More stories

  • in

    Geologists produce new timeline of Earth’s Paleozoic climate changes

    The temperature of a planet is linked with the diversity of life that it can support. MIT geologists have now reconstructed a timeline of the Earth’s temperature during the early Paleozoic era, between 510 and 440 million years ago — a pivotal period when animals became abundant in a previously microbe-dominated world.
    In a study appearing today in the Proceedings of the National Academy of Sciences, the researchers chart dips and peaks in the global temperature during the early Paleozoic. They report that these temperature variations coincide with the planet’s changing diversity of life: Warmer climates favored microbial life, whereas cooler temperatures allowed more diverse animals to flourish.
    The new record, more detailed than previous timelines of this period, is based on the team’s analysis of carbonate muds — a common type of limestone that forms from carbonate-rich sediments deposited on the seafloor and compacted over hundreds of millions of years.
    “Now that we have shown you can use these carbonate muds as climate records, that opens the door to looking back at this whole other part of Earth’s history where there are no fossils, when people don’t really know much about what the climate was,” says lead author Sam Goldberg, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS).
    Goldberg’s co-authors are Kristin Bergmann, the D. Reid Weedon, Jr. Career Development Professor in EAPS, along with Theodore Present of Caltech and Seth Finnegan of the University of California at Berkeley.
    Beyond fossils
    To estimate Earth’s temperature many millions of years ago, scientists analyze fossils, in particular, remains of ancient shelled organisms that precipitated from seawater and either grew on or sank to the seafloor. When precipitation occurs, the temperature of the surrounding water can change the composition of the shells, altering the relative abundances of two isotopes of oxygen: oxygen-16, and oxygen-18.
    “As an example, if carbonate precipitates at 4 degrees Celsius, more oxygen-18 ends up in the mineral, from the same starting composition of water, [compared to] carbonate precipitating at 30 degrees Celsius,” Bergmann explains. “So, the ratio of oxygen-18 to -16 increases as temperature cools.”
    In this way, scientists have used ancient carbonate shells to backtrack the temperature of the surrounding seawater — an indicator of the Earth’s overall climate — at the time the shells first precipitated. But this approach has taken scientists only so far, up until the earliest fossils.
    “There is about 4 billion years of Earth history where there were no shells, and so shells only give us the last chapter,” Goldberg says.
    A clumped isotope signal
    The same precipitating reaction in shells also occurs in carbonate mud. But geologists assumed the isotope balance in carbonate muds would be more vulnerable to chemical changes.
    “People have often overlooked mud. They thought that if you try to use it as a temperature indicator, you might be looking at not the original ocean temperature in which it formed, but the temperature of a process that occurred later on, when the mud was buried a mile below the surface,” Goldberg says.
    To see whether carbonate muds might preserve signatures of their original surrounding temperature, the team used “clumped isotope geochemistry,” a technique used in Bergmann’s lab, which analyzes sediments for clumping, or pairing, of two heavy isotopes: oxygen-18 and carbon-13. The likelihood of these isotopes pairing up in carbonate muds depends on temperature but is unaffected by the ocean chemistry in which the muds form.
    Combining this analysis with traditional oxygen isotope measurements provides additional constraints on the conditions experienced by a sample between its original formation and the present. The team reasoned that this analysis could be a good indication of whether carbonate muds remained unchanged in composition since their formation. By extension, this could mean the oxygen-18 to -16 ratio in some muds accurately represents the original temperature at which the rocks formed, enabling their use as a climate record.
    Ups and downs
    The researchers tested their idea on samples of carbonate muds that they extracted from two sites, one in Svalbard, an archipelago in the Arctic Ocean, and the other in western Newfoundland. Both sites are known for their exposed rocks that date back to the early Paleozoic era.
    In 2016 and 2017, teams traveled first to Svalbard, then Newfoundland, to collect samples of carbonate muds from layers of deposited sediment spanning a period of 70 million years, from the mid-Cambrian, when animals began to flourish on Earth, through the Ordovician periods of the Paleozoic era.
    When they analyzed the samples for clumped isotopes, they found that many of the rocks had experienced little chemical change since their formation. They used this result to compile the rocks’ oxygen isotope ratios from 10 different early Paleozoic sites to calculate the temperatures at which the rocks formed. The temperatures calculated from most of these sites were similar to previously published lower-resolution fossil temperature records. In the end, they mapped a timeline of temperature during the early Paleozoic and compared this with the fossil record from that period, to show that temperature had a big effect on the diversity of life on the planet.
    “We found that when it was warmer at the end of the Cambrian and early Ordovician, there was also a peak in microbial abundance,” Goldberg says. “From there it cooled off going into the middle to late Ordovician, when we see abundant animal fossils, before a substantial ice age ends the Ordovician. Previously people could only observe general trends using fossils. Because we used a material that’s very abundant, we could create a higher-resolution record and could see more clearly defined ups and downs.”
    “This is the best recent isotopic study addressing the critical question of whether early animals experienced hot early temperatures,” says Ethan Grossman, a professor of geology at Texas A&M University, who was not a contributor to the study. “We should use all the tools at our disposal to explore this important time interval.”
    The team is now looking to analyze older muds, dating back before the appearance of animals, to gauge the Earth’s temperature changes prior to 540 million years ago.
    “To go back beyond 540 million years ago, we have to grapple with carbonate muds, because they are really one of the few records we have to constrain climate in the distant past,” Bergmann says.
    This research was supported, in part, by NASA and the David and Lucile Packard Foundation. More

