More stories

  • in

    Q&A: Bettina Stoetzer on envisioning a livable future

    In an ongoing series, MIT faculty, students, and alumni in the humanistic fields share perspectives that are significant for solving the economic, political, ethical, and cultural dimensions of climate change, as well as mitigating its myriad social and ecological impacts. Bettina Stoetzer is the Class of 1948 Career Development Associate Professor of Anthropology at MIT; her research combines perspectives on ecology and environmental change with an analysis of migration, race, and social justice. In this conversation with SHASS Communications, she shares insights from anthropology and from her forthcoming book, “Ruderal City: Ecologies of Migration and Urban Life in Berlin” (Duke University Press, 2022).Q: You research “ruderal” ecologies — those rising up like weeds in inhospitable locales such as industrial zones. What does your work reveal about the relationship between humans and the environment, particularly as climate change presents ever more challenges to human habitation?A: The term ruderal originates from the Latin word “rudus,” meaning “rubble.” In urban ecology it refers to organisms that spontaneously inhabit inhospitable environments such as rubble spaces, the cracks in sidewalks, or spaces alongside train tracks and roads. As an anthropologist, I find the ruderal to be a useful lens for examining this historical moment when environmental degradation, war, forced migration, economic inequality, and rising nationalism render much of the world inhospitable to so many beings.

    My book, “Ruderal City: Ecologies of Migration and Urban Life in Berlin,” is inspired by the insights of botany, ecology, as well as by social justice struggles. During my fieldwork in Berlin, I engaged with diverse communities — botanists, environmentalists, public officials, and other Berlin residents, such as white German nature enthusiasts, Turkish migrants who cultivate city gardens, and East African refugees who live in the forested edges of the city.The botanists I spoke with researched so-called “ruderal flora” that flourished in the city’s bombed landscapes after the end of World War II. Berlin’s rubble vegetation was abundant with plants that usually grow in much warmer climate zones, and the botanists realized that many of these plants’ seeds had arrived in the city by chance — hitching a ride via imported materials and vehicles, or the boots of refugees. At the same time, the initial appearance of these plants illustrated that Berlin had become hotter, which shed light on the early signs of climate change. But that is only part of the story. Listening to migrants, refugees, and other Berlin residents during my fieldwork, I also learned that it is important to consider the ways in which people who are often not recognized as experts relate to urban lands. White European environmental discourse often frames migrants and communities of color as having an inappropriate relation to “nature” in the city, and racializes them on that basis. For example, Turkish migrants who barbecue in Berlin’s parks are often portrayed as polluting the “green lungs” of Berlin.Yet from working with these communities, as well as with other Berliners who cultivated urban vegetable gardens, built makeshift shelters in abandoned lots, produced informal food economies in Berlin’s parks, or told stories about their experience in the forest edges of the city, I learned that people, while grappling with experiences of racism, actually carved out alternative ways of relating to urban lands that challenged white European and capitalist traditions.Engaging with these practices, I utilize the concept of the ruderal and expand it as an analytic for tracking seemingly disparate worlds — and for attending to the heterogeneous ways in which people build lives out of the ruins of European nationalism and capitalism. My goal in the book is not to equate people with plants, but rather to ask how people, plants, animals, and other living beings are intertwined in projects of capitalist extraction and in nation-making — and how they challenge and rework these projects.Q: In what ways do you think the tools and insights from anthropology can advance efforts to address climate change and its impacts?A: When tackling complex environmental challenges, climate change included, the focus is often on “the social consequences of” climate change and technological solutions to address it. What is exciting about anthropology is that it gives us tools to interrogate environmental challenges through a broader lens.Anthropologists use in-depth fieldwork to examine how people make sense of and relate to the world. Ethnographic fieldwork can help us examine how climate change affects people in their everyday lives, and it can reveal how different stakeholders approach environmental challenges. By providing a deeper understanding of the ways in which people relate to the material world, to land, and to other beings, anthropological analyses also shed light on the root causes of climate change and expand our imagination of how to live otherwise.Through these close-up analyses, ethnography can also illuminate large-scale political phenomena. For instance, by making visible the relation between climate change denial and the erosion of democratic social structures in people’s everyday lives, it can provide insights into the rise of nationalist and authoritarian movements. This is a question I explore in my new research project. (One case study in the new research focuses on the ways in which pigs, people, and viruses have co-evolved during urbanization, industrial agriculture, and the climate crisis, e.g.: the so-called African Swine Fever virus among wild boar — which proliferate in the ruins of industrial agriculture and climate changes — trigger political responses across Europe, including new border fences.)

    Through several case studies, I examine how the changing mobility patterns of wildlife (due to climate change, habitat loss, and urbanization) pose challenges for tackling the climate crisis across national borders and for developing new forms of care for nonhuman lives.Q: You teach MIT’s class 21A.407 (Gender, Race, and Environmental Justice). Broadly speaking, what are goals of this class? What lessons do you hope students will carry with them into the future?A: The key premise of this class is that the environmental challenges facing the world today cannot be adequately addressed without a deeper understanding of racial, gender, and class inequalities, as well as the legacies of colonialism. Our discussion begins with the lands on which we, at MIT, stand. We read about the colonization of New England and how it radically transformed local economies and landscapes, rearranged gender and racial relations, and led to the genocide and dispossession of Indigenous communities and their way of life.From this foundation, the goal is to expand our ideas of what it means to talk about ecology, the “environment,” and justice. There is not one way in which humans relate to land and to nonhuman beings, or one way of (re-)producing the conditions of our livelihoods (capitalism). These relations are all shaped by history, culture, and power.We read anthropological scholarship that explores how climate change, environmental pollution, and habitat destruction are also the consequences of modes of inhabiting the earth inherited from colonial relations to land that construct human and nonhuman beings as extractable “resources.” Considering these perspectives, it becomes clear that pressing environmental challenges can only be solved by also tackling racism and the legacies of colonialism.Throughout the semester, we read about environmental justice struggles that seek to stop the destruction of land, undo the harm of toxic exposures, and mitigate the effects of climate change. I hope that one of the takeaways students gain from this course is that Black, Indigenous, people-of-color, and feminist activists and scholars have been leading the way in shaping more livable futures.

