More stories

  • in

    Matthew Shoulders named head of the Department of Chemistry

    Matthew D. Shoulders, the Class of 1942 Professor of Chemistry, a MacVicar Faculty Fellow, and an associate member of the Broad Institute of MIT and Harvard, has been named head of the MIT Department of Chemistry, effective Jan. 16, 2026. “Matt has made pioneering contributions to the chemistry research community through his research on mechanisms of proteostasis and his development of next-generation techniques to address challenges in biomedicine and agriculture,” says Nergis Mavalvala, dean of the MIT School of Science and the Curtis and Kathleen Marble Professor of Astrophysics. “He is also a dedicated educator, beloved by undergraduates and graduates alike. I know the department will be in good hands as we double down on our commitment to world-leading research and education in the face of financial headwinds.”Shoulders succeeds Troy Van Voorhis, the Robert T. Haslam and Bradley Dewey Professor of Chemistry, who has been at the helm since October 2019.“I am tremendously grateful to Troy for his leadership the past six years, building a fantastic community here in our department. We face challenges, but also many exciting opportunities, as a department in the years to come,” says Shoulders. “One thing is certain: Chemistry innovations are critical to solving pressing global challenges. Through the research that we do and the scientists we train, our department has a huge role to play in shaping the future.”Shoulders studies how cells fold proteins, and he develops ​and applies novel protein engineering techniques to challenges in biotechnology. His work across chemistry and biochemistry fields including proteostasis, extracellular matrix biology, virology, evolution, and synthetic biology is yielding not just important insights into topics like how cells build healthy tissues and how proteins evolve, but also influencing approaches to disease therapy and biotechnology development.“Matt is an outstanding researcher whose work touches on fundamental questions about how the cell machinery directs the synthesis and folding of proteins. His discoveries about how that machinery breaks down as a result of mutations or in response to stress has a fundamental impact on how we think about and treat human diseases,” says Van Voorhis.In one part of Matt’s current research program, he is studying how protein folding systems in cells — known as chaperones — shape the evolution of their clients. Amongst other discoveries, his lab has shown that viral pathogens hijack human chaperones to enable their rapid evolution and escape from host immunity. In related recent work, they have discovered that these same chaperones can promote access to malignancy-driving mutations in tumors. Beyond fundamental insights into evolutionary biology, these findings hold potential to open new therapeutic strategies to target cancer and viral infections.“Matt’s ability to see both the details and the big picture makes him an outstanding researcher and a natural leader for the department,” says Timothy Swager, the John D. MacArthur Professor of Chemistry. “MIT Chemistry can only benefit from his dedication to understanding and addressing the parts and the whole.” Shoulders also leads a food security project through the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Shoulders, along with MIT Research Scientist Robbie Wilson, assembled an interdisciplinary team based at MIT to enhance climate resilience in agriculture by improving one of the most inefficient aspects of photosynthesis, the