in

Viscoelastic solid-repellent coatings for extreme water saving and global sanitation

  • 1.

    Eliasson, J. The rising pressure of global water shortages. Nature 517, 6–7 (2015).

  • 2.

    Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    • Article
    • Google Scholar
  • 3.

    Attari, S. Z. Perceptions of water use. Proc. Natl Acad. Sci. USA 111, 5129–5134 (2014).

  • 4.

    Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

  • 5.

    Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

  • 6.

    Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M. & Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018).

    • Article
    • Google Scholar
  • 7.

    Parker, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34 (2001).

  • 8.

    Ju, J. et al. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 3, 1247 (2012).

  • 9.

    Park, K.-C. et al. Condensation on slippery asymmetric bumps. Nature 531, 78–82 (2016).

  • 10.

    Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

  • 11.

    DeOreo, W. B., Mayer, P. W., Dziegielewski, B. & Kiefer, J. Residential End Uses of Water, Version 2 (Water Research Foundation, 2016).

  • 12.

    Human Development Report (United Nations Development Programme, 2006).

  • 13.

    Progress on Sanitation and Drinking Water—2015 Update and MDG Assessment (World Health Organization and UNICEF, 2015).

  • 14.

    Ghisi, E. & Ferreira, D. F. Potential for potable water savings by using rainwater and greywater in a multi-storey residential building in southern Brazil. Build. Environ. 42, 2512–2522 (2007).

    • Article
    • Google Scholar
  • 15.

    The United Nations World Water Development Report 2016: Water and Jobs (United Nations Educational, Scientific and Cultural Organization & World Water Assessment Programme, 2016).

  • 16.

    Mahdavinejad, M., Bemanian, M., Farahani, S. F. & Tajik, A. Role of toilet type in transmission of infections. Acad. Res. Int. 1, 110–113 (2011).

    • Google Scholar
  • 17.

    Paterson, C., Mara, D. & Curtis, T. Pro-poor sanitation technologies. Geoforum 38, 901–907 (2007).

    • Article
    • Google Scholar
  • 18.

    Lin, J. et al. Qualitative and quantitative analysis of volatile constituents from latrines. Environ. Sci. Technol. 47, 7876–7882 (2013).

  • 19.

    Tuteja, A. et al. Designing superoleophobic surfaces. Science 318, 1618–1622 (2007).

  • 20.

    Tuteja, A., Choi, W., Mabry, J. M., McKinley, G. H. & Cohen, R. E. Robust omniphobic surfaces. Proc. Natl Acad. Sci. USA 105, 18200–18205 (2008).

    • Article
    • Google Scholar
  • 21.

    Liu, T. L. & Kim, C.-J. C. Turning a surface superrepellent even to completely wetting liquids. Science 346, 1096–1100 (2014).

  • 22.

    Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

  • 23.

    Epstein, A. K., Wong, T.-S., Belisle, R. A., Boggs, E. M. & Aizenberg, J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl Acad. Sci. USA 109, 13182–13187 (2012).

    • Article
    • Google Scholar
  • 24.

    Leslie, D. C. et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat. Biotechnol. 32, 1134–1140 (2014).

  • 25.

    Wang, J., Kato, K., Blois, A. P. & Wong, T.-S. Bioinspired omniphobic coatings with a thermal self-repair function on industrial materials. ACS Appl. Mater. Interfaces 8, 8265–8271 (2016).

  • 26.

    Wang, L. & McCarthy, T. J. Covalently attached liquids: instant omniphobic surfaces with unprecedented repellency. Angew. Chem. 128, 252–256 (2016).

    • Article
    • Google Scholar
  • 27.

    Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).

  • 28.

    Dahlquist, C. A. in Treatise on Adhesion and Adhesives Vol. 2 (ed. Patrick, R. L.) 219–260 (Marcel Dekker, 1969).

  • 29.

    Gent, A. & Schultz, J. Effect of wetting liquids on the strength of adhesion of viscoelastic material. J. Adhes. 3, 281–294 (1972).

  • 30.

    Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).

  • 31.

    Drelich, J. & Chibowski, E. Superhydrophilic and superwetting surfaces: definition and mechanisms of control. Langmuir 26, 18621–18623 (2010).

  • 32.

    Tenjimbayashi, M. et al. Liquid-infused smooth coating with transparency, super-durability, and extraordinary hydrophobicity. Adv. Funct. Mater. 26, 6693–6702 (2016).