    Q: In confronting an issue as formidable as global climate change, what gives you hope?A: I am really inspired by youth climate justice activists, especially from the Global South, who insist on new solutions to the climate emergency that counter market-driven perspectives, address global economic inequalities, and raise awareness about climate-driven displacement. Confronting climate change will require building more democratic structures and climate justice activists are at the forefront of this.Here at MIT, I also see a growing enthusiasm among our students to develop solutions to the climate crisis and to social injustices. I am particularly excited about Living Climate Futures, an initiative in Anthropology, History, and the Program on Science, Technology, and Society. We will be hosting a symposium at the end of April featuring environmental and climate justice leaders and youth activists from across the country. It will be a unique opportunity to explore how community leaders and research institutions such as MIT can collaborate more closely to tackle the challenges of climate change.

    Interview prepared by MIT SHASS CommunicationsSenior writer: Kathryn O’NeillSeries editor, designer: Emily Hiestand, communications director More

  • in

    Q&A: Latifah Hamzah ’12 on creating sustainable solutions in Malaysia and beyond

    Latifah Hamzah ’12 graduated from MIT with a BS in mechanical engineering and minors in energy studies and music. During their time at MIT, Latifah participated in various student organizations, including the MIT Symphony Orchestra, Alpha Phi Omega, and the MIT Design/Build/Fly team. They also participated in the MIT Energy Initiative’s Undergraduate Research Opportunities Program (UROP) in the lab of former professor of mechanical engineering Alexander Mitsos, examining solar-powered thermal and electrical co-generation systems.

    After graduating from MIT, Latifah worked as a subsea engineer at Shell Global Solutions and co-founded Engineers Without Borders – Malaysia, a nonprofit organization dedicated to finding sustainable and empowering solutions that impact disadvantaged populations in Malaysia. More recently, Latifah received a master of science in mechanical engineering from Stanford University, where they are currently pursuing a PhD in environmental engineering with a focus on water and sanitation in developing contexts.

    Q: What inspired you to pursue energy studies as an undergraduate student at MIT?

    A: I grew up in Malaysia, where I was at once aware of both the extent to which the oil and gas industry is a cornerstone of the economy and the need to transition to a lower-carbon future. The Energy Studies minor was therefore enticing because it gave me a broader view of the energy space, including technical, policy, economic, and other viewpoints. This was my first exposure to how things worked in the real world — in that many different fields and perspectives had to be considered cohesively in order to have a successful, positive, and sustained impact. Although the minor was predominantly grounded in classroom learning, what I learned drove me to want to discover for myself how the forces of technology, society, and policy interacted in the field in my subsequent endeavors.

    In addition to the breadth that the minor added to my education, it also provided a structure and focus for me to build on my technical fundamentals. This included taking graduate-level classes and participating in UROPs that had specific energy foci. These were my first forays into questions that, while still predominantly technical, were more open-ended and with as-yet-unknown answers that would be substantially shaped by the framing of the question. This shift in mindset required from typical undergraduate classes and problem sets took a bit of adjusting to, but ultimately gave me the confidence and belief that I could succeed in a more challenging environment.

    Q: How did these experiences with energy help shape your path forward, particularly in regard to your work with Engineers Without Borders – Malaysia and now at Stanford?

    A: When I returned home after graduation, I was keen to harness my engineering education and explore in practice what the Energy Studies minor curriculum had taught by theory and case studies: to consider context, nuance, and interdisciplinary and myriad perspectives to craft successful, sustainable solutions. Recognizing that there were many underserved communities in Malaysia, I co-founded Engineers Without Borders – Malaysia with some friends with the aim of working with these communities to bring simple and sustainable engineering solutions. Many of these projects did have an energy focus. For example, we designed, sized, and installed micro-hydro or solar-power systems for various indigenous communities, allowing them to continue living on their ancestral lands while reducing energy poverty. Many other projects incorporated other aspects of engineering, such as hydrotherapy pools for folks with special needs, and water and sanitation systems for stateless maritime communities.

    Through my work with Engineers Without Borders – Malaysia, I found a passion for the broader aspects of sustainability, development, and equity. By spending time with communities in the field and sharing in their experiences, I recognized gaps in my skill set that I could work on to be more effective in advocating for social and environmental justice. In particular, I wanted to better understand communities and their perspectives while being mindful of my positionality. In addition, I wanted to address the more systemic aspects of the problems they faced, which I felt in many cases would only be possible through a combination of research, evidence, and policy. To this end, I embarked on a PhD in environmental engineering with a minor in anthropology and pursued a Community-Based Research Fellowship with Stanford’s Haas Center for Public Service. I have also participated in the Rising Environmental Leaders Program (RELP), which helps graduate students “hone their leadership and communications skills to maximize the impact of their research.” RELP afforded me the opportunity to interact with representatives from government, NGOs [nongovernmental organizations], think tanks, and industry, from which I gained a better understanding of the policy and adjacent ecosystems at both the federal and state levels.

    Q: What are you currently studying, and how does it relate to your past work and educational experiences?

    A: My dissertation investigates waste management and monitoring for improved planetary health in three distinct projects. Suboptimal waste management can lead to poor outcomes, including environmental contamination, overuse of resources, and lost economic and environmental opportunities in resource recovery. My first project showed that three combinations of factors resulted in ruminant feces contaminating the stored drinking water supplies of households in rural Kenya, and the results were published in the International Journal of Environmental Research and Public Health. Consequently, water and sanitation interventions must also consider animal waste for communities to have safe drinking water.

