More stories

  • in

    Q&A: What past environmental success can teach us about solving the climate crisis

    Susan Solomon, MIT professor of Earth, atmospheric, and planetary sciences (EAPS) and of chemistry, played a critical role in understanding how a class of chemicals known as chlorofluorocarbons were creating a hole in the ozone layer. Her research was foundational to the creation of the Montreal Protocol, an international agreement established in the 1980s that phased out products releasing chlorofluorocarbons. Since then, scientists have documented signs that the ozone hole is recovering thanks to these measures.Having witnessed this historical process first-hand, Solomon, the Lee and Geraldine Martin Professor of Environmental Studies, is aware of how people can come together to make successful environmental policy happen. Using her story, as well as other examples of success — including combating smog, getting rid of DDT, and more — Solomon draws parallels from then to now as the climate crisis comes into focus in her new book, “Solvable: How we Healed the Earth and How we can do it Again.”Solomon took a moment to talk about why she picked the stories in her book, the students who inspired her, and why we need hope and optimism now more than ever.Q: You have first-hand experience seeing how we’ve altered the Earth, as well as the process of creating international environmental policy. What prompted you to write a book about your experiences?A: Lots of things, but one of the main ones is the things that I see in teaching. I have taught a class called Science, Politics and Environmental Policy for many years here at MIT. Because my emphasis is always on how we’ve actually fixed problems, students come away from that class feeling hopeful, like they really want to stay engaged with the problem.It strikes me that students today have grown up in a very contentious and difficult era in which they feel like nothing ever gets done. But stuff does get done, even now. Looking at how we did things so far really helps you to see how we can do things in the future.Q: In the book, you use five different stories as examples of successful environmental policy, and then end talking about how we can apply these lessons to climate change. Why did you pick these five stories?A: I picked some of them because I’m closer to those problems in my own professional experience, like ozone depletion and smog. I did other issues partly because I wanted to show that even in the 21st century, we’ve actually got some stuff done — that’s the story of the Kigali Amendment to the Montreal Protocol, which is a binding international agreement on some greenhouse gases.Another chapter is on DDT. One of the reasons I included that is because it had an enormous effect on the birth of the environmental movement in the United States. Plus, that story allows you to see how important the environmental groups can be.Lead in gasoline and paint is the other one. I find it a very moving story because the idea that we were poisoning millions of children and not even realizing it is so very, very sad. But it’s so uplifting that we did figure out the problem, and it happened partly because of the civil rights movement, that made us aware that the problem was striking minority communities much more than non-minority communities.Q: What surprised you the most during your research for the book?A: One of the things that that I didn’t realize and should have, was the outsized role played by one single senator, Ed Muskie of Maine. He made pollution control his big issue and devoted incredible energy to it. He clearly had the passion and wanted to do it for many years, but until other factors helped him, he couldn’t. That’s where I began to understand the role of public opinion and the way in which policy is only possible when public opinion demands change.Another thing about Muskie was the way in which his engagement with these issues demanded that science be strong. When I read what he put into congressional testimony I realized how highly he valued the science. Science alone is never enough, but it’s always necessary. Over the years, science got a lot stronger, and we developed ways of evaluating what the scientific wisdom across many different studies and many different views actually is. That’s what scientific assessment is all about, and it’s crucial to environmental progress.Q: Throughout the book you argue that for environmental action to succeed, three things must be met which you call the three Ps: a threat much be personal, perceptible, and practical. Where did this idea come from?A: My observations. You have to perceive the threat: In the case of the ozone hole, you could perceive it because those false-color images of the ozone loss were so easy to understand, and it was personal because few things are scarier than cancer, and a reduced ozone layer leads to too much sun, increasing skin cancers. Science plays a role in communicating what can be readily understood by the public, and that’s important to them perceiving it as a serious problem.Nowadays, we certainly perceive the reality of climate change. We also see that it’s personal. People are dying because of heat waves in much larger numbers than they used to; there are horrible problems in the Boston area, for example, with flooding and sea level rise. People perceive the reality of the problem and they feel personally threatened.The third P is practical: People have to believe that there are practical solutions. It’s interesting to watch how the battle for hearts and minds has shifted. There was a time when the skeptics would just attack the whole idea that the climate was changing. Eventually, they decided ‘we better accept that because people perceive it, so let’s tell them that it’s not caused by human activity.’ But it’s clear enough now that human activity does play a role. So they’ve moved on to attacking that third P, that somehow it’s not practical to have any kind of solutions. This is progress! So what about that third P?What I tried to do in the book is to point out some of the ways in which the problem has also become eminently practical to deal with in the last 10 years, and will continue to move in that direction. We’re right on the cusp of success, and we just have to keep going. People should not give in to eco despair; that’s the worst thing you could do, because then nothing will happen. If we continue to move at the rate we have, we will certainly get to where we need to be.Q: That ties in very nicely with my next question. The book is very optimistic; what gives you hope?A: I’m optimistic because I’ve seen so many examples of where we have succeeded, and because I see so many signs of movement right now that are going to push us in the same direction.If we had kept conducting business as usual as we had been in the year 2000, we’d be looking at 4 degrees of future warming. Right now, I think we’re looking at 3 degrees. I think we can get to 2 degrees. We have to really work on it, and we have to get going seriously in the next decade, but globally right now over 30 percent of our energy is from renewables. That’s fantastic! Let’s just keep going.Q: Throughout the book, you show that environmental problems won’t be solved by individual actions alone, but requires policy and technology driving. What individual actions can people take to help push for those bigger changes?A: A big one is choose to eat more sustainably; choose alternative transportation methods like public transportation or reducing the amount of trips that you make. Older people usually have retirement investments, you can shift them over to a social choice funds and away from index funds that end up funding companies that you might not be interested in. You can use your money to put pressure: Amazon has been under a huge amount of pressure to cut down on their plastic packaging, mainly coming from consumers. They’ve just announced they’re not going to use those plastic pillows anymore. I think you can see lots of ways in which people really do matter, and we can matter more.Q: What do you hope people take away from the book?A: Hope for their future and resolve to do the best they can getting engaged with it. More