  • 33.

    Daniel, D., Timonen, J. V., Li, R., Velling, S. J. & Aizenberg, J. Oleoplaning droplets on lubricated surfaces. Nat. Phys. 13, 1020–1025 (2017).

  • 34.

    De Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer Science & Business Media, 2013).

  • 35.

    Preston, D. J., Song, Y., Lu, Z., Antao, D. S. & Wang, E. N. Design of lubricant infused surfaces. ACS Appl. Mater. Interfaces 9, 42383–42392 (2017).

  • 36.

    Zhuravlev, L. Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3, 316–318 (1987).

  • 37.

    Crisp, A., de Juan, E. & Tiedeman, J. Effect of silicone oil viscosity on emulsification. Arch. Ophthalmol. 105, 546–550 (1987).

  • 38.

    Graiver, D., Farminer, K. & Narayan, R. A review of the fate and effects of silicones in the environment. J. Polym. Environ. 11, 129–136 (2003).

  • 39.

    Seah, M. P. An accurate and simple universal curve for the energy-dependent electron inelastic mean free path. Surf. Interface Anal. 44, 497–503 (2012).

  • 40.

    Liu, H., Zhang, P., Liu, M., Wang, S. & Jiang, L. Organogel-based thin films for self-cleaning on various surfaces. Adv. Mater. 25, 4477–4481 (2013).

  • 41.

    Zhang, C., Xia, Y., Zhang, H. & Zacharia, N. S. Surface functionalization for a nontextured liquid-infused surface with enhanced lifetime. ACS Appl. Mater. Interfaces 10, 5892–5901 (2018).

  • 42.

    Urata, C., Cheng, D. F., Masheder, B. & Hozumi, A. Smooth, transparent and nonperfluorinated surfaces exhibiting unusual contact angle behavior toward organic liquids. RSC Adv. 2, 9805–9808 (2012).

  • 43.

    Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 45, 1827–1879 (2015).

  • 44.

    Woolley, S., Cottingham, R., Pocock, J. & Buckley, C. Shear rheological properties of fresh human faeces with different moisture content. Water SA 40, 273–276 (2014).

    • Article
    • Google Scholar
  • 45.

    Woolley, S., Buckley, C., Pocock, J. & Foutch, G. Rheological modelling of fresh human faeces. J. Water Sanit. Hyg. Dev. 4, 484–489 (2014).

    • Article
    • Google Scholar
  • 46.

    Yunus, A. C. & Cimbala, J. M. Fluid Mechanics Fundamentals and Applications International Edition (McGraw Hill Publication, 2006).

  • 47.

    Vickers, A. Water-use efficiency standards for plumbing fixtures: benefits of national legislation. J. Am. Water Works Assoc. 82, 51–54 (1990).

    • Article
    • Google Scholar
  • 48.

    Awad, T. S., Asker, D. & Hatton, B. D. Food-safe modification of stainless steel food processing surfaces to reduce bacterial biofilms. ACS Appl. Mater. Interfaces 10, 22902–22912 (2018).

  • 49.

    Halvey Alex, K., Macdonald, B., Dhyani, A. & Tuteja, A. Design of surfaces for controlling hard and soft fouling. Phil. Trans. R. Soc. A 377, 20180266 (2019).

  • 50.

    Evans, C., Coombes, P. J. & Dunstan, R. Wind, rain and bacteria: the effect of weather on the microbial composition of roof-harvested rainwater. Water Res. 40, 37–44 (2006).

  • 51.

    Segura, C. G. Urine flow in childhood: a study of flow chart parameters based on 1,361 uroflowmetry tests. J. Urol. 157, 1426–1428 (1997).

    • Article
    • Google Scholar
  • 52.

    Yang, P. J., Pham, J., Choo, J. & Hu, D. L. Duration of urination does not change with body size. Proc. Natl Acad. Sci. USA 111, 11932–11937 (2014).

  • 53.

    Hennigs, J. et al. Field testing of a prototype mechanical dry toilet flush. Sci. Total Environ. 668, 419–431 (2019).

  • 54.

    Lewis, S. & Heaton, K. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 32, 920–924 (1997).


  • Source: Resources - nature.com

    Microbial cooperation at the micron scale impacts biodegradation

    Lithium-ion battery recycling on the rise