More stories

  • in

    Convening for cultural change

    Whether working with fellow students in the Netherlands to design floating cities or interning for a local community-led environmental justice organization, Cindy Xie wants to help connect people grappling with the implications of linked social and environmental crises.The MIT senior’s belief that climate action is a collective endeavor grounded in systems change has led her to work at a variety of community organizations, and to travel as far as Malaysia and Cabo Verde to learn about the social and cultural aspects of global environmental change.“With climate action, there is such a need for collective change. We all need to be a part of creating the solutions,” she says.Xie recently returned from Kuala Lumpur, where she attended the Planetary Health Annual Meeting hosted by Sunway University, and met researchers, practitioners, and students from around the world who are working to address challenges facing human and planetary health.Since January 2023, Xie has been involved with the Planetary Health Alliance, a consortium of organizations working at the intersection of human health and global environmental change. As a campus ambassador, she organized events at MIT that built on students’ interests in climate change and health while exploring themes of community and well-being.“I think doing these events on campus and bringing people together has been my way of trying to understand how to put conceptual ideas into action,” she says.Grassroots community-buildingAn urban studies and planning major with minors in anthropology and biology, Xie is also earning her master’s degree in city planning in a dual degree program, which she will finish next year.Through her studies and numerous community activities, she has developed a multidimensional view of public health and the environment that includes spirituality and the arts as well as science and technology. “What I appreciate about being here at MIT is the opportunities to try to connect the sciences back to other disciplines,” she says.As a campus ambassador for the Planetary Health Alliance, Xie hosted a club mixer event during Earth Month last year, that brought together climate, health, and social justice groups from across the Institute. She also created a year-long series that concluded its final event last month, called Cultural Transformation for Planetary Health. Organized with the Radius Forum and other partners, the series explored social and cultural implications of the climate crisis, with a focus on how environmental change affects health and well-being.Xie has also worked with the Planetary Health Alliance’s Constellation Project through a Public Service Fellowship from the PKG Center, which she describes as “an effort to convene people from across different areas of the world to talk about the intersections of spirituality, the climate, and environmental change and planetary health.”She has also interned at the Comunidades Enraizadas Community Land Trust, the National Institutes of Health, and the World Wildlife Fund U.S. Markets Institute. And, she has taken her studies abroad through MIT International Science and Technology Initiatives (MISTI). In 2023 she spent her Independent Activities Period in a pilot MISTI Global Classroom program in Amsterdam, and in the summer of 2023, she spent two months in Cabo Verde helping to start a new research collaboration tracking the impacts of climate change on human health.The power of storytellingGrowing up, Xie was drawn to storytelling as a means of understanding the intersections of culture and health within diverse communities. This has largely driven her interest in medical anthropology and medical humanities, and impacts her work as a member of the Asian American Initiative.The AAI is a student-led organization that provides a space for pan-Asian advocacy and community building on campus. Xie joined the group in 2022 and currently serves as a member of the executive board as well as co-leader of the Mental Health Project Team. She credits this team with inspiring discussions on holistic framings of mental health.“Conversations on mental health stigma can sometimes frame it as a fault within certain communities,” she says. “It’s also important to highlight alternate paradigms for conceptualizing mental health beyond the highly individualized models often presented in U.S. higher education settings.”Last spring, the AAI Mental Health team led a listening tour with Asian American clinicians, academic experts, and community organizations in Greater Boston, expanding the group’s connections. That led the group to volunteer last November at the Asian Mental Health Careers Day, hosted by the Let’s Talk! Conference at the Harvard Graduate School of Education. In March, the club also traveled to Yale University to participate in the East Coast Asian American Student Union Conference alongside hundreds of attendees from different college campuses.On campus, the team hosts dialogue events where students convene in an informal setting to discuss topics such as family ties and burnout and overachievement. Recently, AAI also hosted a storytelling night in partnership with MIT Taara and the newly formed South Asian Initiative. “There’s been something really powerful about being in those kinds of settings and building collective stories among peers,” Xie says.Community connectionsWriting, both creative and non-fiction, is another of Xie’s longstanding interests. From 2022 to 2023, she wrote for The Yappie, a youth-led news publication covering Asian American and Pacific Islander policy and politics. She has also written articles for The Tech, MIT Science Policy Review, MISTI Blogs, and more. Last year, she was a spread writer for MIT’s fashion publication, Infinite Magazine, for which she interviewed the founder of a local streetwear company that aims to support victims of sexual violence in the Democratic Republic of Congo.This year, she performed a spoken word piece in the “MIT Monologues,” an annual production at MIT that features stories of gender, relationships, race, and more. Her poetry was recently published in Sine Theta and included in MassPoetry’s 2024 Intercollegiate Showcase. Xie has previously been involved in the a capella group MIT Muses and enjoys live music and concerts as well. Tapping into her 2023 MISTI experience, Xie recently went to the concert of a Cabo Verdean artist at the Strand Theatre in Dorchester. “The crowd was packed,” she says. “It was just like being back in Cabo Verde. I feel very grateful to have seen these local connections.”After graduating, Xie hopes to continue building interdisciplinary connections. “I’m interested in working in policy or academia or somewhere in between the two, sort of around this idea of partnership and alliance building. My experiences abroad during my time at MIT have also made me more interested in working in an international context in the future.” More

