More stories

  • in

    Making steel with electricity

    Steel is one of the most useful materials on the planet. A backbone of modern life, it’s used in skyscrapers, cars, airplanes, bridges, and more. Unfortunately, steelmaking is an extremely dirty process.The most common way it’s produced involves mining iron ore, reducing it in a blast furnace through the addition of coal, and then using an oxygen furnace to burn off excess carbon and other impurities. That’s why steel production accounts for around 7 to 9 percent of humanity’s greenhouse gas emissions worldwide, making it one of the dirtiest industries on the planet.Now Boston Metal is seeking to clean up the steelmaking industry using an electrochemical process called molten oxide electrolysis (MOE), which eliminates many steps in steelmaking and releases oxygen as its sole byproduct.The company, which was founded by MIT Professor Emeritus Donald Sadoway, Professor Antoine Allanore, and James Yurko PhD ’01, is already using MOE to recover high-value metals from mining waste at its Brazilian subsidiary, Boston Metal do Brasil. That work is helping Boston Metal’s team deploy its technology at commercial scale and establish key partnerships with mining operators. It has also built a prototype MOE reactor to produce green steel at its headquarters in Woburn, Massachusetts.And despite its name, Boston Metal has global ambitions. The company has raised more than $370 million to date from organizations across Europe, Asia, the Americas, and the Middle East, and its leaders expect to scale up rapidly to transform steel production in every corner of the world.“There’s a worldwide recognition that we need to act rapidly, and that’s going to happen through technology solutions like this that can help us move away from incumbent technologies,” Boston Metal Chief Scientist and former MIT postdoc Guillaume Lambotte says. “More and more, climate change is a part of our lives, so the pressure is on everyone to act fast.”To the moon and backThe origins of Boston Metal’s technology start on the moon. In the mid 2000s, Sadoway, who is the John F. Elliott Professor Emeritus of Materials Chemistry in MIT’s Department of Materials Science, received a grant from NASA to explore ways to produce oxygen for future lunar bases. Sadoway and other MIT researchers explored the idea of sending an electric current through the iron oxide rock on the moon’s surface, using rock from an old asteroid in Arizona for their experiments. The reaction produced oxygen, with metal as a byproduct.The research stuck with Sadoway, who noticed that down here on Earth, that metal byproduct would be of interest. To help make the electrolysis reaction he studied more viable, he joined forces with Allanore, who is a professor of metallurgy at MIT and the Lechtman Chair in the Department of Materials Science and Engineering. The professors were able to identify a less expensive anode and partnered with Yurko, a former student, to found Boston Metal.“All of the fundamental studies and the initial technologies came out of MIT,” Lambotte says. “We spun out of research that was patented at MIT and licensed from MIT’s Technology Licensing Office.”Lambotte joined the company shortly after Boston Metal’s team published a 2013 paper in Nature describing the MOE platform.“That’s when it went from the lab, with a coffee cup-sized experiment to prove the fundamentals and produce a few grams, to a company that can produce hundreds of kilograms, and soon, tons of metal,” Lambotte says.

    Boston Metal’s process takes place in modular MOE cells the size of a school bus. Here is a schematic of the process.

    Boston Metal’s molten oxide electrolysis process takes place in modular MOE cells the size of a school bus. Iron ore rock is fed into the cell, which contains the cathode (the negative terminal of the MOE cell) and an anode immersed in a liquid electrolyte. The anode is inert, meaning it doesn’t dissolve in the electrolyte or take part in the reaction other than serving as the positive terminal. When electricity runs between the anode and cathode and the cell reaches around 1,600 degrees Celsius, the iron oxide bonds in the ore are split, producing pure liquid metal at the bottom that can be tapped. The byproduct of the reaction is oxygen, and the process doesn’t require water, hazardous chemicals, or precious-metal catalysts.The production of each cell depends on the size of its current. Lambotte says with about 600,000 amps, each cell could produce up to 10 tons of metal every day. Steelmakers would license Boston Metal’s technology and deploy as many cells as needed to reach their production targets.Boston Metal is already using MOE to help mining companies recover high-value metals from their mining waste, which usually needs to undergo costly treatment or storage. Lambotte says it could also be used to produce many other kinds of metals down the line, and Boston Metal was recently selected to negotiate grant funding to produce chromium metal — critical for a number of clean energy applications — in West Virginia.“If you look around the world, a lot of the feedstocks for metal are oxides, and if it’s an oxide, then there’s a chance we can work with that feedstock,” Lambotte says. “There’s a lot of excitement because everyone needs a solution capable of decarbonizing the metal industry, so a lot of people are interested to understand where MOE fits in their own processes.”Gigatons of potentialBoston Metal’s steel decarbonization technology is currently slated to reach commercial-scale in 2026, though its Brazil plant is already introducing the industry to MOE.“I think it’s a window for the metal industry to get acquainted with MOE and see how it works,” Lambotte says. “You need people in the industry to grasp this technology. It’s where you form connections and how new technology spreads.”The Brazilian plant runs on 100 percent renewable energy.“We can be the beneficiary of this tremendous worldwide push to decarbonize the energy sector,” Lambotte says. “I think our approach goes hand in hand with that. Fully green steel requires green electricity, and I think what you’ll see is deployment of this technology where [clean electricity] is already readily available.”Boston Metal’s team is excited about MOE’s application across the metals industry but is focused first and foremost on eliminating the gigatons of emissions from steel production.“Steel produces around 10 percent of global emissions, so that is our north star,” Lambotte says. “Everyone is pledging carbon reductions, emissions reductions, and making net zero goals, so the steel industry is really looking hard for viable technology solutions. People are ready for new approaches.” More

