More stories

  • in

    Creating connection with science communication

    Before completing her undergraduate studies, Sophie Hartley, a student in MIT’s Graduate Program in Science Writing, had an epiphany that was years in the making.“The classes I took in my last undergraduate semester changed my career goals, but it started with my grandfather,” she says when asked about what led her to science writing. She’d been studying comparative human development at the University of Chicago, which Hartley describes as “a combination of psychology and anthropology,” when she took courses in environmental writing and digital science communications.“What if my life could be about learning more of life’s intricacies?” she thought.Hartley’s grandfather introduced her to photography when she was younger, which helped her develop an appreciation for the natural world. Each summer, they would explore tide pools, overgrown forests, and his sprawling backyard. He gave her a camera and encouraged her to take pictures of anything interesting.“Photography was a door into science journalism,” she notes. “It lets you capture the raw beauty of a moment and return to it later.”Lasting impact through storytellingHartley spent time in Wisconsin and Vermont while growing up. That’s when she noticed a divide between rural communities and urban spaces. She wants to tell stories about communities that are less likely to be covered, and “connect them to people in cities who might not otherwise understand what’s happening and why.”People have important roles to play in arresting climate change impacts, improving land management practices and policies, and taking better care of our natural resources, according to Hartley. Challenges related to conservation, land management, and farming affect us all, which is why she believes effective science writing is so important.“We’re way more connected than we believe or understand,” Hartley says. “Climate change is creating problems throughout the entire agricultural supply chain.”For her news writing course, Hartley wrote a story about how flooding in Vermont led to hay shortages, which impacted comestibles as diverse as goat cheese and beef. “When the hay can’t dry, it’s ruined,” she says. “That means cows and goats aren’t eating, which means they can’t produce our beef, milk, and cheese.”Ultimately, Hartley believes her work can build compassion for others while also educating people about how everything we do affects nature and one another.“The connective tissues between humans persist,” she said. “People who live in cities aren’t exempt from rural concerns.”Creating connections with science writingDuring her year-long study in the MIT Graduate Program in Science Writing, Hartley is also busy producing reporting for major news outlets.Earlier this year, Hartley authored a piece for Ars Technica that explored ongoing efforts to develop technology aimed at preventing car collisions with kangaroos. As Hartley reported, given the unique and unpredictable behavior of kangaroos, vehicle animal detection systems have proven ineffective. That’s forced Australian communities to develop alternative solutions, such as virtual fencing, to keep kangaroos away from the roads.In June, Hartley co-produced a story for GBH News with Hannah Richter, a fellow student in the science writing program. They reported on how and why officials at a new Peabody power plant are backtracking on an earlier pledge to run the facility on clean fuels.The story was a collaboration between GBH News and the investigative journalism class in the science writing program. Hartley recalls wonderful experience working with Richter. “We were able to lean on each other’s strengths and learn from each other,” she says. “The piece took a long time to report and write, and it was helpful to have a friend and colleague to continuously motivate me when we would pick it back up after a while.”Co-reporting can also help evenly divide what can sometimes become a massive workload, particularly with deeply, well-researched pieces like the Peabody story. “When there is so much research to do, it’s helpful to have another person to divvy up the work,” she continued. “It felt like everything was stronger and better, from the writing to the fact-checking, because we had two eyes on it during the reporting process.”Hartley’s favorite piece in 2024 focused on beech leaf disease, a deadly pathogen devastating North American forests. Her story, which was later published in The Boston Globe Magazine, followed a team of four researchers racing to discover how the disease works. Beech leaf disease kills swiftly and en masse, leaving space for invasive species to thrive on forest floors. Her interest in land management and natural resources shines through in much of her work.Local news organizations are an endangered species as newsrooms across America shed staff and increasingly rely on aggregated news accounts from larger organizations. What can be lost, however, are opportunities to tell small-scale stories with potentially large-scale impacts. “Small and rural accountability stories are being told less and less,” Hartley notes. “I think it’s important that communities are aware of what is happening around them, especially if it impacts them.” More

  • in

    Study: Rocks from Mars’ Jezero Crater, which likely predate life on Earth, contain signs of water

    In a new study appearing today in the journal AGU Advances, scientists at MIT and NASA report that seven rock samples collected along the “fan front” of Mars’ Jezero Crater contain minerals that are typically formed in water. The findings suggest that the rocks were originally deposited by water, or may have formed in the presence of water.The seven samples were collected by NASA’s Perseverance rover in 2022 during its exploration of the crater’s western slope, where some rocks were hypothesized to have formed in what is now a dried-up ancient lake. Members of the Perseverance science team, including MIT scientists, have studied the rover’s images and chemical analyses of the samples, and confirmed that the rocks indeed contain signs of water, and that the crater was likely once a watery, habitable environment.Whether the crater was actually inhabited is yet unknown. The team found that the presence of organic matter — the starting material for life — cannot be confirmed, at least based on the rover’s measurements. But judging from the rocks’ mineral content, scientists believe the samples are their best chance of finding signs of ancient Martian life once the rocks are returned to Earth for more detailed analysis.“These rocks confirm the presence, at least temporarily, of habitable environments on Mars,” says the study’s lead author, Tanja Bosak, professor of geobiology in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “What we’ve found is that indeed there was a lot of water activity. For how long, we don’t know, but certainly for long enough to create these big sedimentary deposits.”What’s more, some of the collected samples may have originally been deposited in the ancient lake more than 3.5 billion years ago — before even the first signs of life on Earth.“These are the oldest rocks that may have been deposited by water, that we’ve ever laid hands or rover arms on,” says co-author Benjamin Weiss, the Robert R. Shrock Professor of Earth and Planetary Sciences at MIT. “That’s exciting, because it means these are the most promising rocks that may have preserved fossils, and signatures of life.”The study’s MIT co-authors include postdoc Eva Scheller, and research scientist Elias Mansbach, along with members of the Perseverance science team.At the front

    NASA’s Perseverance rover collected rock samples from two locations seen in this image of Mars’ Jezero Crater: “Wildcat Ridge” (lower left) and “Skinner Ridge” (upper right).

    Credit: NASA/JPL-Caltech/ASU/MSSS

    Previous item
    Next item

    The new rock samples were collected in 2022 as part of the rover’s Fan Front Campaign — an exploratory phase during which Perseverance traversed Jezero Crater’s western slope, where a fan-like region contains sedimentary, layered rocks. Scientists suspect that this “fan front” is an ancient delta that was created by sediment that flowed with a river and settled into a now bone-dry lakebed. If life existed on Mars, scientists believe that it could be preserved in the layers of sediment along the fan front.In the end, Perseverance collected seven samples from various locations along the fan front. The rover obtained each sample by drilling into the Martian bedrock and extracting a pencil-sized core, which it then sealed in a tube to one day be retrieved and returned to Earth for detailed analysis.

