More stories

  • in

    When Earth iced over, early life may have sheltered in meltwater ponds

    When the Earth froze over, where did life shelter? MIT scientists say one refuge may have been pools of melted ice that dotted the planet’s icy surface.In a study appearing today in Nature Communications, the researchers report that 635 million to 720 million years ago, during periods known as “Snowball Earth,” when much of the planet was covered in ice, some of our ancient cellular ancestors could have waited things out in meltwater ponds.The scientists found that eukaryotes — complex cellular lifeforms that eventually evolved into the diverse multicellular life we see today — could have survived the global freeze by living in shallow pools of water. These small, watery oases may have persisted atop relatively shallow ice sheets present in equatorial regions. There, the ice surface could accumulate dark-colored dust and debris from below, which enhanced its ability to melt into pools. At temperatures hovering around 0 degrees Celsius, the resulting meltwater ponds could have served as habitable environments for certain forms of early complex life.The team drew its conclusions based on an analysis of modern-day meltwater ponds. Today in Antarctica, small pools of melted ice can be found along the margins of ice sheets. The conditions along these polar ice sheets are similar to what likely existed along ice sheets near the equator during Snowball Earth.The researchers analyzed samples from a variety of meltwater ponds located on the McMurdo Ice Shelf in an area that was first described by members of Robert Falcon Scott’s 1903 expedition as “dirty ice.” The MIT researchers discovered clear signatures of eukaryotic life in every pond. The communities of eukaryotes varied from pond to pond, revealing a surprising diversity of life across the setting. The team also found that salinity plays a key role in the kind of life a pond can host: Ponds that were more brackish or salty had more similar eukaryotic communities, which differed from those in ponds with fresher waters.“We’ve shown that meltwater ponds are valid candidates for where early eukaryotes could have sheltered during these planet-wide glaciation events,” says lead author Fatima Husain, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “This shows us that diversity is present and possible in these sorts of settings. It’s really a story of life’s resilience.”The study’s MIT co-authors include Schlumberger Professor of Geobiology Roger Summons and former postdoc Thomas Evans, along with Jasmin Millar of Cardiff University, Anne Jungblut at the Natural History Museum in London, and Ian Hawes of the University of Waikato in New Zealand.Polar plunge“Snowball Earth” is the colloquial term for periods of time in Earth history during which the planet iced over. It is often used as a reference to the two consecutive, multi-million-year glaciation events which took place during the Cryogenian Period, which geologists refer to as the time between 635 and 720 million years ago. Whether the Earth was more of a hardened snowball or a softer “slushball” is still up for debate. But scientists are certain of one thing: Most of the planet was plunged into a deep freeze, with average global temperatures of minus 50 degrees Celsius. The question has been: How and where did life survive?“We’re interested in understanding the foundations of complex life on Earth. We see evidence for eukaryotes before and after the Cryogenian in the fossil record, but we largely lack direct evidence of where they may have lived during,” Husain says. “The great part of this mystery is, we know life survived. We’re just trying to understand how and where.”There are a number of ideas for where organisms could have sheltered during Snowball Earth, including in certain patches of the open ocean (if such environments existed), in and around deep-sea hydrothermal vents, and under ice sheets. In considering meltwater ponds, Husain and her colleagues pursued the hypothesis that surface ice meltwaters may also have been capable of supporting early eukaryotic life at the time.“There are many hypotheses for where life could have survived and sheltered during the Cryogenian, but we don’t have excellent analogs for all of them,” Husain notes. “Above-ice meltwater ponds occur on Earth today and are accessible, giving us the opportunity to really focus in on the eukaryotes which live in these environments.”Small pond, big lifeFor their new study, the researchers analyzed samples taken from meltwater ponds in Antarctica. In 2018, Summons and colleagues from New Zealand traveled to a region of the McMurdo Ice Shelf in East Antarctica, known to host small ponds of melted ice, each just a few feet deep and a few meters wide. There, water freezes all the way to the seafloor, in the process trapping dark-colored sediments and marine organisms. Wind-driven loss of ice from the surface creates a sort of conveyer belt that brings this trapped debris to the surface over time, where it absorbs the sun’s warmth, causing ice to melt, while surrounding debris-free ice reflects incoming sunlight, resulting in the formation of shallow meltwater ponds.The bottom of each pond is lined with mats of microbes that have built up over years to form layers of sticky cellular communities.“These mats can be a few centimeters thick, colorful, and they can be very clearly layered,” Husain says.These microbial mats are made up of cyanobacteria, prokaryotic, single-celled photosynthetic organisms that lack a cell nucleus or other organelles. While these ancient microbes are known to survive within some of the the harshest environments on Earth including meltwater ponds, the researchers wanted to know whether eukaryotes — complex organisms that evolved a cell nucleus and other membrane bound organelles — could also weather similarly challenging circumstances. Answering this question would take more than a microscope, as the defining characteristics of the microscopic eukaryotes present among the microbial mats are too subtle to distinguish by eye.To characterize the eukaryotes, the team analyzed the mats for specific lipids they make called sterols, as well as genetic components called ribosomal ribonucleic acid (rRNA), both of which can be used to identify organisms with varying degrees of specificity. These two independent sets of analyses provided complementary fingerprints for certain eukaryotic groups. As part of the team’s lipid research, they found many sterols and rRNA genes closely associated with specific types of algae, protists, and microscopic animals among the microbial mats. The researchers were able to assess the types and relative abundance of lipids and rRNA genes from pond to pond, and found the ponds hosted a surprising diversity of eukaryotic life.“No two ponds were alike,” Husain says. “There are repeating casts of characters, but they’re present in different abundances. And we found diverse assemblages of eukaryotes from all the major groups in all the ponds studied. These eukaryotes are the descendants of the eukaryotes that survived the Snowball Earth. This really highlights that meltwater ponds during Snowball Earth could have served as above-ice oases that nurtured the eukaryotic life that enabled the diversification and proliferation of complex life — including us — later on.”This research was supported, in part, by the NASA Exobiology Program, the Simons Collaboration on the Origins of Life, and a MISTI grant from MIT-New Zealand. More