  • in

    Researchers develop a detector for continuously monitoring toxic gases

    Most systems used to detect toxic gases in industrial or domestic settings can be used only once, or at best a few times. Now, researchers at MIT have developed a detector that could provide continuous monitoring for the presence of these gases, at low cost.The new system combines two existing technologies, bringing them together in a way that preserves the advantages of each while avoiding their limitations. The team used a material called a metal-organic framework, or MOF, which is highly sensitive to tiny traces of gas but whose performance quickly degrades, and combined it with a polymer material that is highly durable and easier to process, but much less sensitive.The results are reported today in the journal Advanced Materials, in a paper by MIT professors Aristide Gumyusenge, Mircea Dinca, Heather Kulik, and Jesus del Alamo, graduate student Heejung Roh, and postdocs Dong-Ha Kim, Yeongsu Cho, and Young-Moo Jo.Highly porous and with large surface areas, MOFs come in a variety of compositions. Some can be insulators, but the ones used for this work are highly electrically conductive. With their sponge-like form, they are effective at capturing molecules of various gases, and the sizes of their pores can be tailored to make them selective for particular kinds of gases. “If you are using them as a sensor, you can recognize if the gas is there if it has an effect on the resistivity of the MOF,” says Gumyusenge, the paper’s senior author and the Merton C. Flemings Career Development Assistant Professor of Materials Science and Engineering.The drawback for these materials’ use as detectors for gases is that they readily become saturated, and then can no longer detect and quantify new inputs. “That’s not what you want. You want to be able to detect and reuse,” Gumyusenge says. “So, we decided to use a polymer composite to achieve this reversibility.”The team used a class of conductive polymers that Gumyusenge and his co-workers had previously shown can respond to gases without permanently binding to them. “The polymer, even though it doesn’t have the high surface area that the MOFs do, will at least provide this recognize-and-release type of phenomenon,” he says.The team combined the polymers in a liquid solution along with the MOF material in powdered form, and deposited the mixture on a substrate, where they dry into a uniform, thin coating. By combining the polymer, with its quick detection capability, and the more sensitive MOFs, in a one-to-one ratio, he says, “suddenly we get a sensor that has both the high sensitivity we get from the MOF and the reversibility that is enabled by the presence of the polymer.”The material changes its electrical resistance when molecules of the gas are temporarily trapped in the material. These changes in resistance can be continuously monitored by simply attaching an ohmmeter to track the resistance over time. Gumyusenge and his students demonstrated the composite material’s ability to detect nitrogen dioxide, a toxic gas produced by many kinds of combustion, in a small lab-scale device. After 100 cycles of detection, the material was still maintaining its baseline performance within a margin of about 5 to 10 percent, demonstrating its long-term use potential.In addition, this material has far greater sensitivity than most presently used detectors for nitrogen dioxide, the team reports. This gas is often detected after the use of stove ovens. And, with this gas recently linked to many asthma cases in the U.S., reliable detection in low concentrations is important. The team demonstrated that this new composite could detect, reversibly, the gas at concentrations as low as 2 parts per million.While their demonstration was specifically aimed at nitrogen dioxide, Gumyusenge says, “we can definitely tailor the chemistry to target other volatile molecules,” as long as they are small polar analytes, “which tend to be most of the toxic gases.”Besides being compatible with a simple hand-held detector or a smoke-alarm type of device, one advantage of the material is that the polymer allows it to be deposited as an extremely thin uniform film, unlike regular MOFs, which are generally in an inefficient powder form. Because the films are so thin, there is little material needed and production material costs could be low; the processing methods could be typical of those used for industrial coating processes. “So, maybe the limiting factor will be scaling up the synthesis of the polymers, which we’ve been synthesizing in small amounts,” Gumyusenge says.“The next steps will be to evaluate these in real-life settings,” he says. For example, the material could be applied as a coating on chimneys or exhaust pipes to continuously monitor gases through readings from an attached resistance monitoring device. In such settings, he says, “we need tests to check if we truly differentiate it from other potential contaminants that we might have overlooked in the lab setting. Let’s put the sensors out in real-world scenarios and see how they do.”The work was supported by the MIT Climate and Sustainability Consortium (MCSC), the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) at MIT, and the U.S. Department of Energy. More