    My second project seeks to establish a circular economy in the chocolate industry with indigenous Malaysian farmers and the Chocolate Concierge, a tree-to-bar social enterprise. Having designed and optimized apparatuses and processes to create biochar from cacao husk waste, we are now examining its impact on the growth of cacao saplings and their root systems. The hope is that biochar will increase the resilience of saplings for when they are transplanted from the nursery to the farm. As biochar can improve soil health and yield while reducing fertilizer inputs and sequestering carbon, farmers can accrue substantial economic and environmental benefits, especially if they produce, use, and sell it themselves.

    My third project investigates the gap in sanitation coverage worldwide and potential ways of reducing it. Globally, 46 percent of the population lacks access to safely managed sanitation, while the majority of the 54 percent who do have access use on-site sanitation facilities such as septic tanks and latrines. Given that on-site, decentralized systems typically have a lower space and resource footprint, are cheaper to build and maintain, and can be designed to suit various contexts, they could represent the best chance of reaching the sanitation Sustainable Development Goal. To this end, I am part of a team of researchers at the Criddle Group at Stanford working to develop a household-scale system as part of the Gates Reinvent the Toilet Challenge, an initiative aimed at developing new sanitation and toilet technologies for developing contexts.

    The thread connecting these projects is a commitment to investigating both the technical and socio-anthropological dimensions of an issue to develop sustainable, reliable, and environmentally sensitive solutions, especially in low- and middle-income countries (LMICs). I believe that an interdisciplinary approach can provide a better understanding of the problem space, which will hopefully lead to effective potential solutions that can have a greater community impact.

    Q: What do you plan to do once you obtain your PhD?

    A: I hope to continue working in the spheres of water and sanitation and/or sustainability post-PhD. It is a fascinating moment to be in this space as a person of color from an LMIC, especially as ideas such as community-based research and decolonizing fields and institutions are becoming more widespread and acknowledged. Even during my time at Stanford, I have noticed some shifts in the discourse, although we still have a long way to go to achieve substantive and lasting change. Folks like me are underrepresented in forums where the priorities, policies, and financing of aid and development are discussed at the international or global scale. I hope I’ll be able to use my qualifications, experience, and background to advocate for more just outcomes.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative More

  • in

    Setting carbon management in stone

    Keeping global temperatures within limits deemed safe by the Intergovernmental Panel on Climate Change means doing more than slashing carbon emissions. It means reversing them.

    “If we want to be anywhere near those limits [of 1.5 or 2 C], then we have to be carbon neutral by 2050, and then carbon negative after that,” says Matěj Peč, a geoscientist and the Victor P. Starr Career Development Assistant Professor in the Department of Earth, Atmospheric, and Planetary Sciences (EAPS).

    Going negative will require finding ways to radically increase the world’s capacity to capture carbon from the atmosphere and put it somewhere where it will not leak back out. Carbon capture and storage projects already suck in tens of million metric tons of carbon each year. But putting a dent in emissions will mean capturing many billions of metric tons more. Today, people emit around 40 billion tons of carbon each year globally, mainly by burning fossil fuels.

    Because of the need for new ideas when it comes to carbon storage, Peč has created a proposal for the MIT Climate Grand Challenges competition — a bold and sweeping effort by the Institute to support paradigm-shifting research and innovation to address the climate crisis. Called the Advanced Carbon Mineralization Initiative, his team’s proposal aims to bring geologists, chemists, and biologists together to make permanently storing carbon underground workable under different geological conditions. That means finding ways to speed-up the process by which carbon pumped underground is turned into rock, or mineralized.

    “That’s what the geology has to offer,” says Peč, who is a lead on the project, along with Ed Boyden, professor of biological engineering, brain and cognitive sciences, and media arts and sciences, and Yogesh Surendranath, professor of chemistry. “You look for the places where you can safely and permanently store these huge volumes of CO2.”

    Peč‘s proposal is one of 27 finalists selected from a pool of almost 100 Climate Grand Challenge proposals submitted by collaborators from across the Institute. Each finalist team received $100,000 to further develop their research proposals. A subset of finalists will be announced in April, making up a portfolio of multiyear “flagship” projects receiving additional funding and support.

    Building industries capable of going carbon negative presents huge technological, economic, environmental, and political challenges. For one, it’s expensive and energy-intensive to capture carbon from the air with existing technologies, which are “hellishly complicated,” says Peč. Much of the carbon capture underway today focuses on more concentrated sources like coal- or gas-burning power plants.

    It’s also difficult to find geologically suitable sites for storage. To keep it in the ground after it has been captured, carbon must either be trapped in airtight reservoirs or turned to stone.

    One of the best places for carbon capture and storage (CCS) is Iceland, where a number of CCS projects are up and running. The island’s volcanic geology helps speed up the mineralization process, as carbon pumped underground interacts with basalt rock at high temperatures. In that ideal setting, says Peč, 95 percent of carbon injected underground is mineralized after just two years — a geological flash.

    But Iceland’s geology is unusual. Elsewhere requires deeper drilling to reach suitable rocks at suitable temperature, which adds costs to already expensive projects. Further, says Peč, there’s not a complete understanding of how different factors influence the speed of mineralization.

    Peč‘s Climate Grand Challenge proposal would study how carbon mineralizes under different conditions, as well as explore ways to make mineralization happen more rapidly by mixing the carbon dioxide with different fluids before injecting it underground. Another idea — and the reason why there are biologists on the team — is to learn from various organisms adept at turning carbon into calcite shells, the same stuff that makes up limestone.

    Two other carbon management proposals, led by EAPS Cecil and Ida Green Professor Bradford Hager, were also selected as Climate Grand Challenge finalists. They focus on both the technologies necessary for capturing and storing gigatons of carbon as well as the logistical challenges involved in such an enormous undertaking.

    That involves everything from choosing suitable sites for storage, to regulatory and environmental issues, as well as how to bring disparate technologies together to improve the whole pipeline. The proposals emphasize CCS systems that can be powered by renewable sources, and can respond dynamically to the needs of different hard-to-decarbonize industries, like concrete and steel production.

