in

Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides

  • 1.

    Bilham, R. Lessons from the Haiti earthquake. Nature 463, 878–879 (2010).

    • Article
    • Google Scholar
  • 2.

    Holzer, L. T. & Savage, J. C. Global earthquake fatalities and population. Earthq. Spectra 29, 155–175 (2013).

    • Article
    • Google Scholar
  • 3.

    Marano, K. D., Wald, D. J. & Allen, T. I. Global earthquake casualties due to secondary effects: a quantitative analysis for improving rapid loss analyses. Nat. Hazards 52, 319–328 (2010).

    • Article
    • Google Scholar
  • 4.

    Alcántara-Ayala, I., Esteban-Chávez, O. & Parrot, J. F. Landsliding related to land-cover change: a diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico. Catena 65, 152–165 (2006).

    • Article
    • Google Scholar
  • 5.

    Pisano, L. et al. Variations in the susceptibility to landslides, as a consequence of land cover changes: a look to the past, and another towards the future. Sci. Total Environ. 601–602, 1147–1159 (2017).

    • Article
    • Google Scholar
  • 6.

    Sangelantoni, L., Gioia, E. & Marincioni, F. Impact of climate change on landslides frequency: the Esino river basin case study (Central Italy). Nat. Hazards 93, 849–884 (2018).

    • Article
    • Google Scholar
  • 7.

    Barnard, P. L., Owen, L. A., Sharma, M. C. & Finkel, R. C. Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40, 21–35 (2001).

    • Article
    • Google Scholar
  • 8.

    Hearn, G. J. & Shakya, N. M. Engineering challenges for sustainable road access in the Himalayas. Q. J. Eng. Geol. Hydrogeol. 50, 69–80 (2017).

    • Article
    • Google Scholar
  • 9.

    Zhang, D., Wang, D., Luo, C., Chen, J. & Zhou, Y. A rapid loess flowslide triggered by irrigation in China. Landslides 6, 55–60 (2009).

    • Article
    • Google Scholar
  • 10.

    Tanyas, H. et al. Presentation and analysis of a worldwide database of earthquake-induced landslideinventories. J. Geophys. Res. Earth Surf. 122, 1991–2015 (2017).

    • Article
    • Google Scholar
  • 11.

    Owen, L. A. et al. Landslides triggered by the October 8, 2005, Kashmir earthquake. Geomorphology 94, 1–9 (2008).

    • Article
    • Google Scholar
  • 12.

    Keefer, D. K. Investigating landslide caused by earthquakes—a historical review. Surv. Geophys. 23, 473–510 (2002).

    • Article
    • Google Scholar
  • 13.

    Bellier, O. et al. High slip rate for a low seismicity along the Palu-Koro active fault in central Sulawesi (Indonesia). Terra Nova 13, 463–470 (2001).

    • Article
    • Google Scholar
  • 14.

    Socquet, A. et al. Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. J. Geophys. Res. 111, B08409 (2006).

    • Google Scholar
  • 15.

    Thein, P. S. et al. Site response characteristics of H/V spectrum by microtremor single station observations at Palu city, Indonesia. J. SE Asian Appl. Geol. 5, 1–9 (2013).

    • Google Scholar
  • 16.

    Cipta, A. et al. in Geohazards in Indonesia: Earth Science for Disaster Risk Reduction (eds Cummins, P. R. & Meilano, I.) 133–152 (Geological Society, 2017).

  • 17.

    Watkinson, I. M. & Hall, R. in Geohazards in Indonesia: Earth Science for Disaster Risk Reduction (eds Cummins, P. R. & Meilano, I.) 71–120 (Geological Society, 2017).

  • 18.

    Metzner, J. Palu(Sulawesi) Palu (Sulawesi) problems of land utilisation in a climatic dry valley on the equator. Erdkunde 35, 42–54 (1981).

  • 19.

    Pelinovsky, E., Yuliadi, D., Prasetya, G. & Hidayat, R. The 1996 Sulawesi tsunami. Nat. Hazards 16, 29–38 (1997).

    • Article
    • Google Scholar
  • 20.