  • in

    Q&A: Exploring ethnic dynamics and climate change in Africa

    Evan Lieberman is the Total Professor of Political Science and Contemporary Africa at MIT, and is also director of the Center for International Studies. During a semester-long sabbatical, he’s currently based at the African Climate and Development Initiative at the University of Cape Town.In this Q&A, Lieberman discusses several climate-related research projects he’s pursuing in South Africa and surrounding countries. This is part of an ongoing series exploring how the School of Humanities, Arts, and Social Sciences is addressing the climate crisis.Q: South Africa is a nation whose political and economic development you have long studied and written about. Do you see this visit as an extension of the kind of research you have been pursuing, or a departure from it?A: Much of my previous work has been animated by the question of understanding the causes and consequences of group-based disparities, whether due to AIDS or Covid. These are problems that know no geographic boundaries, and where ethnic and racial minorities are often hardest hit. Climate change is an analogous problem, with these minority populations living in places where they are most vulnerable, in heat islands in cities, and in coastal areas where they are not protected. The reality is they might get hit much harder by longer-term trends and immediate shocks.In one line of research, I seek to understand how people in different African countries, in different ethnic groups, perceive the problems of climate change and their governments’ response to it. There are ethnic divisions of labor in terms of what people do — whether they are farmers or pastoralists, or live in cities. So some ethnic groups are simply more affected by drought or extreme weather than others, and this can be a basis for conflict, especially when competing for often limited government resources.In this area, just like in my previous research, learning what shapes ordinary citizen perspectives is really important, because these views affect people’s everyday practices, and the extent to which they support certain kinds of policies and investments their government makes in response to climate-related challenges. But I will also try to learn more about the perspectives of policymakers and various development partners who seek to balance climate-related challenges against a host of other problems and priorities.Q: You recently published “Until We Have Won Our Liberty,” which examines the difficult transition of South Africa from apartheid to a democratic government, scrutinizing in particular whether the quality of life for citizens has improved in terms of housing, employment, discrimination, and ethnic conflicts. How do climate change-linked issues fit into your scholarship?A: I never saw myself as a climate researcher, but a number of years ago, heavily influenced by what I was learning at MIT, I began to recognize more and more how important the issue of climate change is. And I realized there were lots of ways in which the climate problem resonated with other kinds of problems I had tackled in earlier parts of my work.There was once a time when climate and the environment was the purview primarily of white progressives: the “tree huggers.” And that’s really changed in recent decades as it has become evident that the people who’ve been most affected by the climate emergency are ethnic and racial minorities. We saw with Hurricane Katrina and other places [that] if you are Black, you’re more likely to live in a vulnerable area and to just generally experience more environmental harms, from pollution and emissions, leaving these communities much less resilient than white communities. Government has largely not addressed this inequity. When you look at American survey data in terms of who’s concerned about climate change, Black Americans, Hispanic Americans, and Asian Americans are more unified in their worries than are white Americans.There are analogous problems in Africa, my career research focus. Governments there have long responded in different ways to different ethnic groups. The research I am starting looks at the extent to which there are disparities in how governments try to solve climate-related challenges.Q: It’s difficult enough in the United States taking the measure of different groups’ perceptions of the impact of climate change and government’s effectiveness in contending with it. How do you go about this in Africa?A: Surprisingly, there’s only been a little bit of work done so far on how ordinary African citizens, who are ostensibly being hit the hardest in the world by the climate emergency, are thinking about this problem. Climate change has not been politicized there in a very big way. In fact, only 50 percent of Africans in one poll had heard of the term.In one of my new projects, with political science faculty colleague Devin Caughey and political science doctoral student Preston Johnston, we are analyzing social and climate survey data [generated by the Afrobarometer research network] from over 30 African countries to understand within and across countries the ways in which ethnic identities structure people’s perception of the climate crisis, and their beliefs in what government ought to be doing. In largely agricultural African societies, people routinely experience drought, extreme rain, and heat. They also lack the infrastructure that can shield them from the intense variability of weather patterns. But we’re adding a lens, which is looking at sources of inequality, especially ethnic differences.I will also be investigating specific sectors. Africa is a continent where in most places people cannot take for granted universal, piped access to clean water. In Cape Town, several years ago, the combination of failure to replace infrastructure and lack of rain caused such extreme conditions that one of the world’s most important cities almost ran out of water.While these studies are in progress, it is clear that in many countries, there are substantively large differences in perceptions of the severity of climate change, and attitudes about who should be doing what, and who’s capable of doing what. In several countries, both perceptions and policy preferences are differentiated along ethnic lines, more so than with respect to generational or class differences within societies.This is interesting as a phenomenon, but substantively, I think it’s important in that it may provide the basis for how politicians and government actors decide to move on allocating resources and implementing climate-protection policies. We see this kind of political calculation in the U.S. and we shouldn’t be surprised that it happens in Africa as well.That’s ultimately one of the challenges from the perch of MIT, where we’re really interested in understanding climate change, and creating technological tools and policies for mitigating the problem or adapting to it. The reality is frustrating. The political world — those who make decisions about whether to acknowledge the problem and whether to implement resources in the best technical way — are playing a whole other game. That game is about rewarding key supporters and being reelected.Q: So how do you go from measuring perceptions and beliefs among citizens about climate change and government responsiveness to those problems, to policies and actions that might actually reduce disparities in the way climate-vulnerable African groups receive support?A: Some of the work I have been doing involves understanding what local and national governments across Africa are actually doing to address these problems. We will have to drill down into government budgets to determine the actual resources devoted to addressing a challenge, what sorts of practices the government follows, and the political ramifications for governments that act aggressively versus those that don’t. With the Cape Town water crisis, for example, the government dramatically changed residents’ water usage through naming and shaming, and transformed institutional practices of water collection. They made it through a major drought by using much less water, and doing it with greater energy efficiency. Through the government’s strong policy and implementation, and citizens’ active responses, an entire city, with all its disparate groups, gained resilience. Maybe we can highlight creative solutions to major climate-related problems and use them as prods to push more effective policies and solutions in other places.In the MIT Global Diversity Lab, along with political science faculty colleague Volha Charnysh, political science doctoral student Jared Kalow, and Institute for Data, Systems and Society doctoral student Erin Walk, we are exploring American perspectives on climate-related foreign aid, asking survey respondents whether the U.S. should be giving more to people in the global South who didn’t cause the problems of climate change but have to suffer the externalities. We are particularly interested in whether people’s desire to help vulnerable communities rests on the racial or national identity of those communities.From my new seat as director of the Center for International Studies (CIS), I hope to do more and more to connect social science findings to relevant policymakers, whether in the U.S. or in other places. CIS is making climate one of our thematic priority areas, directing hundreds of thousands of dollars for MIT faculty to spark climate collaborations with researchers worldwide through the Global Seed Fund program. COP 28 (the U.N. Climate Change Conference), which I attended in December in Dubai, really drove home the importance of people coming together from around the world to exchange ideas and form networks. It was unbelievably large, with 85,000 people. But so many of us shared the belief that we are not doing enough. We need enforceable global solutions and innovation. We need ways of financing. We need to provide opportunities for journalists to broadcast the importance of this problem. And we need to understand the incentives that different actors have and what sorts of messages and strategies will resonate with them, and inspire those who have resources to be more generous. More