  • in

    Students and staff work together for MIT’s first “No Mow May”

    In recent years, some grass lawns around the country have grown a little taller in springtime thanks to No Mow May, a movement originally launched by U.K. nonprofit Plantlife in 2019 designed to raise awareness about the ecological impacts of the traditional, resource-intensive, manicured grass lawn. No Mow May encourages people to skip spring mowing to allow for grass to grow tall and provide food and shelter for beneficial creatures including bees, beetles, and other pollinators.This year, MIT took part in the practice for the first time, with portions of the Kendall/MIT Open Space, Bexley Garden, and the Tang Courtyard forgoing mowing from May 1 through June 6 to make space for local pollinators, decrease water use, and encourage new thinking about the traditional lawn. MIT’s first No Mow May was the result of championing by the Graduate Student Council Sustainability Subcommittee (GSC Sustain) and made possible by the Office of the Vice Provost for Campus Space Management and Planning. A student idea sproutsDespite being a dense urban campus, MIT has no shortage of green spaces — from pocket gardens and community-managed vegetable plots to thousands of shade trees — and interest in these spaces continues to grow. In recent years, student-led initiatives supported by Institute leadership and operational staff have transformed portions of campus by increasing the number of native pollinator plants and expanding community gardens, like the Hive Garden. With No Mow May, these efforts stepped out of the garden and into MIT’s many grassy open spaces. “The idea behind it was to raise awareness for more sustainable and earth-friendly lawn practices,” explains Gianmarco Terrones, GSC Sustain member. Those practices include reducing the burden of mowing, limiting use of fertilizers, and providing shelter and food for pollinators. “The insects that live in these spaces are incredibly important in terms of pollination, but they’re also part of the food chain for a lot of animals,” says Terrones. Research has shown that holding off on mowing in spring, even in small swaths of green space, can have an impact. The early months of spring have the lowest number of flowers in regions like New England, and providing a resource and refuge — even for a short duration — can support fragile pollinators like bees. Additionally, No Mow May aims to help people rethink their yards and practices, which are not always beneficial for local ecosystems. Signage at each No Mow site on campus highlighted information on local pollinators, the impact of the project, and questions for visitors to ask themselves. “Having an active sign there to tell people, ‘look around. How many butterflies do you see after six weeks of not mowing? Do you see more? Do you see more bees?’ can cause subtle shifts in people’s awareness of ecosystems,” says GSC Sustain member Mingrou Xie. A mowed barrier around each project also helped visitors know that areas of tall grass at No Mow sites are intentional.Campus partners bring sustainable practices to lifeTo make MIT’s No Mow May possible, GSC Sustain members worked with the Office of the Vice Provost and the Open Space Working Group, co-chaired by Vice Provost for Campus Space Management and Planning Brent Ryan and Director of Sustainability Julie Newman. The Working Group, which also includes staff from Open Space Programming, Campus Planning, and faculty in the School of Architecture and Planning, helped to identify potential No Mow locations and develop strategies for educational signage and any needed maintenance. “Massachusetts is a biodiverse state, and No Mow May provides an exciting opportunity for MIT to support that biodiversity on its own campus,” says Ryan. Students were eager for space on campus with high visibility, and the chosen locations of the Kendall/MIT Open Space, Bexley Garden, and the Tang Courtyard fit the bill. “We wanted to set an example and empower the community to feel like they can make a positive change to an environment they spend so much time in,” says Xie. For GSC Sustain, that positive change also takes the form of the Native Plant Project, which they launched in 2022 to increase the number of Massachusetts-native pollinator plants on campus — plants like swamp milkweed, zigzag goldenrod, big leaf aster, and red columbine, with which native pollinators have co-evolved. Partnering with the Open Space Working Group, GSC Sustain is currently focused on two locations for new native plant gardens — the President’s Garden and the terrace gardens at the E37 Graduate Residence. “Our short-term goal is to increase the number of native [plants] on campus, but long term we want to foster a community of students and staff interested in supporting sustainable urban gardening,” says Xie.Campus as a test bed continues to growAfter just a few weeks of growing, the campus No Mow May locations sprouted buttercups, mouse ear chickweed, and small tree saplings, highlighting the diversity waiting dormant in the average lawn. Terrones also notes other discoveries: “It’s been exciting to see how much the grass has sprung up these last few weeks. I thought the grass would all grow at the same rate, but as May has gone on the variations in grass height have become more apparent, leading to non-uniform lawns with a clearly unmanicured feel,” he says. “We hope that members of MIT noticed how these lawns have evolved over the span of a few weeks and are inspired to implement more earth-friendly lawn practices in their own homes/spaces.”No Mow May and the Native Plant Project fit into MIT’s overall focus on creating resilient ecosystems that support and protect the MIT community and the beneficial critters that call it home. MIT Grounds Services has long included native plants in the mix of what is grown on campus and native pollinator gardens, like the Hive Garden, have been developed and cared for through partnerships with students and Grounds Services in recent years. Grounds, along with consultants that design and install our campus landscape projects, strive to select plants that assist us with meeting sustainability goals, like helping with stormwater runoff and cooling. No Mow May can provide one more data point for the iterative process of choosing the best plants and practices for a unique microclimate like the MIT campus.“We are always looking for new ways to use our campus as a test bed for sustainability,” says Director of Sustainability Julie Newman. “Community-led projects like No Mow May help us to learn more about our campus and share those lessons with the larger community.”The Office of the Vice Provost, the Open Space Working Group, and GSC Sustain will plan to reconnect in the fall for a formal debrief of the project and its success. Given the positive community feedback, future possibilities of expanding or extending No Mow May will be discussed. More

