More stories

  • in

    MIT Policy Hackathon produces new solutions for technology policy challenges

    Almost three years ago, the Covid-19 pandemic changed the world. Many are still looking to uncover a “new normal.”

    “Instead of going back to normal, [there’s a new generation that] wants to build back something different, something better,” says Jorge Sandoval, a second-year graduate student in MIT’s Technology and Policy Program (TPP) at the Institute for Data, Systems and Society (IDSS). “How do we communicate this mindset to others, that the world cannot be the same as before?”

    This was the inspiration behind “A New (Re)generation,” this year’s theme for the IDSS-student-run MIT Policy Hackathon, which Sandoval helped to organize as the event chair. The Policy Hackathon is a weekend-long, interdisciplinary competition that brings together participants from around the globe to explore potential solutions to some of society’s greatest challenges. 

    Unlike other competitions of its kind, Sandoval says MIT’s event emphasizes a humanistic approach. “The idea of our hackathon is to promote applications of technology that are humanistic or human-centered,” he says. “We take the opportunity to examine aspects of technology in the spaces where they tend to interact with society and people, an opportunity most technical competitions don’t offer because their primary focus is on the technology.”

    The competition started with 50 teams spread across four challenge categories. This year’s categories included Internet and Cybersecurity, Environmental Justice, Logistics, and Housing and City Planning. While some people come into the challenge with friends, Sandoval said most teams form organically during an online networking meeting hosted by MIT.

    “We encourage people to pair up with others outside of their country and to form teams of different diverse backgrounds and ages,” Sandoval says. “We try to give people who are often not invited to the decision-making table the opportunity to be a policymaker, bringing in those with backgrounds in not only law, policy, or politics, but also medicine, and people who have careers in engineering or experience working in nonprofits.”

    Once an in-person event, the Policy Hackathon has gone through its own regeneration process these past three years, according to Sandoval. After going entirely online during the pandemic’s height, last year they successfully hosted the first hybrid version of the event, which served as their model again this year.

    “The hybrid version of the event gives us the opportunity to allow people to connect in a way that is lost if it is only online, while also keeping the wide range of accessibility, allowing people to join from anywhere in the world, regardless of nationality or income, to provide their input,” Sandoval says.

    For Swetha Tadisina, an undergraduate computer science major at Lafayette College and participant in the internet and cybersecurity category, the hackathon was a unique opportunity to meet and work with people much more advanced in their careers. “I was surprised how such a diverse team that had never met before was able to work so efficiently and creatively,” Tadisina says.

    Erika Spangler, a public high school teacher from Massachusetts and member of the environmental justice category’s winning team, says that while each member of “Team Slime Mold” came to the table with a different set of skills, they managed to be in sync from the start — even working across the nine-and-a-half-hour time difference the four-person team faced when working with policy advocate Shruti Nandy from Calcutta, India.

    “We divided the project into data, policy, and research and trusted each other’s expertise,” Spangler says, “Despite having separate areas of focus, we made sure to have regular check-ins to problem-solve and cross-pollinate ideas.”

    During the 48-hour period, her team proposed the creation of an algorithm to identify high-quality brownfields that could be cleaned up and used as sites for building renewable energy. Their corresponding policy sought to mandate additional requirements for renewable energy businesses seeking tax credits from the Inflation Reduction Act.

    “Their policy memo had the most in-depth technical assessment, including deep dives in a few key cities to show the impact of their proposed approach for site selection at a very granular level,” says Amanda Levin, director of policy analysis for the Natural Resources Defense Council (NRDC). Levin acted as both a judge and challenge provider for the environmental justice category.

    “They also presented their policy recommendations in the memo in a well-thought-out way, clearly noting the relevant actor,” she adds. This clarity around what can be done, and who would be responsible for those actions, is highly valuable for those in policy.”

    Levin says the NRDC, one of the largest environmental nonprofits in the United States, provided five “challenge questions,” making it clear that teams did not need to address all of them. She notes that this gave teams significant leeway, bringing a wide variety of recommendations to the table. 

    “As a challenge partner, the work put together by all the teams is already being used to help inform discussions about the implementation of the Inflation Reduction Act,” Levin says. “Being able to tap into the collective intelligence of the hackathon helped uncover new perspectives and policy solutions that can help make an impact in addressing the important policy challenges we face today.”

    While having partners with experience in data science and policy definitely helped, fellow Team Slime Mold member Sara Sheffels, a PhD candidate in MIT’s biomaterials program, says she was surprised how much her experiences outside of science and policy were relevant to the challenge: “My experience organizing MIT’s Graduate Student Union shaped my ideas about more meaningful community involvement in renewables projects on brownfields. It is not meaningful to merely educate people about the importance of renewables or ask them to sign off on a pre-planned project without addressing their other needs.”

    “I wanted to test my limits, gain exposure, and expand my world,” Tadisina adds. “The exposure, friendships, and experiences you gain in such a short period of time are incredible.”

    For Willy R. Vasquez, an electrical and computer engineering PhD student at the University of Texas, the hackathon is not to be missed. “If you’re interested in the intersection of tech, society, and policy, then this is a must-do experience.” More

  • in

    Machinery of the state

    In Mai Hassan’s studies of Kenya, she documented the emergence of a sprawling administrative network officially billed as encouraging economic development, overseeing the population, and bolstering democracy. But Hassan’s field interviews and archival research revealed a more sinister purpose for the hundreds of administrative and security offices dotting the nation: “They were there to do the presidents’ bidding, which often involved coercing their own countrymen.”

    This research served as a catalyst for Hassan, who joined MIT as an associate professor of political science in July, to investigate what she calls the “politicized management of bureaucracy and the state.” She set out to “understand the motivations, capacities, and roles of people administering state programs and social functions,” she says. “I realized the state is not a faceless being, but instead comprised of bureaucrats carrying out functions on behalf of the state and the regime that runs it.”

    Today, Hassan’s portfolio encompasses not just the bureaucratic state but democratization efforts in Kenya and elsewhere in the East Africa region, including her native Sudan. Her research highlights the difficulties of democratization. “I’m finding that the conditions under which people come together for overthrowing an autocratic regime really matter, because those conditions may actually impede a nation from achieving democracy,” she says.