    Composed of multiple images from NASA’s Perseverance Mars rover, this mosaic shows a rocky outcrop called “Wildcat Ridge,” where the rover extracted two rock cores and abraded a circular patch to investigate the rock’s composition.

    Credit: NASA/JPL-Caltech/ASU/MSSS

    Previous item
    Next item

    Prior to extracting the cores, the rover took images of the surrounding sediments at each of the seven locations. The science team then processed the imaging data to estimate a sediment’s average grain size and mineral composition. This analysis showed that all seven collected samples likely contain signs of water, suggesting that they were initially deposited by water.Specifically, Bosak and her colleagues found evidence of certain minerals in the sediments that are known to precipitate out of water.“We found lots of minerals like carbonates, which are what make reefs on Earth,” Bosak says. “And it’s really an ideal material that can preserve fossils of microbial life.”Interestingly, the researchers also identified sulfates in some samples that were collected at the base of the fan front. Sulfates are minerals that form in very salty water — another sign that water was present in the crater at one time — though very salty water, Bosak notes, “is not necessarily the best thing for life.” If the entire crater was once filled with very salty water, then it would be difficult for any form of life to thrive. But if only the bottom of the lake were briny, that could be an advantage, at least for preserving any signs of life that may have lived further up, in less salty layers, that eventually died and drifted down to the bottom.“However salty it was, if there were any organics present, it’s like pickling something in salt,” Bosak says. “If there was life that fell into the salty layer, it would be very well-preserved.”Fuzzy fingerprintsBut the team emphasizes that organic matter has not been confidently detected by the rover’s instruments. Organic matter can be signs of life, but can also be produced by certain geological processes that have nothing to do with living matter. Perseverance’s predecessor, the Curiosity rover, had detected organic matter throughout Mars’ Gale Crater, which scientists suspect may have come from asteroids that made impact with Mars in the past.And in a previous campaign, Perseverance detected what appeared to be organic molecules at multiple locations along Jezero Crater’s floor. These observations were taken by the rover’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument, which uses ultraviolet light to scan the Martian surface. If organics are present, they can glow, similar to material under a blacklight. The wavelengths at which the material glows act as a sort of fingerprint for the kind of organic molecules that are present.In Perseverance’s previous exploration of the crater floor, SHERLOC appeared to pick up signs of organic molecules throughout the region, and later, at some locations along the fan front. But a careful analysis, led by MIT’s Eva Scheller, has found that while the particular wavelengths observed could be signs of organic matter, they could just as well be signatures of substances that have nothing to do with organic matter.“It turns out that cerium metals incorporated in minerals actually produce very similar signals as the organic matter,” Scheller says. “When investigated, the potential organic signals were strongly correlated with phosphate minerals, which always contain some cerium.”Scheller’s work shows that the rover’s measurements cannot be interpreted definitively as organic matter.“This is not bad news,” Bosak says. “It just tells us there is not very abundant organic matter. It’s still possible that it’s there. It’s just below the rover’s detection limit.”When the collected samples are finally sent back to Earth, Bosak says laboratory instruments will have more than enough sensitivity to detect any organic matter that might lie within.“On Earth, once we have microscopes with nanometer-scale resolution, and various types of instruments that we cannot staff on one rover, then we can actually attempt to look for life,” she says.This work was supported, in part, by NASA. More

  • in

    Tracking emissions to help companies reduce their environmental footprint

    Amidst a global wave of corporate pledges to decarbonize or reach net-zero emissions, a system for verifying actual greenhouse gas reductions has never been more important. Context Labs, founded by former MIT Sloan Fellow and serial entrepreneur Dan Harple SM ’13, is rising to meet that challenge with an analytics platform that brings more transparency to emissions data.The company’s platform adds context to data from sources like equipment sensors and satellites, provides third-party verification, and records all that information on a blockchain. Context Labs also provides an interactive view of emissions across every aspect of a company’s operations, allowing leaders to pinpoint the dirtiest parts of their business.“There’s an old adage: Unless you measure something, you can’t change it,” says Harple, who is the firm’s CEO. “I think of what we’re doing as an AI-driven digital lens into what’s happening across organizations. Our goal is to help the planet get better, faster.”Context Labs is already working with some of the largest energy companies in the world — including EQT, Williams Companies, and Coterra Energy — to verify emissions reductions. A partnership with Microsoft, announced at last year’s COP28 United Nations climate summit, allows any organization on Microsoft’s Azure cloud to integrate their sensor data into Context Lab’s platform to get a granular view of their environmental impact.Harple says the progress enables more informed sustainability initiatives at scale. He also sees the work as a way to combat overly vague statements about sustainable practices that don’t lead to actual emissions reductions, or what’s known as “greenwashing.”“Just producing data isn’t good enough, and our customers realize that, because they know even if they have good intentions to reduce emissions, no one is going to believe them,” Harple says. “One way to think about our platform is as antigreenwashing insurance, because if you get attacked for your emissions, we unbundle the data like it’s in shrink-wrap and roll it back through time on the blockchain. You can click on it and see exactly where and how it was measured, monitored, timestamped, its serial number, everything. It’s really the gold standard of proof.”An unconventional master’sHarple came to MIT as a serial founder whose companies had pioneered several foundational internet technologies, including real-time video streaming technology still used in applications like Zoom and Netflix, as well as some of the core technology for the popular Chinese microblogging website Weibo.Harple’s introduction to MIT started with a paper he wrote for his venture capital contacts in the U.S. to make the case for investment in the Netherlands, where he was living with his family. The paper caught the attention of MIT Professor Stuart Madnick, the John Norris Maguire Professor of Information Technology at the MIT Sloan School of Management, who suggested Harple come to MIT as a Sloan Fellow to further develop his ideas about what makes a strong innovation ecosystem.Having successfully founded and exited multiple companies, Harple was not a typical MIT student when he began the Sloan Fellows program in 2011. At one point, he held a summit at MIT for a group of leading Dutch entrepreneurs and government officials that included tours of major labs and a meeting with former MIT President L. Rafael Reif.“Everyone was super enamored with MIT, and that kicked off what became a course that I started at MIT called REAL, Regional Entrepreneurial Acceleration Lab,” Harple says. REAL was eventually absorbed by what is now REAP — the Regional Entrepreneurship Acceleration Program, which has worked with communities around the world.Harple describes REAL as a framework vehicle to put his theories on supporting innovation into action. Over his time at MIT, which also included collaborating with the Media Lab, he systematized those theories into what he calls pentalytics, which is a way to measure and predict the resilience of innovation ecosystems.“My sense was MIT should be analytical and data-driven,” Harple says. “The thesis I wrote was a framework for AI-driven network graph analytics. So, you can model things using analytics, and you can use AI to do predictive analytics to see where the innovation ecosystem is going to thrive.”Once Harple’s pentalytics theory was established, he wanted to put it to the test with a company. His initial idea for Context Labs was to build a verification platform to combat fake news, deepfakes, and other misinformation on the internet. Around 2018, Harple met climate investor Jeremy Grantham, who he says helped him realize the most important data are about the planet. Harple began to believe that U.S. Environmental Protection Agency (EPA) emissions estimates for things like driving a car or operating an oil rig were just that — estimates — and left room for improvement.“Our approach was very MIT-ish,” Harple says. “We said, ‘Let’s, measure it and let’s monitor it, and then let’s contextualize that data so you can never go back and say they faked it. I think there’s a lot of fakery that’s happened, and that’s why the voluntary carbon markets cratered in the last year. Our view is they cratered because the data wasn’t empirical enough.”Context Labs’ solution starts with a technology platform it calls Immutably that continuously combines disparate data streams, encrypts that information, and records it on a blockchain. Immutably also verifies the information with one or more third parties. (Context Labs has partnered with the global accounting firm KPMG.)On top of Immutably, Context Labs has built applications, including a product called Decarbonization-as-a-Service (DaaS), which uses Immutably’s data to give companies a digital twin of their entire operations. Customers can use DaaS to explore the emissions of their assets and create a certificate of verified CO2-equivalent emissions, which can be used in carbon credit markets.Putting emissions data into contextContext Labs is working with oil and gas companies, utilities, data centers, and large industrial operators, some using the platform to analyze more than 3 billion data points each day. For instance, EQT, the largest natural gas producer in the U.S., uses Context Labs to verify its lower-emission products and create carbon credits. Other customers include the nonprofits Rocky Mountain Institute and the Environmental Defense Fund.“I often get asked how big the total addressable market is,” Harple says. “My view is it’s the largest market in history. Why? Because every country needs a decarbonization plan, along with instrumentation and a digital platform to execute, as does every company.”With its headquarters in Kendall Square in Cambridge, Massachusetts, Context Labs is also serving as a test for Harple’s pentalytics theory for innovation ecosystems. It also has operations in Houston and Amsterdam.“This company is a living lab for pentalytics,” Harple says. “I believe Kendall Square 1.0 was factory buildings, Kendall Square 2.0 is biotech, and Kendall Square 3.0 will be climate tech.” More

