More stories

  • in

    Preparing Colombia’s cities for life amid changing forests

    It was an uncharacteristically sunny morning as Marcela Angel MCP ’18, flanked by a drone pilot from the Boston engineering firm AirWorks and a data collection team from the Colombian regional environmental agency Corpoamazonia, climbed a hill in the Andes Mountains of southwest Colombia. The area’s usual mountain cloud cover — one of the major challenges to working with satellite imagery or flying UAVs (unpiloted aerial vehicles, or drones) in the Pacific highlands of the Amazon — would roll through in the hours to come. But for now, her team had chosen a good day to hike out for their first flight. Angel is used to long travel for her research. Raised in Bogotá, she maintained strong ties to Colombia throughout her master’s program in the MIT Department of Urban Studies and Planning (DUSP). Her graduate thesis, examining Bogotá’s management of its public green space, took her regularly back to her hometown, exploring how the city could offer residents more equal access to the clean air, flood protection and day-to-day health and social benefits provided by parks and trees. But the hill she was hiking this morning, outside the remote city of Mocoa, had taken an especially long time to climb: five years building relationships with the community of Mocoa and the Colombian government, recruiting project partners, and navigating the bureaucracy of bringing UAVs into the country. Now, her team finally unwrapped their first, knee-high drone from its tarp and set it carefully in the grass. Under the gathering gray clouds, the buzz of its rotors joined the hum of insects in the trees, and the machine at last took to the skies.

    From Colombia to Cambridge

    “I actually grew up on the last street before the eastern mountains reserve,” Angel says of her childhood in Bogotá. “I’ve always been at that border between city and nature.” This idea, that urban areas are married to the ecosystems around them, would inform Angel’s whole education and career. Before coming to MIT, she studied architecture at Bogotá’s Los Andes University; for her graduation project she proposed a plan to resettle an informal neighborhood on Bogotá’s outskirts to minimize environmental risks to its residents. Among her projects at MIT was an initiative to spatially analyze Bogotá’s tree canopy, providing data for the city to plan a tree-planting program as a strategy to give vulnerable populations in the city more access to nature. And she was naturally intrigued when Colombia’s former minister of environment and sustainable development came to MIT in 2017 to give a guest presentation to the DUSP master’s program. The minister, Luis Gilberto Murillo (now the Colombian ambassador to the United States), introduced the students to the challenges triggered by a recent disaster in the city of Mocoa, on the border between the lowland Amazon and the Andes Mountains. Unprecedented rainstorms had destabilized the surrounding forests, and that April a devastating flood and landslide had killed hundreds of people and destroyed entire neighborhoods. And as climate change contributed to growing rainfall in the region, the risks of more landslide events were rising. Murillo provided useful insights into how city planning decisions had contributed to the crisis. But he also asked for MIT’s support addressing future landslide risks in the area. Angel and Juan Camilo Osorio, a PhD candidate at DUSP, decided to take up the challenge, and in January 2018 and 2019, a research delegation from MIT traveled to Colombia for a newly-created graduate course. Returning once again to Bogotá, Angel interviewed government agencies and nonprofits to understand the state of landslide monitoring and public policy. In Mocoa, further interviews and a series of workshops helped clarify what locals needed most and what MIT could provide: better information on where and when landslides might strike, and a process to increase risk awareness and involve traditionally marginalized groups in decision-making processes around that risk. Over the coming year, a core team formed to put the insights from this trip into action, including Angel, Osorio, postdoc Norhan Bayomi of the MIT Environmental Solutions Initiative (ESI) and MIT Professor John Fernández, director of the ESI and one of Angel’s mentors at DUSP. After a second visit to Mocoa that brought into the fold Indigenous groups, environmental agencies, and the national army, a plan was formed: MIT would partner with Corpoamazonia and build a network of community researchers to deploy and test drone technology and machine learning models to monitor the mountain forests for both landslide risks and signs of forest health, while implementing a participatory planning process with residents. “What our projects aim to do is give the communities new tools to continue protecting and restoring the forest,” says Angel, “and support new and inclusive development models, even in the face of new challenges.”

    Lifelines for the climate

    The goal of tropical forest conservation is an urgent one. As forests are cut down, their trees and soils release carbon they have stored over millennia, adding huge amounts of heat-trapping carbon dioxide to the atmosphere. Deforestation, mainly in the tropics, is now estimated to contribute more to climate change than any country besides the United States and China — and once lost, tropical forests are exceptionally hard to restore. “Tropical forests should be a natural way to slow and reverse climate change,” says Angel. “And they can be. But today, we are reaching critical tipping points where it is just the opposite.” This became the motivating force for Angel’s career after her graduation. In 2019, Fernández invited her to join the ESI and lead a new Natural Climate Solutions Program, with the Mocoa project as its first centerpiece. She quickly mobilized the partners to raise funding for the project from the Global Environmental Facility and the CAF Development Bank of Latin America and the Caribbean, and recruited additional partners including MIT Lincoln Laboratories, AirWorks, and the Pratt Institute, where Osorio had become an assistant professor. She hired machine learning specialists from MIT to begin design on UAVs’ data processing, and helped assemble a local research network in Mocoa to increase risk awareness, promote community participation, and better understand what information city officials and community groups needed for city planning and conservation. “This is the amazing thing about MIT,” she says. “When you study a problem here, you’re not just playing in a sandbox. Everyone I’ve worked with is motivated by the complexity of the technical challenge and the opportunity for meaningful engagement in Mocoa, and hopefully in many more places besides.” At the same time, Angel created opportunities for the next generation of MIT graduate students to follow in her footsteps. With Fernández and Bayomi, she created a new course, 4.S23 (Biodiversity and Cities), in which students traveled to Colombia to develop urban planning strategies for the cities of Quidbó and Leticia, located in carbon-rich and biodiverse areas. The course has been taught twice, with Professor Gabriella Carolini joining the teaching team for spring 2023, and has already led to a student report to city officials in Quidbó recommending ways to enhance biodiversity and adapt to climate change as the city grows, a multi-stakeholder partnership to train local youth and implement a citizen-led biodiversity survey, and a seed grant from the MIT Climate and Sustainability Consortium to begin providing both cities detailed data on their tree cover derived from satellite images. “These regions face serious threats, especially on a warming planet, but many of the solutions for climate change, biodiversity conservation, and environmental equity in the region go hand-in-hand,” Angel says. “When you design a city to use fewer resources, to contribute less to climate change, it also causes less pressure on the environment around it. When you design a city for equity and quality of life, you’re giving attention to its green spaces and what they can provide for people and as habitat for other species. When you protect and restore forests, you’re protecting local bioeconomies.”