    A coordinated bureaucracy

    Hassan’s academic engagement with the state’s administrative machinery began during graduate school at Harvard University, where she earned her master’s and doctorate in government. While working with a community trash and sanitation program in some Kenyan Maasai communities, Hassan recalls “shepherding myself from office to office, meeting different bureaucrats to obtain the same approvals but for different jurisdictions.” The Kenyan state had recently set up hundreds of new local administrative units, motivated by what it claimed was the need for greater efficiency. But to Hassan’s eyes, “the administrative network was not well organized, seemed costly to maintain, and seemed to hinder — not bolster — development,” she says. What then, she wondered, was “the political logic behind such state restructuring?”

    Hassan began researching this bureaucratic transformation of Kenya, speaking with administrators in communities large and small who were charged with handling the business of the state. These studies yielded a wealth of findings for her dissertation, and for multiple journals.

    But upon finishing this tranche of research, Hassan realized that it was insufficient simply to study the structure of the state. “Understanding the role of new administrative structures for politics, development, and governance fundamentally requires that we understand who the government has put in charge of them,” she says. Among her insights:

    “The president’s office knows a lot of these administrators, and thinks about their strengths, limitations, and fit within a community,” says Hassan. Some administrators served the purposes of the central government by setting up water irrigation projects or building a new school. But in other villages, the state chose administrators who could act “much more coercively, ignoring development needs, throwing youth who supported the opposition into jail, and spending resources exclusively on policing.”

    Hassan’s work showed that in communities characterized by strong political opposition, “the local administration was always more coercive, regardless of an elected or autocratic president,” she says. Notably, the tenures of such officials proved shorter than those of their peers. “Once administrators get to know a community — going to church and the market with residents — it’s hard to coerce them,” explains Hassan.

    These short tenures come with costs, she notes: “Spending significant time in a station is useful for development, because you know exactly whom to hire if you want to build a school or get something done efficiently.” Politicizing these assignments undermines efforts at delivery of services and, more broadly, economic improvement nationwide. “Regimes that are more invested in retaining power must devote resources to establishing and maintaining control, resources that could otherwise be used for development and the welfare of citizens,” she says.

    Hassan wove together her research covering three presidents over a 50-year period, in the book, “Regime Threats and State Solutions: Bureaucratic Loyalty and Embeddedness in Kenya” (2020, Cambridge University Press), named a Foreign Affairs Best Book of 2020.

    Sudanese roots

    The role of the state in fulfilling the needs of its citizens has long fascinated Hassan. Her grandfather, who had served as Sudan’s ambassador to the USSR, talked to her about the advantages of a centralized government “that allocated resources to reduce inequality,” she says.

    Politics often dominated the conversation in gatherings of Hassan’s family and friends. Her parents immigrated to northern Virginia when she was very young, and many relatives joined them, part of a steady flow of Sudanese fleeing political turmoil and oppression.

    “A lot of people had expected more from the Sudanese state after independence and didn’t get it,” she says. “People had hopes for what the government could and should do.”

    Hassan’s Sudanese roots and ongoing connection to the Sudanese community have shaped her academic interests and goals. At the University of Virginia, she gravitated toward history and economics classes. But it was her time at the Ralph Bunche Summer institute that perhaps proved most pivotal in her journey. This five-week intensive program is offered by the American Political Science Association to introduce underrepresented undergraduate students to doctoral studies. “It was really compelling in this program to think rigorously about all the political ideas I’d heard as I was growing up, and find ways to challenge some assertions empirically,” she says.

    Regime change and civil society

    At Harvard, Hassan first set out to focus on Sudan for her doctoral program. “There wasn’t much scholarship on the country, and what there was lacked rigor,” she says. “That was something that needed to change.” But she decided to postpone this goal after realizing that she might be vulnerable as a student conducting field research there. She landed instead in Kenya, where she honed her interviewing and data collection skills.

    Today, empowered by her prior work, she has returned to Sudan. “I felt that the popular uprising in Sudan and ousting of the Islamist regime in 2019 should be documented and analyzed,” she says. “It was incredible that hundreds of thousands, if not millions, acted collectively to uproot a dictator, in the face of brutal violence from the state.”But “democracy is still uncertain there,” says Hassan. The broad coalition behind regime change “doesn’t know how to govern because different people and different sectors of society have different ideas about what democratic Sudan should look like,” she says. “Overthrowing an autocratic regime and having civil society come together to figure out what’s going to replace it require different things, and it’s unclear if a movement that accomplishes the first is well-suited to do the second.”

    Hassan believes that in order to create lasting democratization, “you need the hard work of building organizations, developing ways in which members learn to compromise among themselves, and make decisions and rules for how to move forward.”

    Hassan is enjoying the fall semester and teaching courses on autocracy and authoritarian regimes. She is excited as well about developing her work on African efforts at democratic mobilization in a political science department she describes as “policy-forward.”

    Over time, she hopes to connect with Institute scholars in the hard sciences to think about other challenges these nations are facing, such as climate change. “It’s really hot in Sudan, and it may be one of the first countries to become completely uninhabitable,” she says. “I’d like to explore strategies for growing crops differently or managing the exceedingly scarce resource of water, and figure out what kind of political discussions will be necessary to implement any changes. It is really critical to think about these problems in an interdisciplinary way.” More

  • in

    Earth can regulate its own temperature over millennia, new study finds

    The Earth’s climate has undergone some big changes, from global volcanism to planet-cooling ice ages and dramatic shifts in solar radiation. And yet life, for the last 3.7 billion years, has kept on beating.

    Now, a study by MIT researchers in Science Advances confirms that the planet harbors a “stabilizing feedback” mechanism that acts over hundreds of thousands of years to pull the climate back from the brink, keeping global temperatures within a steady, habitable range.

    Just how does it accomplish this? A likely mechanism is “silicate weathering” — a geological process by which the slow and steady weathering of silicate rocks involves chemical reactions that ultimately draw carbon dioxide out of the atmosphere and into ocean sediments, trapping the gas in rocks.

    Scientists have long suspected that silicate weathering plays a major role in regulating the Earth’s carbon cycle. The mechanism of silicate weathering could provide a geologically constant force in keeping carbon dioxide — and global temperatures — in check. But there’s never been direct evidence for the continual operation of such a feedback, until now.

    The new findings are based on a study of paleoclimate data that record changes in average global temperatures over the last 66 million years. The MIT team applied a mathematical analysis to see whether the data revealed any patterns characteristic of stabilizing phenomena that reined in global temperatures on a  geologic timescale.