    “We need to have an industry that is on the scale of the current oil industry that will not be doing anything but pumping CO2 into storage reservoirs,” says Peč.

    For a problem that involves capturing enormous amounts of gases from the atmosphere and storing it underground, it’s no surprise EAPS researchers are so involved. The Earth sciences have “everything” to offer, says Peč, including the good news that the Earth has more than enough places where carbon might be stored.

    “Basically, the Earth is really, really large,” says Peč. “The reasonably accessible places, which are close to the continents, store somewhere on the order of tens of thousands to hundreds thousands of gigatons of carbon. That’s orders of magnitude more than we need to put back in.” More

  • in

    Microbes and minerals may have set off Earth’s oxygenation

    For the first 2 billion years of Earth’s history, there was barely any oxygen in the air. While some microbes were photosynthesizing by the latter part of this period, oxygen had not yet accumulated at levels that would impact the global biosphere.

    But somewhere around 2.3 billion years ago, this stable, low-oxygen equilibrium shifted, and oxygen began building up in the atmosphere, eventually reaching the life-sustaining levels we breathe today. This rapid infusion is known as the Great Oxygenation Event, or GOE. What triggered the event and pulled the planet out of its low-oxygen funk is one of the great mysteries of science.

    A new hypothesis, proposed by MIT scientists, suggests that oxygen finally started accumulating in the atmosphere thanks to interactions between certain marine microbes and minerals in ocean sediments. These interactions helped prevent oxygen from being consumed, setting off a self-amplifying process where more and more oxygen was made available to accumulate in the atmosphere.

    The scientists have laid out their hypothesis using mathematical and evolutionary analyses, showing that there were indeed microbes that existed before the GOE and evolved the ability to interact with sediment in the way that the researchers have proposed.

    Their study, appearing today in Nature Communications, is the first to connect the co-evolution of microbes and minerals to Earth’s oxygenation.

    “Probably the most important biogeochemical change in the history of the planet was oxygenation of the atmosphere,” says study author Daniel Rothman, professor of geophysics in MIT’s Department of Earth, Atmospheric, and Planetary Sciences (EAPS). “We show how the interactions of microbes, minerals, and the geochemical environment acted in concert to increase oxygen in the atmosphere.”

    The study’s co-authors include lead author Haitao Shang, a former MIT graduate student, and Gregory Fournier, associate professor of geobiology in EAPS.

    A step up

    Today’s oxygen levels in the atmosphere are a stable balance between processes that produce oxygen and those that consume it. Prior to the GOE, the atmosphere maintained a different kind of equilibrium, with producers and consumers of oxygen  in balance, but in a way that didn’t leave much extra oxygen for the atmosphere.

    What could have pushed the planet out of one stable, oxygen-deficient state to another stable, oxygen-rich state?

    “If you look at Earth’s history, it appears there were two jumps, where you went from a steady state of low oxygen to a steady state of much higher oxygen, once in the Paleoproterozoic, once in the Neoproterozoic,” Fournier notes. “These jumps couldn’t have been because of a gradual increase in excess oxygen. There had to have been some feedback loop that caused this step-change in stability.”

    He and his colleagues wondered whether such a positive feedback loop could have come from a process in the ocean that made some organic carbon unavailable to its consumers. Organic carbon is mainly consumed through oxidation, usually accompanied by the consumption of oxygen — a process by which microbes in the ocean use oxygen to break down organic matter, such as detritus that has settled in sediment. The team wondered: Could there have been some process by which the presence of oxygen stimulated its further accumulation?

    Shang and Rothman worked out a mathematical model that made the following prediction: If microbes possessed the ability to only partially oxidize organic matter, the partially-oxidized matter, or “POOM,” would effectively become “sticky,” and chemically bind to minerals in sediment in a way that would protect the material from further oxidation. The oxygen that would otherwise have been consumed to fully degrade the material would instead be free to build up in the atmosphere. This process, they found, could serve as a positive feedback, providing a natural pump to push the atmosphere into a new, high-oxygen equilibrium.

    “That led us to ask, is there a microbial metabolism out there that produced POOM?” Fourier says.

    In the genes

    To answer this, the team searched through the scientific literature and identified a group of microbes that partially oxidizes organic matter in the deep ocean today. These microbes belong to the bacterial group SAR202, and their partial oxidation is carried out through an enzyme, Baeyer-Villiger monooxygenase, or BVMO.

    The team carried out a phylogenetic analysis to see how far back the microbe, and the gene for the enzyme, could be traced. They found that the bacteria did indeed have ancestors dating back before the GOE, and that the gene for the enzyme could be traced across various microbial species, as far back as pre-GOE times.

    What’s more, they found that the gene’s diversification, or the number of species that acquired the gene, increased significantly during times when the atmosphere experienced spikes in oxygenation, including once during the GOE’s Paleoproterozoic, and again in the Neoproterozoic.

    “We found some temporal correlations between diversification of POOM-producing genes, and the oxygen levels in the atmosphere,” Shang says. “That supports our overall theory.”

    To confirm this hypothesis will require far more follow-up, from experiments in the lab to surveys in the field, and everything in between. With their new study, the team has introduced a new suspect in the age-old case of what oxygenated Earth’s atmosphere.

    “Proposing a novel method, and showing evidence for its plausibility, is the first but important step,” Fournier says. “We’ve identified this as a theory worthy of study.”

    This work was supported in part by the mTerra Catalyst Fund and the National Science Foundation. More

  • in

    Study: Ice flow is more sensitive to stress than previously thought

    The rate of glacier ice flow is more sensitive to stress than previously calculated, according to a new study by MIT researchers that upends a decades-old equation used to describe ice flow.

    Stress in this case refers to the forces acting on Antarctic glaciers, which are primarily influenced by gravity that drags the ice down toward lower elevations. Viscous glacier ice flows “really similarly to honey,” explains Joanna Millstein, a PhD student in the Glacier Dynamics and Remote Sensing Group and lead author of the study. “If you squeeze honey in the center of a piece of toast, and it piles up there before oozing outward, that’s the exact same motion that’s happening for ice.”