    Bringing the data home

    Meanwhile, in Mocoa, Angel’s original vision is taking flight. With the team’s test flights behind them, they can now begin creating digital models of the surrounding area. Regular drone flights and soil samples will fill in changing information about trees, water, and local geology, allowing the project’s machine learning specialists to identify warning signs for future landslides and extreme weather events. More importantly, there is now an established network of local community researchers and leaders ready to make use of this information. With feedback from their Mocoan partners, Angel’s team has built a prototype of the online platform they will use to share their UAV data; they’re now letting Mocoa residents take it for a test drive and suggest how it can be made more user-friendly. Her visit this January also paved the way for new projects that will tie the Environmental Solutions Initiative more tightly to Mocoa. With her project partners, Angel is exploring developing a course to teach local students how to use UAVs like the ones her team is flying. She is also considering expanded efforts to collect the kind of informal knowledge of Mocoa, on the local ecology and culture, that people everywhere use in making their city planning and emergency response decisions, but that is rarely codified and included in scientific risk analyses. It’s a great deal of work to offer this one community the tools to adapt successfully to climate change. But even with all the robotics and machine learning models in the world, this close, slow-unfolding engagement, grounded in trust and community inclusion, is what it takes to truly prepare people to confront profound changes in their city and environment. “Protecting natural carbon sinks is a global socio-environmental challenge, and one where it is not enough for MIT to just contribute to the knowledge base or develop a new technology,” says Angel. “But we can help mobilize decision-makers and nontraditional actors, and design more inclusive and technology-enhanced processes, to make this easier for the people who have lifelong stakes in these ecosystems. That is the vision.” More

  • in

    Advancing material innovation to address the polymer waste crisis

    Products made from polymers — ranging from plastic bags to clothing to cookware to electronics — provide many comforts and support today’s standard of living, but since they do not decompose easily, they pose long-term environmental challenges. Developing polymers, a large class of materials, with a more sustainable life cycle is a critical step in making progress toward a green economy and addressing this piece of the global climate change crisis. The development of biodegradable polymers, however, remains limited by current biodegradation testing methods.

    To address this limitation, a team of MIT researchers led by Bradley D. Olsen, the Alexander and I. Michael Kasser (1960) Professor in the Department of Chemical Engineering, has developed an expansive biodegradation dataset to help determine whether or not a polymer is biodegradable.

    Their findings were recently published in The Proceedings of the National Academy of Sciences (PNAS), a peer reviewed journal of the National Academy of Sciences (NAS), in a paper titled “High-Throughput Experimentation for Discovery of Biodegradable Polyesters.” The MIT team is led by Olsen and PhD candidates Katharina A. Fransen and Sarah H. M. Av-Ron, and also includes postdoc Dylan J. Walsh and undergraduate students Tess R. Buchanan, Dechen T. Rota, and Lana Van Note.

    “Despite polymer waste being a known and significant contributor to the climate crisis, the study of polymer biodegradation has been limited to a small number of polymers because current biodegradation testing methods are time- and resource-intensive,” says Olsen. “This limited scope slows new material innovation, so we are working to open that up to a much broader portfolio of materials.”

    Unique high-throughput approach

    The dataset Olsen’s team has developed, with support from the MIT Climate and Sustainability Consortium (MCSC), the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), and DIC Corporation, includes more than 600 distinct polyester chemistries.

    “The ingenuity of our work is pushing the screening to be high-throughput, which accelerates the pace of discovery,” says Av-Ron. High-throughput synthesis methods enable large quantities of samples to be screened rapidly, identifying products with the desired property or function you are looking for. In this case, the high-throughput approach was conducted using a method called clear-zone assay, which detects polymer biofragmentation and identifies polymer degrading bacteria. The biodegradation dataset can then lead to structure-property relationships, a concept central to materials science and engineering, where relationships between the chemical detail and property can be established, and used to build a biodegradation prediction model. When developing these models to predict biodegradation, the researchers were interested in looking into the potential linearity and nonlinearity of the relationships between structure and biodegradability.

    “We consider our scientific breakthrough to be having this large dataset, and the qualitative relationships and predictive models such a substantial  amount of data enabled,” adds Av-Ron. “It was captivating to figure out how to integrate the high complexity of polymer chemical representation with predictive machine-learning models. I was very excited to get a validation accuracy of 82 percent for one representation/model combination. With additional data we might be able to improve our predictions even more.”