    They found that indeed there appears to be a consistent pattern in which the Earth’s temperature swings are dampened over timescales of hundreds of thousands of years. The duration of this effect is similar to the timescales over which silicate weathering is predicted to act.

    The results are the first to use actual data to confirm the existence of a stabilizing feedback, the mechanism of which is likely silicate weathering. This stabilizing feedback would explain how the Earth has remained habitable through dramatic climate events in the geologic past.

    “On the one hand, it’s good because we know that today’s global warming will eventually be canceled out through this stabilizing feedback,” says Constantin Arnscheidt, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “But on the other hand, it will take hundreds of thousands of years to happen, so not fast enough to solve our present-day issues.”

    The study is co-authored by Arnscheidt and Daniel Rothman, professor of geophysics at MIT.

    Stability in data

    Scientists have previously seen hints of a climate-stabilizing effect in the Earth’s carbon cycle: Chemical analyses of ancient rocks have shown that the flux of carbon in and out of Earth’s surface environment has remained relatively balanced, even through dramatic swings in global temperature. Furthermore, models of silicate weathering predict that the process should have some stabilizing effect on the global climate. And finally, the fact of the Earth’s enduring habitability points to some inherent, geologic check on extreme temperature swings.

    “You have a planet whose climate was subjected to so many dramatic external changes. Why did life survive all this time? One argument is that we need some sort of stabilizing mechanism to keep temperatures suitable for life,” Arnscheidt says. “But it’s never been demonstrated from data that such a mechanism has consistently controlled Earth’s climate.”

    Arnscheidt and Rothman sought to confirm whether a stabilizing feedback has indeed been at work, by looking at data of global temperature fluctuations through geologic history. They worked with a range of global temperature records compiled by other scientists, from the chemical composition of ancient marine fossils and shells, as well as preserved Antarctic ice cores.

    “This whole study is only possible because there have been great advances in improving the resolution of these deep-sea temperature records,” Arnscheidt notes. “Now we have data going back 66 million years, with data points at most thousands of years apart.”

    Speeding to a stop

    To the data, the team applied the mathematical theory of stochastic differential equations, which is commonly used to reveal patterns in widely fluctuating datasets.

    “We realized this theory makes predictions for what you would expect Earth’s temperature history to look like if there had been feedbacks acting on certain timescales,” Arnscheidt explains.

    Using this approach, the team analyzed the history of average global temperatures over the last 66 million years, considering the entire period over different timescales, such as tens of thousands of years versus hundreds of thousands, to see whether any patterns of stabilizing feedback emerged within each timescale.

    “To some extent, it’s like your car is speeding down the street, and when you put on the brakes, you slide for a long time before you stop,” Rothman says. “There’s a timescale over which frictional resistance, or a stabilizing feedback, kicks in, when the system returns to a steady state.”

    Without stabilizing feedbacks, fluctuations of global temperature should grow with timescale. But the team’s analysis revealed a regime in which fluctuations did not grow, implying that a stabilizing mechanism reigned in the climate before fluctuations grew too extreme. The timescale for this stabilizing effect — hundreds of thousands of years — coincides with what scientists predict for silicate weathering.

    Interestingly, Arnscheidt and Rothman found that on longer timescales, the data did not reveal any stabilizing feedbacks. That is, there doesn’t appear to be any recurring pull-back of global temperatures on timescales longer than a million years. Over these longer timescales, then, what has kept global temperatures in check?

    “There’s an idea that chance may have played a major role in determining why, after more than 3 billion years, life still exists,” Rothman offers.

    In other words, as the Earth’s temperatures fluctuate over longer stretches, these fluctuations may just happen to be small enough in the geologic sense, to be within a range that a stabilizing feedback, such as silicate weathering, could periodically keep the climate in check, and more to the point, within a habitable zone.

    “There are two camps: Some say random chance is a good enough explanation, and others say there must be a stabilizing feedback,” Arnscheidt says. “We’re able to show, directly from data, that the answer is probably somewhere in between. In other words, there was some stabilization, but pure luck likely also played a role in keeping Earth continuously habitable.”

    This research was supported, in part, by a MathWorks fellowship and the National Science Foundation. More

  • in

    Keeping indoor humidity levels at a “sweet spot” may reduce spread of Covid-19

    We know proper indoor ventilation is key to reducing the spread of Covid-19. Now, a study by MIT researchers finds that indoor relative humidity may also influence transmission of the virus.

    Relative humidity is the amount of moisture in the air compared to the total moisture the air can hold at a given temperature before saturating and forming condensation.

    In a study appearing today in the Journal of the Royal Society Interface, the MIT team reports that maintaining an indoor relative humidity between 40 and 60 percent is associated with relatively lower rates of Covid-19 infections and deaths, while indoor conditions outside this range are associated with worse Covid-19 outcomes. To put this into perspective, most people are comfortable between 30 and 50 percent relative humidity, and an airplane cabin is at around 20 percent relative humidity.

    The findings are based on the team’s analysis of Covid-19 data combined with meteorological measurements from 121 countries, from January 2020 through August 2020. Their study suggests a strong connection between regional outbreaks and indoor relative humidity.

    In general, the researchers found that whenever a region experienced a rise in Covid-19 cases and deaths prevaccination, the estimated indoor relative humidity in that region, on average, was either lower than 40 percent or higher than 60 percent regardless of season. Nearly all regions in the study experienced fewer Covid-19 cases and deaths during periods when estimated indoor relative humidity was within a “sweet spot” between 40 and 60 percent.

    “There’s potentially a protective effect of this intermediate indoor relative humidity,” suggests lead author Connor Verheyen, a PhD student in medical engineering and medical physics in the Harvard-MIT Program in Health Sciences and Technology.

    “Indoor ventilation is still critical,” says co-author Lydia Bourouiba, director of the MIT Fluid Dynamics of Disease Transmission Laboratory and associate professor in the departments of Civil and Environmental Engineering and Mechanical Engineering, and at the Institute for Medical Engineering and Science at MIT. “However, we find that maintaining an indoor relative humidity in that sweet spot — of 40 to 60 percent — is associated with reduced Covid-19 cases and deaths.”

    Seasonal swing?

    Since the start of the Covid-19 pandemic, scientists have considered the possibility that the virus’ virulence swings with the seasons. Infections and associated deaths appear to rise in winter and ebb in summer. But studies looking to link the virus’ patterns to seasonal outdoor conditions have yielded mixed results.