  • in

    MIT School of Science launches Center for Sustainability Science and Strategy

    The MIT School of Science is launching a center to advance knowledge and computational capabilities in the field of sustainability science, and support decision-makers in government, industry, and civil society to achieve sustainable development goals. Aligned with the Climate Project at MIT, researchers at the MIT Center for Sustainability Science and Strategy will develop and apply expertise from across the Institute to improve understanding of sustainability challenges, and thereby provide actionable knowledge and insight to inform strategies for improving human well-being for current and future generations.Noelle Selin, professor at MIT’s Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences, will serve as the center’s inaugural faculty director. C. Adam Schlosser and Sergey Paltsev, senior research scientists at MIT, will serve as deputy directors, with Anne Slinn as executive director.Incorporating and succeeding both the Center for Global Change Science and Joint Program on the Science and Policy of Global Change while adding new capabilities, the center aims to produce leading-edge research to help guide societal transitions toward a more sustainable future. Drawing on the long history of MIT’s efforts to address global change and its integrated environmental and human dimensions, the center is well-positioned to lead burgeoning global efforts to advance the field of sustainability science, which seeks to understand nature-society systems in their full complexity. This understanding is designed to be relevant and actionable for decision-makers in government, industry, and civil society in their efforts to develop viable pathways to improve quality of life for multiple stakeholders.“As critical challenges such as climate, health, energy, and food security increasingly affect people’s lives around the world, decision-makers need a better understanding of the earth in its full complexity — and that includes people, technologies, and institutions as well as environmental processes,” says Selin. “Better knowledge of these systems and how they interact can lead to more effective strategies that avoid unintended consequences and ensure an improved quality of life for all.”    Advancing knowledge, computational capability, and decision supportTo produce more precise and comprehensive knowledge of sustainability challenges and guide decision-makers to formulate more effective strategies, the center has set the following goals:Advance fundamental understanding of the complex interconnected physical and socio-economic systems that affect human well-being. As new policies and technologies are developed amid climate and other global changes, they interact with environmental processes and institutions in ways that can alter the earth’s critical life-support systems. Fundamental mechanisms that determine many of these systems’ behaviors, including those related to interacting climate, water, food, and socio-economic systems, remain largely unknown and poorly quantified. Better understanding can help society mitigate the risks of abrupt changes and “tipping points” in these systems.Develop, establish and disseminate new computational tools toward better understanding earth systems, including both environmental and human dimensions. The center’s work will integrate modeling and data analysis across disciplines in an era of increasing volumes of observational data. MIT multi-system models and data products will provide robust information to inform decision-making and shape the next generation of sustainability science and strategy.Produce actionable science that supports equity and justice within and across generations. The center’s research will be designed to inform action associated with measurable outcomes aligned with supporting human well-being across generations. This requires engaging a broad range of stakeholders, including not only nations and companies, but also nongovernmental organizations and communities that take action to promote sustainable development — with special attention to those who have historically borne the brunt of environmental injustice.“The center’s work will advance fundamental understanding in sustainability science, leverage leading-edge computing and data, and promote engagement and impact,” says Selin. “Our researchers will help lead scientists and strategists across the globe who share MIT’s commitment to mobilizing knowledge to inform action toward a more sustainable world.”Building a better world at MITBuilding on existing MIT capabilities in sustainability, science, and strategy, the center aims to: focus research, education, and outreach under a theme that reflects a comprehensive state of the field and international research directions, fostering a dynamic community of students, researchers, and faculty;raise the visibility of sustainability science at MIT, emphasizing links between science and action, in the context of existing Institute goals and other efforts on climate and sustainability, and in a way that reflects the vital contributions of a range of natural and social science disciplines to understanding human-environment systems; andre-emphasize MIT’s long-standing expertise in integrated systems modeling while leveraging the Institute’s concurrent leading-edge strengths in data and computing, establishing leadership that harnesses recent innovations, including those in machine learning and artificial intelligence, toward addressing the science challenges of global change and sustainability.“The Center for Sustainability Science and Strategy will provide the necessary synergy for our MIT researchers to develop, deploy, and scale up serious solutions to climate change and other critical sustainability challenges,” says Nergis Mavalvala, the Curtis and Kathleen Marble Professor of Astrophysics and dean of the MIT School of Science. “With Professor Selin at its helm, the center will also ensure that these solutions are created in concert with the people who are directly affected now and in the future.”The center builds on more than three decades of achievements by the Center for Global Change Science and the Joint Program on the Science and Policy of Global Change, both of which were directed or co-directed by professor of atmospheric science Ronald Prinn. More

