More stories

  • in

    Elsa Olivetti wins 2021 MIT Bose Award for Excellence in Teaching

    This year’s Bose Award for Excellence in Teaching has been presented to MIT Associate Professor Elsa Olivetti. Olivetti’s zest for enhancing the student experience is evident in the innovative and creative flare she brings to all aspects of her work.

    “Professor Olivetti’s dedication to teaching is truly inspiring,” says Anantha P. Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “She has an extraordinary ability to engage her students, and has developed transformational approaches to curriculum and mentoring.”

    Olivetti is the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering, and co-director of the MIT Climate and Sustainability Consortium. Her passion for addressing issues related to climate change frames the focus of her research, which centers on improving the environmental and economic sustainability of materials in the context of growing global demand. Her work focuses on reducing the significant burden of materials production and consumption through increased use of recycled and waste materials; informing the early-stage design of new materials for effective scale-up; and understanding the implications of policy, new technology development, and manufacturing processes on materials supply chains. 

    Olivetti has made significant contributions on education within the Department of Materials Science and Engineering since she came on board in 2014, including designing and implementing a subject on industrial ecology and materials, co-design of the Advanced Materials Machines NEET program, and developing a new undergraduate curriculum. Underscoring the care she has for her students’ success and well-being, Olivetti also cultivated the Course 3 Industry Seminars, pairing undergraduates with individuals working in careers related to 3D printing, environmental consulting, and manufacturing, with the aim of assisting her students with employment opportunities.

    “Professor Olivetti is a brilliant teacher and a creative educator, who engages the classroom with an uncanny ability to keep students on the edge of their seats combined with a remarkable and signature style that creates learning moments they remember years later,” says Jeff Grossman, head of the Department of Materials Science and Engineering. “I am proud to have Elsa as a colleague, and I am delighted that her excellence has been recognized with the Bose Award.”

    Olivetti received her PhD in materials science and engineering from MIT in 2007; shortly after, she joined the department as a postdoc. She subsequently worked as a research scientist in the Materials Systems Lab from 2009 to 2013 and joined the DMSE faculty in 2014. She was recently named a 2021 MacVicar Faculty Fellow in recognition of her exceptional commitment to curricular innovation, scientific research, and improving the student experience through teaching, mentoring, and advising. Previously, she has received the Earll M. Murman Award for Excellence in Undergraduate Advising in 2017, the award for “best DMSE advisor” in 2019, and the Paul Gray Award for Public Service in 2020.

    The Bose Award for Excellence in Teaching is given annually to a faculty member whose contributions to education have been characterized by dedication, care, and creativity. Established in 1990 by the School of Engineering, the award stands as a tribute to the late Amar Bose, a professor of electrical engineering and computer science and the founder of the Bose Corporation, to recognize outstanding contributions to undergraduate education by members of its faculty. More

  • in

    Global warming begets more warming, new paleoclimate study finds

    It is increasingly clear that the prolonged drought conditions, record-breaking heat, sustained wildfires, and frequent, more extreme storms experienced in recent years are a direct result of rising global temperatures brought on by humans’ addition of carbon dioxide to the atmosphere. And a new MIT study on extreme climate events in Earth’s ancient history suggests that today’s planet may become more volatile as it continues to warm.

    The study, appearing today in Science Advances, examines the paleoclimate record of the last 66 million years, during the Cenozoic era, which began shortly after the extinction of the dinosaurs. The scientists found that during this period, fluctuations in the Earth’s climate experienced a surprising “warming bias.” In other words, there were far more warming events — periods of prolonged global warming, lasting thousands to tens of thousands of years — than cooling events. What’s more, warming events tended to be more extreme, with greater shifts in temperature, than cooling events.

    The researchers say a possible explanation for this warming bias may lie in a “multiplier effect,” whereby a modest degree of warming — for instance from volcanoes releasing carbon dioxide into the atmosphere — naturally speeds up certain biological and chemical processes that enhance these fluctuations, leading, on average, to still more warming.

    Interestingly, the team observed that this warming bias disappeared about 5 million years ago, around the time when ice sheets started forming in the Northern Hemisphere. It’s unclear what effect the ice has had on the Earth’s response to climate shifts. But as today’s Arctic ice recedes, the new study suggests that a multiplier effect may kick back in, and the result may be a further amplification of human-induced global warming.

    “The Northern Hemisphere’s ice sheets are shrinking, and could potentially disappear as a long-term consequence of human actions” says the study’s lead author Constantin Arnscheidt, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “Our research suggests that this may make the Earth’s climate fundamentally more susceptible to extreme, long-term global warming events such as those seen in the geologic past.”

    Arnscheidt’s study co-author is Daniel Rothman, professor of geophysics at MIT, and  co-founder and co-director of MIT’s Lorenz Center.

    A volatile push

    For their analysis, the team consulted large databases of sediments containing deep-sea benthic foraminifera — single-celled organisms that have been around for hundreds of millions of years and whose hard shells are preserved in sediments. The composition of these shells is affected by the ocean temperatures as organisms are growing; the shells are therefore considered a reliable proxy for the Earth’s ancient temperatures.

    For decades, scientists have analyzed the composition of these shells, collected from all over the world and dated to various time periods, to track how the Earth’s temperature has fluctuated over millions of years. 

    “When using these data to study extreme climate events, most studies have focused on individual large spikes in temperature, typically of a few degrees Celsius warming,” Arnscheidt says. “Instead, we tried to look at the overall statistics and consider all the fluctuations involved, rather than picking out the big ones.”