    The revision to the equation proposed by Millstein and her colleagues should improve models for making predictions about the ice flow of glaciers. This could help glaciologists predict how Antarctic ice flow might contribute to future sea level rise, although Millstein said the equation change is unlikely to raise estimates of sea level rise beyond the maximum levels already predicted under climate change models.

    “Almost all our uncertainties about sea level rise coming from Antarctica have to do with the physics of ice flow, though, so this will hopefully be a constraint on that uncertainty,” she says.

    Other authors on the paper, published in Nature Communications Earth and Environment, include Brent Minchew, the Cecil and Ida Green Career Development Professor in MIT’s Department of Earth, Atmospheric, and Planetary Sciences, and Samuel Pegler, a university academic fellow at the University of Leeds.

    Benefits of big data

    The equation in question, called Glen’s Flow Law, is the most widely used equation to describe viscous ice flow. It was developed in 1958 by British scientist J.W. Glen, one of the few glaciologists working on the physics of ice flow in the 1950s, according to Millstein.

    With relatively few scientists working in the field until recently, along with the remoteness and inaccessibility of most large glacier ice sheets, there were few attempts to calibrate Glen’s Flow Law outside the lab until recently. In the recent study, Millstein and her colleagues took advantage of a new wealth of satellite imagery over Antarctic ice shelves, the floating extensions of the continent’s ice sheet, to revise the stress exponent of the flow law.

    “In 2002, this major ice shelf [Larsen B] collapsed in Antarctica, and all we have from that collapse is two satellite images that are a month apart,” she says. “Now, over that same area we can get [imagery] every six days.”

    The new analysis shows that “the ice flow in the most dynamic, fastest-changing regions of Antarctica — the ice shelves, which basically hold back and hug the interior of the continental ice — is more sensitive to stress than commonly assumed,” Millstein says. She’s optimistic that the growing record of satellite data will help capture rapid changes on Antarctica in the future, providing insights into the underlying physical processes of glaciers.   

    But stress isn’t the only thing that affects ice flow, the researchers note. Other parts of the flow law equation represent differences in temperature, ice grain size and orientation, and impurities and water contained in the ice — all of which can alter flow velocity. Factors like temperature could be especially important in understanding how ice flow impacts sea level rise in the future, Millstein says.

    Cracking under strain

    Millstein and colleagues are also studying the mechanics of ice sheet collapse, which involves different physical models than those used to understand the ice flow problem. “The cracking and breaking of ice is what we’re working on now, using strain rate observations,” Millstein says.

    The researchers use InSAR, radar images of the Earth’s surface collected by satellites, to observe deformations of the ice sheets that can be used to make precise measurements of strain. By observing areas of ice with high strain rates, they hope to better understand the rate at which crevasses and rifts propagate to trigger collapse.

    The research was supported by the National Science Foundation. More

  • in

    Using soap to remove micropollutants from water

    Imagine millions of soapy sponges the size of human cells that can clean water by soaking up contaminants. This simplistic model is used to describe technology that MIT chemical engineers have recently developed to remove micropollutants from water — a concerning, worldwide problem.

    Patrick S. Doyle, the Robert T. Haslam Professor of Chemical Engineering, PhD student Devashish Pratap Gokhale, and undergraduate Ian Chen recently published their research on micropollutant removal in the journal ACS Applied Polymer Materials. The work is funded by MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS).

    In spite of their low concentrations (about 0.01–100 micrograms per liter), micropollutants can be hazardous to the ecosystem and to human health. They come from a variety of sources and have been detected in almost all bodies of water, says Gokhale. Pharmaceuticals passing through people and animals, for example, can end up as micropollutants in the water supply. Others, like endocrine disruptor bisphenol A (BPA), can leach from plastics during industrial manufacturing. Pesticides, dyes, petrochemicals, and per-and polyfluoroalkyl substances, more commonly known as PFAS, are also examples of micropollutants, as are some heavy metals like lead and arsenic. These are just some of the kinds of micropollutants, all of which can be toxic to humans and animals over time, potentially causing cancer, organ damage, developmental defects, or other adverse effects.

    Micropollutants are numerous but since their collective mass is small, they are difficult to remove from water. Currently, the most common practice for removing micropollutants from water is activated carbon adsorption. In this process, water passes through a carbon filter, removing only 30 percent of micropollutants. Activated carbon requires high temperatures to produce and regenerate, requiring specialized equipment and consuming large amounts of energy. Reverse osmosis can also be used to remove micropollutants from water; however, “it doesn’t lead to good elimination of this class of molecules, because of both their concentration and their molecular structure,” explains Doyle.

    Inspired by soap

    When devising their solution for how to remove micropollutants from water, the MIT researchers were inspired by a common household cleaning supply — soap. Soap cleans everything from our hands and bodies to dirty dishes to clothes, so perhaps the chemistry of soap could also be applied to sanitizing water. Soap has molecules called surfactants which have both hydrophobic (water-hating) and hydrophilic (water-loving) components. When water comes in contact with soap, the hydrophobic parts of the surfactant stick together, assembling into spherical structures called micelles with the hydrophobic portions of the molecules in the interior. The hydrophobic micelle cores trap and help carry away oily substances like dirt. 

    Doyle’s lab synthesized micelle-laden hydrogel particles to essentially cleanse water. Gokhale explains that they used microfluidics which “involve processing fluids on very small, micron-like scales” to generate uniform polymeric hydrogel particles continuously and reproducibly. These hydrogels, which are porous and absorbent, incorporate a surfactant, a photoinitiator (a molecule that creates reactive species), and a cross-linking agent known as PEGDA. The surfactant assembles into micelles that are chemically bonded to the hydrogel using ultraviolet light. When water flows through this micro-particle system, micropollutants latch onto the micelles and separate from the water. The physical interaction used in the system is strong enough to pull micropollutants from water, but weak enough that the hydrogel particles can be separated from the micropollutants, restabilized, and reused. Lab testing shows that both the speed and extent of pollutant removal increase when the amount of surfactant incorporated into the hydrogels is increased.