  • in

    Study finds health risks in switching ships from diesel to ammonia fuel

    As container ships the size of city blocks cross the oceans to deliver cargo, their huge diesel engines emit large quantities of air pollutants that drive climate change and have human health impacts. It has been estimated that maritime shipping accounts for almost 3 percent of global carbon dioxide emissions and the industry’s negative impacts on air quality cause about 100,000 premature deaths each year.Decarbonizing shipping to reduce these detrimental effects is a goal of the International Maritime Organization, a U.N. agency that regulates maritime transport. One potential solution is switching the global fleet from fossil fuels to sustainable fuels such as ammonia, which could be nearly carbon-free when considering its production and use.But in a new study, an interdisciplinary team of researchers from MIT and elsewhere caution that burning ammonia for maritime fuel could worsen air quality further and lead to devastating public health impacts, unless it is adopted alongside strengthened emissions regulations.Ammonia combustion generates nitrous oxide (N2O), a greenhouse gas that is about 300 times more potent than carbon dioxide. It also emits nitrogen in the form of nitrogen oxides (NO and NO2, referred to as NOx), and unburnt ammonia may slip out, which eventually forms fine particulate matter in the atmosphere. These tiny particles can be inhaled deep into the lungs, causing health problems like heart attacks, strokes, and asthma.The new study indicates that, under current legislation, switching the global fleet to ammonia fuel could cause up to about 600,000 additional premature deaths each year. However, with stronger regulations and cleaner engine technology, the switch could lead to about 66,000 fewer premature deaths than currently caused by maritime shipping emissions, with far less impact on global warming.“Not all climate solutions are created equal. There is almost always some price to pay. We have to take a more holistic approach and consider all the costs and benefits of different climate solutions, rather than just their potential to decarbonize,” says Anthony Wong, a postdoc in the MIT Center for Global Change Science and lead author of the study.His co-authors include Noelle Selin, an MIT professor in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences (EAPS); Sebastian Eastham, a former principal research scientist who is now a senior lecturer at Imperial College London; Christine Mounaïm-Rouselle, a professor at the University of Orléans in France; Yiqi Zhang, a researcher at the Hong Kong University of Science and Technology; and Florian Allroggen, a research scientist in the MIT Department of Aeronautics and Astronautics. The research appears this week in Environmental Research Letters.Greener, cleaner ammoniaTraditionally, ammonia is made by stripping hydrogen from natural gas and then combining it with nitrogen at extremely high temperatures. This process is often associated with a large carbon footprint. The maritime shipping industry is betting on the development of “green ammonia,” which is produced by using renewable energy to make hydrogen via electrolysis and to generate heat.“In theory, if you are burning green ammonia in a ship engine, the carbon emissions are almost zero,” Wong says.But even the greenest ammonia generates nitrous oxide (N2O), nitrogen oxides (NOx) when combusted, and some of the ammonia may slip out, unburnt. This nitrous oxide would escape into the atmosphere, where the greenhouse gas would remain for more than 100 years. At the same time, the nitrogen emitted as NOx and ammonia would fall to Earth, damaging fragile ecosystems. As these emissions are digested by bacteria, additional N2O  is produced.NOx and ammonia also mix with gases in the air to form fine particulate matter. A primary contributor to air pollution, fine particulate matter kills an estimated 4 million people each year.“Saying that ammonia is a ‘clean’ fuel is a bit of an overstretch. Just because it is carbon-free doesn’t necessarily mean it is clean and good for public health,” Wong says.A multifaceted modelThe researchers wanted to paint the whole picture, capturing the environmental and public health impacts of switching the global fleet to ammonia fuel. To do so, they designed scenarios to measure how pollutant impacts change under certain technology and policy assumptions.From a technological point of view, they considered two ship engines. The first burns pure ammonia, which generates higher levels of unburnt ammonia but emits fewer nitrogen oxides. The second engine technology involves mixing ammonia with hydrogen to improve combustion and optimize the performance of a catalytic converter, which controls both nitrogen oxides and unburnt ammonia pollution.They also considered three policy scenarios: current regulations, which only limit NOx emissions in some parts of the world; a scenario that adds ammonia emission limits over North America and Western Europe; and a scenario that adds global limits on ammonia and NOx emissions.The researchers used a ship track model to calculate how pollutant emissions change under each scenario and then fed the results into an air quality model. The air quality model calculates the impact of ship emissions on particulate matter and ozone pollution. Finally, they estimated the effects on global public health.One of the biggest challenges came from a lack of real-world data, since no ammonia-powered ships are yet sailing the seas. Instead, the researchers relied on experimental ammonia combustion data from collaborators to build their model.“We had to come up with some clever ways to make that data useful and informative to both the technology and regulatory situations,” he says.A range of outcomesIn the end, they found that with no new regulations and ship engines that burn pure ammonia, switching the entire fleet would cause 681,000 additional premature deaths each year.“While a scenario with no new regulations is not very realistic, it serves as a good warning of how dangerous ammonia emissions could be. And unlike NOx, ammonia emissions from shipping are currently unregulated,” Wong says.However, even without new regulations, using cleaner engine technology would cut the number of premature deaths down to about 80,000, which is about 20,000 fewer than are currently attributed to maritime shipping emissions. With stronger global regulations and cleaner engine technology, the number of people killed by air pollution from shipping could be reduced by about 66,000.“The results of this study show the importance of developing policies alongside new technologies,” Selin says. “There is a potential for ammonia in shipping to be beneficial for both climate and air quality, but that requires that regulations be designed to address the entire range of potential impacts, including both climate and air quality.”Ammonia’s air quality impacts would not be felt uniformly across the globe, and addressing them fully would require coordinated strategies across very different contexts. Most premature deaths would occur in East Asia, since air quality regulations are less stringent in this region. Higher levels of existing air pollution cause the formation of more particulate matter from ammonia emissions. In addition, shipping volume over East Asia is far greater than elsewhere on Earth, compounding these negative effects.In the future, the researchers want to continue refining their analysis. They hope to use these findings as a starting point to urge the marine industry to share engine data they can use to better evaluate air quality and climate impacts. They also hope to inform policymakers about the importance and urgency of updating shipping emission regulations.This research was funded by the MIT Climate and Sustainability Consortium. More