  • in

    Scientists find a human “fingerprint” in the upper troposphere’s increasing ozone

    Ozone can be an agent of good or harm, depending on where you find it in the atmosphere. Way up in the stratosphere, the colorless gas shields the Earth from the sun’s harsh ultraviolet rays. But closer to the ground, ozone is a harmful air pollutant that can trigger chronic health problems including chest pain, difficulty breathing, and impaired lung function.And somewhere in between, in the upper troposphere — the layer of the atmosphere just below the stratosphere, where most aircraft cruise — ozone contributes to warming the planet as a potent greenhouse gas.There are signs that ozone is continuing to rise in the upper troposphere despite efforts to reduce its sources at the surface in many nations. Now, MIT scientists confirm that much of ozone’s increase in the upper troposphere is likely due to humans.In a paper appearing today in the journal Environmental Science and Technology, the team reports that they detected a clear signal of human influence on upper tropospheric ozone trends in a 17-year satellite record starting in 2005.“We confirm that there’s a clear and increasing trend in upper tropospheric ozone in the northern midlatitudes due to human beings rather than climate noise,” says study lead author Xinyuan Yu, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS).“Now we can do more detective work and try to understand what specific human activities are leading to this ozone trend,” adds co-author Arlene Fiore, the Peter H. Stone and Paola Malanotte Stone Professor in Earth, Atmospheric and Planetary Sciences.The study’s MIT authors include Sebastian Eastham and Qindan Zhu, along with Benjamin Santer at the University of California at Los Angeles, Gustavo Correa of Columbia University, Jean-François Lamarque at the National Center for Atmospheric Research, and Jerald Zimeke at NASA Goddard Space Flight Center.Ozone’s tangled webUnderstanding ozone’s causes and influences is a challenging exercise. Ozone is not emitted directly, but instead is a product of “precursors” — starting ingredients, such as nitrogen oxides and volatile organic compounds (VOCs), that react in the presence of sunlight to form ozone. These precursors are generated from vehicle exhaust, power plants, chemical solvents, industrial processes, aircraft emissions, and other human-induced activities.Whether and how long ozone lingers in the atmosphere depends on a tangle of variables, including the type and extent of human activities in a given area, as well as natural climate variability. For instance, a strong El Niño year could nudge the atmosphere’s circulation in a way that affects ozone’s concentrations, regardless of how much ozone humans are contributing to the atmosphere that year.Disentangling the human- versus climate-driven causes of ozone trend, particularly in the upper troposphere, is especially tricky. Complicating matters is the fact that in the lower troposphere — the lowest layer of the atmosphere, closest to ground level — ozone has stopped rising, and has even fallen in some regions at northern midlatitudes in the last few decades. This decrease in lower tropospheric ozone is mainly a result of efforts in North America and Europe to reduce industrial sources of air pollution.“Near the surface, ozone has been observed to decrease in some regions, and its variations are more closely linked to human emissions,” Yu notes. “In the upper troposphere, the ozone trends are less well-monitored but seem to decouple with those near the surface, and ozone is more easily influenced by climate variability. So, we don’t know whether and how much of that increase in observed ozone in the upper troposphere is attributed to humans.”A human signal amid climate noiseYu and Fiore wondered whether a human “fingerprint” in ozone levels, caused directly by human activities, could be strong enough to be detectable in satellite observations in the upper troposphere. To see such a signal, the researchers would first have to know what to look for.For this, they looked to simulations of the Earth’s climate and atmospheric chemistry. Following approaches developed in climate science, they reasoned that if they could simulate a number of possible climate variations in recent decades, all with identical human-derived sources of ozone precursor emissions, but each starting with a slightly different climate condition, then any differences among these scenarios should be due to climate noise. By inference, any common signal that emerged when averaging over the simulated scenarios should be due to human-driven causes. Such a signal, then, would be a “fingerprint” revealing human-caused ozone, which the team could look for in actual satellite observations.With this strategy in mind, the team ran simulations using a state-of-the-art chemistry climate model. They ran multiple climate scenarios, each starting from the year 1950 and running through 2014.From their simulations, the team saw a clear and common signal across scenarios, which they identified as a human fingerprint. They then looked to tropospheric ozone products derived from multiple instruments aboard NASA’s Aura satellite.“Quite honestly, I thought the satellite data were just going to be too noisy,” Fiore admits. “I didn’t expect that the pattern would be robust enough.”But the satellite observations they used gave them a good enough shot. The team looked through the upper tropospheric ozone data derived from the satellite products, from the years 2005 to 2021, and found that, indeed, they could see the signal of human-caused ozone that their simulations predicted. The signal is especially pronounced over Asia, where industrial activity has risen significantly in recent decades and where abundant sunlight and frequent weather events loft pollution, including ozone and its precursors, to the upper troposphere.Yu and Fiore are now looking to identify the specific human activities that are leading to ozone’s increase in the upper troposphere.“Where is this increasing trend coming from? Is it the near-surface emissions from combusting fossil fuels in vehicle engines and power plants? Is it the aircraft that are flying in the upper troposphere? Is it the influence of wildland fires? Or some combination of all of the above?” Fiore says. “Being able to separate human-caused impacts from natural climate variations can help to inform strategies to address climate change and air pollution.”This research was funded, in part, by NASA. More

