling Floating Solar Photovoltaic (FPV) Deployment: Exploring the Operational Benefits of Floating Solar–Hydropower Hybrids (National Renewable Energy Laboratory, 2022).
Zhou, Y. et al. An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water–food–energy nexus synergies. Appl. Energy 275, 115389 (2020).
Google Scholar
Hancook, E. New Floating Solar Study Demonstrates Water Quality Improvements (PV-Tech, 2021); https://www.pv-tech.org/new-floating-solar-study-demonstrates-water-quality-improvements/
Château, P.-A. et al. Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds. Sci. Total Environ. 687, 654–666 (2019).
Google Scholar
Pimentel Da Silva, G. D. & Branco, D. A. C. Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assess. Proj. Apprais. 36, 390–400 (2018).
Google Scholar
Floating Solar PV on Dam Reservoirs: The Opportunities and the Challenges (Solar-Hydro, 2021).
Guidelines of the Ministry of Water Resources on Strengthening Shoreline Space Control of River and Lake Waters (in Chinese) (Ministry of Water Resources of the People’s Republic of China, 2022); http://finance.people.com.cn/n1/2022/0531/c1004-32434787.html
Feron, S., Cordero, R. R., Damiani, A. & Jackson, R. B. Climate change extremes and photovoltaic power output. Nat. Sustain. 4, 270–276 (2020).
Google Scholar
Dutta, R., Chanda, K. & Maity, R. Future of solar energy potential in a changing climate across the world: a CMIP6 multi-model ensemble analysis. Renew. Energy 188, 819–829 (2022).
Google Scholar
Hou, X., Wild, M., Folini, D., Kazadzis, S. & Wohland, J. Climate change impacts on solar power generation and its spatial variability in Europe based on CMIP6. Earth Syst. Dyn. 12, 1099–1113 (2021).
Google Scholar
Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).
Google Scholar
Wang, J. et al. GeoDAR: georeferenced global dam and reservoir dataset for bridging attributes and geolocations. Earth Syst. Sci. Data 14, 1869–1899 (2022).
Google Scholar
OpenStreetMap (OpenStreetMap, 2021); www.openstreetmap.org
CERES and GEO-Enhanced TOA, Within-Atmosphere and Surface Fluxes, Clouds and Aerosols 1-Hourly Terra-Aqua Edition4A (NASA Langley Atmospheric Science Data Center DAAC, 2017); https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEG-1HOUR_L3.004A
Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present (Copernicus Climate Change Service Climate Data Store, 2019).
Tina, G. M., Bontempo Scavo, F., Merlo, L. & Bizzarri, F. Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants. Appl. Energy 281, 116084 (2021).
Google Scholar
Whittaker, T., Folley, M. & Hancock, J. in Floating PV Plants (eds. Rosa-Clot, M. and Tina, G. M.) 47–66 (Elsevier, 2020).
Micheli, L. Energy and economic assessment of floating photovoltaics in Spanish reservoirs: cost competitiveness and the role of temperature. Sol. Energy 227, 625–634 (2021).
Google Scholar
Mathijssen, D. et al. Potential impact of floating solar panels on water quality in reservoirs; pathogens and leaching. Water Pract. Technol. 15, 807–811 (2020).
Google Scholar
Kim, K. Real options analysis for the investment of floating photovoltaic project in Saemangeum. Korean J. Constr. Eng. Manag. 22, 90–97 (2021).
Global Energy Review 2021 (International Energy Agency, 2021).
Shiu, A. & Lam, P.-L. Electricity consumption and economic growth in China. Energy Policy 8, 47–54 (2004).
Google Scholar
GADM Database of Global Administrative Areas, Version 2.0 (Global Collaboration Engine, 2012); www.gadm.org
LandScan Global 2019 (Oak Ridge National Laboraotry, 2020); https://landscan.ornl.gov/
Kummu, M., Taka, M. & Guillaume, J. H. A. Data from: Gridded global datasets for gross domestic product and human development index over 1990–2015. Dryad https://doi.org/10.5061/dryad.dk1j0 (2020).
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
Google Scholar
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).
Google Scholar
Shuttleworth, W. J. Handbook of Hydrology (ed. Maidment, D. R.) Ch. 4 (McGraw-Hill Education, 1993).
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements FAO Irrigation and Drainage Paper No. 56 (FAO, 1998).
Gadzanku, S., Mirletz, H., Lee, N., Daw, J. & Warren, A. Benefits and critical knowledge gaps in determining the role of floating photovoltaics in the energy–water–food nexus. Sustainability 13, 4317 (2021).
Google Scholar
Kumar, M. & Kumar, A. Performance assessment of different photovoltaic technologies for canal-top and reservoir applications in subtropical humid climate. IEEE J. Photovolt. 9, 722–732 (2019).
Google Scholar
Kandananond, K. Forecasting electricity demand in Thailand with an artificial neural network approach. Energies 4, 1246–1257 (2011).
Google Scholar
Source: Resources - nature.com