  • in

    “They can see themselves shaping the world they live in”

    During the journey from the suburbs to the city, the tree canopy often dwindles down as skyscrapers rise up. A group of New England Innovation Academy students wondered why that is.“Our friend Victoria noticed that where we live in Marlborough there are lots of trees in our own backyards. But if you drive just 30 minutes to Boston, there are almost no trees,” said high school junior Ileana Fournier. “We were struck by that duality.”This inspired Fournier and her classmates Victoria Leeth and Jessie Magenyi to prototype a mobile app that illustrates Massachusetts deforestation trends for Day of AI, a free, hands-on curriculum developed by the MIT Responsible AI for Social Empowerment and Education (RAISE) initiative, headquartered in the MIT Media Lab and in collaboration with the MIT Schwarzman College of Computing and MIT Open Learning. They were among a group of 20 students from New England Innovation Academy who shared their projects during the 2024 Day of AI global celebration hosted with the Museum of Science.The Day of AI curriculum introduces K-12 students to artificial intelligence. Now in its third year, Day of AI enables students to improve their communities and collaborate on larger global challenges using AI. Fournier, Leeth, and Magenyi’s TreeSavers app falls under the Telling Climate Stories with Data module, one of four new climate-change-focused lessons.“We want you to be able to express yourselves creatively to use AI to solve problems with critical-thinking skills,” Cynthia Breazeal, director of MIT RAISE, dean for digital learning at MIT Open Learning, and professor of media arts and sciences, said during this year’s Day of AI global celebration at the Museum of Science. “We want you to have an ethical and responsible way to think about this really powerful, cool, and exciting technology.”Moving from understanding to actionDay of AI invites students to examine the intersection of AI and various disciplines, such as history, civics, computer science, math, and climate change. With the curriculum available year-round, more than 10,000 educators across 114 countries have brought Day of AI activities to their classrooms and homes.The curriculum gives students the agency to evaluate local issues and invent meaningful solutions. “We’re thinking about how to create tools that will allow kids to have direct access to data and have a personal connection that intersects with their lived experiences,” Robert Parks, curriculum developer at MIT RAISE, said at the Day of AI global celebration.Before this year, first-year Jeremie Kwapong said he knew very little about AI. “I was very intrigued,” he said. “I started to experiment with ChatGPT to see how it reacts. How close can I get this to human emotion? What is AI’s knowledge compared to a human’s knowledge?”In addition to helping students spark an interest in AI literacy, teachers around the world have told MIT RAISE that they want to use data science lessons to engage students in conversations about climate change. Therefore, Day of AI’s new hands-on projects use weather and climate change to show students why it’s important to develop a critical understanding of dataset design and collection when observing the world around them.“There is a lag between cause and effect in everyday lives,” said Parks. “Our goal is to demystify that, and allow kids to access data so they can see a long view of things.”Tools like MIT App Inventor — which allows anyone to create a mobile application — help students make sense of what they can learn from data. Fournier, Leeth, and Magenyi programmed TreeSavers in App Inventor to chart regional deforestation rates across Massachusetts, identify ongoing trends through statistical models, and predict environmental impact. The students put that “long view” of climate change into practice when developing TreeSavers’ interactive maps. Users can toggle between Massachusetts’s current tree cover, historical data, and future high-risk areas.Although AI provides fast answers, it doesn’t necessarily offer equitable solutions, said David Sittenfeld, director of the Center for the Environment at the Museum of Science. The Day of AI curriculum asks students to make decisions on sourcing data, ensuring unbiased data, and thinking responsibly about how findings could be used.“There’s an ethical concern about tracking people’s data,” said Ethan Jorda, a New England Innovation Academy student. His group used open-source data to program an app that helps users track and reduce their carbon footprint.Christine Cunningham, senior vice president of STEM Learning at the Museum of Science, believes students are prepared to use AI responsibly to make the world a better place. “They can see themselves shaping the world they live in,” said Cunningham. “Moving through from understanding to action, kids will never look at a bridge or a piece of plastic lying on the ground in the same way again.”Deepening collaboration on earth and beyondThe 2024 Day of AI speakers emphasized collaborative problem solving at the local, national, and global levels.“Through different ideas and different perspectives, we’re going to get better solutions,” said Cunningham. “How do we start young enough that every child has a chance to both understand the world around them but also to move toward shaping the future?”Presenters from MIT, the Museum of Science, and NASA approached this question with a common goal — expanding STEM education to learners of all ages and backgrounds.“We have been delighted to collaborate with the MIT RAISE team to bring this year’s Day of AI celebration to the Museum of Science,” says Meg Rosenburg, manager of operations at the Museum of Science Centers for Public Science Learning. “This opportunity to highlight the new climate modules for the curriculum not only perfectly aligns with the museum’s goals to focus on climate and active hope throughout our Year of the Earthshot initiative, but it has also allowed us to bring our teams together and grow a relationship that we are very excited to build upon in the future.”Rachel Connolly, systems integration and analysis lead for NASA’s Science Activation Program, showed the power of collaboration with the example of how human comprehension of Saturn’s appearance has evolved. From Galileo’s early telescope to the Cassini space probe, modern imaging of Saturn represents 400 years of science, technology, and math working together to further knowledge.“Technologies, and the engineers who built them, advance the questions we’re able to ask and therefore what we’re able to understand,” said Connolly, research scientist at MIT Media Lab.New England Innovation Academy students saw an opportunity for collaboration a little closer to home. Emmett Buck-Thompson, Jeff Cheng, and Max Hunt envisioned a social media app to connect volunteers with local charities. Their project was inspired by Buck-Thompson’s father’s difficulties finding volunteering opportunities, Hunt’s role as the president of the school’s Community Impact Club, and Cheng’s aspiration to reduce screen time for social media users. Using MIT App Inventor, ​their combined ideas led to a prototype with the potential to make a real-world impact in their community.The Day of AI curriculum teaches the mechanics of AI, ethical considerations and responsible uses, and interdisciplinary applications for different fields. It also empowers students to become creative problem solvers and engaged citizens in their communities and online. From supporting volunteer efforts to encouraging action for the state’s forests to tackling the global challenge of climate change, today’s students are becoming tomorrow’s leaders with Day of AI.“We want to empower you to know that this is a tool you can use to make your community better, to help people around you with this technology,” said Breazeal.Other Day of AI speakers included Tim Ritchie, president of the Museum of Science; Michael Lawrence Evans, program director of the Boston Mayor’s Office of New Urban Mechanics; Dava Newman, director of the MIT Media Lab; and Natalie Lao, executive director of the App Inventor Foundation. More