    The team first carried out a statistical analysis of the data and observed that, over the last 66 million years, the distribution of global temperature fluctuations didn’t resemble a standard bell curve, with symmetric tails representing an equal probability of extreme warm and extreme cool fluctuations. Instead, the curve was noticeably lopsided, skewed toward more warm than cool events. The curve also exhibited a noticeably longer tail, representing warm events that were more extreme, or of higher temperature, than the most extreme cold events.

    “This indicates there’s some sort of amplification relative to what you would otherwise have expected,” Arnscheidt says. “Everything’s pointing to something fundamental that’s causing this push, or bias toward warming events.”

    “It’s fair to say that the Earth system becomes more volatile, in a warming sense,” Rothman adds.

    A warming multiplier

    The team wondered whether this warming bias might have been a result of “multiplicative noise” in the climate-carbon cycle. Scientists have long understood that higher temperatures, up to a point, tend to speed up biological and chemical processes. Because the carbon cycle, which is a key driver of long-term climate fluctuations, is itself composed of such processes, increases in temperature may lead to larger fluctuations, biasing the system towards extreme warming events.

    In mathematics, there exists a set of equations that describes such general amplifying, or multiplicative effects. The researchers applied this multiplicative theory to their analysis to see whether the equations could predict the asymmetrical distribution, including the degree of its skew and the length of its tails.

    In the end, they found that the data, and the observed bias toward warming, could be explained by the multiplicative theory. In other words, it’s very likely that, over the last 66 million years, periods of modest warming were on average further enhanced by multiplier effects, such as the response of biological and chemical processes that further warmed the planet.

    As part of the study, the researchers also looked at the correlation between past warming events and changes in Earth’s orbit. Over hundreds of thousands of years, Earth’s orbit around the sun regularly becomes more or less elliptical. But scientists have wondered why many past warming events appeared to coincide with these changes, and why these events feature outsized warming compared with what the change in Earth’s orbit could have wrought on its own.

    So, Arnscheidt and Rothman incorporated the Earth’s orbital changes into the multiplicative model and their analysis of Earth’s temperature changes, and found that multiplier effects could predictably amplify, on average, the modest temperature rises due to changes in Earth’s orbit.

    “Climate warms and cools in synchrony with orbital changes, but the orbital cycles themselves would predict only modest changes in climate,” Rothman says. “But if we consider a multiplicative model, then modest warming, paired with this multiplier effect, can result in extreme events that tend to occur at the same time as these orbital changes.”

    “Humans are forcing the system in a new way,” Arnscheidt adds. “And this study is showing that, when we increase temperature, we’re likely going to interact with these natural, amplifying effects.”

    This research was supported, in part, by MIT’s School of Science. More

  • in

    Finding common ground in Malden

    When disparate groups convene around a common goal, exciting things can happen.

    That is the inspiring story unfolding in Malden, Massachusetts, a city of about 60,000 — nearly half people of color — where a new type of community coalition continues to gain momentum on its plan to build a climate-resilient waterfront park along its river. The Malden River Works (MRW) project, recipient of the inaugural Leventhal City Prize, is seeking to connect to a contiguous greenway network where neighboring cities already have visitors coming to their parks and enjoying recreational boating. More important, the MRW is changing the model for how cities address civic growth, community engagement, equitable climate resilience, and environmental justice.                                                                                        

    The MRW’s steering committee consists of eight resident leaders of color, a resident environmental advocate, and three city representatives. One of the committee’s primary responsibilities is providing direction to the MRW’s project team, which includes urban designers, watershed and climate resilience planners, and a community outreach specialist. MIT’s Kathleen Vandiver, director of the Community Outreach Education and Engagement Core at MIT’s Center for Environmental Health Sciences (CEHS), and Marie Law Adams MArch ’06, a lecturer in the School of Architecture and Planning’s Department of Urban Studies and Planning (DUSP), serve on the project team.

    “This governance structure is somewhat unusual,” says Adams. “More typical is having city government as the primary decision-maker. It is important that one of the first things our team did was build a steering committee that is the decision maker on this project.”

    Evan Spetrini ’18 is the senior planner and policy manager for the Malden Redevelopment Authority and sits on both the steering committee and project team. He says placing the decision-making power with the steering committee and building it to be representative of marginalized communities was intentional. 

    “Changing that paradigm of power and decision-making in planning processes was the way we approached social resilience,” says Spetrini. “We have always intended this project to be a model for future planning projects in Malden.”

    This model ushers in a new history chapter for a city founded in 1640.

    Located about six miles north of Boston, Malden was home to mills and factories that used the Malden River for power, and a site for industrial waste over the last two centuries. Decades after the city’s industrial decline, there is little to no public access to the river. Many residents were not even aware there was a river in their city. Before the project was under way, Vandiver initiated a collaborative effort to evaluate the quality of the river’s water. Working with the Mystic River Watershed Association, Gradient Corporation, and CEHS, water samples were tested and a risk analysis conducted.

    “Having the study done made it clear the public could safely enjoy boating on the water,” says Vandiver. “It was a breakthrough that allowed people to see the river as an amenity.”

    A team effort

    Marcia Manong had never seen the river, but the Malden resident was persuaded to join the steering committee with the promise the project would be inclusive and of value to the community. Manong has been involved with civic engagement most of her life in the United States and for 20 years in South Africa.

    “It wasn’t going to be a marginalized, token-ized engagement,” says Manong. “It was clear to me that they were looking for people that would actually be sitting at the table.”

