in

A benefit–cost analysis of floodplain land acquisition for US flood damage reduction

  • 1.

    Miller, S., Muir-Wood, R. & Boissonnade, A. in Climate Extremes and Society (eds Diaz, H. F. & Murnane, R. J.) 225–247 (Cambridge Univ. Press, 2008).

  • 2.

    Hydrologic Information Center—Flood Loss Data (National Weather Service); http://www.nws.noaa.gov/hic/ accessed June 30, 2018.

  • 3.

    Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2016).

    • Article
    • Google Scholar
  • 4.

    Wing, O. E. J. et al. Estimates of present and future flood risk in the conterminous United States. Env. Res. Lett. 13, 034023 (2018).

    • Article
    • Google Scholar
  • 5.

    NRC, Levees and the National Flood Insurance Program: Improving Policies and Practices (National Academies, 2013); https://doi.org/10.17226/18309

  • 6.

    Infrastructure Report Card 2017 (ASCE); https://www.infrastructurereportcard.org/ accessed on July 20, 2018.

  • 7.

    Tockner, K. & Stanford, J. Riverine flood plains: present and future trends. Env. Conserv. 29, 308–330 (2002).

    • Article
    • Google Scholar
  • 8.

    Tockner, K., Pusch, M., Borchardt, D. & Lorang, M. S. Multiple stressors in coupled river–floodplain ecosystems. Freshw. Biol. 55, 131–151 (2010).

    • Article
    • Google Scholar
  • 9.

    Guida, R. J., Remo, J. W. F. & Secchi, S. Tradeoffs of strategically reconnecting rivers to their floodplains: the case of the Lower Illinois River. Sci. Total Env. 572, 43–55 (2016).

  • 10.

    Kousky, C. & Walls, M. Floodplain conservation as a flood mitigation strategy: examining costs and benefits. Ecol. Econ. 104, 119–128 (2014).

    • Article
    • Google Scholar
  • 11.

    Schober, B., Hauer, C. & Habersack, H. A novel assessment of the role of Danube floodplains in flood hazard reduction (FEM method). Nat. Hazards 75, 33–50 (2015).

    • Article
    • Google Scholar
  • 12.

    Wing, O. E. J. et al. Validation of a 30m resolution flood hazard model of the conterminous United States. Water Resour. Res. 53, 7968–7986 (2017).

    • Article
    • Google Scholar
  • 13.

    Theobald, D. M. Development and applications of a comprehensive land use classification and map for the US. PLoS ONE 9, E94628 (2014).

    • Article
    • Google Scholar
  • 14.

    Discount Rates in the Economic Evaluation of U.S. Army Corps of Engineers Projects CRS Report 44594 (Congressional Research Service, 2016); https://www.everycrsreport.com/files/20160815_R44594_1b7c1444405de31f302240c3b168ea7426b93c36.pdf

  • 15.

    USDA 2017 Census of Agriculture (US Government Printing Office, 2019).

  • 16.

    Davis, M. A., Larson, W. D., Oliner, S. D. & Shui, J. The Price of Residential Land for Counties, ZIP Codes, and Census Tracts in the United States Working Paper Series 2019 (FHFA, 2019).

  • 17.

    Isgin, T. & Forster, D. L. A hedonic price analysis of farmland option premiums under urban influences. Can. J. Agric. Econ. 54, 327–340 (2006).

    • Article
    • Google Scholar
  • 18.

    Plantinga, A. J., Lubowski, R. N. & Stavins, R. N. The effects of potential land development on agricultural land prices. J. Urban Econ. 52, 561–581 (2006).

    • Article
    • Google Scholar
  • 19.

    Brown, G. M. Jr. & Pollakowski, H. O. Economic valuation of shoreline. Rev. Econ. Stat. 59, 272–278 (1977).

    • Article
    • Google Scholar
  • 20.

    Ferraro, P. J. Assigning priority to environmental policy interventions in a heterogenous world. J. Policy Anal. Manag. 22, 27–43 (2003).

    • Article
    • Google Scholar
  • 21.

    Rose, A. in Modeling Spatial and Economic Impacts of Disasters (eds Okuyama, Y. & Chang, S. E.) 13–46 (Springer, 2004).

  • 22.

    Hallegatte, S. An adaptive regional input–output model and its application to the assessment of the economic cost of Katrina. Risk Anal. 28, 779–799 (2008).

    • Article
    • Google Scholar
  • 23.