    Sutapa, I. W. & Galib, I. M. Application of non-parametric test to detect trend rainfall in Palu watershed, Central Sulawesi, Indonesia. Int. J. Hydrol. Sci. Technol. 6, 238–253 (2016).

    • Article
    • Google Scholar
  • 21.

    Socquet, A., Hollingsworth, J., Pathier, E. & Bouchon, M. Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nat. Geosci. 12, 192–199 (2019).

    • Article
    • Google Scholar
  • 22.

    Bao, H. et al. Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nat. Geosci. 12, 200–205 (2019).

    • Article
    • Google Scholar
  • 23.

    Situation Update No.15—Final. M7.4 Earthquake & Tsunami Sulawesi, Indonesia (ASEAN Coordinating Centre for Humanitarian Assistance on Disaster Management, accessed 25 November 2018); https://reliefweb.int/report/indonesia/aha-centre-situation-update-no-15-final-m-74-earthquake-and-tsunami-sulawesi

  • 24.

    Weber, R., Kreisel, W. & Faust, H. Colonial Interventions on the cultural landscape of Central Sulawesi by “ethical policy”: the impact of the Dutch rule in Palu and Kulawi valley, 1905–1942. Asian J. Soc. Sci. 31, 398–434 (2003).

    • Article
    • Google Scholar
  • 25.

    Keil, A., Zeller, M., Wida, A., Sanim, B. & Birner, R. What determines farmers’ resilience towards ENSO-related drought? An empirical assessment in Central Sulawesi, Indonesia. Clim. Change 86, 291–307 (2008).

    • Article
    • Google Scholar
  • 26.

    Hamilton, W. in Professional Paper 1078 (US Geological Survey, 1979).

  • 27.

    Dunbar, P. K., Lockridge, P. A. & Whiteside, L. S. Catalog of Significant Earthquakes 2150 B.C.–1991 A.D (National Geophysical Data Center, 1992).

  • 28.

    Hamzah, L., Puspito, N. T. & Imamura, F. Tsunami catalog and zones in Indonesia. J. Nat. Disaster Sci. 22, 25–43 (2000).

    • Article
    • Google Scholar
  • 29.

    Prasetya, G. S., de Lange, W. P. & Healy, T. R. The Makassar Strait tsunamigenic region, Indonesia. Nat. Hazards 24, 295–307 (2001).

    • Article
    • Google Scholar
  • 30.

    Varnes, D. J. in Landslides, Analysis and Control Special Report 176 (eds Schuster, R. L. & Krizek, R. J.) 11–33 (Transport Research Board, National Academy of Sciences, 1978).

  • 31.

    Youd, T. L. & Garris, C. T. Liquefaction-induced ground-surface disruption. J. Geotechnol. Eng. 121, 805–809 (1995).

    • Article
    • Google Scholar
  • 32.

    Bartlett, S. F. & Youd, T. L. Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-induced Lateral Spreads (National Centre for Earthquake Research, 1992).

  • 33.

    Glass, C. E. Interpreting Aerial Photographs to Identify Natural Hazards (Elsevier, 2013).

  • 34.

    Imtiyaz A. Parvez & Rosset, P. in Earthquake Hazard, Risk and Disasters (ed. Wyss, M.) 273–304 (Elsevier, 2014).

  • 35.

    Youd, L. T. in International Handbook of Earthquake and Engineering Seismology (eds Lee, W. H. K. et al.) 1159–1173 (Academic Press, 2003).

  • 36.

    Sukamto, R. et al. Reconnaissance Geological Map of the Palu Quadrangle, Sulawesi (Geological Research and Development Centre, 1973).

  • 37.

    van Leeuwen, T. M. & Muhardjo Stratigraphy and tectonic setting of the Cretaceous and Paleogene volcanic–sedimentary successions in northwest Sulawesi, Indonesia: implications for the Cenozoic evolution of Western and Northern Sulawesi. J. Asian Earth Sci. 25, 481–511 (2005).

    • Article
    • Google Scholar
  • 38.

    Iverson, R. M. et al. Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth Planet. Sci. Lett. 412, 197–208 (2015).