    Manong agreed to recruit additional people of color to join the team. From the beginning, she says, language was a huge barrier, given that nearly half of Malden’s residents do not speak English at home. Finding the translation efforts at their public events to be inadequate, the steering committee directed more funds to be made available for translation in several languages when public meetings began being held over Zoom this past year.

    “It’s unusual for most cities to spend this money, but our population is so diverse that we require it,” says Manong. “We have to do it. If the steering committee wasn’t raising this issue with the rest of the team, perhaps this would be overlooked.”

    Another alteration the steering committee has made is how the project engages with the community. While public attendance at meetings had been successful before the pandemic, Manong says they are “constantly working” to reach new people. One method has been to request invitations to attend the virtual meetings of other organizations to keep them apprised of the project.

    “We’ve said that people feel most comfortable when they’re in their own surroundings, so why not go where the people are instead of trying to get them to where we are,” says Manong.

    Buoyed by the $100,000 grant from MIT’s Norman B. Leventhal Center for Advanced Urbanism (LCAU) in 2019, the project team worked with Malden’s Department of Public Works, which is located along the river, to redesign its site and buildings and to study how to create a flood-resistant public open space as well as an elevated greenway path, connecting with other neighboring cities’ paths. The park’s plans also call for 75 new trees to reduce urban heat island effect, open lawn for gathering, and a dock for boating on the river.

    “The storm water infrastructure in these cities is old and isn’t going to be able to keep up with increased precipitation,” says Adams. “We’re looking for ways to store as much water as possible on the DPW site so we can hold it and release it more gradually into the river to avoid flooding.”

    The project along the 2.3-mile-long river continues to receive attention. Recently, the city of Malden was awarded a 2021 Accelerating Climate Resilience Grant of more than $50,000 from the state’s Metropolitan Area Planning Council and the Barr Foundation to support the project. Last fall, the project was awarded a $150,015 Municipal Vulnerability Preparedness Action Grant. Both awards are being directed to fund engineering work to refine the project’s design.

    “We — and in general, the planning profession — are striving to create more community empowerment in decision-making as to what happens to their community,” says Spetrini. “Putting the power in the community ensures that it’s actually responding to the needs of the community.”

    Contagious enthusiasm

    Manong says she’s happy she got involved with the project and believes the new governance structure is making a difference.

    “This project is definitely engaging with communities of color in a manner that is transformative and that is looking to build a long-lasting power dynamic built on trust,” she says. “It’s a new energized civic engagement and we’re making that happen. It’s very exciting.”

    Spetrini finds the challenge of creating an open space that’s publicly accessible and alongside an active work site professionally compelling.

    “There is a way to preserve the industrial employment base while also giving the public greater access to this natural resource,” he says. “It has real implications for other communities to follow this type of model.”

    Despite the pandemic this past year, enthusiasm for the project is palpable. For Spetrini, a Malden resident, it’s building “the first significant piece of what has been envisioned as the Malden River Greenway.” Adams sees the total project as a way to build social resilience as well as garnering community interest in climate resilience. For Vandiver, it’s the implications for improved community access.

    “From a health standpoint, everybody has learned from Covid-19 that the health aspects of walking in nature are really restorative,” says Vandiver. “Creating greater green space gives more attention to health issues. These are seemingly small side benefits, but they’re huge for mental health benefits.”

    Leventhal City Prize’s next cycle

    The Leventhal City Prize was established by the LCAU to catalyze innovative, interdisciplinary urban design, and planning approaches worldwide to improve both the environment and the quality of life for residents. Support for the LCAU was provided by the Muriel and Norman B. Leventhal Family Foundation and the Sherry and Alan Leventhal Family Foundation.

    “We’re thrilled with inaugural recipients of the award and the extensive work they’ve undertaken that is being held up as an exemplary model for others to learn from,” says Sarah Williams, LCAU director and a professor in DUSP. “Their work reflects the prize’s intent. We look forward to catalyzing these types of collaborative partnership in the next prize cycle.”

    Submissions for the next cycle of the Leventhal City Prize will open in early 2022.    More

  • in

    Using graphene foam to filter toxins from drinking water

    Some kinds of water pollution, such as algal blooms and plastics that foul rivers, lakes, and marine environments, lie in plain sight. But other contaminants are not so readily apparent, which makes their impact potentially more dangerous. Among these invisible substances is uranium. Leaching into water resources from mining operations, nuclear waste sites, or from natural subterranean deposits, the element can now be found flowing out of taps worldwide.

    In the United States alone, “many areas are affected by uranium contamination, including the High Plains and Central Valley aquifers, which supply drinking water to 6 million people,” says Ahmed Sami Helal, a postdoc in the Department of Nuclear Science and Engineering. This contamination poses a near and present danger. “Even small concentrations are bad for human health,” says Ju Li, the Battelle Energy Alliance Professor of Nuclear Science and Engineering and professor of materials science and engineering.

    Now, a team led by Li has devised a highly efficient method for removing uranium from drinking water. Applying an electric charge to graphene oxide foam, the researchers can capture uranium in solution, which precipitates out as a condensed solid crystal. The foam may be reused up to seven times without losing its electrochemical properties. “Within hours, our process can purify a large quantity of drinking water below the EPA limit for uranium,” says Li.

