in

Using yeast to sustainably remediate and extract heavy metals from waste waters

  • 1.

    Rucevska, I. et al. Waste Crime–Waste Risks: Gaps in Meeting the Global Waste Challenge (UNEP and GRID-Arendal, 2015); https://go.nature.com/38RZ1cY

  • 2.

    Balde, C. P., Forti, V., Gray, V., Kuehr, R. & Stegmann, P. The Global e-Waste Monitor 2017: Quantities, Flows and Resources (United Nations University, International Telecommunication Union and International Solid Waste Association, 2017).

  • 3.

    Statistics: All Mining (CDC, 2018); https://www.cdc.gov/niosh/mining/statistics/allmining.html

  • 4.

    DeGraff, J. V. in Understanding and Responding to Hazardous Substances at Mine Sites in the Western United States (ed. DeGraff, J. V.) 1–8 (Geological Society of America, 2007).

  • 5.

    Fu, F. & Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92, 407–418 (2011).

  • 6.

    Kang, D. H. P., Chen, M. & Ogunseitan, O. A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 47, 5495–5503 (2013).

  • 7.

    Song, X., Hu, S., Chen, D. & Zhu, B. Estimation of waste battery generation and analysis of the waste battery recycling system in China. J. Ind. Ecol. 21, 57–69 (2017).

    • Article
    • Google Scholar
  • 8.

    Kurniawan, T. A., Chan, G. Y. S., Lo, W.-H. & Babel, S. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118, 83–98 (2006).

  • 9.

    Barakat, M. A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377 (2011).

  • 10.

    Gupta, K. V., Ali, I., A. Saleh, T., Nayak, A. & Agarwal, S. Chemical treatment technologies for waste-water recycling—an overview. RSC Adv. 2, 6380–6388 (2012).

  • 11.

    Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S. & Fava, F. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 32, 147–156 (2015).

  • 12.

    Singh, A. & Prasad, S. M. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int. J. Environ. Sci. Technol. 12, 353–366 (2015).

  • 13.

    Gadd, G. M. Microbial influence on metal mobility and application for bioremediation. Geoderma 122, 109–119 (2004).

  • 14.

    Wiatrowski, H. A., Ward, P. M. & Barkay, T. Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ. Sci. Technol. 40, 6690–6696 (2006).

  • 15.

    Silver, S. & Phung, L. T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71, 599–608 (2005).

  • 16.

    Picard, A., Gartman, A., Clarke, D. R. & Girguis, P. R. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochim. Cosmochim. Acta 220, 367–384 (2018).

  • 17.

    Gartman, A. et al. Microbes facilitate mineral deposition in bioelectrochemical systems. ACS Earth Space Chem. 1, 277–287 (2017).

  • 18.

    Jong, T. & Parry, D. L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res. 37, 3379–3389 (2003).

  • 19.

    Kieu, H. T. Q., Müller, E. & Horn, H. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Res. 45, 3863–3870 (2011).

  • 20.

    Neculita, C.-M., Zagury, G. J. & Bussière, B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. J. Environ. Qual. 36, 1–16 (2007).

  • 21.

    Lovley, D. R. Cleaning up with genomics: applying molecular biology to bioremediation. Nat. Rev. Microbiol. 1, 35–44 (2003).

  • 22.

    Shiratori, T., Inoue, C., Sugawara, K., Kusano, T. & Kitagawa, Y. Cloning and expression of Thiobacillus ferrooxidans mercury ion resistance genes in Escherichia coli. J. Bacteriol. 171, 3458–3464 (1989).

  • 23.

    Wang, C. L., Maratukulam, P. D., Lum, A. M., Clark, D. S. & Keasling, J. D. Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface. Appl. Environ. Microbiol. 66, 4497–4502 (2000).

  • 24.

    Krämer, U. & Chardonnens, A. The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl. Microbiol. Biotechnol. 55, 661–672 (2001).

    • Article
    • Google Scholar
  • 25.

    Sayler, G. S. & Ripp, S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr. Opin. Biotechnol. 11, 286–289 (2000).

  • 26.

    Vieira, É. D., da Graça Stupiello Andrietta, M. & Andrietta, S. R. Yeast biomass production: a new approach in glucose-limited feeding strategy. Braz. J. Microbiol. 44, 551–558 (2013).