  • in

    Repurposed beer yeast may offer a cost-effective way to remove lead from water

    Every year, beer breweries generate and discard thousands of tons of surplus yeast. Researchers from MIT and Georgia Tech have now come up with a way to repurpose that yeast to absorb lead from contaminated water.Through a process called biosorption, yeast can quickly absorb even trace amounts of lead and other heavy metals from water. The researchers showed that they could package the yeast inside hydrogel capsules to create a filter that removes lead from water. Because the yeast cells are encapsulated, they can be easily removed from the water once it’s ready to drink.“We have the hydrogel surrounding the free yeast that exists in the center, and this is porous enough to let water come in, interact with yeast as if they were freely moving in water, and then come out clean,” says Patricia Stathatou, a former postdoc at the MIT Center for Bits and Atoms, who is now a research scientist at Georgia Tech and an incoming assistant professor at Georgia Tech’s School of Chemical and Biomolecular Engineering. “The fact that the yeast themselves are bio-based, benign, and biodegradable is a significant advantage over traditional technologies.”The researchers envision that this process could be used to filter drinking water coming out of a faucet in homes, or scaled up to treat large quantities of water at treatment plants.MIT graduate student Devashish Gokhale and Stathatou are the lead authors of the study, which appears today in the journal RSC Sustainability. Patrick Doyle, the Robert T. Haslam Professor of Chemical Engineering at MIT, is the senior author of the paper, and Christos Athanasiou, an assistant professor of aerospace engineering at Georgia Tech and a former visiting scholar at MIT, is also an author.Absorbing leadThe new study builds on work that Stathatou and Athanasiou began in 2021, when Athanasiou was a visiting scholar at MIT’s Center for Bits and Atoms. That year, they calculated that waste yeast discarded from a single brewery in Boston would be enough to treat the city’s entire water supply.Through biosorption, a process that is not fully understood, yeast cells can bind to and absorb heavy metal ions, even at challenging initial concentrations below 1 part per million. The MIT team found that this process could effectively decontaminate water with low concentrations of lead. However, one key obstacle remained, which was how to remove yeast from the water after they absorb the lead.In a serendipitous coincidence, Stathatou and Athanasiou happened to present their research at the AIChE Annual Meeting in Boston in 2021, where Gokhale, a student in Doyle’s lab, was presenting his own research on using hydrogels to capture micropollutants in water. The two sets of researchers decided to join forces and explore whether the yeast-based strategy could be easier to scale up if the yeast were encapsulated in hydrogels developed by Gokhale and Doyle.“What we decided to do was make these hollow capsules — something like a multivitamin pill, but instead of filling them up with vitamins, we fill them up with yeast cells,” Gokhale says. “These capsules are porous, so the water can go into the capsules and the yeast are able to bind all of that lead, but the yeast themselves can’t escape into the water.”The capsules are made from a polymer called polyethylene glycol (PEG), which is widely used in medical applications. To form the capsules, the researchers suspend freeze-dried yeast in water, then mix them with the polymer subunits. When UV light is shone on the mixture, the polymers link together to form capsules with yeast trapped inside.Each capsule is about half a millimeter in diameter. Because the hydrogels are very thin and porous, water can easily pass through and encounter the yeast inside, while the yeast remain trapped.In this study, the researchers showed that the encapsulated yeast could remove trace lead from water just as rapidly as the unencapsulated yeast from Stathatou and Athanasiou’s original 2021 study.Scaling upLed by Athanasiou, the researchers tested the mechanical stability of the hydrogel capsules and found that the capsules and the yeast inside can withstand forces similar to those generated by water running from a faucet. They also calculated that the yeast-laden capsules should be able to withstand forces generated by flows in water treatment plants serving several hundred residences.“Lack of mechanical robustness is a common cause of failure of previous attempts to scale-up biosorption using immobilized cells; in our work we wanted to make sure that this aspect is thoroughly addressed from the very beginning to ensure scalability,” Athanasiou says.After assessing the mechanical robustness of the yeast-laden capsules, the researchers constructed a proof-of-concept packed-bed biofilter, capable of treating trace lead-contaminated water and meeting U.S. Environmental Protection Agency drinking water guidelines while operating continuously for 12 days.This process would likely consume less energy than existing physicochemical processes for removing trace inorganic compounds from water, such as precipitation and membrane filtration, the researchers say.This approach, rooted in circular economy principles, could minimize waste and environmental impact while also fostering economic opportunities within local communities. Although numerous lead contamination incidents have been reported in various locations in the United States, this approach could have an especially significant impact in low-income areas that have historically faced environmental pollution and limited access to clean water, and may not be able to afford other ways to remediate it, the researchers say.“We think that there’s an interesting environmental justice aspect to this, especially when you start with something as low-cost and sustainable as yeast, which is essentially available anywhere,” Gokhale says.The researchers are now exploring strategies for recycling and replacing the yeast once they’re used up, and trying to calculate how often that will need to occur. They also hope to investigate whether they could use feedstocks derived from biomass to make the hydrogels, instead of fossil-fuel-based polymers, and whether the yeast can be used to capture other types of contaminants.“Moving forward, this is a technology that can be evolved to target other trace contaminants of emerging concern, such as PFAS or even microplastics,” Stathatou says. “We really view this as an example with a lot of potential applications in the future.”The research was funded by the Rasikbhai L. Meswani Fellowship for Water Solutions, the MIT Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), and the Renewable Bioproducts Institute at Georgia Tech. More