  • in

    A bright and airy hub for climate at MIT

    Seen from a distance, MIT’s Cecil and Ida Green Building (Building 54) — designed by renowned architect and MIT alumnus I.M. Pei ’40 — is one of the most iconic buildings on the Cambridge, Massachusetts, skyline. Home to the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS), the 21-story concrete structure soars over campus, topped with its distinctive spherical radar dome. Close up, however, it was a different story.A sunless, two-story, open-air plaza beneath the tower previously served as a nondescript gateway to the department’s offices, labs, and classrooms above. “It was cold and windy — probably the windiest place on campus,” EAPS department head Robert van der Hilst, the Schlumberger Professor of Earth and Planetary Sciences, told a packed auditorium inside the building in March. “You would pass through the elevators and disappear into the corridors, never to be seen again until the end of the day.”Van der Hilst was speaking at a dedication event to celebrate the opening of the renovated and expanded space, 60 years after the Green Building’s original dedication in 1964. In a dramatic transformation, the perpetually-shaded expanse beneath the tower has been filled with an airy, glassed-in structure that is as inviting as the previous space was forbidding.Designed to meet LEED-platinum certification, the newly-constructed Tina and Hamid Moghadam Building (Building 55) seems to float next to the Brutalist tower, its glass façade both opening up the interior and reflecting the sunlight and green space outside. The 300-seat auditorium within the original tower has been similarly transformed, bringing light and space to the newly dubbed Dixie Lee Bryant (1891) Lecture Hall, named after the first person to earn a geology degree at MIT.Catalyzing collaborationThe project is about more than updating an overlooked space. “The building we’re here to celebrate today does something else,” MIT President Sally Kornbluth said at the dedication.“In its lightness, in its transparency, it calls attention not to itself, but to the people gathered inside it. In its warmth, its openness, it makes room for culture and community. And it welcomes in those who don’t yet belong … as we take on the immense challenges of climate together,” she continued, referencing the recent launch of The Climate Project at MIT — a whole-of-MIT initiative to innovate bold solutions to climate change. In MIT’s famously decentralized structure, the Moghadam Building provides a new physical hub for students, scientists, and engineers interested in climate and the environment to congregate and share ideas.From the start, fostering this kind of multidisciplinary collaboration was part of Van der Hilst’s vision. In addition to serving as the flagship location for EAPS, Building 54 has long been the administrative home of the MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering — a graduate program in partnership with Woods Hole Oceanographic Institute. With the addition of Building 55, EAPS has now been joined by the MIT Environmental Solutions Initiative (ESI) — a campus-wide program fostering education, outreach, and innovation in earth system science, urban infrastructure, and sustainability — and will welcome closer collaboration with Terrascope — a first-year learning community which invites its students to take on real-world environmental challenges.A shared vision comes to lifeThe building project dovetailed with the long-overdue refurbishment of the Green Building. After a multi-year fundraising campaign where Van der Hilst spearheaded the department’s efforts, the project received a major boost from lead donors Tina and Hamid Moghadam ’77, SM ’78, allowing the department to break ground in November 2021.In Moghadam, chair and CEO of Prologis, which owns 1.2 billion square feet of warehouses and other logistics infrastructure worldwide, EAPS found a fellow champion for climate and environmental innovation. By putting solar panels on the roofs of Prologis buildings, the company is now the second largest on-site producer of solar energy in the United States. “I don’t think there needs to be a trade-off between good sound economics and return on investment and solving climate change problems,” Moghadam said at the dedication. “The solutions that really work are the ones that actually make sense in a market economy.”Architectural firm AW-ARCH designed the Moghadam Building with a light touch, emphasizing spaciousness in contrast to the heavy concrete buildings that surround it. “The kind of delicacy and fragility of the thing is in some ways a depiction of what happens here,” said architect and co-founding partner Alex Anmahian at the dedication reception, giving a nod to the study of the delicate balance of the earth system itself. The sense is further illustrated by the responsiveness of the façade to the surrounding environment, which, depending on the time of day and quality of light, makes the glass alternately reflective and transparent.Inside, the 11,900-square foot pavilion is highly flexible and serves as a showcase for the science that happens in the labs and offices above. Central to the space is a 16-foot by 9-foot video wall featuring vivid footage of field work, lab research, data visualizations, and natural phenomena — visible even to passers-by outside. The video wall is counterposed to an unpretentious set of stair-step bleachers leading to the second floor that could play host to anything from a scientific lecture to a community pizza-and-movie night.Van der Hilst has referred to his vision for the atrium as a “campus living room,” and the furniture throughout is intentionally chosen to allow for impromptu rearrangements, providing a valuable public space on campus for students to work and socialize.The second level is similarly adaptable, featuring three classrooms with state-of-the-art teaching technologies that can be transformed from a single large space for a hackathon to intimate rooms for discussion.“The space is really meant for a yet unforeseen experience,” Anmahian says. “The reason it is so open is to allow for any possibility.”The inviting, dynamic design of the pavilion has also become an instant point of pride for the building’s inhabitants. At the dedication, School of Science dean Nergis Mavalvala quipped that anyone walking into the space “gains two inches in height.”Van der Hilst quoted a colleague with a similar observation: “Now, when I come into this space, I feel respected by it.”The perfect complementAnother significant feature of the project is the List Visual Arts Center Percent-for-Art Program installation by conceptual artist Julian Charrière, entitled “Everything Was Forever Until It Was No More.”Consisting of three interrelated works, the commission includes: “Not All Who Wander Are Lost,” three glacial erratic boulders which sit atop their own core samples in the surrounding green space; “We Are All Astronauts,” a trio of glass pillars containing vintage globes with distinctions between nations, land, and sea removed; and “Pure Waste,” a synthetic diamond embedded in the foundation, created from carbon captured from the air and the breath of researchers who work in the building.Known for themes that explore the transformation of the natural world over time and humanity’s complex relationship with our environment, Charrière was a perfect fit to complement the new Building 55 — offering a thought-provoking perspective on our current environmental challenges while underscoring the value of the research that happens within its walls. More

  • in

    Researchers return to Arctic to test integrated sensor nodes

    Shimmering ice extends in all directions as far as the eye can see. Air temperatures plunge to minus 40 degrees Fahrenheit and colder with wind chills. Ocean currents drag large swaths of ice floating at sea. Polar bears, narwhals, and other iconic Arctic species roam wild.For a week this past spring, MIT Lincoln Laboratory researchers Ben Evans and Dave Whelihan called this place — drifting some 200 nautical miles offshore from Prudhoe Bay, Alaska, on the frozen Beaufort Sea in the Arctic Circle — home. Two ice runways for small aircraft provided their only way in and out of this remote wilderness; heated tents provided their only shelter from the bitter cold.