  • in

    Q&A: The power of tiny gardens and their role in addressing climate change

    To address the climate crisis, one must understand environmental history. MIT Professor Kate Brown’s research has typically focused on environmental catastrophes. More recently, Brown has been exploring a more hopeful topic: tiny gardens.Brown is the Thomas M. Siebel Distinguished Professor in History of Science in the MIT Program in Science, Technology, and Society. In this Q&A, Brown discusses her research, and how she believes her current project could help put power into the hands of everyday people.This is part of an ongoing series exploring how the MIT School of Humanities, Arts, and Social Sciences is addressing the climate crisis.Q: You have created an unusual niche for yourself as an historian of environmental catastrophes. What drew you to such a dismal beat?A: Historians often study New York, Warsaw, Moscow, Berlin, but if you go to these little towns that nobody’s ever heard of, that’s where you see the destruction in the wake of progress. This is likely because I grew up in a manufacturing town in the Midwestern Rust Belt, watching stores go bankrupt and houses sit empty. I became very interested in the people who were the last to turn off the lights.Q: Did this interest in places devastated by technological and economic change eventually lead to your investigation of Chernobyl?A: I first studied the health and environmental consequences of radioactive waste on communities near nuclear weapons facilities in the U.S. and Russia, and then decided to focus on the health and environmental impacts of fallout from the Chernobyl nuclear energy plant disaster. After gaining access to the KGB records in Kiev, I realized that there was a Klondike of records describing what Soviet officials at the time called a “public health disaster.” People on the ground recognized the saturation of radioactivity into environments and food supplies not with any with sensitive devices, but by noticing the changes in ecologies and on human bodies. I documented how Moscow leaders historically and decades later engaged in a coverup, and that even international bodies charged with examining nuclear issues were reluctant to acknowledge this ongoing public health disaster due to liabilities in their own countries from the production and testing of nuclear weapons during the Cold War.Q: Why did you turn from detailed studies of what you call “modernist wastelands” to the subject of climate change?A: Journalists and scholars have worked hard in the last two decades to get people to understand the scope and the scale and the verisimilitude of climate change. And that’s great, but some of these catastrophic stories we tell don’t make people feel very safe or secure. They have a paralyzing effect on us. Climate change is one of many problems that are too big for any one person to tackle, or any one entity, whether it’s a huge nation like the United States or an international body like the U.N.So I thought I would start to work on something that is very small scale that puts action in the hands of just regular people to try to tell a more hopeful story. I am finishing a new book about working-class people who got pushed off their farms in the 19th century, and ended up in mega cities like London, Berlin, Amsterdam, and Washington D.C., find land on the periphery of the cities. They start digging, growing their own food, cooperating together. They basically recreated forms of the commons in cities. And in so doing, they generate the most productive agriculture in recorded history.Q: What are some highlights of this extraordinary city-based food generation?A: In Paris circa 1900, 5,000 urban farmers grew fruits and vegetables and fresh produce for 2 million Parisians with a surplus left over to sell to London. They would plant three to six crops a year on one tract of land using horse manure to heat up soils from below to push the season and grow spring crops in winter and summer crops in spring.An agricultural economist