    A paper describing this work was published in this week Advanced Materials. The two first co-authors are Helal and Chao Wang, a postdoc at MIT during the study, who is now with the School of Materials Science and Engineering at Tongji University, Shanghai. Researchers from Argonne National Laboratory, Taiwan’s National Chiao Tung University, and the University of Tokyo also participated in the research. The Defense Threat Reduction Agency (U.S. Department of Defense) funded later stages of this work.

    Targeting the contaminant

    The project, launched three years ago, began as an effort to find better approaches to environmental cleanup of heavy metals from mining sites. To date, remediation methods for such metals as chromium, cadmium, arsenic, lead, mercury, radium, and uranium have proven limited and expensive. “These techniques are highly sensitive to organics in water, and are poor at separating out the heavy metal contaminants,” explains Helal. “So they involve long operation times, high capital costs, and at the end of extraction, generate more toxic sludge.”

    To the team, uranium seemed a particularly attractive target. Field testing from the U.S. Geological Service and the Environmental Protection Agency (EPA) has revealed unhealthy levels of uranium moving into reservoirs and aquifers from natural rock sources in the northeastern United States, from ponds and pits storing old nuclear weapons and fuel in places like Hanford, Washington, and from mining activities located in many western states. This kind of contamination is prevalent in many other nations as well. An alarming number of these sites show uranium concentrations close to or above the EPA’s recommended ceiling of 30 parts per billion (ppb) — a level linked to kidney damage, cancer risk, and neurobehavioral changes in humans.

    The critical challenge lay in finding a practical remediation process exclusively sensitive to uranium, capable of extracting it from solution without producing toxic residues. And while earlier research showed that electrically charged carbon fiber could filter uranium from water, the results were partial and imprecise.

    Wang managed to crack these problems — based on her investigation of the behavior of graphene foam used for lithium-sulfur batteries. “The physical performance of this foam was unique because of its ability to attract certain chemical species to its surface,” she says. “I thought the ligands in graphene foam would work well with uranium.”

    Simple, efficient, and clean

    The team set to work transforming graphene foam into the equivalent of a uranium magnet. They learned that by sending an electric charge through the foam, splitting water and releasing hydrogen, they could increase the local pH and induce a chemical change that pulled uranium ions out of solution. The researchers found that the uranium would graft itself onto the foam’s surface, where it formed a never-before-seen crystalline uranium hydroxide. On reversal of the electric charge, the mineral, which resembles fish scales, slipped easily off the foam.

    It took hundreds of tries to get the chemical composition and electrolysis just right. “We kept changing the functional chemical groups to get them to work correctly,” says Helal. “And the foam was initially quite fragile, tending to break into pieces, so we needed to make it stronger and more durable,” says Wang.

    This uranium filtration process is simple, efficient, and clean, according to Li: “Each time it’s used, our foam can capture four times its own weight of uranium, and we can achieve an extraction capacity of 4,000 mg per gram, which is a major improvement over other methods,” he says. “We’ve also made a major breakthrough in reusability, because the foam can go through seven cycles without losing its extraction efficiency.” The graphene foam functions as well in seawater, where it reduces uranium concentrations from 3 parts per million to 19.9 ppb, showing that other ions in the brine do not interfere with filtration.

    The team believes its low-cost, effective device could become a new kind of home water filter, fitting on faucets like those of commercial brands. “Some of these filters already have activated carbon, so maybe we could modify these, add low-voltage electricity to filter uranium,” says Li.

    “The uranium extraction this device achieves is very impressive when compared to existing methods,” says Ho Jin Ryu, associate professor of nuclear and quantum engineering at the Korea Advanced Institute of Science and Technology. Ryu, who was not involved in the research, believes that the demonstration of graphene foam reusability is a “significant advance,” and that “the technology of local pH control to enhance uranium deposition will be impactful because the scientific principle can be applied more generally to heavy metal extraction from polluted water.”

    The researchers have already begun investigating broader applications of their method. “There is a science to this, so we can modify our filters to be selective for other heavy metals such as lead, mercury, and cadmium,” says Li. He notes that radium is another significant danger for locales in the United States and elsewhere that lack resources for reliable drinking water infrastructure.

    “In the future, instead of a passive water filter, we could be using a smart filter powered by clean electricity that turns on electrolytic action, which could extract multiple toxic metals, tell you when to regenerate the filter, and give you quality assurance about the water you’re drinking.” More

  • in

    A new way to detect the SARS-CoV-2 Alpha variant in wastewater

    Researchers from the Antimicrobial Resistance (AMR) interdisciplinary research group at the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, alongside collaborators from Biobot Analytics, Nanyang Technological University (NTU), and MIT, have successfully developed an innovative, open-source molecular detection method that is able to detect and quantify the B.1.1.7 (Alpha) variant of SARS-CoV-2. The breakthrough paves the way for rapid, inexpensive surveillance of other SARS-CoV-2 variants in wastewater.

    As the world continues to battle and contain Covid-19, the recent identification of SARS-CoV-2 variants with higher transmissibility and increased severity has made developing convenient variant tracking methods essential. Currently, identified variants include the B.1.17 (Alpha) variant first identified in the United Kingdom and the B.1.617.2 (Delta) variant first detected in India.

    Wastewater surveillance has emerged as a critical public health tool to safely and efficiently track the SARS-CoV-2 pandemic in a non-intrusive manner, providing complementary information that enables health authorities to acquire actionable community-level information. Most recently, viral fragments of SARS-CoV-2 were detected in housing estates in Singapore through a proactive wastewater surveillance program. This information, alongside surveillance testing, allowed Singapore’s Ministry of Health to swiftly respond, isolate, and conduct swab tests as part of precautionary measures.