    Play video

    Video: MIT Lincoln Laboratory

    Here, in the northernmost region on Earth, Evans and Whelihan joined other groups conducting fieldwork in the Arctic as part of Operation Ice Camp (OIC) 2024, an operational exercise run by the U.S. Navy’s Arctic Submarine Laboratory (ASL). Riding on snowmobiles and helicopters, the duo deployed a small set of integrated sensor nodes that measure everything from atmospheric conditions to ice properties to the structure of water deep below the surface.Ultimately, they envision deploying an unattended network of these low-cost sensor nodes across the Arctic to increase scientific understanding of the trending loss in sea ice extent and thickness. Warming much faster than the rest of the world, the Arctic is a ground zero for climate change, with cascading impacts across the planet that include rising sea levels and extreme weather. Openings in the sea ice cover, or leads, are concerning not only for climate change but also for global geopolitical competition over transit routes and natural resources. A synoptic view of the physical processes happening above, at, and below sea ice is key to determining why the ice is diminishing. In turn, this knowledge can help predict when and where fractures will occur, to inform planning and decision-making.Winter “camp”Every two years, OIC, previously called Ice Exercise (ICEX), provides a way for the international community to access the Arctic for operational readiness exercises and scientific research, with the focus switching back and forth; this year’s focus was scientific research. Coordination, planning, and execution of the month-long operation is led by ASL, a division of the U.S. Navy’s Undersea Warfighting Development Center responsible for ensuring the submarine force can effectively operate in the Arctic Ocean.Making this inhospitable and unforgiving environment safe for participants takes considerable effort. The critical first step is determining where to set up camp. In the weeks before the first participants arrived for OIC 2024, ASL — with assistance from the U.S. National Ice Center, University of Alaska Fairbanks Geophysical Institute, and UIC Science — flew over large sheets of floating ice (ice floes) identified via satellite imagery, landed on some they thought might be viable sites, and drilled through the ice to check its thickness. The ice floe must not only be large enough to accommodate construction of a camp and two runways but also feature both multiyear ice and first-year ice. Multiyear ice is thick and strong but rough, making it ideal for camp setup, while the smooth but thinner first-year ice is better suited for building runways. Once the appropriate ice floe was selected, ASL began to haul in equipment and food, build infrastructure like lodging and a command center, and fly in a small group before fully operationalizing the site. They also identified locations near the camp for two Navy submarines to surface through the ice.The more than 200 participants represented U.S. and allied forces and scientists from research organizations and universities. Distinguished visitors from government offices also attended OIC to see the unique Arctic environment and unfolding challenges firsthand.“Our ASL hosts do incredible work to build this camp from scratch and keep us alive,” Evans says.Evans and Whelihan, part of the laboratory’s Advanced Undersea Systems and Technology Group, first trekked to the Arctic in March 2022 for ICEX 2022. (The laboratory in general has been participating since 2016 in these events, the first iteration of which occurred in 1946.) There, they deployed a suite of commercial off-the-shelf sensors for detecting acoustic (sound) and seismic (vibration) events created by ice fractures or collisions, and for measuring salinity, temperature, and pressure in the water below the ice. They also deployed a prototype fiber-based temperature sensor array developed by the laboratory and research partners for precisely measuring temperature across the entire water column at one location, and a University of New Hampshire (UNH)−supplied echosounder to investigate the different layers present in the water column. In this maiden voyage, their goals were to assess how these sensors fared in the harsh Arctic conditions and to collect a dataset from which characteristic signatures of ice-fracturing events could begin to be identified. These events would be correlated with weather and water conditions to eventually offer a predictive capability.“We saw real phenomenology in our data,” Whelihan says. “But, we’re not ice experts. What we’re good at here at the laboratory is making and deploying sensors. That’s our place in the world of climate science: to be a data provider. In fact, we hope to open source all of our data this year so that ice scientists can access and analyze them and then we can make enhanced sensors and collect more data.”Interim iceIn the two years since that expedition, they and their colleagues have been modifying their sensor designs and deployment strategies. As Evans and Whelihan learned at ICEX 2022, to be resilient in the Arctic, a sensor must not only be kept warm and dry during deployment but also be deployed in a way to prevent breaking. Moreover, sufficient power and data links are needed to collect and access sensor data.“We can make cold-weather electronics, no problem,” Whelihan says. “The two drivers are operating the sensors in an energy-starved environment — the colder it is, the worse batteries perform — and keeping them from getting destroyed when ice floes crash together as leads in the ice open up.”Their work in the interim to OIC 2024 involved integrating the individual sensors into hardened sensor nodes and practicing deploying these nodes in easier-to-access locations. To facilitate incorporating additional sensors into a node, Whelihan spearheaded the development of an open-source, easily extensible hardware and software architecture.In March 2023, the Lincoln Laboratory team deployed three sensor nodes for a week on Huron Bay off Lake Superior through Michigan Tech’s Great Lakes Research Center (GLRC). Engineers from GLRC helped the team safely set up an operations base on the ice. They demonstrated that the sensor integration worked, and the sensor nodes proved capable of surviving for at least a week in relatively harsh conditions. The researchers recorded seismic activity on all three nodes, corresponding to some ice breaking further up the bay.“Proving our sensor node in an Arctic surrogate environment provided a stepping stone for testing in the real Arctic,” Evans says.Evans then received an invitation from Ignatius Rigor, the coordinator of the International Arctic Buoy Program (IABP), to join him on an upcoming trip to Utqiaġvik (formerly Barrow), Alaska, and deploy one of their seismic sensor nodes on the ice there (with support from UIC Science). The IABP maintains a network of Arctic buoys equipped with meteorological and oceanic sensors. Data collected by these buoys are shared with the operational and research communities to support real-time operations (e.g., forecasting sea ice conditions for coastal Alaskans) and climate research. However, these buoys are typically limited in the frequency at which they collect data, so phenomenology on shorter time scales important to climate change may be missed. Moreover, these buoys are difficult and expensive to deploy because they are designed to survive in the harshest environments for years at a time.  The laboratory-developed sensor nodes could offer an inexpensive, easier-to-deploy option for collecting more data over shorter periods of time. In April 2023, Evans placed a sensor node in Utqiaġvik on landfast sea ice, which is stationary ice anchored to the seabed just off the coast. During the sensor node’s week-long deployment, a big piece of drift ice (ice not attached to the seabed or other fixed object) broke off and crashed into the landfast ice. The event was recorded by a radar maintained by the University of Alaska Fairbanks that monitors sea ice movement in near real time to warn of any instability. Though this phenomenology is not exactly the same as that expected for Arctic sea ice, the researchers were encouraged to see seismic activity recorded by their sensor node.In December 2023, Evans and Whelihan headed to New Hampshire, where they conducted echosounder testing in UNH’s engineering test tank and on the Piscataqua River. Together with their UNH partners, they sought to determine whether a low-cost, hobby-grade echosounder could detect the same phenomenology of interest as the high-fidelity UNH echosounder, which would be far too costly to deploy in sensor nodes across the Arctic. In the test tank and on the river, the low-cost echosounder proved capable of detecting masses of water moving in the water column, but with considerably less structural detail than afforded by the higher-cost option. Seeing such dynamics is important to inferring where water comes from and understanding how it affects sea ice breakup — for example, how warm water moving in from the Pacific Ocean is coming into contact with and melting the ice. So, the laboratory researchers and UNH partners have been building a medium-fidelity, medium-cost echosounder.In January 2024, Evans and Whelihan — along with Jehan Diaz, a fellow staff member in their research group — returned to GLRC. With logistical support from their GLRC hosts, they snowmobiled across the ice on Portage Lake, where they practiced several activities to prepare for OIC 2024: augering (drilling) six-inch holes in the ice, albeit in thinner ice than that in the Arctic; placing their long, pipe-like sensor nodes through these holes; operating cold-hardened drones to interact with the nodes; and retrieving the nodes. They also practiced sensor calibration by hitting the ice with an iron bar some distance away from the nodes and correlating this distance with the resulting measured acoustic and seismic intensity.