  • in

    Study: Weaker ocean circulation could enhance CO2 buildup in the atmosphere

    As climate change advances, the ocean’s overturning circulation is predicted to weaken substantially. With such a slowdown, scientists estimate the ocean will pull down less carbon dioxide from the atmosphere. However, a slower circulation should also dredge up less carbon from the deep ocean that would otherwise be released back into the atmosphere. On balance, the ocean should maintain its role in reducing carbon emissions from the atmosphere, if at a slower pace.However, a new study by an MIT researcher finds that scientists may have to rethink the relationship between the ocean’s circulation and its long-term capacity to store carbon. As the ocean gets weaker, it could release more carbon from the deep ocean into the atmosphere instead.The reason has to do with a previously uncharacterized feedback between the ocean’s available iron, upwelling carbon and nutrients, surface microorganisms, and a little-known class of molecules known generally as “ligands.” When the ocean circulates more slowly, all these players interact in a self-perpetuating cycle that ultimately increases the amount of carbon that the ocean outgases back to the atmosphere.“By isolating the impact of this feedback, we see a fundamentally different relationship between ocean circulation and atmospheric carbon levels, with implications for the climate,” says study author Jonathan Lauderdale, a research scientist in MIT’s Department of Earth, Atmospheric, and Planetary Sciences. “What we thought is going on in the ocean is completely overturned.”Lauderdale says the findings show that “we can’t count on the ocean to store carbon in the deep ocean in response to future changes in circulation. We must be proactive in cutting emissions now, rather than relying on these natural processes to buy us time to mitigate climate change.”His study appears today in the journal Nature Communications.Box flowIn 2020, Lauderdale led a study that explored ocean nutrients, marine organisms, and iron, and how their interactions influence the growth of phytoplankton around the world. Phytoplankton are microscopic, plant-like organisms that live on the ocean surface and consume a diet of carbon and nutrients that upwell from the deep ocean and iron that drifts in from desert dust.The more phytoplankton that can grow, the more carbon dioxide they can absorb from the atmosphere via photosynthesis, and this plays a large role in the ocean’s ability to sequester carbon.For the 2020 study, the team developed a simple “box” model, representing conditions in different parts of the ocean as general boxes, each with a different balance of nutrients, iron, and ligands — organic molecules that are thought to be byproducts of phytoplankton. The team modeled a general flow between the boxes to represent the ocean’s larger circulation — the way seawater sinks, then is buoyed back up to the surface in different parts of the world.This modeling revealed that, even if scientists were to “seed” the oceans with extra iron, that iron wouldn’t have much of an effect on global phytoplankton growth. The reason was due to a limit set by ligands. It turns out that, if left on its own, iron is insoluble in the ocean and therefore unavailable to phytoplankton. Iron only becomes soluble at “useful” levels when linked with ligands, which keep iron in a form that plankton can consume. Lauderdale found that adding iron to one ocean region to consume additional nutrients robs other regions of nutrients that phytoplankton there need to grow. This lowers the production of ligands and the supply of iron back to the original ocean region, limiting the amount of extra carbon that would be taken up from the atmosphere.Unexpected switchOnce the team published their study, Lauderdale worked the box model into a form that he could make publicly accessible, including ocean and atmosphere carbon exchange and extending the boxes to represent more diverse environments, such as conditions similar to the Pacific, the North Atlantic, and the Southern Ocean. In the process, he tested other interactions within the model, including the effect of varying ocean circulation.He ran the model with different circulation strengths, expecting to see less atmospheric carbon dioxide with weaker ocean overturning — a relationship that previous studies have supported, dating back to the 1980s. But what he found instead was a clear and opposite trend: The weaker the ocean’s circulation, the more CO2 built up in the atmosphere.“I thought there was some mistake,” Lauderdale recalls. “Why were atmospheric carbon levels trending the wrong way?”When he checked the model, he found that the parameter describing ocean ligands had been left “on” as a variable. In other words, the model was calculating ligand concentrations as changing from one ocean region to another.On a hunch, Lauderdale turned this parameter “off,” which set ligand concentrations as constant in every modeled ocean environment, an assumption that many ocean models typically make. That one change reversed the trend, back to the assumed relationship: A weaker circulation led to reduced atmospheric carbon dioxide. But which trend was closer to the truth?Lauderdale looked to the scant available data on ocean ligands to see whether their concentrations were more constant or variable in the actual ocean. He found confirmation in GEOTRACES, an international study that coordinates measurements of trace elements and isotopes across the world’s oceans, that scientists can use to compare concentrations from region to region. Indeed, the molecules’ concentrations varied. If ligand concentrations do change from one region to another, then his surprise new result was likely representative of the real ocean: A weaker circulation leads to more carbon dioxide in the atmosphere.“It’s this one weird trick that changed everything,” Lauderdale says. “The ligand switch has revealed this completely different relationship between ocean circulation and atmospheric CO2 that we thought we understood pretty well.”Slow cycleTo see what might explain the overturned trend, Lauderdale analyzed biological activity and carbon, nutrient, iron, and ligand concentrations from the ocean model under different circulation strengths, comparing scenarios where ligands were variable or constant across the various boxes.This revealed a new feedback: The weaker the ocean’s circulation, the less carbon and nutrients the ocean pulls up from the deep. Any phytoplankton at the surface would then have fewer resources to grow and would produce fewer byproducts (including ligands) as a result. With fewer ligands available, less iron at the surface would be usable, further reducing the phytoplankton population. There would then be fewer phytoplankton available to absorb carbon dioxide from the atmosphere and consume upwelled carbon from the deep ocean.“My work shows that we need to look more carefully at how ocean biology can affect the climate,” Lauderdale points out. “Some climate models predict a 30 percent slowdown in the ocean circulation due to melting ice sheets, particularly around Antarctica. This huge slowdown in overturning circulation could actually be a big problem: In addition to a host of other climate issues, not only would the ocean take up less anthropogenic CO2 from the atmosphere, but that could be amplified by a net outgassing of deep ocean carbon, leading to an unanticipated increase in atmospheric CO2 and unexpected further climate warming.”  More