  • 27.

    Worldwide Beer Production, 2016 (Barth-Haas Group, 2018).

  • 28.

    Value of the Yeast Product Market Worldwide from 2016 to 2022 (in Billions U.S. Dollars) (PR Newswire, 2017).

  • 29.

    Swiegers, J. H. & Pretorius, I. S. Modulation of volatile sulfur compounds by wine yeast. Appl. Microbiol. Biotechnol. 74, 954–960 (2007).

  • 30.

    Linderholm, A. L., Findleton, C. L., Kumar, G., Hong, Y. & Bisson, L. F. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74, 1418–1427 (2008).

  • 31.

    Rickard, D. & Luther, G. W. Metal sulfide complexes and clusters. Rev. Mineral. Geochem. 61, 421–504 (2006).

  • 32.

    Bolong, N., Ismail, A. F., Salim, M. R. & Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239, 229–246 (2009).

  • 33.

    Johnson, D. B. & Hallberg, K. B. Acid mine drainage remediation options: a review. Sci. Total Environ. 338, 3–14 (2005).

  • 34.

    Table of Regulated Drinking Water Contaminants (EPA, 2019).

  • 35.

    Secondary Drinking Water Standards: Guidance for Nuisance Chemicals (EPA, 2019).

  • 36.

    Sparks, B. D., Kotlyar, L. S., O’Carroll, J. B. & Chung, K. H. Athabasca oil sands: effect of organic coated solids on bitumen recovery and quality. J. Pet. Sci. Eng. 39, 417–430 (2003).

  • 37.

    Kelly, E. N. et al. Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries. Proc. Natl Acad. Sci. USA 107, 16178–16183 (2010).

  • 38.

    Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

  • 39.

    Sweeney, R. Y. et al. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol. 11, 1553–1559 (2004).

  • 40.

    DeSilva Tara, M., Gianluigi, Veglia, Fernando, Porcelli, Prantner Andrew, M. & Opella Stanley, J. Selectivity in heavy metal‐ binding to peptides and proteins. Biopolymers 64, 189–197 (2002).

  • 41.

    Kim, J. et al. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95, 271–275 (2003).

  • 42.

    Harrison, R. G., Todd, P., Todd, P. W., Rudge, S. R. & Petrides, D. P. Bioseparations Science and Engineering (Oxford Univ. Press, 2015).

  • 43.

    Hoek, P. V., Dijken, J. P. V. & Pronk, J. T. Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl. Environ. Microbiol. 64, 4226–4233 (1998).

    • Article
    • Google Scholar
  • 44.

    Yeasts, Yeast Extracts, Autolysates and Related Products: The Global Market (BCC Research, 2017).

  • 45.

    Rugh, C. L. et al. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl Acad. Sci. USA 93, 3182–3187 (1996).

  • 46.

    Arai, T. et al. Cu-doped ZnS hollow particle with high activity for hydrogen generation from alkaline sulfide solution under visible light. Chem. Mater. 20, 1997–2000 (2008).

  • 47.

    Parveen, A., Agrawal, S. & Azam, A. Band gap tuning and fluorescence properties of lead sulfide Pb0.9A0.1S (A: Fe, Co, and Ni) nanoparticles by transition metal doping. Opt. Mater. 76, 21–27 (2018).

  • 48.

    Bhattacharya, S. & Chakravorty, D. Electrical and magnetic properties of cold compacted iron-doped zinc sulfide nanoparticles synthesized by wet chemical method. Chem. Phys. Lett. 444, 319–323 (2007).

  • 49.

    Selim, H., Gupta, A. K. & Al Shoaibi, A. Effect of reaction parameters on the quality of captured sulfur in Claus process. Appl. Energy 104, 772–776 (2013).

  • 50.

    Minerals Information: Sulfur (USGS, 2018).

  • 51.

    Little, B. J., Ray, R. I. & Pope, R. K. Relationship between corrosion and the biological sulfur cycle: a review. CORROSION 56, 433–443 (2000).

  • 52.

    Seligman, A. M., Wasserkrug, H. L. & Hanker, J. S. A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmiophilic thiocarbohydrazide (TCH). J. Cell Biol. 30, 424–432 (1966).


  • Source: Resources - nature.com

    Sustainable water solutions

    Seeding oceans with iron may not impact climate change