  • in

    Scientists develop an affordable sensor for lead contamination

    Engineers at MIT, Nanytang Technological University, and several companies have developed a compact and inexpensive technology for detecting and measuring lead concentrations in water, potentially enabling a significant advance in tackling this persistent global health issue.The World Health Organization estimates that 240 million people worldwide are exposed to drinking water that contains unsafe amounts of toxic lead, which can affect brain development in children, cause birth defects, and produce a variety of neurological, cardiac, and other damaging effects. In the United States alone, an estimated 10 million households still get drinking water delivered through lead pipes.“It’s an unaddressed public health crisis that leads to over 1 million deaths annually,” says Jia Xu Brian Sia, an MIT postdoc and the senior author of the paper describing the new technology.But testing for lead in water requires expensive, cumbersome equipment and typically requires days to get results. Or, it uses simple test strips that simply reveal a yes-or-no answer about the presence of lead but no information about its concentration. Current EPA regulations require drinking water to contain no more that 15 parts per billion of lead, a concentration so low it is difficult to detect.The new system, which could be ready for commercial deployment within two or three years, could detect lead concentrations as low as 1 part per billion, with high accuracy, using a simple chip-based detector housed in a handheld device. The technology gives nearly instant quantitative measurements and requires just a droplet of water.The findings are described in a paper appearing today in the journal Nature Communications, by Sia, MIT graduate student and lead author Luigi Ranno, Professor Juejun Hu, and 12 others at MIT and other institutions in academia and industry.The team set out to find a simple detection method based on the use of photonic chips, which use light to perform measurements. The challenging part was finding a way to attach to the photonic chip surface certain ring-shaped molecules known as crown ethers, which can capture specific ions such as lead. After years of effort, they were able to achieve that attachment via a chemical process known as Fischer esterification. “That is one of the essential breakthroughs we have made in this technology,” Sia says.In testing the new chip, the researchers showed that it can detect lead in water at concentrations as low as one part per billion. At much higher concentrations, which may be relevant for testing environmental contamination such as mine tailings, the accuracy is within 4 percent.The device works in water with varying levels of acidity, ranging from pH values of 6 to 8, “which covers most environmental samples,” Sia says. They have tested the device with seawater as well as tap water, and verified the accuracy of the measurements.In order to achieve such levels of accuracy, current testing requires a device called an inductive coupled plasma mass spectrometer. “These setups can be big and expensive,” Sia says. The sample processing can take days and requires experienced technical personnel.While the new chip system they developed is “the core part of the innovation,” Ranno says, further work will be needed to develop this into an integrated, handheld device for practical use. “For making an actual product, you would need to package it into a usable form factor,” he explains. This would involve having a small chip-based laser coupled to the photonic chip. “It’s a matter of mechanical design, some optical design, some chemistry, and figuring out the supply chain,” he says. While that takes time, he says, the underlying concepts are straightforward.The system can be adapted to detect other similar contaminants in water, including cadmium, copper, lithium, barium, cesium, and radium, Ranno says. The device could be used with simple cartridges that can be swapped out to detect different elements, each using slightly different crown ethers that can bind to a specific ion.“There’s this problem that people don’t measure their water enough, especially in the developing countries,” Ranno says. “And that’s because they need to collect the water, prepare the sample, and bring it to these huge instruments that are extremely expensive.” Instead, “having this handheld device, something compact that even untrained personnel can just bring to the source for on-site monitoring, at low costs,” could make regular, ongoing widespread testing feasible.Hu, who is the John F. Elliott Professor of Materials Science and Engineering, says, “I’m hoping this will be quickly implemented, so we can benefit human society. This is a good example of a technology coming from a lab innovation where it may actually make a very tangible impact on society, which is of course very fulfilling.”“If this study can be extended to simultaneous detection of multiple metal elements, especially the presently concerning radioactive elements, its potential would be immense,” says Hou Wang, an associate professor of environmental science and engineering at Hunan University in China, who was not associated with this work.Wang adds, “This research has engineered a sensor capable of instantaneously detecting lead concentration in water. This can be utilized in real-time to monitor the lead pollution concentration in wastewater discharged from industries such as battery manufacturing and lead smelting, facilitating the establishment of industrial wastewater monitoring systems. I think the innovative aspects and developmental potential of this research are quite commendable.”Wang Qian, a principal research scientist at the Institute of Materials Research in Singapore, who also was not affiliated with this work, says, “The ability for the pervasive, portable, and quantitative detection of lead has proved to be challenging primarily due to cost concerns. This work demonstrates the potential to do so in a highly integrated form factor and is compatible with large-scale, low-cost manufacturing.”The team included researchers at MIT, at Nanyang Technological University and Temasek Laboratories in Singapore, at the University of Southampton in the U.K., and at companies Fingate Technologies, in Singapore, and Vulcan Photonics, headquartered in Malaysia. The work used facilities at MIT.nano, the Harvard University Center for Nanoscale Systems, NTU’s Center for Micro- and Nano-Electronics, and the Nanyang Nanofabrication Center. More

  • in

    Study: Heavy snowfall and rain may contribute to some earthquakes