    The team’s work focuses largely on polyesters; the development of biodegradable polyesters presents a key opportunity for addressing the polymer sustainability crisis and reducing the environmental burden of the polymer life cycle.

    One strain of bacteria, many chemistries

    The biodegradation test that these data create is accessible and cost-effective to put in place; initial industry feedback has been positive. The datasets are also more reproducible than many other standards in this space.

    “With our method, there is one strain of bacteria, so you know exactly what you’re testing,” says Av-Ron. This speaks to the uniqueness of the team’s approach.

    “When polymers are developed, normally the strength of the material is examined first, and then once the material is developed, whether or not it biodegrades comes second,” says Fransen.

    Olsen and his team are examining the opposite — developing the biodegradability screen first, to help filter and focus what to look for in a material. This way, the team’s infrastructure can assess a lot of different options, quickly.

    “There has been big movement recently in developing sustainable polymers,” concludes Fransen, “and having something like this that is quick, tangible, and relatively inexpensive, could add a lot of value to that community.”

    Fransen received a 2022 J-WAFS Fellowship for this work, and she and Av-Ron together won second place in the 2022 J-WAFS World Food Day Student Video Competition, as this research can be applied to creating more sustainable food packaging. More

  • in

    Q&A: Are far-reaching fires the new normal?

    Where there’s smoke, there is fire. But with climate change, larger and longer-burning wildfires are sending smoke farther from their source, often to places that are unaccustomed to the exposure. That’s been the case this week, as smoke continues to drift south from massive wildfires in Canada, prompting warnings of hazardous air quality, and poor visibility in states across New England, the mid-Atlantic, and the Midwest.

    As wildfire season is just getting going, many may be wondering: Are the air-polluting effects of wildfires a new normal?

    MIT News spoke with Professor Colette Heald of the Department of Civil and Environmental Engineering and the Department of Earth, Atmospheric and Planetary Sciences, and Professor Noelle Selin of the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences. Heald specializes in atmospheric chemistry and has studied the climate and health effects associated with recent wildfires, while Selin works with atmospheric models to track air pollutants around the world, which she uses to inform policy decisions on mitigating  pollution and climate change. The researchers shared some of their insights on the immediate impacts of Canada’s current wildfires and what downwind regions may expect in the coming months, as the wildfire season stretches into summer.  

    Q: What role has climate change and human activity played in the wildfires we’ve seen so far this year?

    Heald: Unusually warm and dry conditions have dramatically increased fire susceptibility in Canada this year. Human-induced climate change makes such dry and warm conditions more likely. Smoke from fires in Alberta and Nova Scotia in May, and Quebec in early June, has led to some of the worst air quality conditions measured locally in Canada. This same smoke has been transported into the United States and degraded air quality here as well. Local officials have determined that ignitions have been associated with lightning strikes, but human activity has also played a role igniting some of the fires in Alberta.

    Q: What can we expect for the coming months in terms of the pattern of wildfires and their associated air pollution across the United States?

    Heald: The Government of Canada is projecting higher-than-normal fire activity throughout the 2023 fire season. Fire susceptibility will continue to respond to changing weather conditions, and whether the U.S. is impacted will depend on the winds and how air is transported across those regions. So far, the fire season in the United States has been below average, but fire risk is expected to increase modestly through the summer, so we may see local smoke influences as well.

    Q: How has air pollution from wildfires affected human health in the U.S. this year so far?

    Selin: The pollutant of most concern in wildfire smoke is fine particulate matter (PM2.5) – fine particles in the atmosphere that can be inhaled deep into the lungs, causing health damages. Exposure to PM2.5 causes respiratory and cardiovascular damage, including heart attacks and premature deaths. It can also cause symptoms like coughing and difficulty breathing. In New England this week, people have been breathing much higher concentrations of PM2.5 than usual. People who are particularly vulnerable to the effects are likely experiencing more severe impacts, such as older people and people with underlying conditions. But PM2.5 affects everyone. While the number and impact of wildfires varies from year to year, the associated air pollution from them generally lead to tens of thousands of premature deaths in the U.S. overall annually. There is also some evidence that PM2.5 from fires could be particularly damaging to health.

    While we in New England usually have relatively lower levels of pollution, it’s important also to note that some cities around the globe experience very high PM2.5 on a regular basis, not only from wildfires, but other sources such as power plants and industry. So, while we’re feeling the effects over the past few days, we should remember the broader importance of reducing PM2.5 levels overall for human health everywhere.

    Q: While firefighters battle fires directly this wildfire season, what can we do to reduce the effects of associated air pollution? And what can we do in the long-term, to prevent or reduce wildfire impacts?

    Selin: In the short term, protecting yourself from the impacts of PM2.5 is important. Limiting time outdoors, avoiding outdoor exercise, and wearing a high-quality mask are some strategies that can minimize exposure. Air filters can help reduce the concentrations of particles in indoor air. Taking measures to avoid exposure is particularly important for vulnerable groups. It’s also important to note that these strategies aren’t equally possible for everyone (for example, people who work outside) — stressing the importance of developing new strategies to address the underlying causes of increasing wildfires.

    Over the long term, mitigating climate change is important — because warm and dry conditions lead to wildfires, warming increases fire risk. Preventing the fires that are ignited by people or human activities can help.  Another way that damages can be mitigated in the longer term is by exploring land management strategies that could help manage fire intensity. More

  • in

    Megawatt electrical motor designed by MIT engineers could help electrify aviation

    Aviation’s huge carbon footprint could shrink significantly with electrification. To date, however, only small all-electric planes have gotten off the ground. Their electric motors generate hundreds of kilowatts of power. To electrify larger, heavier jets, such as commercial airliners, megawatt-scale motors are required. These would be propelled by hybrid or turbo-electric propulsion systems where an electrical machine is coupled with a gas turbine aero-engine.