    Verheyen and Bourouiba examined whether Covid-19 is influenced instead by indoor — rather than outdoor — conditions, and, specifically, relative humidity. After all, they note that most societies spend more than 90 percent of their time indoors, where the majority of viral transmission has been shown to occur. What’s more, indoor conditions can be quite different from outdoor conditions as a result of climate control systems, such as heaters that significantly dry out indoor air.

    Could indoor relative humidity have affected the spread and severity of Covid-19 around the world? And could it help explain the differences in health outcomes from region to region?

    Tracking humidity

    For answers, the team focused on the early period of the pandemic when vaccines were not yet available, reasoning that vaccinated populations would obscure the influence of any other factor such as indoor humidity. They gathered global Covid-19 data, including case counts and reported deaths, from January 2020 to August 2020,  and identified countries with at least 50 deaths, indicating at least one outbreak had occurred in those countries.

    In all, they focused on 121 countries where Covid-19 outbreaks occurred. For each country, they also tracked the local Covid-19 related policies, such as isolation, quarantine, and testing measures, and their statistical association with Covid-19 outcomes.

    For each day that Covid-19 data was available, they used meteorological data to calculate a country’s outdoor relative humidity. They then estimated the average indoor relative humidity, based on outdoor relative humidity and guidelines on temperature ranges for human comfort. For instance, guidelines report that humans are comfortable between 66 to 77 degrees Fahrenheit indoors. They also assumed that on average, most populations have the means to heat indoor spaces to comfortable temperatures. Finally, they also collected experimental data, which they used to validate their estimation approach.

    For every instance when outdoor temperatures were below the typical human comfort range, they assumed indoor spaces were heated to reach that comfort range. Based on the added heating, they calculated the associated drop in indoor relative humidity.

    In warmer times, both outdoor and indoor relative humidity for each country was about the same, but they quickly diverged in colder times. While outdoor humidity remained around 50 percent throughout the year, indoor relative humidity for countries in the Northern and Southern Hemispheres dropped below 40 percent in their respective colder periods, when Covid-19 cases and deaths also spiked in these regions.

    For countries in the tropics, relative humidity was about the same indoors and outdoors throughout the year, with a gradual rise indoors during the region’s summer season, when high outdoor humidity likely raised the indoor relative humidity over 60 percent. They found this rise mirrored the gradual increase in Covid-19 deaths in the tropics.

    “We saw more reported Covid-19 deaths on the low and high end of indoor relative humidity, and less in this sweet spot of 40 to 60 percent,” Verheyen says. “This intermediate relative humidity window is associated with a better outcome, meaning fewer deaths and a deceleration of the pandemic.”

    “We were very skeptical initially, especially as the Covid-19 data can be noisy and inconsistent,” Bourouiba says. “We thus were very thorough trying to poke holes in our own analysis, using a range of approaches to test the limits and robustness of the findings, including taking into account factors such as government intervention. Despite all our best efforts, we found that even when considering countries with very strong versus very weak Covid-19 mitigation policies, or wildly different outdoor conditions, indoor — rather than outdoor — relative humidity maintains an underlying strong and robust link with Covid-19 outcomes.”

    It’s still unclear how indoor relative humidity affects Covid-19 outcomes. The team’s follow-up studies suggest that pathogens may survive longer in respiratory droplets in both very dry and very humid conditions.

    “Our ongoing work shows that there are emerging hints of mechanistic links between these factors,” Bourouiba says. “For now however, we can say that indoor relative humidity emerges in a robust manner as another mitigation lever that organizations and individuals can monitor, adjust, and maintain in the optimal 40 to 60 percent range, in addition to proper ventillation.”

    This research was made possible, in part, by an MIT Alumni Class fund, the Richard and Susan Smith Family Foundation, the National Institutes of Health, and the National Science Foundation. More

  • in

    Nonabah Lane, Navajo educator and environmental sustainability specialist with numerous ties to MIT, dies at 46

    Nonabah Lane, a Navajo educator and environmental sustainability specialist with numerous MIT ties to MIT, passed away in October. She was 46.

    Lane had recently been an MIT Media Lab Director’s Fellow; MIT Solve 2019 Indigenous Communities Fellow; Department of Urban Studies and Planning guest lecturer and community partner; community partner with the PKG Public Service Center, Terrascope, and D-Lab; and a speaker at this year’s MIT Energy Week.

    Lane was a passionate sustainability specialist with experience spearheading successful environmental civic science projects focused in agriculture, water science, and energy. Committed to mitigating water pollutants and environmental hazards in tribal communities, she held extensive knowledge of environmental policy and Indigenous water rights. 

    Lane’s clans were Ta’neezahnii (Tangled People), born for Tł’izíłání (Manygoats People), and her maternal grandfathers are the Kiiyaa’aanii (Towering House People), and paternal grandfathers are Bįįh Bitoo’nii (Deer Spring People).

    Lane was a member of the Navajo Nation, Nenahnezad Chapter. At Navajo Power, she worked as the lead developer for solar and energy storage projects to benefit tribal communities on the Navajo Nation and other tribal nations in New Mexico. Prior to joining Navajo Power, Lane co-founded Navajo Ethno-Agriculture, a farm that teaches Navajo culture through traditional farming and bilingual education. Lane also launched a campaign to partner with local Navajo schools and tribal colleges to create their own water-testing capabilities and translate data into information to local farmers.

    “I had the opportunity to collaborate closely with Nonabah on a range of initiatives she was championing on energy, food, justice, water, Indigenous leadership, youth STEM, and more. She was innovative, entrepreneurial, inclusive, heartfelt, and positively impacted MIT on every visit to campus. She articulated important things that needed saying and expanded people’s thinking constantly. We will all miss her insights and teamwork,” says Megan Smith ’86, SM ’88, MIT Corporation life member; third U.S. chief technology officer and assistant to the president in the Office of Science and Technology Policy; and founder and CEO of shift7.

    In March 2019, Lane and her family — parents Gloria and Harry and brother Bruce — welcomed students and staff of the MIT Terrascope first-year learning community to their farm, where they taught unique, hands-on lessons about traditional Diné farming and spirituality. She then continued to collaborate with Terrascope, helping staff and students develop community-based work with partners in Navajo Nation. 

    Terrascope associate director and lecturer Ari Epstein says, “Nonabah was an inspiring person and a remarkable collaborator; she had a talent for connecting and communicating across disciplinary, organizational, and cultural differences, and she was generous with her expertise and knowledge. We will miss her very much.”