  • in

    MIT convenes influential industry leaders in the fight against climate change

    Launched today, the MIT Climate and Sustainability Consortium (MCSC) convenes an alliance of leaders from a broad range of industries and aims to vastly accelerate large-scale, real-world implementation of solutions to address the threat of climate change. The MCSC unites similarly motivated, highly creative and influential companies to work with MIT to build a process, market, and ambitious implementation strategy for environmental innovation. 
    The work of the consortium will involve a true cross-sector collaboration to meet the urgency of climate change. The MCSC will take positive action and foster the necessary collaboration to meet this challenge, with the intention of influencing efforts across industries. Through a unifying, deeply inclusive, global effort, the MCSC will strive to drive down costs, lower barriers to adoption of best-available technology and processes, speed retirement of carbon-intensive power generating and materials-producing equipment, direct investment where it will be most effective, and rapidly translate best practices from one industry to the next in an effort to deploy social and technological solutions at a pace more rapid than the planet’s intensifying crises.

    Play video

    “If we hope to decarbonize the economy, we must work with the companies that make the economy run. Drawing its members from a broad range of industries, the MCSC will convene an alliance of influential corporations motivated to work with MIT, and with each other, to pilot and deploy the solutions necessary to reach their own ambitious decarbonization commitments,” says MIT President L. Rafael Reif. “By sharing solutions across companies and sectors, the consortium has the potential to vastly accelerate the implementation of large-scale, real-world solutions to help meet the global climate emergency. And as an Institute-wide effort, it will also complement MIT’s existing climate initiatives and make them more effective: Just as the Climate Grand Challenges effort is accelerating research on climate science and solutions, the consortium aims to accelerate the adoption of such solutions, at scale and across industries.”
    Led by the MIT School of Engineering and engaging students, faculty, and researchers from across the entire Institute, the MIT Climate and Sustainability Consortium has called upon companies from a broad range of industries — from aviation to agriculture, consumer services to electronics, chemical production to textiles, and infrastructure to software — to roll up their sleeves and work closely with every corner of MIT.
    “This new collaboration represents the incredible potential for academia and industry to work together on a shared mission to shape research, identify opportunities for innovation, and rapidly advance practical solutions with the sense of urgency needed to address our climate challenge. There are no bounds to what we can achieve together,” says Anantha P. Chandrakasan, dean of the School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MIT Climate and Sustainability Consortium.
    The inaugural members of the MCSC are companies with intricate supply chains that are among the best positioned to help lead the mission to solve the climate crisis. The inaugural member companies of the MCSC recognize the responsibility industry has in the rapid deployment of social and technology solutions. They represent the heart of global industry and have made a commitment to not only work with MIT but with one another, to tackle the climate challenge with the urgency required to realize their goals.
    These industry leaders can both help inspire transformative change within their own sectors and demonstrate the value of working together, across sectors, at scale. The inaugural members of the MIT Climate and Sustainability Consortium are:
    Accenture is a global professional services company that delivers on the promise of technology and human ingenuity, which includes helping clients across 40 industries reach their sustainability goals by transitioning to low-carbon energy; reducing the carbon footprint of IT, cloud, and software; and designing and delivering net-zero, circular supply chains. 
    Apple is a global leader in technology innovation, providing seamless experiences across Apple devices and empowering people with breakthrough services. 
    Boeing is the world’s largest aerospace company and leading provider of commercial airplanes, defense, space and security systems, and global services. 
    Cargill is a global food manufacturer with the goal of nourishing the world in a safe, responsible, and sustainable way. 
    Dow is a global manufacturer of innovative products that solve the materials science challenges of its customers and contribute to a more sustainable world.  
    IBM is a hybrid cloud platform and artificial intelligence company. 
    Inditex is one of the world’s largest fashion retail groups with eight distinct brands focused on fitting its products to meet customer demands in a sustainable way through an integrated platform of physical and online stores. 
    LafargeHolcim is the world’s global leader in building materials and solutions at the forefront of sustainable construction. 
    MathWorks develops mathematical computing software used to accelerate the pace of engineering and science. 
    Nexplore (Hochtief) is an innovative company that develops technology solutions to digitize the infrastructure sector, using next-generation technologies including artificial intelligence, blockchain, computer vision, natural language processing, and internet of things. Nexplore was founded in 2018 by HOCHTIEF, one of the largest infrastructure construction groups worldwide. 
    Rand-Whitney Containerboard (RWCB), a Kraft Group company, is a manufacturer of lightweight, high-performance recycled linerboard for corrugated containers, using the most environmentally sustainable production processes and methods. 
    PepsiCo is a global food and beverage company that aims to use its scale, reach, and expertise to help build a more sustainable food system. 
    Verizon is one of the world’s leading providers of technology, communications, information and entertainment products and services.
    Jeffrey Grossman will serve as director of the MCSC. Grossman is the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and a MacVicar Faculty Fellow. Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering, will serve as associate director. A steering committee comprised of faculty spanning all five of MIT’s schools and the MIT Stephen A. Schwarzman College of Computing, will help to drive the work of the consortium. More