    However, detecting variants through wastewater surveillance is less commonplace due to challenges in existing technology. Next-generation sequencing for wastewater surveillance is time-consuming and expensive. Tests also lack the sensitivity required to detect low variant abundances in dilute and mixed wastewater samples due to inconsistent and/or low sequencing coverage.

    The method developed by the researchers is uniquely tailored to address these challenges and expands the utility of wastewater surveillance beyond testing for SARS-CoV-2, toward tracking the spread of SARS-CoV-2 variants of concern.

    Wei Lin Lee, research scientist at SMART AMR and first author on the paper adds, “This is especially important in countries battling SARS-CoV-2 variants. Wastewater surveillance will help find out the true proportion and spread of the variants in the local communities. Our method is sensitive enough to detect variants in highly diluted SARS-CoV-2 concentrations typically seen in wastewater samples, and produces reliable results even for samples which contain multiple SARS-CoV-2 lineages.”

    Led by Janelle Thompson, NTU associate professor, and Eric Alm, MIT professor and SMART AMR principal investigator, the team’s study, “Quantitative SARS-CoV-2 Alpha variant B.1.1.7 Tracking in Wastewater by Allele-Specific RT-qPCR” has been published in Environmental Science & Technology Letters. The research explains the innovative, open-source molecular detection method based on allele-specific RT-qPCR that detects and quantifies the B.1.1.7 (Alpha) variant. The developed assay, tested and validated in wastewater samples across 19 communities in the United States, is able to reliably detect and quantify low levels of the B.1.1.7 (Alpha) variant with low cross-reactivity, and at variant proportions down to 1 percent in a background of mixed SARS-CoV-2 viruses.

    Targeting spike protein mutations that are highly predictive of the B.1.1.7 (Alpha) variant, the method can be implemented using commercially available RT-qPCR protocols. Unlike commercially available products that use proprietary primers and probes for wastewater surveillance, the paper details the open-source method and its development that can be freely used by other organizations and research institutes for their work on wastewater surveillance of SARS-CoV-2 and its variants.

    The breakthrough by the research team in Singapore is currently used by Biobot Analytics, an MIT startup and global leader in wastewater epidemiology headquartered in Cambridge, Massachusetts, serving states and localities throughout the United States. Using the method, Biobot Analytics is able to accept and analyze wastewater samples for the B.1.1.7 (Alpha) variant and plans to add additional variants to its analysis as methods are developed. For example, the SMART AMR team is currently developing specific assays that will be able to detect and quantify the B.1.617.2 (Delta) variant, which has recently been identified as a variant of concern by the World Health Organization.

    “Using the team’s innovative method, we have been able to monitor the B.1.1.7 (Alpha) variant in local populations in the U.S. — empowering leaders with information about Covid-19 trends in their communities and allowing them to make considered recommendations and changes to control measures,” says Mariana Matus PhD ’18, Biobot Analytics CEO and co-founder.

    “This method can be rapidly adapted to detect new variants of concern beyond B.1.1.7,” adds MIT’s Alm. “Our partnership with Biobot Analytics has translated our research into real-world impact beyond the shores of Singapore and aid in the detection of Covid-19 and its variants, serving as an early warning system and guidance for policymakers as they trace infection clusters and consider suitable public health measures.”

    The research is carried out by SMART and supported by the National Research Foundation (NRF) Singapore under its Campus for Research Excellence And Technological Enterprise (CREATE) program.

    SMART was established by MIT in partnership with the National Research Foundation of Singapore (NRF) in 2007. SMART is the first entity in CREATE developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both Singapore and MIT. SMART currently comprises an Innovation Center and five IRGs: AMR, Critical Analytics for Manufacturing Personalized-Medicine, Disruptive and Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and Low Energy Electronic Systems.

    The AMR interdisciplinary research group is a translational research and entrepreneurship program that tackles the growing threat of antimicrobial resistance. By leveraging talent and convergent technologies across Singapore and MIT, AMR aims to develop multiple innovative and disruptive approaches to identify, respond to, and treat drug-resistant microbial infections. Through strong scientific and clinical collaborations, its goal is to provide transformative, holistic solutions for Singapore and the world. More

  • in

    A new approach to preventing human-induced earthquakes

    When humans pump large volumes of fluid into the ground, they can set off potentially damaging earthquakes, depending on the underlying geology. This has been the case in certain oil- and gas-producing regions, where wastewater, often mixed with oil, is disposed of by injecting it back into the ground — a process that has triggered sizable seismic events in recent years.

    Now MIT researchers, working with an interdisciplinary team of scientists from industry and academia, have developed a method to manage such human-induced seismicity, and have demonstrated that the technique successfully reduced the number of earthquakes occurring in an active oil field.

    Their results, appearing today in Nature, could help mitigate earthquakes caused by the oil and gas industry, not just from the injection of wastewater produced with oil, but also that produced from hydraulic fracturing, or “fracking.” The team’s approach could also help prevent quakes from other human activities, such as the filling of water reservoirs and aquifers, and the sequestration of carbon dioxide in deep geologic formations.

    “Triggered seismicity is a problem that goes way beyond producing oil,” says study lead author Bradford Hager, the Cecil and Ida Green Professor of Earth Sciences in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “This is a huge problem for society that will have to be confronted if we are to safely inject carbon dioxide into the subsurface. We demonstrated the kind of study that will be necessary for doing this.”