    Koks, E. E., Bočkarjova, M., de Moel, H. & Aerts, J. C. J. H. Integrated direct and indirect flood risk modeling: development and sensitivity analysis. Risk Anal. 35, 882–900 (2015).

  • 24.

    Di Baldassarre, G. et al. HESS Opinions: an interdisciplinary research agenda to explore the unintended consequences of structural flood protection. Hydrol. Earth Syst. Sci. Discuss. 22, 5629–5637 (2018).

    • Article
    • Google Scholar
  • 25.

    Heine, R. A. & Pinter, N. Levee effects upon flood levels: an empirical assessment. Hydrol. Process. 26, 3225–3240 (2012).

    • Article
    • Google Scholar
  • 26.

    Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Climatic Change 134, 387–401 (2016).

    • Article
    • Google Scholar
  • 27.

    Slater, L. J. & Villarini, G. Recent trends in US flood risk. Geophys. Res. Lett. 43, 12428–12436 (2016).

    • Article
    • Google Scholar
  • 28.

    Xu, Y. J. Transport and retention of nitrogen, phosphorus and carbon in North America’s largest river swamp basin, the Atchafalaya River Basin. Water 5, 379–393 (2013).

  • 29.

    Schindler, S. et al. Multifunctional floodplain management and biodiversity effects: lessons from six European countries. Biodivers. Conserv. 25, 1349–1382 (2016).

    • Article
    • Google Scholar
  • 30.

    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. Am. Geophys. Union 89, 93–94 (2008).

    • Article
    • Google Scholar
  • 31.

    Neal, J., Schumann, G. & Bates, P. A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resour. Res. 48, W11506 (2012).

  • 32.

    Bates, P. D., Horritt, M. S. & Fewtrell, T. J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 387, 33–45 (2010).

    • Article
    • Google Scholar
  • 33.

    Smith, A., Sampson, C. & Bates, P. Regional flood frequency analysis at the global scale. Water Resour. Res. 51, 539–553 (2015).

    • Article
    • Google Scholar
  • 34.

    Morin, J. & Benyamini, Y. Rainfall infiltration into bare soils. Water Resour. Res. 13, 813–817 (1977).

    • Article
    • Google Scholar
  • 35.

    Elvidge, C. D. et al. Global distribution and density of constructed impervious surfaces. Sensors 7, 1962–1979 (2007).

    • Article
    • Google Scholar
  • 36.

    What is the Updated Flood Map for Surface Water? (UK Environment Agency, accessed January 2013); http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/297432/LIT_8988_0bf634.pdf

  • 37.

    EPA Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) Version 2, EPA/600/R-16/366F (National Center for Environmental Assessment, 2016); http://www.epa.gov/ncea

  • 38.

    Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).

    • Google Scholar
  • 39.

    Meyer, V., Haase, D. & Scheuer, S. Flood risk assessment in European river basins—concept, methods, and challenges exemplified at the Mulde River. Integr. Environ. Assess. Manag. 5, 17–26 (2008).

    • Article
    • Google Scholar
  • 40.

    Moore, M. A., Boardman, A. E. & Vining, A. R. More appropriate discounting: the rate of social time preference and the value of the social discount rate. J. Benefit–Cost Anal. 4, 1–16 (2013).

  • 41.

    Freeman, M. C., Groom, B., Panopoulou, E. & Pantelidis, T. Declining discount rates and the Fisher Effect: inflated past, discounted future? J. Environ. Econ. Manag. 73, 32–49 (2015).

    • Article
    • Google Scholar
  • 42.

    Alonso, W. Location and Land Use: Toward a General Theory of Land Rent (Harvard Univ. Press 1964).

  • 43.

    Mills, E. S. An aggregative model of resource allocation in a metropolitan area. Am. Econ. Rev. 57, 197–210 (1967).

    • Google Scholar
  • 44.

    Muth, R. F. Cities and Housing; The Spatial Pattern of Urban Residential Land Use (Univ. Chicago Press, 1969).

  • 45.

    Brueckner, J. K. The structure of urban equilibria: a unified treatment of the Muth—Mills model. Handb. Reg. Urban Econ. 2, 821–845 (1987).

    • Article
    • Google Scholar
  • 46.

    Davis, M. A., Oliner, S. D., Pinto, E. J. & Bokka, S. Residential land values in the Washington, DC metro area: new insights from big data. Reg. Sci. Urban Econ. 66, 224–246 (2017).

    • Article
    • Google Scholar

  • Source: Resources - nature.com

    MIT Dining wins the New England Food Vision Prize

    Getting the carbon out of the electricity sector