    “We’ve shown that in terms of rate of pullout, which is what really matters when you scale this up for industrial use, that with our initial format, we can already outperform the activated carbon,” says Doyle. “We can actually regenerate these particles very easily at room temperature. Nearly 10 regeneration cycles with minimal change in performance,” he adds.

    Regeneration of the particles occurs by soaking the micelles in 90 percent ethanol, whereby “all the pollutants just come out of the particles and back into the ethanol” says Gokhale. Ethanol is biosafe at low concentrations, inexpensive, and combustible, allowing for safe and economically feasible disposal. The recycling of the hydrogel particles makes this technology sustainable, which is a large advantage over activated carbon. The hydrogels can also be tuned to any hydrophobic micropollutant, making this system a novel, flexible approach to water purification.

    Scaling up

    The team experimented in the lab using 2-naphthol, a micropollutant that is an organic pollutant of concern and known to be difficult to remove by using conventional water filtration methods. They hope to continue testing with real water samples. 

    “Right now, we spike one micropollutant into pure lab water. We’d like to get water samples from the natural environment, that we can study and look at experimentally,” says Doyle. 

    By using microfluidics to increase particle production, Doyle and his lab hope to make household-scale filters to be tested with real wastewater. They then anticipate scaling up to municipal water treatment or even industrial wastewater treatment. 

    The lab recently filed an international patent application for their hydrogel technology that uses immobilized micelles. They plan to continue this work by experimenting with different kinds of hydrogels for the removal of heavy metal contaminants like lead from water. 

    Societal impacts

    Funded by a 2019 J-WAFS seed grant that is currently ongoing, this research has the potential to improve the speed, precision, efficiency, and environmental sustainability of water purification systems across the world. 

    “I always wanted to do work which had a social impact, and I was also always interested in water, because I think it’s really cool,” says Gokhale. He notes, “it’s really interesting how water sort of fits into different kinds of fields … we have to consider the cultures of peoples, how we’re going to use this, and then just the equity of these water processes.” Originally from India, Gokhale says he’s seen places that have barely any water at all and others that have floods year after year. “There’s a lot of interesting work to be done, and I think it’s work in this area that’s really going to impact a lot of people’s lives in years to come,” Gokhale says.

    Doyle adds, “water is the most important thing, perhaps for the next decades to come, so it’s very fulfilling to work on something that is so important to the whole world.” More

  • in

    Using nature’s structures in wooden buildings

    Concern about climate change has focused significant attention on the buildings sector, in particular on the extraction and processing of construction materials. The concrete and steel industries together are responsible for as much as 15 percent of global carbon dioxide emissions. In contrast, wood provides a natural form of carbon sequestration, so there’s a move to use timber instead. Indeed, some countries are calling for public buildings to be made at least partly from timber, and large-scale timber buildings have been appearing around the world.

    Observing those trends, Caitlin Mueller ’07, SM ’14, PhD ’14, an associate professor of architecture and of civil and environmental engineering in the Building Technology Program at MIT, sees an opportunity for further sustainability gains. As the timber industry seeks to produce wooden replacements for traditional concrete and steel elements, the focus is on harvesting the straight sections of trees. Irregular sections such as knots and forks are turned into pellets and burned, or ground up to make garden mulch, which will decompose within a few years; both approaches release the carbon trapped in the wood to the atmosphere.

    For the past four years, Mueller and her Digital Structures research group have been developing a strategy for “upcycling” those waste materials by using them in construction — not as cladding or finishes aimed at improving appearance, but as structural components. “The greatest value you can give to a material is to give it a load-bearing role in a structure,” she says. But when builders use virgin materials, those structural components are the most emissions-intensive parts of buildings due to their large volume of high-strength materials. Using upcycled materials in place of those high-carbon systems is therefore especially impactful in reducing emissions.

    Mueller and her team focus on tree forks — that is, spots where the trunk or branch of a tree divides in two, forming a Y-shaped piece. In architectural drawings, there are many similar Y-shaped nodes where straight elements come together. In such cases, those units must be strong enough to support critical loads.

    “Tree forks are naturally engineered structural connections that work as cantilevers in trees, which means that they have the potential to transfer force very efficiently thanks to their internal fiber structure,” says Mueller. “If you take a tree fork and slice it down the middle, you see an unbelievable network of fibers that are intertwining to create these often three-dimensional load transfer points in a tree. We’re starting to do the same thing using 3D printing, but we’re nowhere near what nature does in terms of complex fiber orientation and geometry.”

    She and her team have developed a five-step “design-to-fabrication workflow” that combines natural structures such as tree forks with the digital and computational tools now used in architectural design. While there’s long been a “craft” movement to use natural wood in railings and decorative features, the use of computational tools makes it possible to use wood in structural roles — without excessive cutting, which is costly and may compromise the natural geometry and internal grain structure of the wood.

    Given the wide use of digital tools by today’s architects, Mueller believes that her approach is “at least potentially scalable and potentially achievable within our industrialized materials processing systems.” In addition, by combining tree forks with digital design tools, the novel approach can also support the trend among architects to explore new forms. “Many iconic buildings built in the past two decades have unexpected shapes,” says Mueller. “Tree branches have a very specific geometry that sometimes lends itself to an irregular or nonstandard architectural form — driven not by some arbitrary algorithm but by the material itself.”

    Step 0: Find a source, set goals

    Before starting their design-to-fabrication process, the researchers needed to locate a source of tree forks. Mueller found help in the Urban Forestry Division of the City of Somerville, Massachusetts, which maintains a digital inventory of more than 2,000 street trees — including more than 20 species — and records information about the location, approximate trunk diameter, and condition of each tree.