carbon dioxide-fixing plant enzyme RuBisCO. J-WAFS funded this high-risk, high-reward MIT Grand Challenge project in 2023, and it has received further support from federal research agencies and the Grantham Foundation for the Protection of the Environment. “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists, creating a robust feedback loop for enzyme engineering,” Shoulders says. “Together, this team is making a concerted effort using state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.”In addition to his research contributions, Shoulders has taught multiple classes for Course V, including 5.54 (Advances in Chemical Biology) and 5.111 (Principles of Chemical Science), along with a number of other key chemistry classes. His contributions to a 5.111 “bootcamp” through the MITx platform served to address gaps in the classroom curriculum by providing online tools to help undergraduate students better grasp the material in the chemistry General Institute Requirement (GIR). His development of Guided Learning Demonstrations to support first-year chemistry courses at MIT has helped bring the lab to the GIR, and also contributed to the popularity of 5.111 courses offered regularly via MITx.“I have had the pleasure of teaching with Matt on several occasions, and he is a fantastic educator. He is an innovator both inside and outside the classroom and has an unwavering commitment to his students’ success,” says Van Voorhis of Shoulders, who was named a 2022 MacVicar Faculty Fellow, and who received a Committed to Caring award through the Office of Graduate Education.Shoulders also founded the MIT Homeschool Internship Program for Science and Technology, which brings high school students to campus for paid summer research experiences in labs across the Institute.He is a founding member of the Department of Chemistry’s Quality of Life Committee and chair for the last six years, helping to improve all aspects of opportunity, professional development, and experience in the department: “countless changes that have helped make MIT a better place for all,” as Van Voorhis notes, including creating a peer mentoring program for graduate students and establishing universal graduate student exit interviews to collect data for department-wide assessment and improvement.At the Institute level, Shoulders has served on the Committee on Graduate Programs, Committee on Sexual Misconduct Prevention and Response (in which he co-chaired the provost’s working group on the Faculty and Staff Sexual Misconduct Survey), and the Committee on Assessment of Biohazards and Embryonic Stem Cell Research Oversight, among other roles.Shoulders graduated summa cum laude from Virginia Tech in 2004, earning a BS in chemistry with a minor in biochemistry. He earned a PhD in chemistry at the University of Wisconsin at Madison in 2009 under Professor Ronald Raines. Following an American Cancer Society Postdoctoral Fellowship at Scripps Research Institute, working with professors Jeffery Kelly and Luke Wiseman, Shoulders joined the MIT Department of Chemistry faculty as an assistant professor in 2012. Shoulders also serves as an associate member of the Broad Institute and an investigator at the Center for Musculoskeletal Research at Massachusetts General Hospital.Among his many awards, Shoulders has received a NIH Director’s New Innovator Award under the NIH High-Risk, High-Reward Research Program; an NSF CAREER Award; an American Cancer Society Research Scholar Award; the Camille Dreyfus Teacher-Scholar Award; and most recently the Ono Pharma Foundation Breakthrough Science Award. More

