in

Agricultural risks from changing snowmelt

  • 1.

    Brauman, K. A., Richter, B. D., Postel, S., Malsy, M. & Florke, M. Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elem. Sci. Anth. 4, 000083 (2016).

    • Google Scholar
  • 2.

    Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    • CAS
    • Google Scholar
  • 3.

    Portmann, F. T., Siebert, S. & Doll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles 24, GB1011 (2010).

    • Google Scholar
  • 4.

    Bruinsma, J. (ed.) World Agriculture: Towards 2015/2030. An FAO Perspective (Earthscan, 2003).

  • 5.

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision. ESA Working Paper No. 12-03 (FAO, 2012).

  • 6.

    Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    • Google Scholar
  • 7.

    Jiménez Cisneros, B. E. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds, Field, C. B. et al) 229–269 (IPCC, Cambridge Univ. Press, 2014).

  • 8.

    Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).

    • CAS
    • Google Scholar
  • 9.

    Yu, C. Q. et al. Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes. Earths Future 6, 689–703 (2018).

    • Google Scholar
  • 10.

    Vano, J. A. et al. Climate change impacts on water management and irrigated agriculture in the Yakima River Basin, Washington, USA. Clim. Change 102, 287–317 (2010).

    • Google Scholar
  • 11.

    Portmann, F., Siebert, S., Bauer, C. & Döll, P. Global Dataset of Monthly Growing Areas of 26 Irrigated Crops. Frankfurt Hydrology Paper 06. Institute of Physical Geography 400 (University of Frankfurt, 2008).

  • 12.

    Waliser, D. et al. Simulating cold season snowpack: impacts of snow albedo and multi-layer snow physics. Clim. Change 109, 95–117 (2011).

    • Google Scholar
  • 13.

    Huning, L. S. & AghaKouchak, A. Mountain snowpack response to different levels of warming. Proc. Natl Acad. Sci. USA 115, 10932–10937 (2018).

    • CAS
    • Google Scholar
  • 14.

    Li, D. Y., Wrzesien, M. L., Durand, M., Adam, J. & Lettenmaier, D. P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 44, 6163–6172 (2017).

    • Google Scholar
  • 15.

    Vicuna, S., McPhee, J. & Garreaud, R. D. Agriculture vulnerability to climate change in a snowmelt-driven basin in semiarid chile. J Water Resour. Plan. Manag. 138, 431–441 (2012).

    • Google Scholar
  • 16.

    Easterling, W. E. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (Parry, M. L. et al.) 273–313 (IPCC, Cambridge Univ. Press, 2007).

  • 17.

    Kapnick, S. B. & Delworth, T. L. Controls of global snow under a changed climate. J. Clim. 26, 5537–5562 (2013).

    • Google Scholar
  • 18.

    Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    • CAS
    • Google Scholar
  • 19.

    Adam, J. C., Hamlet, A. F. & Lettenmaier, D. P. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Process. 23, 962–972 (2009).

    • Google Scholar
  • 20.

    Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the asian water towers. Science 328, 1382–1385 (2010).

    • CAS
    • Google Scholar
  • 21.

    Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y. & Diffenbaugh, N. S. The potential for snow to supply human water demand in the present and future. Environ. Res. Lett. 10, 114016 (2015).

  • 22.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).

    • Google Scholar
  • 23.

    Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    • CAS
    • Google Scholar
  • 24.

    Siebert, S. & Doll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).

    • Google Scholar
  • 25.

    Food and Agriculture Data (Food and Agriculture Organization of the United Nations, 2018); http://www.fao.org/faostat/en/#data

  • 26.

    Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).

    • CAS
    • Google Scholar
  • 27.

    Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    • Google Scholar
  • 28.

    IPCC: Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (Cambridge Univ. Press, 2014).

  • 29.

    Sharma, J. & Ravindranath, N. Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. Environ. Res. Commun. 1, 051004 (2019).

    • Google Scholar
  • 30.

    Hagenlocher, M. et al. Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environ. Res. Lett. 14, 083002 (2019).

    • Google Scholar
  • 31.

    Ben Fraj, W., Elloumi, M. & Molle, F. The politics of interbasin transfers: socio-environmental impacts and actor strategies in Tunisia. Nat. Resour. Forum 43, 17–30 (2019).

    • Google Scholar
  • 32.

    Liu, L. et al. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins. Environ. Res. Lett. 13, 044026 (2018).

    • Google Scholar
  • 33.

    Wada, Y. et al. Global monthly water stress: 2. Water demand and severity of water stress.Water Resour. Res. 47, W07518 (2011).