    The study’s co-authors include Ruben Juanes, professor of civil and environmental engineering at MIT, and collaborators from the University of California at Riverside, the University of Texas at Austin, Harvard University, and Eni, a multinational oil and gas company based in Italy.

    Safe injections

    Both natural and human-induced earthquakes occur along geologic faults, or fractures between two blocks of rock in the Earth’s crust. In stable periods, the rocks on either side of a fault are held in place by the pressures generated by surrounding rocks. But when a large volume of fluid is suddenly injected at high rates, it can upset a fault’s fluid stress balance. In some cases, this sudden injection can lubricate a fault and cause rocks on either side to slip and trigger an earthquake.

    The most common source of such fluid injections is from the oil and gas industry’s disposal of wastewater that is brought up along with oil. Field operators dispose of this water through injection wells that continuously pump the water back into the ground at high pressures.

    “There’s a lot of water produced with the oil, and that water is injected into the ground, which has caused a large number of quakes,” Hager notes. “So, for a while, oil-producing regions in Oklahoma had more magnitude 3 quakes than California, because of all this wastewater that was being injected.”

    In recent years, a similar problem arose in southern Italy, where injection wells on oil fields operated by Eni triggered microseisms in an area where large naturally occurring earthquakes had previously occurred. The company, looking for ways to address the problem, sought consulation from Hager and Juanes, both leading experts in seismicity and subsurface flows.

    “This was an opportunity for us to get access to high-quality seismic data about the subsurface, and learn how to do these injections safely,” Juanes says.

    Seismic blueprint

    The team made use of detailed information, accumulated by the oil company over years of operation in the Val D’Agri oil field, a region of southern Italy that lies in a tectonically active basin. The data included information about the region’s earthquake record, dating back to the 1600s, as well as the structure of rocks and faults, and the state of the subsurface corresponding to the various injection rates of each well.

    This video shows the change in stress on the geologic faults of the Val d’Agri field from 2001 to 2019, as predicted by a new MIT-derived model. Video credit: A. Plesch (Harvard University)

    This video shows small earthquakes occurring on the Costa Molina fault within the Val d’Agri field from 2004 to 2016. Each event is shown for two years fading from an initial bright color to the final dark color. Video credit: A. Plesch (Harvard University)

    The researchers integrated these data into a coupled subsurface flow and geomechanical model, which predicts how the stresses and strains of underground structures evolve as the volume of pore fluid, such as from the injection of water, changes. They connected this model to an earthquake mechanics model in order to translate the changes in underground stress and fluid pressure into a likelihood of triggering earthquakes. They then quantified the rate of earthquakes associated with various rates of water injection, and identified scenarios that were unlikely to trigger large quakes.

    When they ran the models using data from 1993 through 2016, the predictions of seismic activity matched with the earthquake record during this period, validating their approach. They then ran the models forward in time, through the year 2025, to predict the region’s seismic response to three different injection rates: 2,000, 2,500, and 3,000 cubic meters per day. The simulations showed that large earthquakes could be avoided if operators kept injection rates at 2,000 cubic meters per day — a flow rate comparable to a small public fire hydrant.

    Eni field operators implemented the team’s recommended rate at the oil field’s single water injection well over a 30-month period between January 2017 and June 2019. In this time, the team observed only a few tiny seismic events, which coincided with brief periods when operators went above the recommended injection rate.

    “The seismicity in the region has been very low in these two-and-a-half years, with around four quakes of 0.5 magnitude, as opposed to hundreds of quakes, of up to 3 magnitude, that were happening between 2006 and 2016,” Hager says. 

    The results demonstrate that operators can successfully manage earthquakes by adjusting injection rates, based on the underlying geology. Juanes says the team’s modeling approach may help to prevent earthquakes related to other processes, such as the building of water reservoirs and the sequestration of carbon dioxide — as long as there is detailed information about a region’s subsurface.

    “A lot of effort needs to go into understanding the geologic setting,” says Juanes, who notes that, if carbon sequestration were carried out on depleted oil fields, “such reservoirs could have this type of history, seismic information, and geologic interpretation that you could use to build similar models for carbon sequestration. We show it’s at least possible to manage seismicity in an operational setting. And we offer a blueprint for how to do it.”

    This research was supported, in part, by Eni. More

  • in

    What will happen to sediment plumes associated with deep-sea mining?

    In certain parts of the deep ocean, scattered across the seafloor, lie baseball-sized rocks layered with minerals accumulated over millions of years. A region of the central Pacific, called the Clarion Clipperton Fracture Zone (CCFZ), is estimated to contain vast reserves of these rocks, known as “polymetallic nodules,” that are rich in nickel and cobalt  — minerals that are commonly mined on land for the production of lithium-ion batteries in electric vehicles, laptops, and mobile phones.

    As demand for these batteries rises, efforts are moving forward to mine the ocean for these mineral-rich nodules. Such deep-sea-mining schemes propose sending down tractor-sized vehicles to vacuum up nodules and send them to the surface, where a ship would clean them and discharge any unwanted sediment back into the ocean. But the impacts of deep-sea mining — such as the effect of discharged sediment on marine ecosystems and how these impacts compare to traditional land-based mining — are currently unknown.

    Now oceanographers at MIT, the Scripps Institution of Oceanography, and elsewhere have carried out an experiment at sea for the first time to study the turbulent sediment plume that mining vessels would potentially release back into the ocean. Based on their observations, they developed a model that makes realistic predictions of how a sediment plume generated by mining operations would be transported through the ocean.