  • in

    Report: Sustainability in supply chains is still a firm-level priority

    Corporations are actively seeking sustainability advances in their supply chains — but many need to improve the business metrics they use in this area to realize more progress, according to a new report by MIT researchers.   During a time of shifting policies globally and continued economic uncertainty, the survey-based report finds 85 percent of companies say they are continuing supply chain sustainability practices at the same level as in recent years, or are increasing those efforts.“What we found is strong evidence that sustainability still matters,” says Josué Velázquez Martínez, a research scientist and director of the MIT Sustainable Supply Chain Lab, which helped produce the report. “There are many things that remain to be done to accomplish those goals, but there’s a strong willingness from companies in all parts of the world to do something about sustainability.”The new analysis, titled “Sustainability Still Matters,” was released today. It is the sixth annual report on the subject prepared by the MIT Sustainable Supply Chain Lab, which is part of MIT’s Center for Transportation and Logistics. The Council of Supply Chain Management Professionals collaborated on the project as well.The report is based on a global survey, with responses from 1,203 professionals in 97 countries. This year, the report analyzes three issues in depth, including regulations and the role they play in corporate approaches to supply chain management. A second core topic is management and mitigation of what industry professionals call “Scope 3” emissions, which are those not from a firm itself, but from a firm’s supply chain. And a third issue of focus is the future of freight transportation, which by itself accounts for a substantial portion of supply chain emissions.Broadly, the survey finds that for European-based firms, the principal driver of action in this area remains government mandates, such as the Corporate Sustainability Reporting Directive, which requires companies to publish regular reports on their environmental impact and the risks to society involved. In North America, firm leadership and investor priorities are more likely to be decisive factors in shaping a company’s efforts.“In Europe the pressure primarily comes more from regulation, but in the U.S. it comes more from investors, or from competitors,” Velázquez Martínez says.The survey responses on Scope 3 emissions reveal a number of opportunities for improvement. In business and sustainability terms, Scope 1 greenhouse gas emissions are those a firm produces directly. Scope 2 emissions are the energy it has purchased. And Scope 3 emissions are those produced across a firm’s value chain, including the supply chain activities involved in producing, transporting, using, and disposing of its products.The report reveals that about 40 percent of firms keep close track of Scope 1 and 2 emissions, but far fewer tabulate Scope 3 on equivalent terms. And yet Scope 3 may account for roughly 75 percent of total firm emissions, on aggregate. About 70 percent of firms in the survey say they do not have enough data from suppliers to accurately tabulate the total greenhouse gas and climate impact of their supply chains.Certainly it can be hard to calculate the total emissions when a supply chain has many layers, including smaller suppliers lacking data capacity. But firms can upgrade their analytics in this area, too. For instance, 50 percent of North American firms are still using spreadsheets to tabulate emissions data, often making rough estimates that correlate emissions to simple economic activity. An alternative is life cycle assessment software that provides more sophisticated estimates of a product’s emissions, from the extraction of its materials to its post-use disposal. By contrast, only 32 percent of European firms are still using spreadsheets rather than life cycle assessment tools.“You get what you measure,” Velázquez Martínez says. “If you measure poorly, you’re going to get poor decisions that most likely won’t drive the reductions you’re expecting. So we pay a lot of attention to that particular issue, which is decisive to defining an action plan. Firms pay a lot of attention to metrics in their financials, but in sustainability they’re often using simplistic measurements.”When it comes to transportation, meanwhile, the report shows that firms are still grappling with the best ways to reduce emissions. Some see biofuels as the best short-term alternative to fossil fuels; others are investing in electric vehicles; some are waiting for hydrogen-powered vehicles to gain traction. Supply chains, after all, frequently involve long-haul trips. For firms, as for individual consumers, electric vehicles are more practical with a larger infrastructure of charging stations. There are advances on that front but more work to do as well.That said, “Transportation has made a lot of progress in general,” Velázquez Martínez says, noting the increased acceptance of new modes of vehicle power in general.Even as new technologies loom on the horizon, though, supply chain sustainability is not wholly depend on their introduction. One factor continuing to propel sustainability in supply chains is the incentives companies have to lower costs. In a competitive business environment, spending less on fossil fuels usually means savings. And firms can often find ways to alter their logistics to consume and spend less.“Along with new technologies, there is another side of supply chain sustainability that is related to better use of the current infrastructure,” Velázquez Martínez observes. “There is always a need to revise traditional ways of operating to find opportunities for more efficiency.”  More

  • in

    A cysteine-rich diet may promote regeneration of the intestinal lining, study suggests