    Lane came to MIT in May 2019 for the MIT Solve Indigenous Communities Fellowship and Solve at MIT event, representing Navajo Ethno-Agriculture with her mother, Gloria Lane, and brother, Bruce Lane, and later serving as a Fellow Leadership Group member. 

    “Nonabah was an incredible individual who worked tirelessly to better all of her communities, whether it was back home on the Navajo Nation, here at MIT Solve, or supporting her family and friends,” says Alex Amouyel, executive director of MIT Solve. “More than that, Nonabah was a passionate mentor and caring friend of so many, carefully tending the next generation of Indigenous innovators, entrepreneurs, and change-makers. Her loss will be felt deeply by the MIT community, and her legacy of heartfelt service will not be forgotten.”

    She continued to be heavily involved across the MIT campus — named as a 2019 Media Lab Director’s Fellow, leading a workshop at the 2020 MIT Media Lab Festival of Learning on modernizing Navajo foods using traditional food science and cultural narrative, speaking at the 2022 MIT Energy Conference “Accelerating the Clean Energy Transition,” and taking part in the MIT Center for Bits and Atoms (CBA) innovation weekly co-working groups for Covid-response related innovations. 

    “My CBA colleagues and I enjoyed working with Nonabah on rapid-prototyping for the Covid response, on expanding access to digital fabrication, and on ambitious proposals for connecting emerging technology with Indigenous knowledge,” says Professor Neil Gershenfeld, director, MIT Center for Bits and Atoms.

    Nonabah also guest lectured for the MIT Department of Urban Studies and Planning’s Indigenous Environmental Planning class in Spring 2022. Professors Lawrence Susskind and Gabriella Carolini and teaching assistant Dení López led the class in cooperation with Elizabeth Rule, Chickasaw Nation member and professor at American University. 

    Carolini shares, on behalf of Susskind and the class, “During this time, our teaching team and students from a broad range of fields at MIT had the deep honor of learning from and with the inimitable Nonabah Lane. Nonabah was a dedicated and critical partner to our class, representing in this instance Navajo Power — but of course, also so much more. Her broad experiences and knowledge — working with fellow Navajo members on energy and agriculture sovereignty, as well as in advancing entrepreneurship and innovation — reflected the urgency Nonabah saw in meeting the challenges and opportunities for sustainable and equitable futures in Navajo nation and beyond. She was a pure life force, running on all fires, and brought to our class a dedicated drive to educate, learn, and extend our reference points beyond current knowledge frontiers.” 

    Three MIT students — junior Isabella Gandara, Alexander Gerszten ’22, and Paul Picciano MS ’22 — who worked closely with Lane on a project with Navajo Power, recalled how she shared herself with them in so many ways, through her truly exceptional work ethic, stories about herself and her family, and the care and thought that she put into her ventures. They noted there was always something new to feel inspired by when in her presence. 

    “The PKG Public Service Center mourns the passing of Nonabah Lane. Navajo Ethno-Agriculture is a valued PKG Center partner that offers MIT undergraduate students the opportunity to support community-led projects with the Diné Community on Navajo Nation. Nonabah inspired students to examine broad social and technical issues that impact Indigenous communities in Navajo Nation and beyond, in many cases leaving an indelible mark on their personal and professional paths,” says Jill S. Bassett, associate dean and director of the PKG Public Service Center.

    Lane was a Sequoyah Fellow of the American Indian Science and Engineering Society (AISES) and remained actively engaged in the AISES community by mentoring young people interested in the fields of science, engineering, agriculture, and energy. Over the years, Lane collaborated with leaders across tribal lands and beyond on projects related to agriculture, energy, sustainable chemicals, and finance. Lane had an enormous positive impact on many through her accomplishments and also the countless meaningful connections she helped to form among people in diverse fields.

    Donations may be made to a memorial fund organized by Navajo Power, PBC in honor of Nonabah Lane, in support of Navajo Ethno-Agriculture, the Native American nonprofit she co-founded and cared deeply for. More

  • in

    MIT PhD students shed light on important water and food research

    One glance at the news lately will reveal countless headlines on the dire state of global water and food security. Pollution, supply chain disruptions, and the war in Ukraine are all threatening water and food systems, compounding climate change impacts from heat waves, drought, floods, and wildfires.

    Every year, MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) offers fellowships to outstanding MIT graduate students who are working on innovative ways to secure water and food supplies in light of these urgent worldwide threats. J-WAFS announced this year’s fellowship recipients last April. Aditya Ghodgaonkar and Devashish Gokhale were awarded Rasikbhai L. Meswani Fellowships for Water Solutions, which are made possible by a generous gift from Elina and Nikhil Meswani and family. James Zhang, Katharina Fransen, and Linzixuan (Rhoda) Zhang were awarded J-WAFS Fellowships for Water and Food Solutions. The J-WAFS Fellowship for Water and Food Solutions is funded in part by J-WAFS Research Affiliate companies: Xylem, Inc., a water technology company, and GoAigua, a company leading the digital transformation of the water industry.

    The five fellows were each awarded a stipend and full tuition for one semester. They also benefit from mentorship, networking connections, and opportunities to showcase their research.

    “This year’s cohort of J-WAFS fellows show an indefatigable drive to explore, create, and push back boundaries,” says John H. Lienhard, director of J-WAFS. “Their passion and determination to create positive change for humanity are evident in these unique video portraits, which describe their solutions-oriented research in water and food,” Lienhard adds.

    J-WAFS funder Community Jameel recently commissioned video portraitures of each student that highlight their work and their inspiration to solve challenges in water and food. More about each J-WAFS fellow and their research follows.

    Play video

    Katharina Fransen

    In Professor Bradley Olsen’s lab in the Department of Chemical Engineering, Katharina Fransen works to develop biologically-based, biodegradable plastics which can be used for food packing that won’t pollute the environment. Fransen, a third-year PhD student, is motivated by the challenge of protecting the most vulnerable global communities from waste generated by the materials that are essential to connecting them to the global food supply. “We can’t ensure that all of our plastic waste gets recycled or reused, and so we want to make sure that if it does escape into the environment it can degrade, and that’s kind of where a lot of my research really comes in,” says Fransen. Most of her work involves creating polymers, or “really long chains of chemicals,” kind of like the paper rings a lot of us looped into chains as kids, Fransen explains. The polymers are optimized for food packaging applications to keep food fresher for longer, preventing food waste. Fransen says she finds the work “really interesting from the scientific perspective as well as from the idea that [she’s] going to make the world a little better with these new materials.” She adds, “I think it is both really fulfilling and really exciting and engaging.”