    When scientists look for an earthquake’s cause, their search often starts underground. As centuries of seismic studies have made clear, it’s the collision of tectonic plates and the movement of subsurface faults and fissures that primarily trigger a temblor.But MIT scientists have now found that certain weather events may also play a role in setting off some quakes.In a study appearing today in Science Advances, the researchers report that episodes of heavy snowfall and rain likely contributed to a swarm of earthquakes over the past several years in northern Japan. The study is the first to show that climate conditions could initiate some quakes.“We see that snowfall and other environmental loading at the surface impacts the stress state underground, and the timing of intense precipitation events is well-correlated with the start of this earthquake swarm,” says study author William Frank, an assistant professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “So, climate obviously has an impact on the response of the solid earth, and part of that response is earthquakes.”The new study focuses on a series of ongoing earthquakes in Japan’s Noto Peninsula. The team discovered that seismic activity in the region is surprisingly synchronized with certain changes in underground pressure, and that those changes are influenced by seasonal patterns of snowfall and precipitation. The scientists suspect that this new connection between quakes and climate may not be unique to Japan and could play a role in shaking up other parts of the world.Looking to the future, they predict that the climate’s influence on earthquakes could be more pronounced with global warming.“If we’re going into a climate that’s changing, with more extreme precipitation events, and we expect a redistribution of water in the atmosphere, oceans, and continents, that will change how the Earth’s crust is loaded,” Frank adds. “That will have an impact for sure, and it’s a link we could further explore.”The study’s lead author is former MIT research associate Qing-Yu Wang (now at Grenoble Alpes University), and also includes EAPS postdoc Xin Cui, Yang Lu of the University of Vienna, Takashi Hirose of Tohoku University, and Kazushige Obara of the University of Tokyo.Seismic speedSince late 2020, hundreds of small earthquakes have shaken up Japan’s Noto Peninsula — a finger of land that curves north from the country’s main island into the Sea of Japan. Unlike a typical earthquake sequence, which begins as a main shock that gives way to a series of aftershocks before dying out, Noto’s seismic activity is an “earthquake swarm” — a pattern of multiple, ongoing quakes with no obvious main shock, or seismic trigger.The MIT team, along with their colleagues in Japan, aimed to spot any patterns in the swarm that would explain the persistent quakes. They started by looking through the Japanese Meteorological Agency’s catalog of earthquakes that provides data on seismic activity throughout the country over time. They focused on quakes in the Noto Peninsula over the last 11 years, during which the region has experienced episodic earthquake activity, including the most recent swarm.With seismic data from the catalog, the team counted the number of seismic events that occurred in the region over time, and found that the timing of quakes prior to 2020 appeared sporadic and unrelated, compared to late 2020, when earthquakes grew more intense and clustered in time, signaling the start of the swarm, with quakes that are correlated in some way.The scientists then looked to a second dataset of seismic measurements taken by monitoring stations over the same 11-year period. Each station continuously records any displacement, or local shaking that occurs. The shaking from one station to another can give scientists an idea of how fast a seismic wave travels between stations. This “seismic velocity” is related to the structure of the Earth through which the seismic wave is traveling. Wang used the station measurements to calculate the seismic velocity between every station in and around Noto over the last 11 years.The researchers generated an evolving picture of seismic velocity beneath the Noto Peninsula and observed a surprising pattern: In 2020, around when the earthquake swarm is thought to have begun, changes in seismic velocity appeared to be synchronized with the seasons.“We then had to explain why we were observing this seasonal variation,” Frank says.Snow pressureThe team wondered whether environmental changes from season to season could influence the underlying structure of the Earth in a way that would set off an earthquake swarm. Specifically, they looked at how seasonal precipitation would affect the underground “pore fluid pressure” — the amount of pressure that fluids in the Earth’s cracks and fissures exert within the bedrock.“When it rains or snows, that adds weight, which increases pore pressure, which allows seismic waves to travel through slower,” Frank explains. “When all that weight is removed, through evaporation or runoff, all of a sudden, that pore pressure decreases and seismic waves are faster.”Wang and Cui developed a hydromechanical model of the Noto Peninsula to simulate the underlying pore pressure over the last 11 years in response to seasonal changes in precipitation. They fed into the model meteorological data from this same period, including measurements of daily snow, rainfall, and sea-level changes. From their model, they were able to track changes in excess pore pressure beneath the Noto Peninsula, before and during the earthquake swarm. They then compared this timeline of evolving pore pressure with their evolving picture of seismic velocity.“We had seismic velocity observations, and we had the model of excess pore pressure, and when we overlapped them, we saw they just fit extremely well,” Frank says.In particular, they found that when they included snowfall data, and especially, extreme snowfall events, the fit between the model and observations was stronger than if they only considered rainfall and other events. In other words, the ongoing earthquake swarm that Noto residents have been experiencing can be explained in part by seasonal precipitation, and particularly, heavy snowfall events.“We can see that the timing of these earthquakes lines up extremely well with multiple times where we see intense snowfall,” Frank says. “It’s well-correlated with earthquake activity. And we think there’s a physical link between the two.”The researchers suspect that heavy snowfall and similar extreme precipitation could play a role in earthquakes elsewhere, though they emphasize that the primary trigger will always originate underground.“When we first want to understand how earthquakes work, we look to plate tectonics, because that is and will always be the number one reason why an earthquake happens,” Frank says. “But, what are the other things that could affect when and how an earthquake happens? That’s when you start to go to second-order controlling factors, and the climate is obviously one of those.”This research was supported, in part, by the National Science Foundation. More