    With permission from the forestry division, the team was on hand in 2018 when a large group of trees was cut down near the site of the new Somerville High School. Among the heavy equipment on site was a chipper, poised to turn all the waste wood into mulch. Instead, the workers obligingly put the waste wood into the researchers’ truck to be brought to MIT.

    In their project, the MIT team sought not only to upcycle that waste material but also to use it to create a structure that would be valued by the public. “Where I live, the city has had to take down a lot of trees due to damage from an invasive species of beetle,” Mueller explains. “People get really upset — understandably. Trees are an important part of the urban fabric, providing shade and beauty.” She and her team hoped to reduce that animosity by “reinstalling the removed trees in the form of a new functional structure that would recreate the atmosphere and spatial experience previously provided by the felled trees.”

    With their source and goals identified, the researchers were ready to demonstrate the five steps in their design-to-fabrication workflow for making spatial structures using an inventory of tree forks.

    Step 1: Create a digital material library

    The first task was to turn their collection of tree forks into a digital library. They began by cutting off excess material to produce isolated tree forks. They then created a 3D scan of each fork. Mueller notes that as a result of recent progress in photogrammetry (measuring objects using photographs) and 3D scanning, they could create high-resolution digital representations of the individual tree forks with relatively inexpensive equipment, even using apps that run on a typical smartphone.

    In the digital library, each fork is represented by a “skeletonized” version showing three straight bars coming together at a point. The relative geometry and orientation of the branches are of particular interest because they determine the internal fiber orientation that gives the component its strength.

    Step 2: Find the best match between the initial design and the material library

    Like a tree, a typical architectural design is filled with Y-shaped nodes where three straight elements meet up to support a critical load. The goal was therefore to match the tree forks in the material library with the nodes in a sample architectural design.

    First, the researchers developed a “mismatch metric” for quantifying how well the geometries of a particular tree fork aligned with a given design node. “We’re trying to line up the straight elements in the structure with where the branches originally were in the tree,” explains Mueller. “That gives us the optimal orientation for load transfer and maximizes use of the inherent strength of the wood fiber.” The poorer the alignment, the higher the mismatch metric.

    The goal was to get the best overall distribution of all the tree forks among the nodes in the target design. Therefore, the researchers needed to try different fork-to-node distributions and, for each distribution, add up the individual fork-to-node mismatch errors to generate an overall, or global, matching score. The distribution with the best matching score would produce the most structurally efficient use of the total tree fork inventory.

    Since performing that process manually would take far too long to be practical, they turned to the “Hungarian algorithm,” a technique developed in 1955 for solving such problems. “The brilliance of the algorithm is solving that [matching] problem very quickly,” Mueller says. She notes that it’s a very general-use algorithm. “It’s used for things like marriage match-making. It can be used any time you have two collections of things that you’re trying to find unique matches between. So, we definitely didn’t invent the algorithm, but we were the first to identify that it could be used for this problem.”

    The researchers performed repeated tests to show possible distributions of the tree forks in their inventory and found that the matching score improved as the number of forks available in the material library increased — up to a point. In general, the researchers concluded that the mismatch score was lowest, and thus best, when there were about three times as many forks in the material library as there were nodes in the target design.

    Step 3: Balance designer intention with structural performance

    The next step in the process was to incorporate the intention or preference of the designer. To permit that flexibility, each design includes a limited number of critical parameters, such as bar length and bending strain. Using those parameters, the designer can manually change the overall shape, or geometry, of the design or can use an algorithm that automatically changes, or “morphs,” the geometry. And every time the design geometry changes, the Hungarian algorithm recalculates the optimal fork-to-node matching.

    “Because the Hungarian algorithm is extremely fast, all the morphing and the design updating can be really fluid,” notes Mueller. In addition, any change to a new geometry is followed by a structural analysis that checks the deflections, strain energy, and other performance measures of the structure. On occasion, the automatically generated design that yields the best matching score may deviate far from the designer’s initial intention. In such cases, an alternative solution can be found that satisfactorily balances the design intention with a low matching score.

    Step 4: Automatically generate the machine code for fast cutting

    When the structural geometry and distribution of tree forks have been finalized, it’s time to think about actually building the structure. To simplify assembly and maintenance, the researchers prepare the tree forks by recutting their end faces to better match adjoining straight timbers and cutting off any remaining bark to reduce susceptibility to rot and fire.

    To guide that process, they developed a custom algorithm that automatically computes the cuts needed to make a given tree fork fit into its assigned node and to strip off the bark. The goal is to remove as little material as possible but also to avoid a complex, time-consuming machining process. “If we make too few cuts, we’ll cut off too much of the critical structural material. But we don’t want to make a million tiny cuts because it will take forever,” Mueller explains.

    The team uses facilities at the Autodesk Boston Technology Center Build Space, where the robots are far larger than any at MIT and the processing is all automated. To prepare each tree fork, they mount it on a robotic arm that pushes the joint through a traditional band saw in different orientations, guided by computer-generated instructions. The robot also mills all the holes for the structural connections. “That’s helpful because it ensures that everything is aligned the way you expect it to be,” says Mueller.

    Step 5: Assemble the available forks and linear elements to build the structure

    The final step is to assemble the structure. The tree-fork-based joints are all irregular, and combining them with the precut, straight wooden elements could be difficult. However, they’re all labeled. “All the information for the geometry is embedded in the joint, so the assembly process is really low-tech,” says Mueller. “It’s like a child’s toy set. You just follow the instructions on the joints to put all the pieces together.”

    They installed their final structure temporarily on the MIT campus, but Mueller notes that it was only a portion of the structure they plan to eventually build. “It had 12 nodes that we designed and fabricated using our process,” she says, adding that the team’s work was “a little interrupted by the pandemic.” As activity on campus resumes, the researchers plan to finish designing and building the complete structure, which will include about 40 nodes and will be installed as an outdoor pavilion on the site of the felled trees in Somerville.