    The model predicts the size, concentration, and evolution of sediment plumes under various marine and mining conditions. These predictions, the researchers say, can now be used by biologists and environmental regulators to gauge whether and to what extent such plumes would impact surrounding sea life.

    “There is a lot of speculation about [deep-sea-mining’s] environmental impact,” says Thomas Peacock, professor of mechanical engineering at MIT. “Our study is the first of its kind on these midwater plumes, and can be a major contributor to international discussion and the development of regulations over the next two years.”

    The team’s study appears today in Nature Communications: Earth and Environment.

    Peacock’s co-authors at MIT include lead author Carlos Muñoz-Royo, Raphael Ouillon, Chinmay Kulkarni, Patrick Haley, Chris Mirabito, Rohit Supekar, Andrew Rzeznik, Eric Adams, Cindy Wang, and Pierre Lermusiaux, along with collaborators at Scripps, the U.S. Geological Survey, and researchers in Belgium and South Korea.

    Play video

    Out to sea

    Current deep-sea-mining proposals are expected to generate two types of sediment plumes in the ocean: “collector plumes” that vehicles generate on the seafloor as they drive around collecting nodules 4,500 meters below the surface; and possibly “midwater plumes” that are discharged through pipes that descend 1,000 meters or more into the ocean’s aphotic zone, where sunlight rarely penetrates.

    In their new study, Peacock and his colleagues focused on the midwater plume and how the sediment would disperse once discharged from a pipe.

    “The science of the plume dynamics for this scenario is well-founded, and our goal was to clearly establish the dynamic regime for such plumes to properly inform discussions,” says Peacock, who is the director of MIT’s Environmental Dynamics Laboratory.

    To pin down these dynamics, the team went out to sea. In 2018, the researchers boarded the research vessel Sally Ride and set sail 50 kilometers off the coast of Southern California. They brought with them equipment designed to discharge sediment 60 meters below the ocean’s surface.  

    “Using foundational scientific principles from fluid dynamics, we designed the system so that it fully reproduced a commercial-scale plume, without having to go down to 1,000 meters or sail out several days to the middle of the CCFZ,” Peacock says.

    Over one week the team ran a total of six plume experiments, using novel sensors systems such as a Phased Array Doppler Sonar (PADS) and epsilometer developed by Scripps scientists to monitor where the plumes traveled and how they evolved in shape and concentration. The collected data revealed that the sediment, when initially pumped out of a pipe, was a highly turbulent cloud of suspended particles that mixed rapidly with the surrounding ocean water.

    “There was speculation this sediment would form large aggregates in the plume that would settle relatively quickly to the deep ocean,” Peacock says. “But we found the discharge is so turbulent that it breaks the sediment up into its finest constituent pieces, and thereafter it becomes dilute so quickly that the sediment then doesn’t have a chance to stick together.”

    Dilution

    The team had previously developed a model to predict the dynamics of a plume that would be discharged into the ocean. When they fed the experiment’s initial conditions into the model, it produced the same behavior that the team observed at sea, proving the model could accurately predict plume dynamics within the vicinity of the discharge.

    The researchers used these results to provide the correct input for simulations of ocean dynamics to see how far currents would carry the initially released plume.

    “In a commercial operation, the ship is always discharging new sediment. But at the same time the background turbulence of the ocean is always mixing things. So you reach a balance. There’s a natural dilution process that occurs in the ocean that sets the scale of these plumes,” Peacock says. “What is key to determining the extent of the plumes is the strength of the ocean turbulence, the amount of sediment that gets discharged, and the environmental threshold level at which there is impact.”

    Based on their findings, the researchers have developed formulae to calculate the scale of a plume depending on a given environmental threshold. For instance, if regulators determine that a certain concentration of sediments could be detrimental to surrounding sea life, the formula can be used to calculate how far a plume above that concentration would extend, and what volume of ocean water would be impacted over the course of a 20-year nodule mining operation.

    “At the heart of the environmental question surrounding deep-sea mining is the extent of sediment plumes,” Peacock says. “It’s a multiscale problem, from micron-scale sediments, to turbulent flows, to ocean currents over thousands of kilometers. It’s a big jigsaw puzzle, and we are uniquely equipped to work on that problem and provide answers founded in science and data.”

    The team is now working on collector plumes, having recently returned from several weeks at sea to perform the first environmental monitoring of a nodule collector vehicle in the deep ocean in over 40 years.

    This research was supported in part by the MIT Environmental Solutions Initiative, the UC Ship Time Program, the MIT Policy Lab, the 11th Hour Project of the Schmidt Family Foundation, the Benioff Ocean Initiative, and Fundación Bancaria “la Caixa.” More

  • in

    New directions in real estate practice

    Among the courses taught by Siqi Zheng is one identifying how real estate companies can be profitable while building and operating sustainably. Her class, 11.S949 (Sustainable Real Estate), at the MIT Center for Real Estate (CRE) attracts students from throughout the MIT School of Architecture and Planning (SA+P) and MIT Sloan School of Management. Harvard University students also cross-register to attend her course.

    For Zheng, the Samuel Tak Lee Champion Professor of Urban and Real Estate Sustainability, there is a sense of coming full circle.

    “Like these students, I migrated from Harvard to MIT,” Zheng says. “Fifteen years ago, I was one of them. Now I attract Harvard students to my classes.”