  • in

    Two MIT PhD students awarded J-WAFS fellowships for their research on water

    Since 2014, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has advanced interdisciplinary research aimed at solving the world’s most pressing water and food security challenges to meet human needs. In 2017, J-WAFS established the Rasikbhai L. Meswani Water Solutions Fellowship and the J-WAFS Graduate Student Fellowship. These fellowships provide support to outstanding MIT graduate students who are pursuing research that has the potential to improve water and food systems around the world. Recently, J-WAFS awarded the 2024-25 fellowships to Jonathan Bessette and Akash Ball, two MIT PhD students dedicated to addressing water scarcity by enhancing desalination and purification processes. This work is of important relevance since the world’s freshwater supply has been steadily depleting due to the effects of climate change. In fact, one-third of the global population lacks access to safe drinking water. Bessette and Ball are focused on designing innovative solutions to enhance the resilience and sustainability of global water systems. To support their endeavors, J-WAFS will provide each recipient with funding for one academic semester for continued research and related activities.“This year, we received many strong fellowship applications,” says J-WAFS executive director Renee J. Robins. “Bessette and Ball both stood out, even in a very competitive pool of candidates. The award of the J-WAFS fellowships to these two students underscores our confidence in their potential to bring transformative solutions to global water challenges.”2024-25 Rasikbhai L. Meswani Fellowship for Water SolutionsThe Rasikbhai L. Meswani Fellowship for Water Solutions is a doctoral fellowship for students pursuing research related to water and water supply at MIT. The fellowship is made possible by Elina and Nikhil Meswani and family. Jonathan Bessette is a doctoral student in the Global Engineering and Research (GEAR) Center within the Department of Mechanical Engineering at MIT, advised by Professor Amos Winter. His research is focused on water treatment systems for the developing world, mainly desalination, or the process in which salts are removed from water. Currently, Bessette is working on designing and constructing a low-cost, deployable, community-scale desalination system for humanitarian crises.In arid and semi-arid regions, groundwater often serves as the sole water source, despite its common salinity issues. Many remote and developing areas lack reliable centralized power and water systems, making brackish groundwater desalination a vital, sustainable solution for global water scarcity. “An overlooked need for desalination is inland groundwater aquifers, rather than in coastal areas,” says Bessette. “This is because much of the population lives far enough from a coast that seawater desalination could never reach them. My work involves designing low-cost, sustainable, renewable-powered desalination technologies for highly constrained situations, such as drinking water for remote communities,” he adds.To achieve this goal, Bessette developed a batteryless, renewable electrodialysis desalination system. The technology is energy-efficient, conserves water, and is particularly suited for challenging environments, as it is decentralized and sustainable. The system offers significant advantages over the conventional reverse osmosis method, especially in terms of reduced energy consumption for treating brackish water. Highlighting Bessette’s capacity for engineering insight, his advisor noted the “simple and elegant solution” that Bessette and a staff engineer, Shane Pratt, devised that negated the need for the system to have large batteries. Bessette is now focusing on simplifying the system’s architecture to make it more reliable and cost-effective for deployment in remote areas.Growing up in upstate New York, Bessette completed a bachelor’s degree at the State University of New York at Buffalo. As an undergrad, he taught middle and high school students in low-income areas of Buffalo about engineering and sustainability. However, he cited his junior-year travel to India and his experience there measuring water contaminants in rural sites as cementing his dedication to a career addressing food, water, and sanitation challenges. In addition to his doctoral research, his commitment to these goals is further evidenced by another project he is pursuing, funded by a J-WAFS India grant, that uses low-cost, remote sensors to better understand water fetching practices. Bessette is conducting this work with fellow MIT student Gokul Sampath in order to help families in rural India gain access to safe drinking water.2024-25 J-WAFS Graduate Student Fellowship for Water and Food SolutionsThe J-WAFS Graduate Student Fellowship is supported by the J-WAFS Research Affiliate Program, which offers companies the opportunity to engage with MIT on water and food research. Current fellowship support was provided by two J-WAFS Research Affiliates: Xylem, a leading U.S.-based provider of water treatment and infrastructure solutions, and GoAigua, a Spanish company at the forefront of digital transformation in the water industry through innovative solutions. Akash Ball is a doctoral candidate in the Department of Chemical Engineering, advised by Professor Heather Kulik. His research focuses on the computational discovery of novel functional materials for energy-efficient ion separation membranes with high selectivity. Advanced membranes like these are increasingly needed for applications such as water desalination, battery recycling, and removal of heavy metals from industrial wastewater. “Climate change, water pollution, and scarce freshwater reserves cause severe water distress for about 4 billion people annually, with 2 billion in India and China’s semiarid regions,” Ball notes. “One potential solution to this global water predicament is the desalination of seawater, since seawater accounts for 97 percent of all water on Earth.”Although several commercial reverse osmosis membranes are currently available, these membranes suffer several problems, like slow water permeation, permeability-selectivity trade-off, and high fabrication costs. Metal-organic frameworks (MOFs) are porous crystalline materials that are promising candidates for highly selective ion separation with fast water transport due to high surface area, the presence of different pore windows, and the tunability of chemical functionality.In the Kulik lab, Ball is developing a systematic understanding of how MOF chemistry and pore geometry affect water transport and ion rejection rates. By the end of his PhD, Ball plans to identify existing, best-performing MOFs with unparalleled water uptake using machine learning models, propose novel hypothetical MOFs tailored to specific ion separations from water, and discover experimental design rules that enable the synthesis of next-generation membranes.  Ball’s advisor praised the creativity he brings to his research, and his leadership skills that benefit her whole lab. Before coming to MIT, Ball obtained a master’s degree in chemical engineering from the Indian Institute of Technology (IIT) Bombay and a bachelor’s degree in chemical engineering from Jadavpur University in India. During a research internship at IIT Bombay in 2018, he worked on developing a technology for in situ arsenic detection in water. Like Bessette, he noted the impact of this prior research experience on his interest in global water challenges, along with his personal experience growing up in an area in India where access to safe drinking water was not guaranteed. More