  • in

    A journey of resilience, fueled by learning

    In 2021, Hilal Mohammadzai was set to begin his senior year at the American University of Afghanistan (AUAF), where he was working toward a bachelor’s degree in computer science. However, that August, the Taliban seized control of the Afghani government, and Mohammadzai’s education — along with that of thousands of other students — was put on hold. “It was an uncertain future for all of the students,” says Mohammadzai.Mohammadzai ultimately did receive his undergraduate degree from AUAF in May 2023 after months of disruption, and after transferring and studying for one semester at the American University of Bulgaria. As he was considering where to take his studies next, Mohammadzai heard about the MIT Emerging Talent Certificate in Computer and Data Science. His friend graduated from the program in early 2023 and had only positive things to say about the education, community, and network. Creating opportunities to learn data sciencePart of MIT Open Learning, Emerging Talent develops global education programs for talented individuals from challenging economic and social circumstances, equipping them with the knowledge and tools to advance their education and careers.The Certificate in Computer and Data Science is a year-long online learning program for talented learners including refugees, migrants, and first-generation low-income students from historically marginalized backgrounds and underserved communities worldwide. The curriculum incorporates computer science and data analysis coursework from MITx, professional skill building, capstone projects, mentorship and internship options, and opportunities for networking with MIT’s global community. Throughout his undergraduate coursework, Mohammadzai discovered an affinity for data visualization, and decided that he wanted to pursue a career in data science. The opportunity with the Emerging Talent program presented itself at the perfect time. Mohammadzai applied and was accepted into the 2023-24 cohort, earning a spot out of a pool of over 2,000 applicants. “I thought it would be a great opportunity to learn more data science to build up on my existing knowledge,” he says.Expanding and deepening his data science knowledgeMohammadzai’s acceptance to the Emerging Talent program came around the same time that he began an MBA program at the American University of Central Asia in Kyrgyzstan. For him, the two programs made for a perfect pairing. “When you have data science knowledge, you usually also require domain knowledge — whether it’s in business or economics — to help with interpreting data and making decisions,” he says. “Analyzing the data is one piece, but understanding how to interpret that data and make a decision usually requires domain knowledge.”Although Mohammadzai had some data science experience from his undergraduate coursework, he learned new skills and new approaches to familiar knowledge in the Emerging Talent program.“Data structures were covered at university, but I found it much more in-depth in the MIT courses,” said Mohammadzai. “I liked the way it was explained with real-life examples.” He worked with students from different backgrounds, and used Github for group projects. Mohammadzai also took advantage of personal agency and job-readiness workshops provided by the Emerging Talent team, such as how to pursue freelancing and build a mentorship network — skills that he has taken forward in life.“I found it an exceptional opportunity,” he says. “The courses, the level of education, and the quality of education that was provided by MIT was really inspiring to me.”Applying data skills to real-world situationsAfter graduating with his Certificate in Computer and Data Science, Mohammadzai began a paid internship with TomorrowNow, which was facilitated by introductions from the Emerging Talent team. Mohammadzai’s resume and experience stood out to the hiring team, and he was selected for the internship program.TomorrowNow is a climate-tech nonprofit that works with philanthropic partners, commercial markets, R&D organizations, and local climate adaptation efforts to localize and open source weather data for smallholder farmers in Africa. The organization builds public capacity and facilitates partnerships to deploy and sustain next-generation weather services for vulnerable communities facing climate change, while also enabling equitable access to these services so that African farmers can optimize scarce resources such as water and farm inputs. Leveraging philanthropy as seed capital, TomorrowNow aims to de-risk weather and climate technologies to make high-quality data and products available for the public good, ultimately incentivizing the private sector to develop products that reach last-mile communities often excluded from advancements in weather technology.For his internship, Mohammadzai worked with TomorrowNow climatologist John Corbett to understand the weather data, and ultimately learn how to analyze it to make recommendations on what information to share with customers. “We challenged Hilal to create a library of training materials leveraging his knowledge of Python and targeting utilization of meteorological data,” says Corbett. “For Hilal, the meteorological data was a new type of data and he jumped right in, working to create training materials for Python users that not only manipulated weather data, but also helped make clear patterns and challenges useful for agricultural interpretation of these data. The training tools he built helped to visualize — and quantify — agricultural meteorological thresholds and their risk and potential impact on crops.” Although he had previously worked with real-world data, working with TomorrowNow marked Mohammadzai’s first experience in the domain of climate data. This area presented a unique set of challenges and insights that broadened his perspective. It not only solidified his desire to continue on a data science path, but also sparked a new interest in working with mission-focused organizations. Both TomorrowNow and Mohammadzai would like to continue working together, but he first needs to secure a work visa.Without a visa, Mohammadzai cannot work for more than three to four hours a day, which makes securing a full-time job impossible. Back in 2021, the American University of Afghanistan filed a P-1 (priority one) asylum case for their students to seek resettlement in the United States because of the potential threat posed to them by the Taliban.Mohammadzai’s hearing was scheduled for Feb. 1, but it was postponed after the program was suspended early this year. As Mohammadzai looks to the end of his MBA program, his future feels uncertain. He has lived abroad since 2021 thanks to student visas and scholarships, but until he can secure a work visa he has limited options. He is considering pursuing a PhD program in order to keep his student visa status, while he waits on news about a more permanent option. “I just want to find a place where I can work and contribute to the community.” More