  • in

    How to increase the rate of plastics recycling

    While recycling systems and bottle deposits have become increasingly widespread in the U.S., actual rates of recycling are “abysmal,” according to a team of MIT researchers who studied the rates for recycling of PET, the plastic commonly used in beverage bottles. However, their findings suggest some ways to change this.The present rate of recycling for PET, or polyethylene terephthalate, bottles nationwide is about 24 percent and has remained stagnant for a decade, the researchers say. But their study indicates that with a nationwide bottle deposit program, the rates could increase to 82 percent, with nearly two-thirds of all PET bottles being recycled into new bottles, at a net cost of just a penny a bottle when demand is robust. At the same time, they say, policies would be needed to ensure a sufficient demand for the recycled material.The findings are being published today in the Journal of Industrial Ecology, in a paper by MIT professor of materials science and engineering Elsa Olivetti, graduate students Basuhi Ravi and Karan Bhuwalka, and research scientist Richard Roth.The team looked at PET bottle collection and recycling rates in different states as well as other nations with and without bottle deposit policies, and with or without curbside recycling programs, as well as the inputs and outputs of various recycling companies and methods. The researchers say this study is the first to look in detail at the interplay between public policies and the end-to-end realities of the packaging production and recycling market.They found that bottle deposit programs are highly effective in the areas where they are in place, but at present there is not nearly enough collection of used bottles to meet the targets set by the packaging industry. Their analysis suggests that a uniform nationwide bottle deposit policy could achieve the levels of recycling that have been mandated by proposed legislation and corporate commitments.The recycling of PET is highly successful in terms of quality, with new products made from all-recycled material virtually matching the qualities of virgin material. And brands have shown that new bottles can be safely made with 100 percent postconsumer waste. But the team found that collection of the material is a crucial bottleneck that leaves processing plants unable to meet their needs. However, with the right policies in place, “one can be optimistic,” says Olivetti, who is the Jerry McAfee Professor in Engineering and the associate dean of the School of Engineering.“A message that we have found in a number of cases in the recycling space is that if you do the right work to support policies that think about both the demand but also the supply,” then significant improvements are possible, she says. “You have to think about the response and the behavior of multiple actors in the system holistically to be viable,” she says. “We are optimistic, but there are many ways to be pessimistic if we’re not thinking about that in a holistic way.”For example, the study found that it is important to consider the needs of existing municipal waste-recovery facilities. While expanded bottle deposit programs are essential to increase recycling rates and provide the feedstock to companies recycling PET into new products, the current facilities that process material from curbside recycling programs will lose revenue from PET bottles, which are a relatively high-value product compared to the other materials in the recycled waste stream. These companies would lose a source of their income if the bottles are collected through deposit programs, leaving them with only the lower-value mixed plastics.The researchers developed economic models based on rates of collection found in the states with deposit programs, recycled-content requirements, and other policies, and used these models to extrapolate to the nation as a whole. Overall, they found that the supply needs of packaging producers could be met through a nationwide bottle deposit system with a 10-cent deposit per bottle — at a net cost of about 1 cent per bottle produced when demand is strong. This need not be a federal program, but rather one where the implementation would be left up to the individual states, Olivetti says.Other countries have been much more successful in implementing deposit systems that result in very high participation rates. Several European countries manage to collect more than 90 percent of PET bottles for recycling, for example. But in the U.S., less than 29 percent are collected, and after losses in the recycling chain about 24 percent actually get recycled, the researchers found. Whereas 73 percent of Americans have access to curbside recycling, presently only 10 states have bottle deposit systems in place.Yet the demand is there so far. “There is a market for this material,” says Olivetti. While bottles collected through mixed-waste collection can still be recycled to some extent, those collected through deposit systems tend to be much cleaner and require less processing, and so are more economical to recycle into new bottles, or into textiles.To be effective, policies need to not just focus on increasing rates of recycling, but on the whole cycle of supply and demand and the different players involved, Olivetti says. Safeguards would need to be in place to protect existing recycling facilities from the lost revenues they would suffer as a result of bottle deposits, perhaps in the form of subsidies funded by fees on the bottle producers, to avoid putting these essential parts of the processing chain out of business. And other policies may be needed to ensure the continued market for the material that gets collected, including recycled content requirements and extended producer responsibility regulations, the team found.At this stage, it’s important to focus on the specific waste streams that can most effectively be recycled, and PET, along with many metals, clearly fit that category. “When we start to think about mixed plastic streams, that’s much more challenging from an environmental perspective,” she says. “Recycling systems need to be pursuing extended producers’ responsibility, or specifically thinking about materials designed more effectively toward recycled content,” she says.It’s also important to address “what the right metrics are to design for sustainably managed materials streams,” she says. “It could be energy use, could be circularity [for example, making old bottles into new bottles], could be around waste reduction, and making sure those are all aligned. That’s another kind of policy coordination that’s needed.” More