    To meet this need, a team of MIT engineers is now creating a 1-megawatt motor that could be a key stepping stone toward electrifying larger aircraft. The team has designed and tested the major components of the motor, and shown through detailed computations that the coupled components can work as a whole to generate one megawatt of power, at a weight and size competitive with current small aero-engines.

    For all-electric applications, the team envisions the motor could be paired with a source of electricity such as a battery or a fuel cell. The motor could then turn the electrical energy into mechanical work to power a plane’s propellers. The electrical machine could also be paired with a traditional turbofan jet engine to run as a hybrid propulsion system, providing electric propulsion during certain phases of a flight.

    “No matter what we use as an energy carrier — batteries, hydrogen, ammonia, or sustainable aviation fuel — independent of all that, megawatt-class motors will be a key enabler for greening aviation,” says Zoltan Spakovszky, the T. Wilson Professor in Aeronautics and the Director of the Gas Turbine Laboratory (GTL) at MIT, who leads the project.

    Spakovszky and members of his team, along with industry collaborators, will present their work at a special session of the American Institute of Aeronautics and Astronautics – Electric Aircraft Technologies Symposium (EATS) at the Aviation conference in June.

    The MIT team is composed of faculty, students, and research staff from GTL and the MIT Laboratory for Electromagnetic and Electronic Systems: Henry Andersen Yuankang Chen, Zachary Cordero, David Cuadrado,  Edward Greitzer, Charlotte Gump, James Kirtley, Jr., Jeffrey Lang, David Otten, David Perreault, and Mohammad Qasim,  along with Marc Amato of Innova-Logic LLC. The project is sponsored by Mitsubishi Heavy Industries (MHI).

    Heavy stuff

    To prevent the worst impacts from human-induced climate change, scientists have determined that global emissions of carbon dioxide must reach net zero by 2050. Meeting this target for aviation, Spakovszky says, will require “step-change achievements” in the design of unconventional aircraft, smart and flexible fuel systems, advanced materials, and safe and efficient electrified propulsion. Multiple aerospace companies are focused on electrified propulsion and the design of megawatt-scale electric machines that are powerful and light enough to propel passenger aircraft.

    “There is no silver bullet to make this happen, and the devil is in the details,” Spakovszky says. “This is hard engineering, in terms of co-optimizing individual components and making them compatible with each other while maximizing overall performance. To do this means we have to push the boundaries in materials, manufacturing, thermal management, structures and rotordynamics, and power electronics”

    Broadly speaking, an electric motor uses electromagnetic force to generate motion. Electric motors, such as those that power the fan in your laptop, use electrical energy — from a battery or power supply — to generate a magnetic field, typically through copper coils. In response, a magnet, set near the coils, then spins in the direction of the generated field and can then drive a fan or propeller.

    Electric machines have been around for over 150 years, with the understanding that, the bigger the appliance or vehicle, the larger the copper coils  and the magnetic rotor, making the machine heavier. The more power the electrical machine generates, the more heat it produces, which requires additional elements to keep the components cool — all of which can take up space and add significant weight to the system, making it challenging for airplane applications.

    “Heavy stuff doesn’t go on airplanes,” Spakovszky says. “So we had to come up with a compact, lightweight, and powerful architecture.”

    Good trajectory

    As designed, the MIT electric motor and power electronics are each about the size of a checked suitcase weighing less than an adult passenger.

    The motor’s main components are: a high-speed rotor, lined with an array of magnets with varying orientation of polarity; a compact low-loss stator that fits inside the rotor and contains an intricate array of copper windings; an advanced heat exchanger that keeps the components cool while transmitting the torque of the machine; and a distributed power electronics system, made from 30 custom-built circuit boards, that precisely change the currents running through each of the stator’s copper windings, at high frequency.

    “I believe this is the first truly co-optimized integrated design,” Spakovszky says. “Which means we did a very extensive design space exploration where all considerations from thermal management, to rotor dynamics, to power electronics and electrical machine architecture were assessed in an integrated way to find out what is the best possible combination to get the required specific power at one megawatt.”

    As a whole system, the motor is designed such that the distributed circuit boards are close coupled with the electrical machine to minimize transmission loss and to allow effective air cooling through the integrated heat exchanger.

    “This is a high-speed machine, and to keep it rotating while creating torque, the magnetic fields have to be traveling very quickly, which we can do through our circuit boards switching at high frequency,” Spakovszky says.

    To mitigate risk, the team has built and tested each of the major components individually, and shown that they can operate as designed and at conditions exceeding normal operational demands. The researchers plan to assemble the first fully working electric motor, and start testing it in the fall.

    “The electrification of aircraft has been on a steady rise,” says Phillip Ansell, director of the Center for Sustainable Aviation at the University of Illinois Urbana-Champaign, who was not involved in the project. “This group’s design uses a wonderful combination of conventional and cutting-edge methods for electric machine development, allowing it to offer both robustness and efficiency to meet the practical needs of aircraft of the future.”

    Once the MIT team can demonstrate the electric motor as a whole, they say the design could power regional aircraft and could also be a companion to conventional jet engines, to enable hybrid-electric propulsion systems. The team also envision that multiple one-megawatt motors could power multiple fans distributed along the wing on future aircraft configurations. Looking ahead, the foundations of the one-megawatt electrical machine design could potentially be scaled up to multi-megawatt motors, to power larger passenger planes.