  • in

    After more than a decade of successes, ESI’s work will spread out across the Institute

    MIT’s Environmental Solutions Initiative (ESI), a pioneering cross-disciplinary body that helped give a major boost to sustainability and solutions to climate change at MIT, will close as a separate entity at the end of June. But that’s far from the end for its wide-ranging work, which will go forward under different auspices. Many of its key functions will become part of MIT’s recently launched Climate Project. John Fernandez, head of ESI for nearly a decade, will return to the School of Architecture and Planning, where some of ESI’s important work will continue as part of a new interdisciplinary lab.When the ideas that led to the founding of MIT’s Environmental Solutions Initiative first began to be discussed, its founders recall, there was already a great deal of work happening at MIT relating to climate change and sustainability. As Professor John Sterman of the MIT Sloan School of Management puts it, “there was a lot going on, but it wasn’t integrated. So the whole added up to less than the sum of its parts.”ESI was founded in 2014 to help fill that coordinating role, and in the years since it has accomplished a wide range of significant milestones in research, education, and communication about sustainable solutions in a wide range of areas. Its founding director, Professor Susan Solomon, helmed it for its first year, and then handed the leadership to Fernandez, who has led it since 2015.“There wasn’t much of an ecosystem [on sustainability] back then,” Solomon recalls. But with the help of ESI and some other entities, that ecosystem has blossomed. She says that Fernandez “has nurtured some incredible things under ESI,” including work on nature-based climate solutions, and also other areas such as sustainable mining, and reduction of plastics in the environment.Desiree Plata, director of MIT’s Climate and Sustainability Consortium and associate professor of civil and environmental engineering, says that one key achievement of the initiative has been in “communication with the external world, to help take really complex systems and topics and put them in not just plain-speak, but something that’s scientifically rigorous and defensible, for the outside world to consume.”In particular, ESI has created three very successful products, which continue under the auspices of the Climate Project. These include the popular TIL Climate Podcast, the Webby Award-winning Climate Portal website, and the online climate primer developed with Professor Kerry Emanuel. “These are some of the most frequented websites at MIT,” Plata says, and “the impact of this work on the global knowledge base cannot be overstated.”Fernandez says that ESI has played a significant part in helping to catalyze what has become “a rich institutional landscape of work in sustainability and climate change” at MIT. He emphasizes three major areas where he feels the ESI has been able to have the most impact: engaging the MIT community, initiating and stewarding critical environmental research, and catalyzing efforts to promote sustainability as fundamental to the mission of a research university.Engagement of the MIT community, he says, began with two programs: a research seed grant program and the creation of MIT’s undergraduate minor in environment and sustainability, launched in 2017.ESI also created a Rapid Response Group, which gave students a chance to work on real-world projects with external partners, including government agencies, community groups, nongovernmental organizations, and businesses. In the process, they often learned why dealing with environmental challenges in the real world takes so much longer than they might have thought, he says, and that a challenge that “seemed fairly straightforward at the outset turned out to be more complex and nuanced than expected.”The second major area, initiating and stewarding environmental research, grew into a set of six specific program areas: natural climate solutions, mining, cities and climate change, plastics and the environment, arts and climate, and climate justice.These efforts included collaborations with a Nobel Peace Prize laureate, three successive presidential administrations from Colombia, and members of communities affected by climate change, including coal miners, indigenous groups, various cities, companies, the U.N., many agencies — and the popular musical group Coldplay, which has pledged to work toward climate neutrality for its performances. “It was the role that the ESI played as a host and steward of these research programs that may serve as a key element of our legacy,” Fernandez says.The third broad area, he says, “is the idea that the ESI as an entity at MIT would catalyze this movement of a research university toward sustainability as a core priority.” While MIT was founded to be an academic partner to the industrialization of the world, “aren’t we in a different world now? The kind of massive infrastructure planning and investment and construction that needs to happen to decarbonize the energy system is maybe the largest industrialization effort ever undertaken. Even more than in the recent past, the set of priorities driving this have to do with sustainable development.”Overall, Fernandez says, “we did everything we could to infuse the Institute in its teaching and research activities with the idea that the world is now in dire need of sustainable solutions.”Fernandez “has nurtured some incredible things under ESI,” Solomon says. “It’s been a very strong and useful program, both for education and research.” But it is appropriate at this time to distribute its projects to other venues, she says. “We do now have a major thrust in the Climate Project, and you don’t want to have redundancies and overlaps between the two.”Fernandez says “one of the missions of the Climate Project is really acting to coalesce and aggregate lots of work around MIT.” Now, with the Climate Project itself, along with the Climate Policy Center and the Center for Sustainability Science and Strategy, it makes more sense for ESI’s climate-related projects to be integrated into these new entities, and other projects that are less directly connected to climate to take their places in various appropriate departments or labs, he says.“We did enough with ESI that we made it possible for these other centers to really flourish,” he says. “And in that sense, we played our role.”As of June 1, Fernandez has returned to his role as professor of architecture and urbanism and building technology in the School of Architecture and Planning, where he directs the Urban Metabolism Group. He will also be starting up a new group called Environment ResearchAction (ERA) to continue ESI work in cities, nature, and artificial intelligence.  More