  • in

    Pioneering the future of materials extraction

    The next time you cook pasta, imagine that you are cooking spaghetti, rigatoni, and seven other varieties all together, and they need to be separated onto 10 different plates before serving. A colander can remove the water — but you still have a mound of unsorted noodles. Now imagine that this had to be done for thousands of tons of pasta a day. That gives you an idea of the scale of the problem facing Brendan Smith PhD ’18, co-founder and CEO of SiTration, a startup formed out of MIT’s Department of Materials Science and Engineering (DMSE) in 2020. SiTration, which raised $11.8 million in seed capital led by venture capital firm 2150 earlier this month, is revolutionizing the extraction and refining of copper, cobalt, nickel, lithium, precious metals, and other materials critical to manufacturing clean-energy technologies such as electric motors, wind turbines, and batteries. Its initial target applications are recovering the materials from complex mining feed streams, spent lithium-ion batteries from electric vehicles, and various metals refining processes. The company’s breakthrough lies in a new silicon membrane technology that can be adjusted to efficiently recover disparate materials, providing a more sustainable and economically viable alternative to conventional, chemically intensive processes. Think of a colander with adjustable pores to strain different types of pasta. SiTration’s technology has garnered interest from industry players, including mining giant Rio Tinto. Some observers may question whether targeting such different industries could cause the company to lose focus. “But when you dig into these markets, you discover there is actually a significant overlap in how all of these materials are recovered, making it possible for a single solution to have impact across verticals,” Smith says.Powering up materials recoveryConventional methods of extracting critical materials in mining, refining, and recycling lithium-ion batteries involve heavy use of chemicals and heat, which harm the environment. Typically, raw ore from mines or spent batteries are ground into fine particles before being dissolved in acid or incinerated in a furnace. Afterward, they undergo intensive chemical processing to separate and purify the valuable materials. “It requires as much as 10 tons of chemical input to produce one ton of critical material recovered from the mining or battery recycling feedstock,” says Smith. Operators can then sell the recaptured materials back into the supply chain, but suffer from wide swings in profitability due to uncertain market prices. Lithium prices have been the most volatile, having surged more than 400 percent before tumbling back to near-original levels in the past two years. Despite their poor economics and negative environmental impact, these processes remain the state of the art today. By contrast, SiTration is electrifying the critical-materials recovery process, improving efficiency, producing less chemical waste, and reducing the use of chemicals and heat. What’s more, the company’s processing technology is built to be highly adaptable, so it can handle all kinds of materials. The core technology is based on work done at MIT to develop a novel type of membrane made from silicon, which is durable enough to withstand harsh chemicals and high temperatures while conducting electricity. It’s also highly tunable, meaning it can be modified or adjusted to suit different conditions or target specific materials. SiTration’s technology also incorporates electro-extraction, a technique that uses electrochemistry to further isolate and extract specific target materials. This powerful combination of methods in a single system makes it more efficient and effective at isolating and recovering valuable materials, Smith says. So depending on what needs to be separated or extracted, the filtration and electro-extraction processes are adjusted accordingly. “We can produce membranes with pore sizes from the molecular scale up to the size of a human hair in diameter, and everything in between. Combined with the ability to electrify the membrane and separate based on a material’s electrochemical properties, this tunability allows us to target a vast array of different operations and separation applications across industrial fields,” says Smith. Efficient access to materials like lithium, cobalt, and copper — and precious metals like platinum, gold, silver, palladium, and rare-earth elements — is key to unlocking innovation in business and sustainability as the world moves toward electrification and away from fossil fuels.“This is an era when new materials are critical,” says Professor Jeffrey Grossman, co-founder and chief scientist of SiTration and the Morton and Claire Goulder and Family Professor in Environmental Systems at DMSE. “For so many technologies, they’re both the bottleneck and the opportunity, offering tremendous potential for non-incremental advances. And the role they’re having in commercialization and in entrepreneurship cannot be overstated.”SiTration’s commercial frontierSmith became interested in separation technology in 2013 as a PhD student in Grossman’s DMSE research group, which has focused on the design of new membrane materials for a range of applications. The two shared a curiosity about separation of critical materials and a hunger to advance the technology. After years of study under Grossman’s mentorship, and with support from several MIT incubators and foundations including the