looked at the inputs and the outputs from these Parisian farms. He found there was no comparison to the Green Revolution fields of the 1970s. These urban gardeners were producing far more per acre, with no petroleum-based fertilizers.Q: What is the connection between little gardens like these and the global climate crisis, where individuals can feel at loss facing the scale of the problems?A: You can think of a tiny city garden like a coral reef, where one little worm comes and builds its cave. And then another one attaches itself to the first, and so on. Pretty soon you have a great coral reef with a platform to support hundreds of different species — a rich biodiversity. Tiny gardens work that way in cities, which is one reason cities are now surprising hotspots of biodiversity.Transforming urban green space into tiny gardens doesn’t take an act of God, the U.N., or the U.S. Congress to make a change. You could just go to your municipality and say, “Listen, right now we have a zoning code that says every time there’s a new condo, you have to have one or two parking spaces, but we’d rather see one or two garden spaces.”And if you don’t want a garden, you’ll have a neighbor who does. So people are outside and they have their hands in the soil and then they start to exchange produce with one another. As they share carrots and zucchini, they exchange soil and human microbes as well. We know that when people share microbiomes, they get along better, have more in common. It comes as no surprise that humans have organized societies around shaking hands, kissing on the cheek, producing food together and sharing meals. That’s what I think we’ve lost in our remote worlds.Q: So can we address or mitigate the impacts of climate change on a community-by-community basis?A: I believe that’s probably the best way to do it. When we think of energy we often imagine deposits of oil or gas, but, as our grad student Turner Adornetto points out, every environment has energy running through it. Every environment has its own best solution. If it’s a community that lives along a river, tap into hydropower; or if it’s a community that has tons of organic waste, maybe you want to use microbial power; and if it’s a community that has lots of sun then use different kinds of solar power. The legacy of midcentury modernism is that engineers came up with one-size-fits-all solutions to plug in anywhere in the world, regardless of local culture, traditions, or environment. That is one of the problems that has gotten us into this fix in the first place.Politically, it’s a good idea to avoid making people feel they’re being pushed around by one set of codes, one set of laws in terms of coming up with solutions that work. There are ways of deriving energy and nutrients that enrich the environment, ways that don’t drain and deplete. You see that so clearly with a plant, which just does nothing but grow and contribute and give, whether it’s in life or in death. It’s just constantly improving its environment.Q: How do you unleash creativity and propagate widespread local responses to climate change?A: One of the important things we are trying to accomplish in the humanities is communicating in the most down-to-earth ways possible to our students and the public so that anybody — from a fourth grader to a retired person — can get engaged.There’s “TECHNOLOGY” in uppercase letters, the kind that is invented and patented in places like MIT. And then there’s technology in lowercase letters, where people are working with things readily at hand. That is the kind of creativity we don’t often pay enough attention to.Keep in mind that at the end of the 19th century, scientists were sure that the earth was cooling and the earth would all under ice by 2020. In the 1950s, many people feared nuclear warfare. In the 1960s the threat was the “population bomb.” Every generation seems to have its apocalyptic sense of doom. It is helpful to take climate change and the Anthropocene and put them in perspective. These are problems we can solve. More