    “I think we’re on a good trajectory,” says Spakovszky, whose group and research have focused on more than just gas turbines. “We are not electrical engineers by training, but addressing the 2050 climate grand challenge is of utmost importance; working with electrical engineering faculty, staff and students for this goal can draw on MIT’s breadth of technologies so the whole is greater than the sum of the parts. So we are reinventing ourselves in new areas. And MIT gives you the opportunity to do that.” More

  • in

    Q&A: Gabriela Sá Pessoa on Brazilian politics, human rights in the Amazon, and AI

    Gabriela Sá Pessoa is a journalist passionate about the intersection of human rights and climate change. She came to MIT from The Washington Post, where she worked from her home country of Brazil as a news researcher reporting on the Amazon, human rights violations, and environmental crimes. Before that, she held roles at two of the most influential media outlets in Brazil: Folha de S.Paulo, covering local and national politics, and UOL, where she was assigned to coronavirus coverage and later joined the investigative desk.

    Sá Pessoa was awarded the 2023 Elizabeth Neuffer Fellowship by the International Women’s Media Foundation, which supports its recipient with research opportunities at MIT and further training at The Boston Globe and The New York Times. She is currently based at the MIT Center for International Studies. Recently, she sat down to talk about her work on the Amazon, recent changes in Brazilian politics, and her experience at MIT.

    Q: One focus of your reporting is human rights and environmental issues in the Amazon. As part of your fellowship, you contributed to a recent editorial in The Boston Globe on fighting deforestation in the region. Why is reporting on this topic important?

    A: For many Brazilians, the Amazon is a remote and distant territory, and people living in other parts of the country aren’t fully aware of all of its problems and all of its potential. This is similar to the United States — like many people here, they don’t see how they could be related to the human rights violations and the destruction of the rainforest that are happening.

    But, we are all complicit in the destruction in some ways because the economic forces driving the deforestation of the rainforest all have a market, and these markets are everywhere, in Brazil and here in the U.S. I think it is part of journalism to show people in the U.S., Brazil, and elsewhere that we are part of the problem, and as part of the problem, we should be part of the solution by being aware of it, caring about it, and taking actions that are within our power.

    In the U.S., for example, voters can influence policy like the current negotiations for financial support for fighting deforestation in the Amazon. And as consumers, we can be more aware — is the beef we are consuming related to deforestation? Is the timber on our construction sites coming from the Amazon?

    Truth is, in Brazil, we have turned our backs to the Amazon for so long. It’s our duty to protect it for the sake of climate change. If we don’t take care of it, there will be serious consequences to our local climate, our local communities, and for the whole world. It’s a huge matter of human rights because our living depends on that, both locally and globally.

    Q: Before coming to MIT, you were at The Washington Post in São Paulo, where you contributed to reporting on the recent presidential election. What changes do you expect to see with the new Lula administration?

    A: To climate and environment, the first signs were positive. But the optimism did not last a semester, as politics is imposing itself. Lula is facing increasing difficulty building a majority in a conservative Congress, over which agribusiness holds tremendous power and influence. As we speak, environmental policy is under Congress’s attack. A committee in the House has just passed a ruling drowning power from the environmental minister, Marina Silva, and from the recently created National Indigenous People Ministry, led by Sonia Guajajara. Both Marina and Sonia are global ecological and human rights champions, and I wonder what the impact would be if Congress ratifies these changes. It is still unclear how it would impact the efforts to fight deforestation.

    In addition, there is an internal dispute in the government between environmentalists and those in favor of mining and big infrastructure projects. Petrobras, the state-run oil company, is trying to get authorization to research and drill offshore oil reserves in the mouth of the Amazon River. The federal environmental protection agency did a conclusive report suspending the operation, saying it is critical and threatens the region’s sensitive environment and indigenous communities. And, of course, it would be another source of greenhouse gas emissions. ​

    That said, it’s not a denialist government. I should mention the quick response from the administration to the Yanomami genocide earlier this year. In January, an independent media organization named Sumaúma reported on the deaths of over five hundred indigenous children from the Yanomami community in the Amazon over the past four years. This was a huge shock in Brazil, and the administration responded immediately. They sent task forces to the region and are now expelling the illegal miners that were bringing diseases and were ultimately responsible for these humanitarian tragedies. To be clear: It is still a problem. It’s not solved. But this is already a good example of positive action.

    Fighting deforestation in the Amazon and the Cerrado, another biome critical to climate regulation in Brazil, will not be easy. Rebuilding the environmental policy will take time, and the agencies responsible for enforcement are understaffed. In addition, environmental crime has become more sophisticated, connecting with other major criminal organizations in the country. In April, for the first time, there was a reduction in deforestation in the Amazon after two consecutive months of higher numbers. These are still preliminary data, and it is still too early to confirm whether they signal a turning point and may indicate a tendency for deforestation to decrease. On the other hand, the Cerrado registered record deforestation in April.

    There are problems everywhere in the economy and politics that Lula will have to face. In the first week of the new term, on Jan. 8, we saw an insurrection in Brasília, the country’s capital, from Bolsonaro voters who wouldn’t accept the election results. The events resembled what Americans saw in the Capitol attacks in 2021. We also seem to have imported problems from the United States, like mass killings in schools. We never used to have them in Brazil, but we are seeing them now. I’m curious to see how the country will address those problems and if the U.S. can also inspire solutions to that. That’s something I’m thinking about, being here: Are there solutions here? What are they?

    Q: What have you learned so far from MIT and your fellowship?

    A: It’s hard to put everything into words! I’m mostly taking courses and attending lectures on pressing issues to humanity, like existential threats such as climate change, artificial intelligence, biosecurity, and more.