    Play video

    Aditya Ghodgaonkar

    “When I went to Kenya this past spring break, I had an opportunity to meet a lot of farmers and talk to them about what kind of maintenance issues they face,” says Aditya Ghodgaonkar, PhD candidate in the Department of Mechanical Engineering. Ghodgaonkar works with Associate Professor Amos Winter in the Global Engineering and Research (GEAR) Lab, where he designs hydraulic components for drip irrigation systems to make them water-efficient, off-grid, inexpensive, and low-maintenance. On his trip to Kenya, Ghodgaonkar gained firsthand knowledge from farmers about a common problem they encounter: clogging of drip irrigation emitters. He learned that clogging can be an expensive technical challenge to diagnose, mitigate, and resolve. He decided to focus his attention on designing emitters that are resistant to clogging, testing with sand and passive hydrodynamic filtration back in the lab at MIT. “I got into this from an academic standpoint,” says Ghodgaonkar. “It is only once I started working on the emitters, spoke with industrial partners that make these emitters, spoke with farmers, that I really truly appreciated the impact of what we’re doing.”

    Play video

    Devashish Gokhale

    Devashish Gokhale is a PhD student advised by Professor Patrick Doyle in the Department of Chemical Engineering. Gokhale’s commitment to global water security stems from his childhood in Pune, India, where both flooding and drought can occur depending on the time of year. “I’ve had these experiences where there’s been too much water and also too little water” he recalls. At MIT, Gokhale is developing cost-effective, sustainable, and reusable materials for water treatment with a focus on the elimination of emerging contaminants and low-concentration pollutants like heavy metals. Specifically, he works on making and optimizing polymeric hydrogel microparticles that can absorb micropollutants. “I know how important it is to do something which is not just scientifically interesting, but something which is impactful in a real way,” says Gokhale. Before starting a research project he asks himself, “are people going to be able to afford this? Is it really going to reach the people who need it the most?” Adding these constraints in the beginning of the research process sometimes makes the problem more difficult to solve, but Gokhale notes that in the end, the solution is much more promising.

    Play video

    James Zhang

    “We don’t really think much about it, it’s transparent, odorless, we just turn on our sink in many parts of the world and it just flows through,” says James Zhang when talking about water. Yet he notes that “many other parts of the world face water scarcity and this will only get worse due to global climate change.” A PhD student in the Department of Mechanical Engineering, Zhang works in the Nano Engineering Laboratory with Professor Gang Chen. Zhang is working on a technology that uses light-induced evaporation to clean water. He is currently investigating the fundamental properties of how light at different wavelengths interacts with liquids at the surface, particularly with brackish water surfaces. With strong theoretical and experimental components, his research could lead to innovations in desalinating water at high energy efficiencies. Zhang hopes that the technology can one day “produce lots of clean water for communities around the world that currently don’t have access to fresh water,” and create a new appreciation for this common liquid that many of us might not think about on a day-to-day basis.

    Play video

    Linzixuan (Rhoda) Zhang

    “Around the world there are about 2 billion people currently suffering from micronutrient deficiency because they do not have access to very healthy, very fresh food,” says chemical engineering PhD candidate Linzixuan (Rhoda) Zhang. This fact led Zhang to develop a micronutrient delivery platform that fortifies foods with essential vitamins and nutrients. With her advisors, Professor Robert Langer and Research Scientist Ana Jaklenec, Zhang brings biomedical engineering approaches to global health issues. Zhang says that “one of the most serious problems is vitamin A deficiency, because vitamin A is not very stable.” She goes on to explain that although vitamin A is present in different vegetables, when the vegetables are cooked, vitamin A can easily degrade. Zhang helped develop a group of biodegradable polymers that can stabilize micronutrients under cooking and storage conditions. With this technology, vitamin A, for example, could be encapsulated and effectively stabilized under boiling water. The platform has also shown efficient release in a simulation of the stomach environment. Zhang says it is the “little, tiny steps every day that are pushing us forward to the final impactful product.” More

  • in

    Ocean microbes get their diet through a surprising mix of sources, study finds

    One of the smallest and mightiest organisms on the planet is a plant-like bacterium known to marine biologists as Prochlorococcus. The green-tinted microbe measures less than a micron across, and its populations suffuse through the upper layers of the ocean, where a single teaspoon of seawater can hold millions of the tiny organisms.

    Prochlorococcus grows through photosynthesis, using sunlight to convert the atmosphere’s carbon dioxide into organic carbon molecules. The microbe is responsible for 5 percent of the world’s photosynthesizing activity, and scientists have assumed that photosynthesis is the microbe’s go-to strategy for acquiring the carbon it needs to grow.

    But a new MIT study in Nature Microbiology today has found that Prochlorococcus relies on another carbon-feeding strategy, more than previously thought.

    Organisms that use a mix of strategies to provide carbon are known as mixotrophs. Most marine plankton are mixotrophs. And while Prochlorococcus is known to occasionally dabble in mixotrophy, scientists have assumed the microbe primarily lives a phototrophic lifestyle.

    The new MIT study shows that in fact, Prochlorococcus may be more of a mixotroph than it lets on. The microbe may get as much as one-third of its carbon through a second strategy: consuming the dissolved remains of other dead microbes.

    The new estimate may have implications for climate models, as the microbe is a significant force in capturing and “fixing” carbon in the Earth’s atmosphere and ocean.

    “If we wish to predict what will happen to carbon fixation in a different climate, or predict where Prochlorococcus will or will not live in the future, we probably won’t get it right if we’re missing a process that accounts for one-third of the population’s carbon supply,” says Mick Follows, a professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS), and its Department of Civil and Environmental Engineering.

    The study’s co-authors include first author and MIT postdoc Zhen Wu, along with collaborators from the University of Haifa, the Leibniz-Institute for Baltic Sea Research, the Leibniz-Institute of Freshwater Ecology and Inland Fisheries, and Potsdam University.