  • in

    Window-sized device taps the air for safe drinking water

    Today, 2.2 billion people in the world lack access to safe drinking water. In the United States, more than 46 million people experience water insecurity, living with either no running water or water that is unsafe to drink. The increasing need for drinking water is stretching traditional resources such as rivers, lakes, and reservoirs.To improve access to safe and affordable drinking water, MIT engineers are tapping into an unconventional source: the air. The Earth’s atmosphere contains millions of billions of gallons of water in the form of vapor. If this vapor can be efficiently captured and condensed, it could supply clean drinking water in places where traditional water resources are inaccessible.With that goal in mind, the MIT team has developed and tested a new atmospheric water harvester and shown that it efficiently captures water vapor and produces safe drinking water across a range of relative humidities, including dry desert air.The new device is a black, window-sized vertical panel, made from a water-absorbent hydrogel material, enclosed in a glass chamber coated with a cooling layer. The hydrogel resembles black bubble wrap, with small dome-shaped structures that swell when the hydrogel soaks up water vapor. When the captured vapor evaporates, the domes shrink back down in an origami-like transformation. The evaporated vapor then condenses on the the glass, where it can flow down and out through a tube, as clean and drinkable water.

    MIT engineers test a passive water harvester in Death Valley, CA. The window-sized setup is made from an origami-inspired hydrogel material (black) that absorbs water from the air, and releases it into tubes where researchers can collect the moisture as pure drinking water.

    Credit: Courtesy of the researchers; MIT News

    Previous item
    Next item

    The system runs entirely on its own, without a power source, unlike other designs that require batteries, solar panels, or electricity from the grid. The team ran the device for over a week in Death Valley, California — the driest region in North America. Even in very low-humidity conditions, the device squeezed drinking water from the air at rates of up to 160 milliliters (about two-thirds of a cup) per day.The team estimates that multiple vertical panels, set up in a small array, could passively supply a household with drinking water, even in arid desert environments. What’s more, the system’s water production should increase with humidity, supplying drinking water in temperate and tropical climates.“We have built a meter-scale device that we hope to deploy in resource-limited regions, where even a solar cell is not very accessible,” says Xuanhe Zhao, the Uncas and Helen Whitaker Professor of Mechanical Engineering and Civil and Environmental Engineering at MIT. “It’s a test of feasibility in scaling up this water harvesting technology. Now people can build it even larger, or make it into parallel panels, to supply drinking water to people and achieve real impact.”Zhao and his colleagues present the details of the new water harvesting design in a paper appearing today in the journal Nature Water. The study’s lead author is former MIT postdoc “Will” Chang Liu, who is currently an assistant professor at the National University of Singapore (NUS). MIT co-authors include Xiao-Yun Yan, Shucong Li, and Bolei Deng, along with collaborators from multiple other institutions.Carrying capacityHydrogels are soft, porous materials that are made mainly from water and a microscopic network of interconnecting polymer fibers. Zhao’s group at MIT has primarily explored the use of hydrogels in biomedical applications, including adhesive coatings for medical implants, soft and flexible electrodes, and noninvasive imaging stickers.“Through our work with soft materials, one property we know very well is the way hydrogel is very good at absorbing water from air,” Zhao says.Researchers are exploring a number of ways to harvest water vapor for drinking water. Among the most efficient so far are devices made from metal-organic frameworks, or MOFs — ultra-porous materials that have also been shown to capture water from dry desert air. But the MOFs do not swell or stretch when absorbing water, and are limited in vapor-carrying capacity.Water from airThe group’s new hydrogel-based water harvester addresses another key problem in similar designs. Other groups have designed water harvesters out of micro- or nano-porous hydrogels. But the water produced from these designs can be salty, requiring additional filtering. Salt is a naturally absorbent material, and researchers embed salts — typically, lithium chloride — in hydrogel to increase the material’s water absorption. The drawback, however, is that this salt can leak out with the water when it is eventually collected.The team’s new design significantly limits salt leakage. Within the hydrogel itself, they included an extra ingredient: glycerol, a liquid compound that naturally stabilizes salt, keeping it within the gel rather than letting it crystallize and leak out with the water. The hydrogel itself has a microstructure that lacks nanoscale pores, which further prevents salt from escaping the material. The salt levels in the water they collected were below the standard threshold for safe drinking water, and significantly below the levels produced by many other hydrogel-based designs.In addition to tuning the hydrogel’s composition, the researchers made improvements to its form. Rather than keeping the gel as a flat sheet, they molded it into a pattern of small domes resembling bubble wrap, that act to increase the gel’s surface area, along with the amount of water vapor it can absorb.The researchers fabricated a half-square-meter of hydrogel and encased the material in a window-like glass chamber. They coated the exterior of the chamber with a special polymer film, which helps to cool the glass and stimulates any water vapor in the hydrogel to evaporate and condense onto the glass. They installed a simple tubing system to collect the water as it flows down the glass.In November 2023, the team traveled to Death Valley, California, and set up the device as a vertical panel. Over seven days, they took measurements as the hydrogel absorbed water vapor during the night (the time of day when water vapor in the desert is highest). In the daytime, with help from the sun, the harvested water evaporated out from the hydrogel and condensed onto the glass.Over this period, the device worked across a range of humidities, from 21 to 88 percent, and produced between 57 and 161.5 milliliters of drinking water per day. Even in the driest conditions, the device harvested more water than other passive and some actively powered designs.“This is just a proof-of-concept design, and there are a lot of things we can optimize,” Liu says. “For instance, we could have a multipanel design. And we’re working on a next generation of the material to further improve its intrinsic properties.”“We imagine that you could one day deploy an array of these panels, and the footprint is very small because they are all vertical,” says Zhao, who has plans to further test the panels in many resource-limited regions. “Then you could have many panels together, collecting water all the time, at household scale.”This work was supported, in part, by the MIT J-WAFS Water and Food Seed Grant, the MIT-Chinese University of Hong Kong collaborative research program, and the UM6P-MIT collaborative research program. More

