in

Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

  • 1.

    Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    CAS  Article  Google Scholar 

  • 2.

    Tian, L. et al. Stable isotopic variations in west China: a consideration of moisture sources. J. Geophys. Res. 112, D10112 (2007).

    Google Scholar 

  • 3.

    Schiemann, R., Lüthi, D. & Schär, C. Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Clim. 22, 2940–2957 (2009).

    Article  Google Scholar 

  • 4.

    Yao, T. et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Rev. Geophys. 51, 525–548 (2013).

    Article  Google Scholar 

  • 5.

    Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article  Google Scholar 

  • 6.

    Shea, J. M. & Immerzeel, W. W. An assessment of basin-scale glaciological and hydrological sensitivities in the Hindu Kush-Himalaya. Ann. Glaciol. 57, 308–318 (2016).

    Article  Google Scholar 

  • 7.

    Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017).

    CAS  Article  Google Scholar 

  • 8.

    Immerzeel, W. W., Van, B. L. P. & Bierkens, M. F. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    CAS  Article  Google Scholar 

  • 9.

    Bookhagen, B. & Burbank, D. W. Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. F 115, F03019 (2010).

    Google Scholar 

  • 10.

    Mukhopadhyay, B. & Khan, A. A reevaluation of the snowmelt and glacial melt in river flows within upper Indus basin and its significance in a changing climate. J. Hydrol. 527, 119–132 (2015).

    Article  Google Scholar 

  • 11.

    Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).

    Article  Google Scholar 

  • 12.

    Yang, K. et al. Response of hydrological cycle to recent climate changes in the Tibetan plateau. Climatic Change 109, 517–534 (2011).

    Article  Google Scholar 

  • 13.

    Yang, W., Guo, X., Yao, T., Zhu, M. & Wang, Y. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Clim. Dynam. 47, 805–815 (2016).

    Article  Google Scholar 

  • 14.

    Cuo, L., Zhang, Y., Zhu, F. & Liang, L. Characteristics and changes of streamflow on the Tibetan Plateau: a review. J. Hydrol. 2, 49–68 (2014).

    Google Scholar 

  • 15.

    Wang, Y. et al. Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau. Sci. Rep. 7, 15458 (2017).

    Article  CAS  Google Scholar 

  • 16.

    Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in high Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change 4, 587–592 (2014).

    Article  Google Scholar 

  • 17.

    Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D., Shrestha, A. B. & Bierkens, M. F. Climate change impacts on the upper Indus hydrology: sources, shifts and extremes. PLoS ONE 11, e0165630 (2016).

    CAS  Article  Google Scholar 

  • 18.

    Immerzeel, W. W. & Bierkens, M. F. P. Asia’s water balance. Nat. Geosci. 5, 841–842 (2012).

    CAS  Article  Google Scholar 

  • 19.

    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    Article  Google Scholar 

  • 20.

    Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).

    Article  Google Scholar 

  • 21.

    Schott, F. A. & McCreary Jr, J. P. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51, 1–123 (2001).

    Article  Google Scholar 

  • 22.

    Gao, J., Masson-Delmotte, V., Risi, C., He, Y. & Yao, T. What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus B 65, 21043–21055 (2013).

    Article  CAS  Google Scholar 

  • 23.

    Zhang, L., Su, F., Yang, D., Hao, Z. & Tong, K. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. D 118, 8500–8518 (2013).

    Article  Google Scholar 

  • 24.

    Immerzeel, W. W., Droogers, P., De Jong, S. M. & Bierkens, M. F. P. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 113, 40–49 (2009).

    Article  Google Scholar 

  • 25.

    Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).

    Article  CAS  Google Scholar 

  • 26.

    Falkenmark, et al. On the Verge of a New Water Scarcity: A Call for Good Governance and Human Ingenuity (Stockholm International Water Institute, 2007).

  • 27.

    Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Falkenmark, M. Meeting water requirements of an expanding world population. Philos. Trans. R. Soc. Lond. B 352, 929–936 (1997).

    Article  Google Scholar 

  • 29.

    Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environ. Res. Lett. 11, 084003 (2016).

    Article  Google Scholar 

  • 30.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  • 31.

    O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  Google Scholar 

  • 32.

    Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Article  Google Scholar 

  • 33.

    Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).

    Article  Google Scholar 

  • 34.

    Anav, A. et al. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models. J. Clim. 26, 6801–6843 (2013).

    Article  Google Scholar 

  • 35.

    Navarro, R. C. et al. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 7, 1–14 (2020).

    Google Scholar 

  • 36.

    Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).

    Article  Google Scholar 

  • 37.

    Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996).

    Google Scholar 

  • 38.

    Allan, R. & Ansell, T. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Clim. 19, 5816–5842 (2006).

    Article  Google Scholar 

  • 39.

    Cox, P. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    CAS  Article  Google Scholar 

  • 40.

    O’Callaghan, J. F. & Mark, D. M. The extraction of drainage networks from digital elevation data.Computer Vision Graphics Image Process. 28, 323–344 (1984).

    Article  Google Scholar 

  • 41.

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  • 42.

    Samir, K. C. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex, and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

    Article  Google Scholar 


  • Source: Resources - nature.com

    Scientists discover slimy microbes that may help keep coral reefs healthy

    Multiple life-stage inbreeding depression impacts demography and extinction risk in an extinct-in-the-wild species