    Persistent plankton

    Since Prochlorococcus was first discovered in the Sargasso Sea in 1986, by MIT Institute Professor Sallie “Penny” Chisholm and others, the microbe has been observed throughout the world’s oceans, inhabiting the upper sunlit layers ranging from the surface down to about 160 meters. Within this range, light levels vary, and the microbe has evolved a number of ways to photosynthesize carbon in even low-lit regions.

    The organism has also evolved ways to consume organic compounds including glucose and certain amino acids, which could help the microbe survive for limited periods of time in dark ocean regions. But surviving on organic compounds alone is a bit like only eating junk food, and there is evidence that Prochlorococcus will die after a week in regions where photosynthesis is not an option.

    And yet, researchers including Daniel Sher of the University of Haifa, who is a co-author of the new study, have observed healthy populations of Prochlorococcus that persist deep in the sunlit zone, where the light intensity should be too low to maintain a population. This suggests that the microbes must be switching to a non-photosynthesizing, mixotrophic lifestyle in order to consume other organic sources of carbon.

    “It seems that at least some Prochlorococcus are using existing organic carbon in a mixotrophic way,” Follows says. “That stimulated the question: How much?”

    What light cannot explain

    In their new paper, Follows, Wu, Sher, and their colleagues looked to quantify the amount of carbon that Prochlorococcus is consuming through processes other than photosynthesis.

    The team looked first to measurements taken by Sher’s team, which previously took ocean samples at various depths in the Mediterranean Sea and measured the concentration of phytoplankton, including Prochlorococcus, along with the associated intensity of light and the concentration of nitrogen — an essential nutrient that is richly available in deeper layers of the ocean and that plankton can assimilate to make proteins.

    Wu and Follows used this data, and similar information from the Pacific Ocean, along with previous work from Chisholm’s lab, which established the rate of photosynthesis that Prochlorococcus could carry out in a given intensity of light.

    “We converted that light intensity profile into a potential growth rate — how fast the population of Prochlorococcus could grow if it was acquiring all it’s carbon by photosynthesis, and light is the limiting factor,” Follows explains.

    The team then compared this calculated rate to growth rates that were previously observed in the Pacific Ocean by several other research teams.

    “This data showed that, below a certain depth, there’s a lot of growth happening that photosynthesis simply cannot explain,” Follows says. “Some other process must be at work to make up the difference in carbon supply.”

    The researchers inferred that, in deeper, darker regions of the ocean, Prochlorococcus populations are able to survive and thrive by resorting to mixotrophy, including consuming organic carbon from detritus. Specifically, the microbe may be carrying out osmotrophy — a process by which an organism passively absorbs organic carbon molecules via osmosis.

    Judging by how fast the microbe is estimated to be growing below the sunlit zone, the team calculates that Prochlorococcus obtains up to one-third of its carbon diet through mixotrophic strategies.

    “It’s kind of like going from a specialist to a generalist lifestyle,” Follows says. “If I only eat pizza, then if I’m 20 miles from a pizza place, I’m in trouble, whereas if I eat burgers as well, I could go to the nearby McDonald’s. People had thought of Prochlorococcus as a specialist, where they do this one thing (photosynthesis) really well. But it turns out they may have more of a generalist lifestyle than we previously thought.”

    Chisholm, who has both literally and figuratively written the book on Prochlorococcus, says the group’s findings “expand the range of conditions under which their populations can not only survive, but also thrive. This study changes the way we think about the role of Prochlorococcus in the microbial food web.”

    This research was supported, in part, by the Israel Science Foundation, the U.S. National Science Foundation, and the Simons Foundation. More

  • in

    Methane research takes on new urgency at MIT

    One of the most notable climate change provisions in the 2022 Inflation Reduction Act is the first U.S. federal tax on a greenhouse gas (GHG). That the fee targets methane (CH4), rather than carbon dioxide (CO2), emissions is indicative of the urgency the scientific community has placed on reducing this short-lived but powerful gas. Methane persists in the air about 12 years — compared to more than 1,000 years for CO2 — yet it immediately causes about 120 times more warming upon release. The gas is responsible for at least a quarter of today’s gross warming. 

    “Methane has a disproportionate effect on near-term warming,” says Desiree Plata, the director of MIT Methane Network. “CH4 does more damage than CO2 no matter how long you run the clock. By removing methane, we could potentially avoid critical climate tipping points.” 

    Because GHGs have a runaway effect on climate, reductions made now will have a far greater impact than the same reductions made in the future. Cutting methane emissions will slow the thawing of permafrost, which could otherwise lead to massive methane releases, as well as reduce increasing emissions from wetlands.  

    “The goal of MIT Methane Network is to reduce methane emissions by 45 percent by 2030, which would save up to 0.5 degree C of warming by 2100,” says Plata, an associate professor of civil and environmental engineering at MIT and director of the Plata Lab. “When you consider that governments are trying for a 1.5-degree reduction of all GHGs by 2100, this is a big deal.” 

    Under normal concentrations, methane, like CO2, poses no health risks. Yet methane assists in the creation of high levels of ozone. In the lower atmosphere, ozone is a key component of air pollution, which leads to “higher rates of asthma and increased emergency room visits,” says Plata. 

    Methane-related projects at the Plata Lab include a filter made of zeolite — the same clay-like material used in cat litter — designed to convert methane into CO2 at dairy farms and coal mines. At first glance, the technology would appear to be a bit of a hard sell, since it converts one GHG into another. Yet the zeolite filter’s low carbon and dollar costs, combined with the disproportionate warming impact of methane, make it a potential game-changer.

    The sense of urgency about methane has been amplified by recent studies that show humans are generating far more methane emissions than previously estimated, and that the rates are rising rapidly. Exactly how much methane is in the air is uncertain. Current methods for measuring atmospheric methane, such as ground, drone, and satellite sensors, “are not readily abundant and do not always agree with each other,” says Plata.  

    The Plata Lab is collaborating with Tim Swager in the MIT Department of Chemistry to develop low-cost methane sensors. “We are developing chemiresisitive sensors that cost about a dollar that you could place near energy infrastructure to back-calculate where leaks are coming from,” says Plata.  

    The researchers are working on improving the accuracy of the sensors using machine learning techniques and are planning to integrate internet-of-things technology to transmit alerts. Plata and Swager are not alone in focusing on data collection: the Inflation Reduction Act adds significant funding for methane sensor research. 