    I’m learning about all these issues, but also, as a journalist, I think that I’m learning more about how I can incorporate the scientific approach into my work; for example, being more pro-positive. I am already a rigorous journalist, but I am thinking about how I can be more rigorous and more transparent about my methods. Being in the academic and scientific environment is inspiring that way.

    I am also learning a lot about how to cover scientific topics and thinking about how technology can offer us solutions (and problems). I’m learning so much that I think I will need some time to digest and fully understand what this period means for me!

    Q: You mentioned artificial intelligence. Would you like to weigh in on this subject and what you have been learning?

    A: It has been a particularly good semester to be at MIT. Generative artificial intelligence, which became more popular after ChatGPT, has been a topic of intense discussion this semester, and I was able to attend many classes, seminars, and events about AI here, especially from a policy perspective.

    Algorithms have influenced the economy, society, and public health for many years. It has had great outcomes, but also injustice. Popular systems like ChatGPT have made this technology incredibly popular and accessible, even for those with no computer knowledge. This is scary and, at the same time, very exciting. Here, I learned that we need guardrails for artificial intelligence, just like other technologies. Think of the pharmaceutical or automobile industries, which have to meet safety criteria before putting a new product on the market. But with artificial intelligence, it’s going to be different; supply chains are very complex and sometimes not very transparent, and the speed at which new resources develop is so fast that it challenges the policymaker’s ability to respond.

    Artificial intelligence is changing the world radically. It’s exciting to have the privilege of being here and seeing these discussions take place. After all, I have a future to report on. At least, I hope so!

    Q: What are you working on going forward?

    A: After MIT, I am going to New York, where I’ll be working with The New York Times in their internship program. I’m really excited about that because it will be a different pace from MIT. I am also doing research on carbon credit markets and hope to continue that project, either in a reporting or academic environment. 

    Honestly, I feel inspired to keep studying. I would love to spend more time here at MIT. I would love to do a master’s or join any program here. I’m going to work on coming back to academia because I think that I need to learn more from the academic environment. I hope that it’s at MIT because honestly, it’s the most exciting environment that I’ve ever been in, with all the people here from different fields and different backgrounds. I’m not a scientist, but it’s inspiring to be with them, and if there’s a way that I could contribute to their work in a way that they’re contributing to my work, I’ll be thrilled to spend more time here. More

  • in

    River erosion can shape fish evolution, study suggests

    If we could rewind the tape of species evolution around the world and play it forward over hundreds of millions of years to the present day, we would see biodiversity clustering around regions of tectonic turmoil. Tectonically active regions such as the Himalayan and Andean mountains are especially rich in flora and fauna due to their shifting landscapes, which act to divide and diversify species over time.

    But biodiversity can also flourish in some geologically quieter regions, where tectonics hasn’t shaken up the land for millennia. The Appalachian Mountains are a prime example: The range has not seen much tectonic activity in hundreds of millions of years, and yet the region is a notable hotspot of freshwater biodiversity.

    Now, an MIT study identifies a geological process that may shape the diversity of species in tectonically inactive regions. In a paper appearing today in Science, the researchers report that river erosion can be a driver of biodiversity in these older, quieter environments.

    They make their case in the southern Appalachians, and specifically the Tennessee River Basin, a region known for its huge diversity of freshwater fishes. The team found that as rivers eroded through different rock types in the region, the changing landscape pushed a species of fish known as the greenfin darter into different tributaries of the river network. Over time, these separated populations developed into their own distinct lineages.

    The team speculates that erosion likely drove the greenfin darter to diversify. Although the separated populations appear outwardly similar, with the greenfin darter’s characteristic green-tinged fins, they differ substantially in their genetic makeup. For now, the separated populations are classified as one single species. 

    “Give this process of erosion more time, and I think these separate lineages will become different species,” says Maya Stokes PhD ’21, who carried out part of the work as a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS).

    The greenfin darter may not be the only species to diversify as a consequence of river erosion. The researchers suspect that erosion may have driven many other species to diversify throughout the basin, and possibly other tectonically inactive regions around the world.

    “If we can understand the geologic factors that contribute to biodiversity, we can do a better job of conserving it,” says Taylor Perron, the Cecil and Ida Green Professor of Earth, Atmospheric, and Planetary Sciences at MIT.

    The study’s co-authors include collaborators at Yale University, Colorado State University, the University of Tennessee, the University of Massachusetts at Amherst, and the Tennessee Valley Authority (TVA). Stokes is currently an assistant professor at Florida State University.

    Fish in trees

    The new study grew out of Stokes’ PhD work at MIT, where she and Perron were exploring connections between geomorphology (the study of how landscapes evolve) and biology. They came across work at Yale by Thomas Near, who studies lineages of North American freshwater fishes. Near uses DNA sequence data collected from freshwater fishes across various regions of North America to show how and when certain species evolved and diverged in relation to each other.

    Near brought a curious observation to the team: a habitat distribution map of the greenfin darter showing that the fish was found in the Tennessee River Basin — but only in the southern half. What’s more, Near had mitochondrial DNA sequence data showing that the fish’s populations appeared to be different in their genetic makeup depending on the tributary in which they were found.

    To investigate the reasons for this pattern, Stokes gathered greenfin darter tissue samples from Near’s extensive collection at Yale, as well as from the field with help from TVA colleagues. She then analyzed DNA sequences from across the entire genome, and compared the genes of each individual fish to every other fish in the dataset. The team then created a phylogenetic tree of the greenfin darter, based on the genetic similarity between fish.