  • in

    Universal nanosensor unlocks the secrets to plant growth

    Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group within the Singapore-MIT Alliance for Research and Technology have developed the world’s first near-infrared fluorescent nanosensor capable of real-time, nondestructive, and species-agnostic detection of indole-3-acetic acid (IAA) — the primary bioactive auxin hormone that controls the way plants develop, grow, and respond to stress.Auxins, particularly IAA, play a central role in regulating key plant processes such as cell division, elongation, root and shoot development, and response to environmental cues like light, heat, and drought. External factors like light affect how auxin moves within the plant, temperature influences how much is produced, and a lack of water can disrupt hormone balance. When plants cannot effectively regulate auxins, they may not grow well, adapt to changing conditions, or produce as much food. Existing IAA detection methods, such as liquid chromatography, require taking plant samples from the plant — which harms or removes part of it. Conventional methods also measure the effects of IAA rather than detecting it directly, and cannot be used universally across different plant types. In addition, since IAA are small molecules that cannot be easily tracked in real time, biosensors that contain fluorescent proteins need to be inserted into the plant’s genome to measure auxin, making it emit a fluorescent signal for live imaging.SMART’s newly developed nanosensor enables direct, real-time tracking of auxin levels in living plants with high precision. The sensor uses near infrared imaging to monitor IAA fluctuations non-invasively across tissues like leaves, roots, and cotyledons, and it is capable of bypassing chlorophyll interference to ensure highly reliable readings even in densely pigmented tissues. The technology does not require genetic modification and can be integrated with existing agricultural systems — offering a scalable precision tool to advance both crop optimization and fundamental plant physiology research. By providing real-time, precise measurements of auxin, the sensor empowers farmers with earlier and more accurate insights into plant health. With these insights and comprehensive data, farmers can make smarter, data-driven decisions on irrigation, nutrient delivery, and pruning, tailored to the plant’s actual needs — ultimately improving crop growth, boosting stress resilience, and increasing yields.“We need new technologies to address the problems of food insecurity and climate change worldwide. Auxin is a central growth signal within living plants, and this work gives us a way to tap it to give new information to farmers and researchers,” says Michael Strano, co-lead principal investigator at DiSTAP, Carbon P. Dubbs Professor of Chemical Engineering at MIT, and co-corresponding author of the paper. “The applications are many, including early detection of plant stress, allowing for timely interventions to safeguard crops. For urban and indoor farms, where light, water, and nutrients are already tightly controlled, this sensor can be a valuable tool in fine-tuning growth conditions with even greater precision to optimize yield and sustainability.”The research team documented the nanosensor’s development in a paper titled, “A Near-Infrared Fluorescent Nanosensor for Direct and Real-Time Measurement of Indole-3-Acetic Acid in Plants,” published in the journal ACS Nano. The sensor comprises single-walled carbon nanotubes wrapped in a specially designed polymer, which enables it to detect IAA through changes in near infrared fluorescence intensity. Successfully tested across multiple species, including Arabidopsis, Nicotiana benthamiana, choy sum, and spinach, the nanosensor can map IAA responses under various environmental conditions such as shade, low light, and heat stress. “This sensor builds on DiSTAP’s ongoing work in nanotechnology and the CoPhMoRe technique, which has already been used to develop other sensors that can detect important plant compounds such as gibberellins and hydrogen peroxide. By adapting this approach for IAA, we’re adding to our inventory of novel, precise, and nondestructive tools for monitoring plant health. Eventually, these sensors can be multiplexed, or combined, to monitor a spectrum of plant growth markers for more complete insights into plant physiology,” says Duc Thinh Khong, research scientist at DiSTAP and co-first author of the paper.“This small but mighty nanosensor tackles a long-standing challenge in agriculture: the need for a universal, real-time, and noninvasive tool to monitor plant health across various species. Our collaborative achievement not only empowers researchers and farmers to optimize growth conditions and improve crop yield and resilience, but also advances our scientific understanding of hormone pathways and plant-environment interactions,” says In-Cheol Jang, senior principal investigator at TLL, principal investigator at DiSTAP, and co-corresponding author of the paper.Looking ahead, the research team is looking to combine multiple sensing platforms to simultaneously detect IAA and its related metabolites to create a comprehensive hormone signaling profile, offering deeper insights into plant stress responses and enhancing precision agriculture. They are also working on using microneedles for highly localized, tissue-specific sensing, and collaborating with industrial urban farming partners to translate the technology into practical, field-ready solutions. The research was carried out by SMART, and supported by the National Research Foundation of Singapore under its Campus for Research Excellence And Technological Enterprise program. More