    In addition, they will continue their research. Plans include working with larger material libraries, some with multibranch forks, and replacing their 3D-scanning technique with computerized tomography scanning technologies that can automatically generate a detailed geometric representation of a tree fork, including its precise fiber orientation and density. And in a parallel project, they’ve been exploring using their process with other sources of materials, with one case study focusing on using material from a demolished wood-framed house to construct more than a dozen geodesic domes.

    To Mueller, the work to date already provides new guidance for the architectural design process. With digital tools, it has become easy for architects to analyze the embodied carbon or future energy use of a design option. “Now we have a new metric of performance: How well am I using available resources?” she says. “With the Hungarian algorithm, we can compute that metric basically in real time, so we can work rapidly and creatively with that as another input to the design process.”

    This research was supported by MIT’s School of Architecture and Planning via the HASS Award.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Through the championing support of the faculty and leadership of the MIT Afghan Working Group convened last September by Provost Martin Schmidt and chaired by Associate Provost for International Activities Richard Lester, MIT has come together to support displaced Afghan learners and scholars in a time of crisis. The MIT Refugee Action Hub (ReACT) has opened opportunities for 25 talented Afghan learners to participate in the hub’s certificate program in computer and data science (CDS), now in its fourth year, welcoming its largest and most diverse cohort to date — 136 learners from 29 countries.

    ”Even in the face of extreme disruption, education and scholarship must continue, and MIT is committed to providing resources and safe forums for displaced scholars,” says Lester. “We greatly appreciate MIT ReACT’s work to create learning opportunities for Afghan students whose lives have been upended by the crisis in their homeland.”

    Currently, more than 3.5 million Afghans are internally displaced, while 2.5 million are registered refugees residing in other parts of the world. With millions in Afghanistan facing famine, poverty, and civil unrest in what has become the world’s largest humanitarian crisis, the United Nations predicts the number of Afghans forced to flee their homes will continue to rise. 

    “Forced displacement is on the rise, fueled not only by constant political, economical, and social turmoil worldwide, but also by the ongoing climate change crisis, which threatens costly disruptions to society and has potential to create unprecedented displacement internationally,” says associate professor of civil and environmental engineering and ReACT’s faculty founder Admir Masic. During the orientation for the new CDS cohort in January, Masic emphasized the great need for educational programs like ReACT’s that address the specific challenges refugees and displaced learners face.

    A former Bosnian refugee, Masic spent his teenage years in Croatia, where educational opportunities were limited for young people with refugee status. His experience motivated him to found ReACT, which launched in 2017. Housed within Open Learning, ReACT is an MIT-wide effort to deliver global education and professional development programs to underserved communities, including refugees and migrants. ReACT’s signature program, CDS is a year-long, online program that combines MITx courses in programming and data science, personal and professional development workshops including MIT Bootcamps, and opportunities for practical experience.

    ReACT’s group of 25 learners from Afghanistan, 52 percent of whom are women, joins the larger CDS cohort in the program. They will receive support from their new colleagues as well as members of ReACT’s mentor and alumni network. While the majority of the group are residing around the world, including in Europe, North America, and neighboring countries, several still remain in Afghanistan. With the support of the Afghan Working Group, ReACT is working to connect with communities from the region to provide safe and inclusive learning environments for the cohort. ​​

    Building community and confidence

    Selected from more than 1,000 applicants, the new CDS cohort reflected on their personal and professional goals during a weeklong orientation.

    “I am here because I want to change my career and learn basics in this field to then obtain networks that I wouldn’t have got if it weren’t for this program,” said Samiullah Ajmal, who is joining the program from Afghanistan.

    Interactive workshops on topics such as leadership development and virtual networking rounded out the week’s events. Members of ReACT’s greater community — which has grown in recent years to include a network of external collaborators including nonprofits, philanthropic supporters, universities, and alumni — helped facilitate these workshops and other orientation activities.

    For instance, Na’amal, a social enterprise that connects refugees to remote work opportunities, introduced the CDS learners to strategies for making career connections remotely. “We build confidence while doing,” says Susan Mulholland, a leadership and development coach with Na’amal who led the networking workshop.

    Along with the CDS program’s cohort-based model, ReACT also uses platforms that encourage regular communication between participants and with the larger ReACT network — making connections a critical component of the program.

    “I not only want to meet new people and make connections for my professional career, but I also want to test my communication and social skills,” says Pablo Andrés Uribe, a learner who lives in Colombia, describing ReACT’s emphasis on community-building. 

    Over the last two years, ReACT has expanded its geographic presence, growing from a hub in Jordan into a robust global community of many hubs, including in Colombia and Uganda. These regional sites connect talented refugees and displaced learners to internships and employment, startup networks and accelerators, and pathways to formal undergraduate and graduate education.

    This expansion is thanks to the generous support internally from the MIT Office of the Provost and Associate Provost Richard Lester and external organizations including the Western Union Foundation. ReACT will build new hubs this year in Greece, Uruguay, and Afghanistan, as a result of gifts from the Hatsopoulos family and the Pfeffer family.

    Holding space to learn from each other

    In addition to establishing new global hubs, ReACT plans to expand its network of internship and experiential learning opportunities, increasing outreach to new collaborators such as nongovernmental organizations (NGOs), companies, and universities. Jointly with Na’amal and Paper Airplanes, a nonprofit that connects conflict-affected individuals with personal language tutors, ReACT will host the first Migration Summit. Scheduled for April 2022, the month-long global convening invites a broad range of participants, including displaced learners, universities, companies, nonprofits and NGOs, social enterprises, foundations, philanthropists, researchers, policymakers, employers, and governments, to address the key challenges and opportunities for refugee and migrant communities. The theme of the summit is “Education and Workforce Development in Displacement.”

    “The MIT Migration Summit offers a platform to discuss how new educational models, such as those employed in ReACT, can help solve emerging challenges in providing quality education and career opportunities to forcibly displaced and marginalized people around the world,” says Masic. 

    A key goal of the convening is to center the voices of those most directly impacted by displacement, such as ReACT’s learners from Afghanistan and elsewhere, in solution-making. More