    • Article
    • Google Scholar
  • 39.

    Moayedi, H. et al. Preventing landslides in times of rainfall: case study and FEM analyses. Disaster Prev. Manag. 20, 115–124 (2011).

    • Article
    • Google Scholar
  • 40.

    Bolton Seed, H. & Wilson, S. D. The Turnagain Heights landslide, Anchorage. Alask. J. Soil Mech. Found. Div. 93, 325–353 (1967).

    • Google Scholar
  • 41.

    Derbyshire, E., Meng, X. M. & Dijkstra, T. A. Landslides in the Thick Loess Terrain of North-West China (Wiley, Chichester, 2000).

  • 42.

    Ishihara, K. et al. Geotechnical aspects of the June 20, 1990 Manjil earthquake in Iran. Soils Found. 32, 61–78 (1992).

    • Article
    • Google Scholar
  • 43.

    Evans, S. G. et al. Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life. Eng. Geol. 109, 195–212 (2009).

    • Article
    • Google Scholar
  • 44.

    Ishihara, K., Okusa, S., Oyagi, N. & Ischuk, A. Liquefaction-induced flow slide in the collapsible loess deposit in Soviet Tajik. Soils Found. 30, 73–89 (1990).

    • Article
    • Google Scholar
  • 45.

    Sato, S., Yamaji, E. & Kuroda, T. Strategies and engineering adaptions to disseminate SRI methods in large-scale irrigation systems in Eastern Indonesia. Paddy Water Environ. 9, 79–88 (2011).

    • Article
    • Google Scholar
  • 46.

    Naing, M. M. in Proceedings of the Regional Workshop on the Future of Large Rice-Based Irrigation Systems in Southeast Asia 120–130 (Vietnam Institute for Water Resources Research, 2005).

  • 47.

    Mukherji, A. et al. Revitalizing Asia’s Irrigation: To Sustainably Meet Tomorrow’s Food Needs (International Water Management Institute & Food and Agriculture Organization of the United Nations, 2009).

  • 48.

    201809281002AMinahassa Peninsula, SUL (Global Centroid-Moment-Tensor Project, accessed 25 November 2018); https://www.globalcmt.org/

  • 49.

    Dziewonski, A. M., Chou, T.-A. & Woodhouse, J. H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86, 2825–2852 (1981).

    • Article
    • Google Scholar
  • 50.

    Ekström, G., Nettles, M. & Dziewonski, A. M. The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9 (2012).

    • Article
    • Google Scholar
  • 51.

    Digital Globe (Digital Globe, 2018); https://go.nature.com/2lY2Xpx

  • 52.

    Sheppard, S. R. J. & Cizek, P. The ethics of Google Earth: crossing thresholds from spatial data to landscape visualisation. J. Environ. Manag. 90, 2102–2117 (2009).

    • Article
    • Google Scholar
  • 53.

    Sentinel Online (ESA, 2018); https://sentinel.esa.int/web/sentinel/missions/sentinel-2

  • 54.

    Hajnsek, I. et al. TanDEM-X: TanDEM-X Digital Elevation Models Announcement of Opportunity; TD-PD-AO-0033 (German Aerospace Center, Microwaves and Radar Institute, 2016).

  • 55.

    Potere, D. Horizontal positional accuracy of Google Earth’s high-resolution imagery archive. Sensors 8, 7973–7981 (2008).

    • Article
    • Google Scholar
  • 56.

    Mohammed, N. Z., Ghazi, A. & Mustafa, H. E. Positional accuracy testing of Google Earth. Int. J. Multidiscipl. Sci. Eng. 4, 6–9 (2013).

    • Google Scholar
  • 57.

    Pulighe, G., Baiocchi, V. & Lupia, F. Horizontal accuracy assessment of very high resolution Google Earth images in the city of Rome, Italy. Int. J. Digit. Earth 9, 342–362 (2016).

    • Article
    • Google Scholar
  • 58.

    Benker, S. C., Langford, R. P. & Pavilis, T. L. Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA. Geocarto Int. 26, 1–13 (2011).