“Our time at GLRC helped us mitigate a lot of risks and prepare to deploy these complex systems in the Arctic,” Whelihan says.Arctic againTo get to OIC, Evans and Whelihan first flew to Prudhoe Bay and reacclimated to the frigid temperatures. They spent the next two days at the Deadhorse Aviation Center hangar inspecting their equipment for transit-induced damage, which included squashed cables and connectors that required rejiggering.“That’s part of the adventure story,” Evans says. “Getting stuff to Prudhoe Bay is not your standard shipping; it’s ice-road trucking.”From there, they boarded a small aircraft to the ice camp.“Even though this trip marked our second time coming here, it was still disorienting,” Evans continues. “You land in the middle of nowhere on a small aircraft after a couple-hour flight. You get out bundled in all of your Arctic gear in this remote, pristine environment.”After unloading and rechecking their equipment for any damage, calibrating their sensors, and attending safety briefings, they were ready to begin their experiments.An icy situationInside the project tent, Evans and Whelihan deployed the UNH-supplied echosounder and a suite of ground-truth sensors on an automated winch to profile water conductivity, temperature, and depth (CTD). Echosounder data needed to be validated with associated CTD data to determine the source of the water in the water column. Ocean properties change as a function of depth, and these changes are important to capture, in part because masses of water coming in from the Atlantic and Pacific oceans arrive at different depths. Though masses of warm water have always existed, climate change–related mechanisms are now bringing them into contact with the ice.  “As ice breaks up, wind can directly interact with the ocean because it’s lacking that barrier of ice cover,” Evans explains. “Kinetic energy from the wind causes mixing in the ocean; all the warm water that used to stay at depth instead gets brought up and interacts with the ice.”They also deployed four of their sensor nodes several miles outside of camp. To access this deployment site, they rode on a sled pulled via a snowmobile driven by Ann Hill, an ASL field party leader trained in Arctic survival and wildlife encounters. The temperature that day was -55 F. At such a dangerously cold temperature, frostnip and frostbite are all too common. To avoid removal of gloves or other protective clothing, the researchers enabled the nodes with WiFi capability (the nodes also have a satellite communications link to transmit low-bandwidth data). Large amounts of data are automatically downloaded over WiFi to an arm-wearable haptic (touch-based) system when a user walks up to a node.“It was so cold that the holes we were drilling in the ice to reach the water column were freezing solid,” Evans explains. “We realized it was going to be quite an ordeal to get our sensor nodes out of the ice.”So, after drilling a big hole in the ice, they deployed only one central node with all the sensor components: a commercial echosounder, an underwater microphone, a seismometer, and a weather station. They deployed the other three nodes, each with a seismometer and weather station, atop the ice.“One of our design considerations was flexibility,” Whelihan says. “Each node can integrate as few or as many sensors as desired.”The small sensor array was only collecting data for about a day when Evans and Whelihan, who were at the time on a helicopter, saw that their initial field site had become completely cut off from camp by a 150-meter-wide ice lead. They quickly returned to camp to load the tools needed to pull the nodes, which were no longer accessible by snowmobile. Two recently arrived staff members from the Ted Stevens Center for Arctic Security Studies offered to help them retrieve their nodes. The helicopter landed on the ice floe near a crack, and the pilot told them they had half an hour to complete their recovery mission. By the time they had retrieved all four sensors, the crack had increased from thumb to fist size.“When we got home, we analyzed the collected sensor data and saw a spike in seismic activity corresponding to what could be the major ice-fracturing event that necessitated our node recovery mission,” Whelihan says.  The researchers also conducted experiments with their Arctic-hardened drones to evaluate their utility for retrieving sensor node data and to develop concepts of operations for future capabilities.“The idea is to have some autonomous vehicle land next to the node, download data, and come back, like a data mule, rather than having to expend energy getting data off the system, say via high-speed satellite communications,” Whelihan says. “We also started testing whether the drone is capable on its own of finding sensors that are constantly moving and getting close enough to them. Even flying in 25-mile-per-hour winds, and at very low temperatures, the drone worked well.”Aside from carrying out their experiments, the researchers had the opportunity to interact with other participants. Their “roommates” were ice scientists from Norway and Finland. They met other ice and water scientists conducting chemistry experiments on the salt content of ice taken from different depths in the ice sheet (when ocean water freezes, salt tends to get pushed out of the ice). One of their collaborators — Nicholas Schmerr, an ice seismologist from the University of Maryland — placed high-quality geophones (for measuring vibrations in the ice) alongside their nodes deployed on the camp field site. They also met with junior enlisted submariners, who temporarily came to camp to open up spots on the submarine for distinguished visitors.“Part of what we’ve been doing over the last three years is building connections within the Arctic community,” Evans says. “Every time I start to get a handle on the phenomenology that exists out here, I learn something new. For example, I didn’t know that sometimes a layer of ice forms a little bit deeper than the primary ice sheet, and you can actually see fish swimming in between the layers.”“One day, we were out with our field party leader, who saw fog while she was looking at the horizon and said the ice was breaking up,” Whelihan adds. “I said, ‘Wait, what?’ As she explained, when an ice lead forms, fog comes out of the ocean. Sure enough, within 30 minutes, we had quarter-mile visibility, whereas beforehand it was unlimited.”Back to solid groundBefore leaving, Whelihan and Evans retrieved and packed up all the remaining sensor nodes, adopting the “leave no trace” philosophy of preserving natural places.“Only a limited number of people get access to this special environment,” Whelihan says. “We hope to grow our footprint at these events in future years, giving opportunities to other laboratory staff members to attend.”In the meantime, they will analyze the collected sensor data and refine their sensor node design. One design consideration is how to replenish the sensors’ battery power. A potential path forward is to leverage the temperature difference between water and air, and harvest energy from the water currents moving under ice floes. Wind energy may provide another viable solution. Solar power would only work for part of the year because the Arctic Circle undergoes periods of complete darkness.The team is also seeking external sponsorship to continue their work engineering sensing systems that advance the scientific community’s understanding of changes to Arctic ice; this work is currently funded through Lincoln Laboratory’s internally administered R&D portfolio on climate change. And, in learning more about this changing environment and its critical importance to strategic interests, they are considering other sensing problems that they could tackle using their Arctic engineering expertise.“The Arctic is becoming a more visible and important region because of how it’s changing,” Evans concludes. “Going forward as a country, we must be able to operate there.” More