  • in

    Guardian Ag’s crop-spraying drone is replacing dangerous pilot missions

    Every year during the growing season, thousands of pilots across the country climb into small planes loaded with hundreds of pounds of pesticides and fly extremely close to the ground at upward of 140 miles an hour, unloading their cargo onto rows of corn, cotton, and soybeans.The world of agricultural aviation is as dangerous as it is vital to America’s farms. Unfortunately, fatal crashes are common. Now Guardian Ag, founded by former MIT Electronics Research Society (MITERS) makers Adam Bercu and Charles Guan ’11, is offering an alternative in the form of a large, purpose-built drone that can autonomously deliver 200-pound payloads across farms. The company’s drones feature an 18-foot spray radius, 80-inch rotors, a custom battery pack, and aerospace-grade materials designed to make crop spraying more safe, efficient, and inexpensive for farmers.“We’re trying to bring technology to American farms that are hundreds or thousands of acres, where you’re not replacing a human with a hand pump — you’re replacing a John Deere tractor or a helicopter or an airplane,” Bercu says.“With Guardian, the operator shows up about 30 minutes before they want to spray, they mix the product, path plan the field in our app, and it gives an estimate for how long the job will take,” he says. “With our fast charging, you recharge the aircraft while you fill the tank, and those two operations take about the same amount of time.”

    Play video

    From Battlebots to farmlandsAt a young age, Bercu became obsessed with building robots. Growing up in south Florida, he’d attend robotic competitions, build prototypes, and even dumpster dive for particularly hard-to-find components. At one competition, Bercu met Charles Guan, who would go on to major in mechanical engineering at MIT, and the two robot enthusiasts became lifelong friends.“When Charles came to MIT, he basically convinced me to move to Cambridge,” Bercu says. “He said, ‘You need to come up here. I found more people like us. Hackers!’”Bercu visited Cambridge, Massachusetts, and indeed fell in love with the region’s makerspaces and hacker culture. He moved soon after, and he and Guan began spending free time at spaces including the Artisans Asylum makerspace in Somerville, Massachusetts; MIT’s International Design Center; and the MIT Electronics Research Society (MITERS) makerspace. Guan held several leadership positions at MITERS, including facilities manager, treasurer, and president.“MIT offered enormous latitude to its students to be independent and creative, which was reflected in the degree of autonomy they permit student-run organizations like MITERS to have compared to other top-tier schools,” Guan says. “It was a key selling point to me when I was touring mechanical engineering labs as a junior in high school. I was well-known in the department circle for being at MITERS all the time, possibly even more than I spent on classes.”After Guan graduated, he and Bercu started a hardware consulting business and competed in the robot combat show Battlebots. Guan also began working as a design instructor in MIT’s Department of Mechanical Engineering, where he taught a section of Course 2.007 that tasked students with building go-karts.Eventually, Guan and Bercu decided to use their experience to start a drone company.“Over the course of Battlebots and building go-karts, we knew electric batteries were getting really cheap and electric vehicle supply chains were established,” Bercu explains. “People were raising money to build eVTOL [electric vertical take-off and landing] vehicles to transport people, but we knew diesel fuel still outperformed batteries over long distances. Where electric systems did outperform combustion engines was in areas where you needed peak power for short periods of time. Basically, batteries are awesome when you have a short mission.”That idea made the founders think crop spraying could be a good early application. Bercu’s family runs an aviation business, and he knew pilots who would spray crops as their second jobs.“It’s one of those high-paying but very dangerous jobs,” Bercu says. “Even in the U.S., we lose between 1 and 2 percent of all agriculture pilots each year to fatal accidents. These people are rolling the dice every time they do this: You’re flying 6 feet off the ground at 140 miles an hour with 800 gallons of pesticide in your tank.”After cobbling together spare parts from Battlebots and their consulting business, the founders built a 600-pound drone. When they finally got it to fly, they decided the time was right to launch their company, receiving crucial early guidance and their first funding from the MIT-affiliated investment firm the E14 Fund.The founders spent the next year interviewing crop dusters and farmers. They also started engaging with the Federal Aviation Administration.“There was no category for anything like this,” Bercu explains. “With the FAA, we not only got through the approval process, we helped them build the process as we went through it, because we wanted to establish some common-sense standards.”Guardian custom-built its batteries to optimize throughput and utilization rate of its drones. Depending on the farm, Bercu says his machines can unload about 1.5 to 2 tons of payload per hour.Guardian’s drones can also spray more precisely than planes, reducing the environmental impact of pesticides, which often pollute the landscapes and waterways surrounding farms.“This thing has the precision to spray the ‘Mona Lisa’ on 20 acres, but we’re not leveraging that functionality today,” Bercu says. “For the operator we want to make it very easy. The goal is to take someone who sprays with a tractor and teach them to spray with a drone in less than a week.”Scaling for farmersTo date, Guardian Ag has built eight of its aircraft, which are actively delivering payloads over California farms in trials with paying customers. The company is currently ramping up manufacturing in its 60,000-square-foot facility in Massachusetts, and Bercu says Guardian has a backlog of hundreds of millions of dollars-worth of drones.“Grower demand has been exceptional,” Bercu says. “We don’t need to educate them on the need for this. They see the big drone with the big tank and they’re in.”Bercu envisions Guardian’s drones helping with a number of other tasks like ship-to-ship logistics, delivering supplies to offshore oil rigs, mining, and other areas where helicopters and small aircraft are currently flown through difficult terrain. But for now, the company is focused on starting with agriculture.“Agriculture is such an important and foundational aspect of our country,” says Guardian Ag chief operating officer Ashley Ferguson MBA ’19. “We work with multigenerational farming families, and when we talk to them, it’s clear aerial spray has taken hold in the industry. But there’s a large shortage of pilots, especially for agriculture applications. So, it’s clear there’s a big opportunity.”Seven years since founding Guardian, Bercu remains grateful that MIT’s community opened its doors for him when he moved to Cambridge.“Without the MIT community, this company wouldn’t be possible,” Bercu says. “I was never able to go to college, but I’d love to one day apply to MIT and do my engineering undergrad or go to the Sloan School of Management. I’ll never forget MIT’s openness to me. It’s a place I hold near and dear to my heart.” More