    From this tree, they observed that fish within a tributary were more related to each other than to fish in other tributaries. What’s more, fish within neighboring tributaries were more similar to each other than fish from more distant tributaries.

    “Our question was, could there have been a geological mechanism that, over time, took this single species, and splintered it into different, genetically distinct groups?” Perron says.

    A changing landscape

    Stokes and Perron started to observe a “tight correlation” between greenfin darter habitats and the type of rock where they are found. In particular, much of the southern half of the Tennessee River Basin, where the species abounds, is made of metamorphic rock, whereas the northern half consists of sedimentary rock, where the fish are not found.

    They also observed that the rivers running through metamorphic rock are steeper and more narrow, which generally creates more turbulence, a characteristic greenfin darters seem to prefer. The team wondered: Could the distribution of greenfin darter habitat have been shaped by a changing landscape of rock type, as rivers eroded into the land over time?

    To check this idea, the researchers developed a model to simulate how a landscape evolves as rivers erode through various rock types. They fed the model information about the rock types in the Tennessee River Basin today, then ran the simulation back to see how the same region may have looked millions of years ago, when more metamorphic rock was exposed.

    They then ran the model forward and observed how the exposure of metamorphic rock shrank over time. They took special note of where and when connections between tributaries crossed into non-metamorphic rock, blocking fish from passing between those tributaries. They drew up a simple timeline of these blocking events and compared this to the phylogenetic tree of diverging greenfin darters. The two were remarkably similar: The fish seemed to form separate lineages in the same order as when their respective tributaries became separated from the others.

    “It means it’s plausible that erosion through different rock layers caused isolation between different populations of the greenfin darter and caused lineages to diversify,” Stokes says.

    “This study is highly compelling because it reveals a much more subtle but powerful mechanism for speciation in passive margins,” says Josh Roering, professor of Earth sciences at the University of Oregon, who was not involved in the study. “Stokes and Perron have revealed some of the intimate connections between aquatic species and geology that may be much more common than we realize.”

    This research was supported, in part, by the mTerra Catalyst Fund and the U.S. National Science Foundation through the AGeS Geochronology Program and the Graduate Research Fellowship Program. While at MIT, Stokes received support through the Martin Fellowship for Sustainability and the Hugh Hampton Young Fellowship. More

  • in

    Civil discourse project to launch at MIT

    A new project on civil discourse aims to promote open and civil discussion of difficult topics on the MIT campus.

    The project, which will launch this fall, includes a speaker series and curricular activities in MIT’s Concourse program for first-year students. MIT philosophers Alex Byrne and Brad Skow from the Department of Linguistics and Philosophy lead the project, in close coordination with Anne McCants, professor of history and director of Concourse, and Linda Rabieh, a Concourse lecturer. 

    The Arthur Vining Davis Foundations provided a substantial grant to help fund the project. Promoting civil discourse on college campuses is an area of focus for AVDF — they sponsor related projects at many schools, including Duke University and Davidson College.

    The first event in the speaker series is planned for the evening of Oct. 24, on the question of how we should respond to climate change. The two speakers are Professor Steven Koonin (New York University, ex-provost of Caltech, and an MIT alum) and MIT Professor Kerry Emanuel from the Department of Earth, Atmospheric, and Planetary Sciences. Eight such events are planned over two years. Each will feature speakers discussing difficult or controversial topics, and will aim to model civil debate and dialogue involving experts from inside and outside the MIT community. 

    Byrne and Skow said that the project is meant to counterbalance a growing unwillingness to listen to others or to tolerate the expression of certain ideas. But the goal, says Byrne, “is not to platform heterodox views for their own sake, or to needlessly provoke. Rather, we want to platform collegial, informed conversations on important matters about which there is reasonable disagreement.” 

    Faculty at MIT voted last fall to adopt a statement on free expression, following a report written by an MIT working group. The project organizers want to build on that vote and the report. “The free expression statement says that discussion of controversial topics should not be prohibited or punished,” Skow says, “but the longer working-group report goes farther, urging MIT to promote free expression. This project is an attempt to do that — to show that open discussion and open inquiry are valuable.” 

    “It has the potential to generate lively, constructive, respectful discussion on campus and to show by example both that controversial views are not suppressed at MIT and that we learn by engaging with them openly,” says Kieran Setiya, the head of MIT Philosophy. Agustín Rayo, dean of the School of Humanities and Social Sciences, thinks that the project can “play a critical role in demonstrating — to faculty, students, staff, alumni, and friends — the Institute’s commitment to free speech and civil discourse.”

    Apart from climate change, topics for the first series of events include feminism and progress (Nov. 9, with Mary Harrington, author of “Feminism against Progress”), and Covid public health policy (Feb. 26, with Vinay Prasad, professor of epidemiology and biostatistics at the University of California at San Francisco). Organizers say they hope the speaker series becomes a permanent part of MIT’s intellectual life after the grant period. To amplify the work to an audience beyond MIT, the project organizers have partnered with the Johns Hopkins University political scientist Yascha Mounk and his team at Persuasion to produce podcast episodes around the speaker events. They will air as special episodes of Mounk’s podcast “The Good Fight.” 

    The Concourse component of the project will take advantage of the small learning community setting to develop the tools and experience for productive disagreement. 

    “The core mission of Concourse depends on both the principle of free expression and the practice of civil discourse,” says McCants, “making it a natural springboard for promoting both across the intellectual culture of MIT.”  

    Concourse will experiment with, among other things, seminars discussing the history and practice of freedom of expression, roundtable discussions, and student-led debates. Braver Angels, an organization with the mission of reducing political polarization, is another partner, along with Persuasion. 