  • in

    HPI-MIT design research collaboration creates powerful teams

    The recent ransomware attack on ChangeHealthcare, which severed the network connecting health care providers, pharmacies, and hospitals with health insurance companies, demonstrates just how disruptive supply chain attacks can be. In this case, it hindered the ability of those providing medical services to submit insurance claims and receive payments.This sort of attack and other forms of data theft are becoming increasingly common and often target large, multinational corporations through the small and mid-sized vendors in their corporate supply chains, enabling breaks in these enormous systems of interwoven companies.Cybersecurity researchers at MIT and the Hasso Plattner Institute (HPI) in Potsdam, Germany, are focused on the different organizational security cultures that exist within large corporations and their vendors because it’s that difference that creates vulnerabilities, often due to the lack of emphasis on cybersecurity by the senior leadership in these small to medium-sized enterprises (SMEs).Keri Pearlson, executive director of Cybersecurity at MIT Sloan (CAMS); Jillian Kwong, a research scientist at CAMS; and Christian Doerr, a professor of cybersecurity and enterprise security at HPI, are co-principal investigators (PIs) on the research project, “Culture and the Supply Chain: Transmitting Shared Values, Attitudes and Beliefs across Cybersecurity Supply Chains.”Their project was selected in the 2023 inaugural round of grants from the HPI-MIT Designing for Sustainability program, a multiyear partnership funded by HPI and administered by the MIT Morningside Academy for Design (MAD). The program awards about 10 grants annually of up to $200,000 each to multidisciplinary teams with divergent backgrounds in computer science, artificial intelligence, machine learning, engineering, design, architecture, the natural sciences, humanities, and business and management. The 2024 Call for Applications is open through June 3.Designing for Sustainability grants support scientific research that promotes the United Nations’ Sustainable Development Goals (SDGs) on topics involving sustainable design, innovation, and digital technologies, with teams made up of PIs from both institutions. The PIs on these projects, who have common interests but different strengths, create more powerful teams by working together.Transmitting shared values, attitudes, and beliefs to improve cybersecurity across supply chainsThe MIT and HPI cybersecurity researchers say that most ransomware attacks aren’t reported. Smaller companies hit with ransomware attacks just shut down, because they can’t afford the payment to retrieve their data. This makes it difficult to know just how many attacks and data breaches occur. “As more data and processes move online and into the cloud, it becomes even more important to focus on securing supply chains,” Kwong says. “Investing in cybersecurity allows information to be exchanged freely while keeping data safe. Without it, any progress towards sustainability is stalled.”One of the first large data breaches in the United States to be widely publicized provides a clear example of how an SME cybersecurity can leave a multinational corporation vulnerable to attack. In 2013, hackers entered the Target Corporation’s own network by obtaining the credentials of a small vendor in its supply chain: a Pennsylvania HVAC company. Through that breach, thieves were able to install malware that stole the financial and personal information of 110 million Target customers, which they sold to card shops on the black market.To prevent such attacks, SME vendors in a large corporation’s supply chain are required to agree to follow certain security measures, but the SMEs usually don’t have the expertise or training to make good on these cybersecurity promises, leaving their own systems, and therefore any connected to them, vulnerable to attack.“Right now, organizations are connected economically, but not aligned in terms of organizational culture, values, beliefs, and practices around cybersecurity,” explains Kwong. “Basically, the big companies are realizing the smaller ones are not able to implement all the cybersecurity requirements. We have seen some larger companies address this by reducing requirements or making the process shorter. However, this doesn’t mean companies are more secure; it just lowers the bar for the smaller suppliers to clear it.”Pearlson emphasizes the importance of board members and senior management taking responsibility for cybersecurity in order to change the culture at SMEs, rather than pushing that down to a single department, IT office, or in some cases, one IT employee.The research team is using case studies based on interviews, field studies, focus groups, and direct observation of people in their natural work environments to learn how companies engage with vendors, and the specific ways cybersecurity is implemented, or not, in everyday operations. The goal is to create a shared culture around cybersecurity that can be adopted correctly by all vendors in a supply chain.This approach is in line with the goals of the Charter of Trust Initiative, a partnership of large, multinational corporations formed to establish a better means of implementing cybersecurity in the supply chain network. The HPI-MIT team worked with companies from the Charter of Trust and others last year to understand the impacts of cybersecurity regulation on SME participation in supply chains and develop a conceptual framework to implement changes for stabilizing supply chains.Cybersecurity is a prerequisite needed to achieve any of the United Nations’ SDGs, explains Kwong. Without secure supply chains, access to key resources and institutions can be abruptly cut off. This could include food, clean water and sanitation, renewable energy, financial systems, health care, education, and resilient infrastructure. Securing supply chains helps enable progress on all SDGs, and the HPI-MIT project specifically supports SMEs, which are a pillar of the U.S. and European economies.Personalizing product designs while minimizing material wasteIn a vastly different Designing for Sustainability joint research project that employs AI with engineering, “Personalizing Product Designs While Minimizing Material Waste” will use AI design software to lay out multiple parts of a pattern on a sheet of plywood, acrylic, or other material, so that they can be laser cut to create new products in real time without wasting material.Stefanie Mueller, the TIBCO Career Development Associate Professor in the MIT Department of Electrical Engineering and Computer Science and a member of the Computer Science and Artificial Intelligence Laboratory, and Patrick Baudisch, a professor of computer science and chair of the Human Computer Interaction Lab at HPI, are co-PIs on the project. The two have worked together for years; Baudisch was Mueller’s PhD research advisor at HPI.Baudisch’s lab developed an online design teaching system called Kyub that lets students design 3D objects in pieces that are laser cut from sheets of wood and assembled to become chairs, speaker boxes, radio-controlled aircraft, or even functional musical instruments. For instance, each leg of a chair would consist of four identical vertical pieces attached at the edges to create a hollow-centered column, four of which will provide stability to the chair, even though the material is very lightweight.“By designing and constructing such furniture, students learn not only design, but also structural engineering,” Baudisch says. “Similarly, by designing and constructing musical instruments, they learn about structural engineering, as well as resonance, types of musical tuning, etc.”Mueller was at HPI when Baudisch developed the Kyub software, allowing her to observe “how they were developing and making all the design decisions,” she says. “They built a really neat piece for people to quickly design these types of 3D objects.” However, using Kyub for material-efficient design is not fast; in order to fabricate a model, the software has to break the 3D models down into 2D parts and lay these out on sheets of material. This takes time, and makes it difficult to see the impact of design decisions on material use in real-time.Mueller’s lab at MIT developed software based on a layout algorithm that uses AI to lay out pieces on sheets of material in real time. This allows AI to explore multiple potential layouts while the user is still editing, and thus provide ongoing feedback. “As the user develops their design, Fabricaide decides good placements of parts onto the user’s available materials, provides warnings if the user does not have enough material for a design, and makes suggestions for how the user can resolve insufficient material cases,” according to the project website.The joint MIT-HPI project integrates Mueller’s AI software with Baudisch’s Kyub software and adds machine learning to train the AI to offer better design suggestions that save material while adhering to the user’s design intent.“The project is all about minimizing the waste on these materials sheets,” Mueller says. She already envisions the next step in this AI design process: determining how to integrate the laws of physics into the AI’s knowledge base to ensure the structural integrity and stability of objects it designs.AI-powered startup design for the Anthropocene: Providing guidance for novel enterprisesThrough her work with the teams of MITdesignX and its international programs, Svafa Grönfeldt, faculty director of MITdesignX and professor of the practice in MIT MAD, has helped scores of people in startup companies use the tools and methods of design to ensure that the solution a startup proposes actually fits the problem it seeks to solve. This is often called the problem-solution fit.Grönfeldt and MIT postdoc Norhan Bayomi are now extending this work to incorporate AI into the process, in collaboration with MIT Professor John Fernández and graduate student Tyler Kim. The HPI team includes Professor Gerard de Melo; HPI School of Entrepreneurship Director Frank Pawlitschek; and doctoral student Michael Mansfeld.“The startup ecosystem is characterized by uncertainty and volatility compounded by growing uncertainties in climate and planetary systems,” Grönfeldt says. “Therefore, there is an urgent need for a robust model that can objectively predict startup success and guide design for the Anthropocene.”While startup-success forecasting is gaining popularity, it currently focuses on aiding venture capitalists in selecting companies to fund, rather than guiding the startups in the design of their products, services and business plans.“The coupling of climate and environmental priorities with startup agendas requires deeper analytics for effective enterprise design,” Grönfeldt says. The project aims to explore whether AI-augmented decision-support systems can enhance startup-success forecasting.“We’re trying to develop a machine learning approach that will give a forecasting of probability of success based on a number of parameters, including the type of business model proposed, how the team came together, the team members’ backgrounds and skill sets, the market and industry sector they’re working in and the problem-solution fit,” says Bayomi, who works with Fernández in the MIT Environmental Solutions Initiative. The two are co-founders of the startup Lamarr.AI, which employs robotics and AI to help reduce the carbon dioxide impact of the built environment.The team is studying “how company founders make decisions across four key areas, starting from the opportunity recognition, how they are selecting the team members, how they are selecting the business model, identifying the most automatic strategy, all the way through the product market fit to gain an understanding of the key governing parameters in each of these areas,” explains Bayomi.The team is “also developing a large language model that will guide the selection of the business model by using large datasets from different companies in Germany and the U.S. We train the model based on the specific industry sector, such as a technology solution or a data solution, to find what would be the most suitable business model that would increase the success probability of a company,” she says.The project falls under several of the United Nations’ Sustainable Development Goals, including economic growth, innovation and infrastructure, sustainable cities and communities, and climate action.Furthering the goals of the HPI-MIT Joint Research ProgramThese three diverse projects all advance the mission of the HPI-MIT collaboration. MIT MAD aims to use design to transform learning, catalyze innovation, and empower society by inspiring people from all disciplines to interweave design into problem-solving. HPI uses digital engineering concentrated on the development and research of user-oriented innovations for all areas of life.Interdisciplinary teams with members from both institutions are encouraged to develop and submit proposals for ambitious, sustainable projects that use design strategically to generate measurable, impactful solutions to the world’s problems. More