    A diet rich in the amino acid cysteine may have rejuvenating effects in the small intestine, according to a new study from MIT. This amino acid, the researchers discovered, can turn on an immune signaling pathway that helps stem cells to regrow new intestinal tissue.This enhanced regeneration may help to heal injuries from radiation, which often occur in patients undergoing radiation therapy for cancer. The research was conducted in mice, but if future research shows similar results in humans, then delivering elevated quantities of cysteine, through diet or supplements, could offer a new strategy to help damaged tissue heal faster, the researchers say.“The study suggests that if we give these patients a cysteine-rich diet or cysteine supplementation, perhaps we can dampen some of the chemotherapy or radiation-induced injury,” says Omer Yilmaz, director of the MIT Stem Cell Initiative, an associate professor of biology at MIT, and a member of MIT’s Koch Institute for Integrative Cancer Research. “The beauty here is we’re not using a synthetic molecule; we’re exploiting a natural dietary compound.”While previous research has shown that certain types of diets, including low-calorie diets, can enhance intestinal stem cell activity, the new study is the first to identify a single nutrient that can help intestinal cells to regenerate.Yilmaz is the senior author of the study, which appears today in Nature. Koch Institute postdoc Fangtao Chi is the paper’s lead author.Boosting regenerationIt is well-established that diet can affect overall health: High-fat diets can lead to obesity, diabetes, and other health problems, while low-calorie diets have been shown to extend lifespans in many species. In recent years, Yilmaz’s lab has investigated how different types of diets influence stem cell regeneration, and found that high-fat diets, as well as short periods of fasting, can enhance stem cell activity in different ways.“We know that macro diets such as high-sugar diets, high-fat diets, and low-calorie diets have a clear impact on health. But at the granular level, we know much less about how individual nutrients impact stem cell fate decisions, as well as tissue function and overall tissue health,” Yilmaz says.In their new study, the researchers began by feeding mice a diet high in one of 20 different amino acids, the building blocks of proteins. For each group, they measured how the diet affected intestinal stem cell regeneration. Among these amino acids, cysteine had the most dramatic effects on stem cells and progenitor cells (immature cells that differentiate into adult intestinal cells).Further studies revealed that cysteine initiates a chain of events leading to the activation of a population of immune cells called CD8 T cells. When cells in the lining of the intestine absorb cysteine from digested food, they convert it into CoA, a cofactor that is released into the mucosal lining of the intestine. There, CD8 T cells absorb CoA, which stimulates them to begin proliferating and producing a cytokine called IL-22.IL-22 is an important player in the regulation of intestinal stem cell regeneration, but until now, it wasn’t known that CD8 T cells can produce it to boost intestinal stem cells. Once activated, those IL-22-releasing T cells are primed to help combat any kind of injury that could occur within the intestinal lining.“What’s really exciting here is that feeding mice a cysteine-rich diet leads to the expansion of an immune cell population that we typically don’t associate with IL-22 production and the regulation of intestinal stemness,” Yilmaz says. “What happens in a cysteine-rich diet is that the pool of cells that make IL-22 increases, particularly the CD8 T-cell fraction.”These T cells tend to congregate within the lining of the intestine, so they are already in position when needed. The researchers found that the stimulation of CD8 T cells occurred primarily in the small intestine, not in any other part of the digestive tract, which they believe is because most of the protein that we consume is absorbed by the small intestine.Healing the intestineIn this study, the researchers showed that regeneration stimulated by a cysteine-rich diet could help to repair radiation damage to the intestinal lining. Also, in work that has not been published yet, they showed that a high-cysteine diet had a regenerative effect following treatment with a chemotherapy drug called 5-fluorouracil. This drug, which is used to treat colon and pancreatic cancers, can also damage the intestinal lining.Cysteine is found in many high-protein foods, including meat, dairy products, legumes, and nuts. The body can also synthesize its own cysteine, by converting the amino acid methionine to cysteine — a process that takes place in the liver. However, cysteine produced in the liver is distributed through the entire body and doesn’t lead to a buildup in the small intestine the way that consuming cysteine in the diet does.“With our high-cysteine diet, the gut is the first place that sees a high amount of cysteine,” Chi says.Cysteine has been previously shown to have antioxidant effects, which are also beneficial, but this study is the first to demonstrate its effect on intestinal stem cell regeneration. The researchers now hope to study whether it may also help other types of stem cells regenerate new tissues. In one ongoing study, they are investigating whether cysteine might stimulate hair follicle regeneration.They also plan to further investigate some of the other amino acids that appear to influence stem cell regeneration.“I think we’re going to uncover multiple new mechanisms for how these amino acids regulate cell fate decisions and gut health in the small intestine and colon,” Yilmaz says.The research was funded, in part, by the National Institutes of Health, the V Foundation, the Kathy and Curt Marble Cancer Research Award, the Koch Institute-Dana-Farber/Harvard Cancer Center Bridge Project, the American Federation for Aging Research, the MIT Stem Cell Initiative, and the Koch Institute Support (core) Grant from the National Cancer Institute. More