  • in

    Day of Climate inspires young learners to take action

    “Close your eyes and imagine we are on the same team. Same arena. Same jersey. And the game is on the line,” Jaylen Brown, the 2024 NBA Finals MVP for the Boston Celtics, said to a packed room of about 200 people at the recent Day of Climate event at the MIT Museum.“Now think about this: We aren’t playing for ourselves; we are playing for the next generation,” Brown added, encouraging attendees to take climate action. The inaugural Day of Climate event brought together local learners, educators, community leaders, and the MIT community. Featuring project showcases, panels, and a speaker series, the event sparked hands-on learning and inspired climate action across all ages.The event marked the celebration of the first year of a larger initiative by the same name. Led by the pK-12 team at MIT Open Learning, Day of Climate has brought together learners and educators by offering free, hands-on curriculum lessons and activities designed to introduce learners to climate change, teach how it shapes their lives, and consider its effects on humanity. Cynthia Breazeal, dean of digital learning at MIT Open Learning, notes the breadth of engagement across MIT that made the event, and the larger initiative, possible with contributions from more than 10 different MIT departments, labs, centers, and initiatives. “MIT is passionate about K-12 education,” she says. “It was truly inspiring to witness how our entire community came together to demonstrate the power of collaboration and advocacy in driving meaningful change.”From education to action The event kicked off with a showcase, where the Day of Climate grantees and learners invited attendees to learn about their projects and meaningfully engage with lessons and activities. Aranya Karighattam, a local high school senior, adapted the curriculum Urban Heat Islands — developed by Lelia Hampton, a PhD student in electrical engineering and computer science at MIT, and Chris Rabe, program director at the MIT Environmental Solution Initiative — sharing how this phenomenon affects the Boston metropolitan area. 

    Play video

    Day of Climate inspires young learners to take actionVideo: MIT Open Learning

    Karighattam discussed what could be done to shield local communities from urban heat islands. They suggested doubling the tree cover in areas with the lowest quartile tree coverage as one mitigating strategy, but noted that even small steps, like building a garden and raising awareness for this issue, can help.Day of Climate echoed a consistent call to action, urging attendees to meaningfully engage in both education and action. Brown, who is an MIT Media Lab Director’s Fellow, spoke about how education and collective action will pave the way to tackle big societal challenges. “We need to invest in sustainability communities,” he said. “We need to invest in clean technology, and we need to invest in education that fosters environmental stewardship.”Part of MIT’s broader sustainability efforts, including The Climate Project, the event reflected a commitment to building a resilient and sustainable future for all. Influenced by the Climate Action Through Education (CATE), Day of Climate panelist Sophie Shen shared how climate education inspired her civic life. “Learning about climate change has inspired me to take action on a wider systemic level,” she said.Shen, a senior at Arlington High School and local elected official, emphasized how engagement and action looks different for everyone. “There are so many ways to get involved,” she said. “That could be starting a community garden — those can be great community hubs and learning spaces — or it could include advocating to your local or state governments.”Becoming a catalyst for change The larger Day of Climate initiative encourages young people to understand the interdisciplinary nature of climate change and consider how the changing climate impacts many aspects of life. With curriculum available for learners from ages 4 to 18, these free activities range from Climate Change Charades — where learners act out words like “deforestation” and “recycling” — to Climate Change Happens Below Water, where learners use sensors to analyze water quality data like pH and solubility.Many of the speakers at the event shared personal anecdotes from their childhood about how climate education, both in and out of the classroom, has changed the trajectory of their lives. Addaline Jorroff, deputy climate chief and director of mitigation and community resilience in the Office of Climate Resilience and Innovation for the Commonwealth of Massachusetts, explained how resources from MIT were instrumental in her education as a middle and high schooler, while Jaylen Brown told how his grandmother helped him see the importance of taking care of the planet, through recycling and picking up trash together, when he was young.Claudia Urrea, director of the pK-12 team at Open Learning and director of Day of Climate, emphasizes how providing opportunities at schools — through new curriculum, classroom resources and mentorship — are crucial, but providing other educational opportunities also matter: in particular, opportunities that support learners in becoming strong leaders.“I strongly believe that this event not only inspired young learners to take meaningful action, both large and small, towards a better future, but also motivated all the stakeholders to continue to create opportunities for these young learners to emerge as future leaders,” Urrea says.The team plans to hold the Day of Climate event annually, bringing together young people, educators, and the MIT community. Urrea hopes the event will act as a catalyst for change — for everyone.“We hope Day of Climate serves as the opportunity for everyone to recognize the interconnectedness of our actions,” Urrea says. “Understanding this larger system is crucial for addressing current and future challenges, ultimately making the world a better place for all.”The Day of Climate event was hosted by the Day of Climate team in collaboration with MIT Climate Action Through Education (CATE) and Earth Day Boston. More