  • in

    Balancing economic development with natural resources protection

    It’s one of the paradoxes of economic development: Many countries currently offer large subsidies to their industrial fishing fleets, even though the harms of overfishing are well-known. Governments might be willing to end this practice, if they saw that its costs outweighed its benefits. But each country, acting individually, faces an incentive to keep subsidies in place.This trap evokes the classic “tragedy of the commons” that economists have studied for generations. But despite the familiarity of the problem in theory, they don’t yet have a lot of hard evidence to offer policymakers about solutions, especially on a global scale. PhD student Aaron Berman is working on a set of projects that may change that.“Our goal is to get some empirical traction on the problem,” he says.Berman and his collaborators are combining a variety of datasets — not only economic data but also projections from ecological models — to identify how these subsidies are impacting fish stocks. They also hope to determine whether countries might benefit instead from sustainability measures to help rebuild fisheries, say through new trade arrangements or other international policy agreements.As a fourth-year doctoral candidate in MIT’s Department of Economics, Berman has a variety of other research projects underway as well, all connected by the central question of how to balance economic development with the pressure it puts on the environment and natural resources. While his study of fishing subsidies is global in scope, other projects are distinctly local: He is studying air pollution generated by road infrastructure in Pakistan, groundwater irrigation in Texas, the scallop fishing industry in New England, and industrial carbon-reduction measures in Turkey. For all of these projects, Berman and his collaborators are bringing data and models from many fields of science to bear on economic questions, from seafloor images taken by NOAA to atmospheric models of pollution dispersion.“One thing I find really exciting and joyful about the work I’m doing in environmental economics is that all of these projects involve some kind of crossover into the natural sciences,” he says.Several of Berman’s projects are so ambitious that he hopes to continue working on them even after completing his PhD. He acknowledges that keeping so many irons in the fire is a lot of work, but says he finds motivation in the knowledge that his research could shape policy and benefit society in a concrete way.“Something that MIT has really instilled in me is the value of going into the field and learning about how the research you’re doing connects to real-world issues,” he says. “You want your findings as a researcher to ultimately be useful to someone.”Testing the watersThe son of two public school teachers, Berman grew up in Maryland and then attended Yale University, where he majored in global affairs as an undergraduate, then stayed to get his master’s in public health, concentrating on global health in both programs.A pivotal moment came while taking an undergraduate class in development economics. “That class helped me realize the same questions I cared a lot about from a public health standpoint were also being studied by economists using very rigorous methods,” Berman says. “Economics has a lot to say about very pressing societal issues.”After reading the work of MIT economists and Nobel laureates Esther Duflo and Abhijit Banerjee in that same class, he decided to pivot and “test the waters of economics a little bit more seriously.” The professor teaching that class also played an important role, by encouraging Berman to pursue a predoctoral research position as a first step toward a graduate degree in economics.Following that advice, Berman landed at the Harvard Kennedy School’s Evidence for Policy Design, a research initiative seeking to foster economic development by improving the policy design process. His time with this organization included five months in Jakarta, Indonesia, where he collaborated with professors Rema Hanna and Ben Olken — of Harvard and MIT, respectively — on a portfolio of projects focused on analyzing social protection and poverty alleviation.The work, which included working closely with government partners, “required me to think creatively about how to talk about economics research to several different types of audiences,” he says. “This also gave me experience thinking about the intersection between what is academically interesting and what is a policy priority.”The experience also gave him the skills and confidence to apply to the economics PhD program at MIT.(Re)discovering teachingAs an economist, Berman is now channeling his interests in global affairs to exploring the relationship between economic development and protecting the natural environment. (He’s aided by an affinity for languages — he speaks five, with varying degrees of proficiency, in addition to English: Mandarin, Cantonese, Spanish, Portuguese, and Indonesian.) His interest in natural resource governance was piqued while co-authoring a paper on the economic drivers of climate-altering tropical deforestation.The review article, written alongside Olken and two professors from the London School of Economics, explored questions such as “What does the current state of the evidence tell us about what causes deforestation in the tropics, and what further evidence is needed?” and “What are the economic barriers to implementing policies to prevent deforestation?” — the kinds of questions he seeks to answer broadly in his ongoing dissertation work.“I gained an appreciation for the importance and complexity of natural resource governance, both in developing and developed countries,” he says. “It really was a launching point for a lot of the things that I’m doing now.”These days, when not doing research, Berman can be found playing on MIT’s club tennis team or working as a teaching assistant, which he particularly enjoys. He’s ever mindful of the Yale professor whose encouragement shaped his own path, and he hopes that he can pay that forward in his own teaching roles.“The fact that he saw I had the ability to make this transition and encouraged me to take a leap of faith is really meaningful to me. I would like to be able to do that for others,” Berman says.His interest in teaching also connects him further with his family: His father is a middle school science teacher and mother is a paraeducator for students with special needs. He says they’ve encouraged him throughout his academic journey, even though they initially didn’t know much about what a PhD in economics entailed. Berman jokes that the most common question people ask economists is what stocks they should invest in, and his family was no exception.“But they’ve always been very excited to hear about the kinds of things I’m working on and very supportive,” he says. “It’s been a really amazing learning experience thus far,” Berman says about his doctoral program. “One of the coolest parts of economics research is to have a sense that you’re tangibly doing something that’s going to have an impact in the world.” More