Abdul Latif Jameel Water and Food Systems Lab’s Solutions Program, the Deshpande Center for Technological Innovation, the Kavanaugh Fellowship, MIT Sandbox, and Venture Mentoring Service, Smith was ready to officially form SiTration in 2020. Grossman has a seat on the board and plays an active role as a strategic and technical advisor. Grossman is involved in several MIT spinoffs and embraces the different imperatives of research versus commercialization. “At SiTration, we’re driving this technology to work at scale. There’s something super exciting about that goal,” he says. “The challenges that come with scaling are very different than the challenges that come in a university lab.” At the same time, although not every research breakthrough becomes a commercial product, open-ended, curiosity-driven knowledge pursuit holds its own crucial value, he adds.It has been rewarding for Grossman to see his technically gifted student and colleague develop a host of other skills the role of CEO demands. Getting out to the market and talking about the technology with potential partners, putting together a dynamic team, discovering the challenges facing industry, drumming up support, early on — those became the most pressing activities on Smith’s agenda. “What’s most fun to me about being a CEO of an early-stage startup is that there are 100 different factors, most people-oriented, that you have to navigate every day. Each stakeholder has different motivations and objectives. And you basically try to fit that all together, to create value for our partners and customers, the company, and for society,” says Smith. “You start with just an idea, and you have to keep leveraging that to form a more and more tangible product, to multiply and progress commercial relationships, and do it all at an ever-expanding scale.” MIT DNA runs deep in the nine-person company, with DMSE grad and former Grossman student Jatin Patil as director of product; Ahmed Helal, from MIT’s Department of Mechanical Engineering, as vice president of research and development; Daniel Bregante, from the Department of Chemistry, as VP of technology; and Sarah Melvin, from the departments of Physics and Political Science, as VP of strategy and operations. Melvin is the first hire devoted to business development. Smith plans to continue expanding the team following the closing of the company’s seed round.  Strategic alliancesBeing a good communicator was important when it came to securing funding, Smith says. SiTration received $2.35 million in pre-seed funding in 2022 led by Azolla Ventures, which reserves its $239 million in investment capital for startups that would not otherwise easily obtain funding. “We invest only in solution areas that can achieve gigaton-scale climate impact by 2050,” says Matthew Nordan, a general partner at Azolla and now SiTration board member. The MIT-affiliated E14 Fund also contributed to the pre-seed round; Azolla and E14 both participated in the recent seed funding round. “Brendan demonstrated an extraordinary ability to go from being a thoughtful scientist to a business leader and thinker who has punched way above his weight in engaging with customers and recruiting a well-balanced team and navigating tricky markets,” says Nordan. One of SiTration’s first partnerships is with Rio Tinto, one of the largest mining companies in the world. As SiTration evaluated various uses cases in its early days, identifying critical materials as its target market, Rio Tinto was looking for partners to recover valuable metals such as cobalt and copper from the wastewater generated at mines. These metals were typically trapped in the water, creating harmful waste and resulting in lost revenue. “We thought this was a great innovation challenge and posted it on our website to scout for companies to partner with who can help us solve this water challenge,” said Nick Gurieff, principal advisor for mine closure, in an interview with MIT’s Industrial Liaison Program in 2023. At SiTration, mining was not yet a market focus, but Smith couldn’t help noticing that Rio Tinto’s needs were in alignment with what his young company offered. SiTration submitted its proposal in August 2022. Gurieff said SiTration’s tunable membrane set it apart. The companies formed a business partnership in June 2023, with SiTration adjusting its membrane to handle mine wastewater and incorporating Rio Tinto feedback to refine the technology. After running tests with water from mine sites, SiTration will begin building a small-scale critical-materials recovery unit, followed by larger-scale systems processing up to 100 cubic meters of water an hour.SiTration’s focused technology development with Rio Tinto puts it in a good position for future market growth, Smith says. “Every ounce of effort and resource we put into developing our product is geared towards creating real-world value. Having an industry-leading partner constantly validating our progress is a tremendous advantage.”It’s a long time from the days when Smith began tinkering with tiny holes in silicon in Grossman’s DMSE lab. Now, they work together as business partners who are scaling up technology to meet a global need. Their joint passion for applying materials innovation to tough problems has served them well. “Materials science and engineering is an engine for a lot of the innovation that is happening today,” Grossman says. “When you look at all of the challenges we face to make the transition to a more sustainable planet, you realize how many of these are materials challenges.” More