    • Google Scholar
  • 34.

    Nelson, K. S. & Burchfield, E. K. Effects of the structure of water rights on agricultural production during drought: a spatiotemporal analysis of California’s central valley. Water Resour. Res. 53, 8293–8309 (2017).

    • Google Scholar
  • 35.

    Lehner, B. C. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    • Google Scholar
  • 36.

    Qin, Y. et al. Flexibility and intensity of global water use. Nat. Sustain. 2, 515–523 (2019).

  • 37.

    Sneed M. & Brandt J. M. S. Land Subsidence Along the DeltaMendota Canal in the Northern Part of the San Joaquin Valley, California, 2003–2010 Scientific Investigations Report 2013-5142 (US Geological Survey, 2013); http://pubs.usgs.gov/sir/2013/5142/

  • 38.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    • CAS
    • Google Scholar
  • 39.

    Myers, S. S. et al. Climate change and global food systems: potential impacts on food security and undernutrition. Annu. Rev. Publ. Health 38, 259–277 (2017).

    • Google Scholar
  • 40.

    Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

    • Google Scholar
  • 41.

    Mankin, J. S. & Diffenbaugh, N. S. Influence of temperature and precipitation variability on near-term snow trends. Clim. Dynam. 45, 1099–1116 (2015).

    • Google Scholar
  • 42.

    Rothausen, S. G. S. A. & Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Change 1, 210–219 (2011).

    • CAS
    • Google Scholar
  • 43.

    Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    • CAS
    • Google Scholar
  • 44.

    Bormann, K. J., Brown, R. D., Derksen, C. & Painter, T. H. Estimating snow-cover trends from space. Nat. Clim. Change 8, 923–927 (2018).

    • Google Scholar
  • 45.

    Knowles, N., Dettinger, M. D. & Cayan, D. R. Trends in snowfall versus rainfall in the Western United States. J. Clim. 19, 4545–4559 (2006).

    • Google Scholar
  • 46.

    Mote, P. W. Trends in snow water equivalent in the Pacific Northwest and their climatic causes. Geophys. Res. Lett. 30, 12 (2003).

    • Google Scholar
  • 47.

    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).

    • CAS
    • Google Scholar
  • 48.

    Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    • Google Scholar
  • 49.

    Guan, D. B. et al. Structural decline in China’s CO2 emissions through transitions in industry and energy systems. Nat. Geosci. 11, 551–555 (2018).

    • Google Scholar
  • 50.

    Davies, D. M. et al. Combined economic and technological evaluation of battery energy storage for grid applications. Nat. Energy 4, 42–50 (2019).

    • Google Scholar
  • 51.

    Clow, D. W. Changes in the timing of snowmelt and streamflow in colorado: A response to recent warming. J Clim. 23, 2293–2306 (2010).

    • Google Scholar
  • 52.

    Rasmussen, R. et al. Climate change impacts on the water balance of the colorado headwaters: high-resolution regional climate model simulations. J. Hydrometeorol. 15, 1091–1116 (2014).

    • Google Scholar
  • 53.

    The NCAR Command Language v.6. 6.2 (NCAR, 2019); https://doi.org/10.5065/D6WD3XH5

  • 54.

    Snow Data Assimilation System (SNODAS) Data Products at NSIDC, Version 1 (NSIDC, accessed December 2018); https://doi.org/10.7265/N5TB14TC

  • 55.

    Mitchell, T. D. Pattern scaling—an examination of the accuracy of the technique for describing future climates. Clim. Change 60, 217–242 (2003).

    • CAS
    • Google Scholar
  • 56.

    Huntingford, C. & Cox, P. M. An analogue model to derive additional climate change scenarios from existing GCM simulations. Clim. Dynam. 16, 575–586 (2000).

    • Google Scholar
  • 57.

    Kirtman, B. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2013).

  • 58.

    Hawkins, E. et al. Estimating changes in global temperature since the preindustrial period. Bull. Am. Meteorol. Soc. 98, 1841–1856 (2017).

    • Google Scholar
  • 59.

    James, R., Washington, R., Schleussner, C. F., Rogelj, J. & Conway, D. Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets. WIRES Clim. Change 8, e457 (2017).

  • 60.

    Kruijt, B., Witte, J. P. M., Jacobs, C. M. J. & Kroon, T. Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: a practical approach for the Netherlands. J. Hydrol. 349, 257–267 (2008).

    • Google Scholar

  • Source: Resources - nature.com

    Local food crop production can fulfil demand for less than one-third of the population

    FiCli, the Fish and Climate Change Database, informs climate adaptation and management for freshwater fishes