    • Article
    • Google Scholar
  • 59.

    Youssef, A. M., Maerz, N. H. & Hassan, A. M. Remote sensing applications to geological problems in Egypt: case study, slope instability investigation, Sharm El-Sheikh/Ras-Nasrani area, southern Sinai. Landslides 6, 353–360 (2009).

    • Article
    • Google Scholar
  • 60.

    Stumpf, A., Lampert, T. A., Malet, J.-P. & Kerle, N. Multi-scale line detection for landslide fissure mapping. In Proc. IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012).

  • 61.

    Parise, M. Observation of surface features on an active landslide, and implications for understanding its history of movement. Nat. Hazards Earth Syst. Sci. 3, 569–580 (2003).

    • Article
    • Google Scholar
  • 62.

    Stumpf, A., Malet, J.-P., Kerle, N., Niethammer, U. & Rothmund, S. Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 186, 12–27 (2013).

    • Article
    • Google Scholar
  • 63.

    Fleming, R. W. & Johnson, A. M. Structures associated with strike-slip faults that bound landslide elements. Eng. Geol. 27, 39–114 (1989).

    • Article
    • Google Scholar
  • 64.

    Krauskopf, K. B., Feitler, S. & Griggs, A. B. Structural features of a landslide near Gilroy, California. J. Geol. 47, 630–648 (1939).

    • Article
    • Google Scholar
  • 65.

    Stumpf, A., Malet, J.-P., Puissant, A. & Travelletti, J. in Land Surface Remote Sensing and Risks (eds Baghdadi, N. & Zribi, M.) 147–190 (Elsevier, 2016).

  • 66.

    Avouac, J.-P., Ayoub, F., Leprince, S., Konca, O. & Helmberger, D. V. The 2005 Mw 7.6 Kashmir earthquake: sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet. Sci. Lett. 249, 514–528 (2006).

    • Article
    • Google Scholar
  • 67.

    Tamkuan, N. & Nagai, M. Fusion of multi-temporal interferometric coherence and optical image data for the 2016 Kumamoto earthquake damage assessment. ISPRS Int. J. Geoinfo. 6, 188 (2017).

    • Article
    • Google Scholar
  • 68.

    Sims, J. D. & Garvin, C. D. Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and 1990 and 1991 aftershocks: implications for paleoseismicity studies. Bull. Seismol. Soc. Am. 85, 51–65 (1995).

    • Google Scholar
  • 69.

    Cubrinovski, M. et al. Liquefaction effects and associated damages observed at the Wellington CenrePort from the 2016 Kaikoura earthquake. Bull. N. Z. Soc. Earthq. Eng. 50, 152–173 (2017).

    • Google Scholar
  • 70.

    Quigley, M. C., Bastin, S. & Bradley, B. A. Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence. Geology 41, 419–422 (2013).

    • Article
    • Google Scholar
  • 71.

    Wotherspoon, L. M., Pender, M. J. & Orense, R. P. Relationship between observed liquefaction at Kaiapoi following the 2010 Darfield earthquake and former channels of the Waimakariri River. Eng. Geol. 125, 45–55 (2012).

    • Article
    • Google Scholar
  • 72.

    Cubrinovski, M. et al. Soil liquefaction effects in the Central Business District during the February 2011 Christchurch Earthquake. Seis. Res. Lett. 82, 893–904 (2011).

    • Article
    • Google Scholar
  • 73.

    Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psych. 24, 417–441 (1933).

    • Article
    • Google Scholar
  • 74.

    Sharma, S. K., Gajbhiye, S. & Tignath, S. Application of principal component analysis in grouping geomorphic parameters of a watershed for hydrological modelling. Appl. Water Sci. 5, 89–96 (2015).

    • Article
    • Google Scholar
  • 75.

    Qi, J. et al. A modified soil adjusted vegetation index. Remote. Sens. Environ. 48, 119–126 (1994).

    • Article
    • Google Scholar

  • Source: Resources - nature.com

    Helping lower-income households reap the benefits of solar energy

    Tracing the origins of air pollutants in India