    “Our goal,” says Rabieh, “is to facilitate, in collaboration with Braver Angels, the probing, intense, and often difficult conversations that lie at the heart of the Concourse program and that are the hallmark of education.” More

  • in

    Exploring the links between diet and cancer

    Every three to five days, all of the cells lining the human intestine are replaced. That constant replenishment of cells helps the intestinal lining withstand the damage caused by food passing through the digestive tract.

    This rapid turnover of cells relies on intestinal stem cells, which give rise to all of the other types of cells found in the intestine. Recent research has shown that those stem cells are heavily influenced by diet, which can help keep them healthy or stimulate them to become cancerous.

    “Low-calorie diets such as fasting and caloric restriction can have antiaging effects and antitumor effects, and we want to understand why that is. On the other hand, diets that lead to obesity can promote diseases of aging, such as cancer,” says Omer Yilmaz, the Eisen and Chang Career Development Associate Professor of Biology at MIT.

    For the past decade, Yilmaz has been studying how different diets and environmental conditions affect intestinal stem cells, and how those factors can increase the risk of cancer and other diseases. This work could help researchers develop new ways to improve gastrointestinal health, either through dietary interventions or drugs that mimic the beneficial effects of certain diets, he says. 

    “Our findings have raised the possibility that fasting interventions, or small molecules that mimic the effects of fasting, might have a role in improving intestinal regeneration,” says Yilmaz, who is also a member of MIT’s Koch Institute for Integrative Cancer Research.

    A clinical approach

    Yilmaz’s interest in disease and medicine arose at an early age. His father practiced internal medicine, and Yilmaz spent a great deal of time at his father’s office after school, or tagging along at the hospital where his father saw patients.

    “I was very interested in medicines and how medicines were used to treat diseases,” Yilmaz recalls. “He’d ask me questions, and many times I wouldn’t know the answer, but he would encourage me to figure out the answers to his questions. That really stimulated my interest in biology and in wanting to become a doctor.”

    Knowing that he wanted to go into medicine, Yilmaz applied and was accepted to an eight-year, combined bachelor’s and MD program at the University of Michigan. As an undergraduate, this gave him the freedom to explore areas of interest without worrying about applying to medical school. While majoring in biochemistry and physics, he did undergraduate research in the field of protein folding.

    During his first year of medical school, Yilmaz realized that he missed doing research, so he decided to apply to the MD/PhD program at the University of Michigan. For his PhD research, he studied blood-forming stem cells and identified new markers that allowed such cells to be more easily isolated from the bone marrow.

    “This was important because there’s a lot of interest in understanding what makes a stem cell a stem cell, and how much of it is an internal program versus signals from the microenvironment,” Yilmaz says.

    After finishing his PhD and MD, he thought about going straight into research and skipping a medical residency, but ended up doing a residency in pathology at Massachusetts General Hospital. During that time, he decided to switch his research focus from blood-forming stem cells to stem cells found in the gastrointestinal tract.

    “The GI tract seemed very interesting because in contrast to the bone marrow, we knew very little about the identity of GI stem cells,” Yilmaz says. “I knew that once GI stem cells were identified, there’d be a lot of interesting questions about how they respond to diet and how they respond to other environmental stimuli.”

    Dietary questions

    To delve into those questions, Yilmaz did postdoctoral research at the Whitehead Institute, where he began investigating the connections between stem cells, metabolism, diet, and cancer.

    Because intestinal stem cells are so long-lived, they are more likely to accumulate genetic mutations that make them susceptible to becoming cancerous. At the Whitehead Institute, Yilmaz began studying how different diets might influence this vulnerability to cancer, a topic that he carried into his lab at MIT when he joined the faculty in 2014.

    One question his lab has been exploring is why low-calorie diets often have protective effects, including a boost in longevity — a phenomenon that has been seen in many studies in animals and humans.

    In a 2018 study, his lab found that a 24-hour fast dramatically improves stem cells’ ability to regenerate. This effect was seen in both young and aged mice, suggesting that even in old age, fasting or drugs that mimic the effects of fasting could have a beneficial effect.

    On the flip side, Yilmaz is also interested in why a high-fat diet appears to promote the development of cancer, especially colorectal cancer. In a 2016 study, he found that when mice consume a high-fat diet, it triggers a significant increase in the number of intestinal stem cells. Also, some non-stem-cell populations begin to resemble stem cells in their behavior. “The upshot of these changes is that both stem cells and non-stem-cells can give rise to tumors in a high-fat diet state,” Yilmaz says.

    To help with these studies, Yilmaz’s lab has developed a way to use mouse or human intestinal stem cells to generate miniature intestines or colons in cell culture. These “organoids” can then be exposed to different nutrients in a very controlled setting, allowing researchers to analyze how different diets affect the system.

    Recently, his lab adapted the system to allow them to expand their studies to include the role of immune cells, fibroblasts, and other supportive cells found in the microenvironment of stem cells. “It would be remiss of us to focus on just one cell type,” Yilmaz says. “We’re looking at how these different dietary interventions impact the entire stem cell neighborhood.”

    While Yilmaz spends most of his time running his lab at MIT, he also devotes six to eight weeks per year to his work at MGH, where he is an associate pathologist focusing on gastrointestinal pathology.

    “I enjoy my clinical work, and it always reminds me about the importance of the research we do,” he says. “Seeing colon cancer and other GI cancers under the microscope, and seeing their complexity, reminds me of the importance of our mission to figure out how we can prevent these cancers from forming.” More