    Not only has Zheng progressed from taking courses at CRE while a postdoc at Harvard’s Graduate School of Design to joining the SA+P faculty in 2017, she assumed the role of CRE’s faculty director last summer. Among her goals in this new position is encouraging the center’s culture of sustainability and innovation — the very qualities that brought her to MIT as a student.

    While Zheng’s doctoral studies focused on housing and China’s transition from a centrally planned economy to a market-based system, it was MIT’s focus on urban economics and the “clean air and blue skies” of Cambridge, Massachusetts — in contrast to the polluted air in Beijing — that altered her focus to urban sustainability.

    “Back in 2006, I audited several very good courses at CRE in urban and real estate economics. It opened a window for me to say, ‘I need to study cities instead of just housing — and in a broader way — to understand urban dynamics.’ My research area became the intersection of urban economics and environmental sustainability.”

    Following her postdoc, Zheng returned to Beijing and joined Tsinghua University as an assistant professor and director of its Hang Lung Center for Real Estate.

    Creative urban studies research

    Shortly after arriving at MIT, Zheng founded the China Future City Lab, giving her the opportunity to focus on that country’s rapid economic growth alongside the tension of more sustainable urbanization. Her research shows that Chinese urban households are willing to pay higher real estate prices to live in cities and locations with better environmental quality, and this demand has increased over time. She has also identified a substantial price premium for green buildings, which gives real estate developers a monetary incentive to build energy-efficient structures. Gradually, she says, her research and team expanded along with her interest in other fast-urbanizing countries; she renamed her lab the Sustainable Urbanization Lab.

    Zheng’s research is remarkably varied and prolific, with many collaborators in the United States and overseas. Last year, Zheng was one of six MIT faculty awarded a grant from Harvard Medical School to address the effects of Covid-19. While the other researchers focused on clinical areas, such as vaccine development and diagnostic tools, Zheng’s research explored the role of social distancing in shaping Covid-19’s curve. Currently under review for publication, Zheng’s research compares how people’s sentiment in cities globally responded to the shock of the pandemic and the policies each government mandated to slow the spread of the virus.

    “My overarching goal as a scholar is to build our understanding of the behavioral foundations for urban real estate and environmental actions aimed at sustainable urbanization,” Zheng says. “I look at incentives and how an individual’s behavior gets aggregated into our society and its outcomes. Last year, without a vaccine, we needed to slow the spread of the virus. We had to rely on people in all countries to socially distance. We wanted to understand the interactions between individual sentiments, voluntary behaviors, and government intervention — how they work together, and their outcomes.”

    Currently, Zheng’s team is monitoring social media data to detect behavior changes in the U.S. population before and after vaccination. Their theory is that individuals — once vaccinated against Covid-19 — are happier and take part in riskier behaviors, such as restaurant dining or not wearing a mask.

    “We’ve been monitoring emotional states on social media before the vaccination process began,” she says. “We can measure their emotional status and their activities from their social media posts. People lose their anxiety and fear after vaccination, and they stop taking precautions.”

    Zheng began using social media data as a tool to assess a population’s emotional status several years ago, when she studied emotions in conjunction with levels of air pollution in China. Her paper, “Air pollution lowers Chinese urbanites’ expressed happiness on social media,” appeared in Nature Human Behavior in 2019, and was the journal’s fourth-most popular paper that year.  

    Zheng used the same approach to understand how climate change affects people in China by coupling meteorological conditions with more than 400 million social media posts from 43 million users. Finding that extreme weather worsens emotional expressions on social media allowed the researchers to project the potentially harmful impacts of global warming on subjective well-being.

    CRE’s strategic directions

    Working with CRE Executive Director Professor Kairos Shen, and Associate Director Lisa Thoma, Zheng is mapping out a strategic plan for CRE. One emphasis is expanding interdisciplinary research. She is excited by the new work undertaken by the center’s postdocs and doctoral students, which she sees as fostering synergy with teaching.

    “This is MIT,” says Zheng. “We have excellent teaching — but that’s not enough. We need to have a strong research focus to support teaching because we need to introduce our brilliant students to the field’s frontiers.”

    A parallel strategy is expanding the center’s global perspective. Zheng notes the oft-used expression “location, location, location,” pointing out that, while CRE’s attention has leaned toward the United States and Boston, half of their students are from overseas and the majority of their alumni are based in Asia. As such, she is working to expand collaborations with academic institutions and alumni who are now leaders in the field in Korea, mainland China, Hong Kong, Japan, Singapore, and India. Asia is also the region with the fastest urbanization and real estate growth potential. That’s why Zheng and her colleagues are now developing their “MIT Asia Real Estate Initiative.”

    “I like creating things from scratch,” Zheng says. “The center is small, flexible, and forward-looking, so I have an opportunity to create some new exciting programs and generate new impact.”

    As part of her globalization strategy, Zheng also expects to expand MIT/CRE’s online education offerings. While the center admits only 30 graduate students each year, Zheng sees opportunities for professionals in the global real estate industry to expand their education with an online certificate program. Currently, Zheng is designing six new courses to join the two already online.

    Having begun her new role during the global pandemic, Zheng and her team have only worked remotely. While anxious to get to know her team members “in person and not only over Zoom,” Zheng keeps busy managing various research initiatives, teaching and deepening MIT/CRE’s global connections. She is active on her social media accounts, sharing the Center’s many research activities, industry developments, and student achievements. On weekends however, she posts photos of hiking and exploring with her husband and son.

    “I want to be less intense outside of work; spending time outside surrounded by nature helps me unwind,” she says. More