  • in

    Two MIT films nominated for New England Emmy Awards

    Two films produced by MIT were honored with Emmy nominations by the National Academy of Television Arts & Sciences Boston/New England Chapter. Both “We Are the Forest” and “No Drop to Spare” illustrate international conversations the MIT community is having about the environment and climate change.“We Are the Forest,” produced by MIT Video Productions (MVP) at MIT Open Learning, was one of six nominees in the Education/Schools category. The documentary highlights the cultural and scientific exchange of the MIT Festival Jazz Ensemble, MIT Wind Ensemble, and MIT Vocal Jazz Ensemble in the Brazilian Amazon. The excursion depicted in the film was part of the ongoing work of Frederick Harris Jr., MIT director of wind and jazz ensembles and senior lecturer in music, to combine Brazilian music and environmental research.“No Drop to Spare,” created by the Department of Mechanical Engineering (MechE), was nominated in the Environment/Science and Video Essayist categories. The film, produced by John Freidah, MechE senior producer and creative lead, follows a team of researchers from the K. Lisa Yang Global Engineering and Research (GEAR) Center working in Kenya, Morocco, and Jordan to deploy affordable, user-driven smart irrigation technology.“We Are the Forest” tells the story of 80 MIT student musicians who traveled to Manaus, Brazil in March 2023. Together with Indigenous Brazilian musicians and activists, the students played music, created instruments with found objects from the rainforest, and connected their musical practice to nature and culture. The trip and the documentary culminated with the concert “Hearing Amazônia: Art and Resistance.”“We have an amazing team who are excited to tell the stories of so many great things that happen at MIT,” says Clayton Hainsworth, director for MVP. “It’s a true pleasure when we get to partner with the Institute’s community on these video projects — from Fred [Harris], with his desire for outreach of the music curriculum, giving students new perspectives and getting beyond the lab; to students getting to experience the world and seeing how that affects their next steps as they go out and make an impact.”The documentary was produced by Hainsworth, directed by Jean Dunoyer, staff editor at MVP, and filmed by Myles Lowery, field production videographer at MVP. Hainsworth credits Dunoyer with refining the story’s main themes: the universality of music as a common human language, and the ways that Indigenous communities can teach and inform the rest of the globe about the environment and the challenges we are all facing.“The film highlights the reach of how MIT touches the world and, more importantly, how the world touches MIT,” says Hainsworth, adding that the work was generously supported by A. Neil Pappalardo ’64 and Jane Pappalardo. “No Drop to Spare” evoked a similar sentiment from Freidah. “What I liked about this story was the potential for great impact,” says Freidah, discussing the MechE film’s production process. “It was global, it was being piloted in three different places in the world, with three different end users, and had three different applications. You sort of go in with an idea in mind of what the story might be, then things bubble up. In this story, as with so many stories, what rose to the top was the students and the impact they were having on the real world and end users.” Freidah has worked with Amos Winter SM ’05, PhD ’11, associate professor of mechanical engineering and MIT GEAR Center principal investigator, to highlight other impact global projects in the past, including producing a video in 2016. That film, “Water is Life,” explores the development of low-cost desalination systems in India. While the phrase “it’s an honor to be nominated” might seem cliched, it remains often used because the sentiment almost always rings true. Although neither film triumphed at this year’s awards ceremony, Freidah says there’s much to be celebrated in the final product. “Seeing the effect this piece had, and how it highlighted our students, that’s the success story — but it’s always nice also to receive recognition from outside.”The 47th Boston/New England Emmy Awards Ceremony took place on June 8 at the Marriott Boston Copley Place. A list of nominees and winners can be found on the National Academy of Television Arts and Sciences Boston/New England Chapter website.  More

  • in

    Making climate models relevant for local decision-makers

    Climate models are a key technology in predicting the impacts of climate change. By running simulations of the Earth’s climate, scientists and policymakers can estimate conditions like sea level rise, flooding, and rising temperatures, and make decisions about how to appropriately respond. But current climate models struggle to provide this information quickly or affordably enough to be useful on smaller scales, such as the size of a city. Now, authors of a new open-access paper published in the Journal of Advances in Modeling Earth Systems have found a method to leverage machine learning to utilize the benefits of current climate models, while reducing the computational costs needed to run them. “It turns the traditional wisdom on its head,” says Sai Ravela, a principal research scientist in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) who wrote the paper with EAPS postdoc Anamitra Saha. Traditional wisdomIn climate modeling, downscaling is the process of using a global climate model with coarse resolution to generate finer details over smaller regions. Imagine a digital picture: A global model is a large picture of the world with a low number of pixels. To downscale, you zoom in on just the section of the photo you want to look at — for example, Boston. But because the original picture was low resolution, the new version is blurry; it doesn’t give enough detail to be particularly useful. “If you go from coarse resolution to fine resolution, you have to add information somehow,” explains Saha. Downscaling attempts to add that information back in by filling in the missing pixels. “That addition of information can happen two ways: Either it can come from theory, or it can come from data.” Conventional downscaling often involves using models built on physics (such as the process of air rising, cooling, and condensing, or the landscape of the area), and supplementing it with statistical data taken from historical observations. But this method is computationally taxing: It takes a lot of time and computing power to run, while also being expensive. A little bit of both In their new paper, Saha and Ravela have figured out a way to add the data another way. They’ve employed a technique in machine learning called adversarial learning. It uses two machines: One generates data to go into our photo. But the other machine judges the sample by comparing it to actual data. If it thinks the image is fake, then the first machine has to try again until it convinces the second machine. The end-goal of the process is to create super-resolution data. Using machine learning techniques like adversarial learning is not a new idea in climate modeling; where it currently struggles is its inability to handle large amounts of basic physics, like conservation laws. The researchers discovered that simplifying the physics going in and supplementing it with statistics from the historical data was enough to generate the results they needed. “If you augment machine learning with some information from the statistics and simplified physics both, then suddenly, it’s magical,” says Ravela. He and Saha started with estimating extreme rainfall amounts by removing more complex physics equations and focusing on water vapor and land topography. They then generated general rainfall patterns for mountainous Denver and flat Chicago alike, applying historical accounts to correct the output. “It’s giving us extremes, like the physics does, at a much lower cost. And it’s giving us similar speeds to statistics, but at much higher resolution.” Another unexpected benefit of the results was how little training data was needed. “The fact that that only a little bit of physics and little bit of statistics was enough to improve the performance of the ML [machine learning] model … was actually not obvious from the beginning,” says Saha. It only takes a few hours to train, and can produce results in minutes, an improvement over the months other models take to run. Quantifying risk quicklyBeing able to run the models quickly and often is a key requirement for stakeholders such as insurance companies and local policymakers. Ravela gives the example of Bangladesh: By seeing how extreme weather events will impact the country, decisions about what crops should be grown or where populations should migrate to can be made considering a very broad range of conditions and uncertainties as soon as possible.“We can’t wait months or years to be able to quantify this risk,” he says. “You need to look out way into the future and at a large number of uncertainties to be able to say what might be a good decision.”While the current model only looks at extreme precipitation, training it to examine other critical events, such as tropical storms, winds, and temperature, is the next step of the project. With a more robust model, Ravela is hoping to apply it to other places like Boston and Puerto Rico as part of a Climate Grand Challenges project.“We’re very excited both by the methodology that we put together, as well as the potential applications that it could lead to,” he says.  More