    Other research at the Plata Lab includes the development of nanomaterials and heterogeneous catalysis techniques for environmental applications. The lab also explores mitigation solutions for industrial waste, particularly those related to the energy transition. Plata is the co-founder of an lithium-ion battery recycling startup called Nth Cycle. 

    On a more fundamental level, the Plata Lab is exploring how to develop products with environmental and social sustainability in mind. “Our overarching mission is to change the way that we invent materials and processes so that environmental objectives are incorporated along with traditional performance and cost metrics,” says Plata. “It is important to do that rigorous assessment early in the design process.”

    Play video

    MIT amps up methane research 

    The MIT Methane Network brings together 26 researchers from MIT along with representatives of other institutions “that are dedicated to the idea that we can reduce methane levels in our lifetime,” says Plata. The organization supports research such as Plata’s zeolite and sensor projects, as well as designing pipeline-fixing robots, developing methane-based fuels for clean hydrogen, and researching the capture and conversion of methane into liquid chemical precursors for pharmaceuticals and plastics. Other members are researching policies to encourage more sustainable agriculture and land use, as well as methane-related social justice initiatives. 

    “Methane is an especially difficult problem because it comes from all over the place,” says Plata. A recent Global Carbon Project study estimated that half of methane emissions are caused by humans. This is led by waste and agriculture (28 percent), including cow and sheep belching, rice paddies, and landfills.  

    Fossil fuels represent 18 percent of the total budget. Of this, about 63 percent is derived from oil and gas production and pipelines, 33 percent from coal mining activities, and 5 percent from industry and transportation. Human-caused biomass burning, primarily from slash-and-burn agriculture, emits about 4 percent of the global total.  

    The other half of the methane budget includes natural methane emissions from wetlands (20 percent) and other natural sources (30 percent). The latter includes permafrost melting and natural biomass burning, such as forest fires started by lightning.  

    With increases in global warming and population, the line between anthropogenic and natural causes is getting fuzzier. “Human activities are accelerating natural emissions,” says Plata. “Climate change increases the release of methane from wetlands and permafrost and leads to larger forest and peat fires.”  

    The calculations can get complicated. For example, wetlands provide benefits from CO2 capture, biological diversity, and sea level rise resiliency that more than compensate for methane releases. Meanwhile, draining swamps for development increases emissions. 

    Over 100 nations have signed onto the U.N.’s Global Methane Pledge to reduce at least 30 percent of anthropogenic emissions within the next 10 years. The U.N. report estimates that this goal can be achieved using proven technologies and that about 60 percent of these reductions can be accomplished at low cost. 

    Much of the savings would come from greater efficiencies in fossil fuel extraction, processing, and delivery. The methane fees in the Inflation Reduction Act are primarily focused on encouraging fossil fuel companies to accelerate ongoing efforts to cap old wells, flare off excess emissions, and tighten pipeline connections.  

    Fossil fuel companies have already made far greater pledges to reduce methane than they have with CO2, which is central to their business. This is due, in part, to the potential savings, as well as in preparation for methane regulations expected from the Environmental Protection Agency in late 2022. The regulations build upon existing EPA oversight of drilling operations, and will likely be exempt from the U.S. Supreme Court’s ruling that limits the federal government’s ability to regulate GHGs. 

    Zeolite filter targets methane in dairy and coal 

    The “low-hanging fruit” of gas stream mitigation addresses most of the 20 percent of total methane emissions in which the gas is released in sufficiently high concentrations for flaring. Plata’s zeolite filter aims to address the thornier challenge of reducing the 80 percent of non-flammable dilute emissions. 

    Plata found inspiration in decades-old catalysis research for turning methane into methanol. One strategy has been to use an abundant, low-cost aluminosilicate clay called zeolite.  

    “The methanol creation process is challenging because you need to separate a liquid, and it has very low efficiency,” says Plata. “Yet zeolite can be very efficient at converting methane into CO2, and it is much easier because it does not require liquid separation. Converting methane to CO2 sounds like a bad thing, but there is a major anti-warming benefit. And because methane is much more dilute than CO2, the relative CO2 contribution is minuscule.”  

    Using zeolite to create methanol requires highly concentrated methane, high temperatures and pressures, and industrial processing conditions. Yet Plata’s process, which dopes the zeolite with copper, operates in the presence of oxygen at much lower temperatures under typical pressures. “We let the methane proceed the way it wants from a thermodynamic perspective from methane to methanol down to CO2,” says Plata. 

    Researchers around the world are working on other dilute methane removal technologies. Projects include spraying iron salt aerosols into sea air where they react with natural chlorine or bromine radicals, thereby capturing methane. Most of these geoengineering solutions, however, are difficult to measure and would require massive scale to make a difference.  

    Plata is focusing her zeolite filters on environments where concentrations are high, but not so high as to be flammable. “We are trying to scale zeolite into filters that you could snap onto the side of a cross-ventilation fan in a dairy barn or in a ventilation air shaft in a coal mine,” says Plata. “For every packet of air we bring in, we take a lot of methane out, so we get more bang for our buck.”  

    The major challenge is creating a filter that can handle high flow rates without getting clogged or falling apart. Dairy barn air handlers can push air at up to 5,000 cubic feet per minute and coal mine handlers can approach 500,000 CFM. 

    Plata is exploring engineering options including fluidized bed reactors with floating catalyst particles. Another filter solution, based in part on catalytic converters, features “higher-order geometric structures where you have a porous material with a long path length where the gas can interact with the catalyst,” says Plata. “This avoids the challenge with fluidized beds of containing catalyst particles in the reactor. Instead, they are fixed within a structured material.”  

    Competing technologies for removing methane from mine shafts “operate at temperatures of 1,000 to 1,200 degrees C, requiring a lot of energy and risking explosion,” says Plata. “Our technology avoids safety concerns by operating at 300 to 400 degrees C. It reduces energy use and provides more tractable deployment costs.” 

    Potentially, energy and dollar costs could be further reduced in coal mines by capturing the heat generated by the conversion process. “In coal mines, you have enrichments above a half-percent methane, but below the 4 percent flammability threshold,” says Plata. “The excess heat from the process could be used to generate electricity using off-the-shelf converters.” 

    Plata’s dairy barn research is funded by the Gerstner Family Foundation and the coal mining project by the U.S. Department of Energy. “The DOE would like us to spin out the technology for scale-up within three years,” says Plata. “We cannot guarantee we will hit that goal, but we are trying to develop this as quickly as possible. Our society needs to start reducing methane emissions now.”  More