  • in

    School of Engineering welcomes new faculty

    The School of Engineering welcomes 15 new faculty members across six of its academic departments. This new cohort of faculty members, who have either recently started their roles at MIT or will start within the next year, conduct research across a diverse range of disciplines.Many of these new faculty specialize in research that intersects with multiple fields. In addition to positions in the School of Engineering, a number of these faculty have positions at other units across MIT. Faculty with appointments in the Department of Electrical Engineering and Computer Science (EECS) report into both the School of Engineering and the MIT Stephen A. Schwarzman College of Computing. This year, new faculty also have joint appointments between the School of Engineering and the School of Humanities, Arts, and Social Sciences and the School of Science.“I am delighted to welcome this cohort of talented new faculty to the School of Engineering,” says Anantha Chandrakasan, chief innovation and strategy officer, dean of engineering, and Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am particularly struck by the interdisciplinary approach many of these new faculty take in their research. They are working in areas that are poised to have tremendous impact. I look forward to seeing them grow as researchers and educators.”The new engineering faculty include:Stephen Bates joined the Department of Electrical Engineering and Computer Science as an assistant professor in September 2023. He is also a member of the Laboratory for Information and Decision Systems (LIDS). Bates uses data and AI for reliable decision-making in the presence of uncertainty. In particular, he develops tools for statistical inference with AI models, data impacted by strategic behavior, and settings with distribution shift. Bates also works on applications in life sciences and sustainability. He previously worked as a postdoc in the Statistics and EECS departments at the University of California at Berkeley (UC Berkeley). Bates received a BS in statistics and mathematics at Harvard University and a PhD from Stanford University.Abigail Bodner joined the Department of EECS and Department of Earth, Atmospheric and Planetary Sciences as an assistant professor in January. She is also a member of the LIDS. Bodner’s research interests span climate, physical oceanography, geophysical fluid dynamics, and turbulence. Previously, she worked as a Simons Junior Fellow at the Courant Institute of Mathematical Sciences at New York University. Bodner received her BS in geophysics and mathematics and MS in geophysics from Tel Aviv University, and her SM in applied mathematics and PhD from Brown University.Andreea Bobu ’17 will join the Department of Aeronautics and Astronautics as an assistant professor in July. Her research sits at the intersection of robotics, mathematical human modeling, and deep learning. Previously, she was a research scientist at the Boston Dynamics AI Institute, focusing on how robots and humans can efficiently arrive at shared representations of their tasks for more seamless and reliable interactions. Bobu earned a BS in computer science and engineering from MIT and a PhD in electrical engineering and computer science from UC Berkeley.Suraj Cheema will join the Department of Materials Science and Engineering, with a joint appointment in the Department of EECS, as an assistant professor in July. His research explores atomic-scale engineering of electronic materials to tackle challenges related to energy consumption, storage, and generation, aiming for more sustainable microelectronics. This spans computing and energy technologies via integrated ferroelectric devices. He previously worked as a postdoc at UC Berkeley. Cheema earned a BS in applied physics and applied mathematics from Columbia University and a PhD in materials science and engineering from UC Berkeley.Samantha Coday joins the Department of EECS as an assistant professor in July. She will also be a member of the MIT Research Laboratory of Electronics. Her research interests include ultra-dense power converters enabling renewable energy integration, hybrid electric aircraft and future space exploration. To enable high-performance converters for these critical applications her research focuses on the optimization, design, and control of hybrid switched-capacitor converters. Coday earned a BS in electrical engineering and mathematics from Southern Methodist University and an MS and a PhD in electrical engineering and computer science from UC Berkeley.Mitchell Gordon will join the Department of EECS as an assistant professor in July. He will also be a member of the MIT Computer Science and Artificial Intelligence Laboratory. In his research, Gordon designs interactive systems and evaluation approaches that bridge principles of human-computer interaction with the realities of machine learning. He currently works as a postdoc at the University of Washington. Gordon received a BS from the University of Rochester, and MS and PhD from Stanford University, all in computer science.Kaiming He joined the Department of EECS as an associate professor in February. He will also be a member of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). His research interests cover a wide range of topics in computer vision and deep learning. He is currently focused on building computer models that can learn representations and develop intelligence from and for the complex world. Long term, he hopes to augment human intelligence with improved artificial intelligence. Before joining MIT, He was a research scientist at Facebook AI. He earned a BS from Tsinghua University and a PhD from the Chinese University of Hong Kong.Anna Huang SM ’08 will join the departments of EECS and Music and Theater Arts as assistant professor in September. She will help develop graduate programming focused on music technology. Previously, she spent eight years with Magenta at Google Brain and DeepMind, spearheading efforts in generative modeling, reinforcement learning, and human-computer interaction to support human-AI partnerships in music-making. She is the creator of Music Transformer and Coconet (which powered the Bach Google Doodle). She was a judge and organizer for the AI Song Contest. Anna holds a Canada CIFAR AI Chair at Mila, a BM in music composition, and BS in computer science from the University of Southern California, an MS from the MIT Media Lab, and a PhD from Harvard University.Yael Kalai PhD ’06 will join the Department of EECS as a professor in September. She is also a member of CSAIL. Her research interests include cryptography, the theory of computation, and security and privacy. Kalai currently focuses on both the theoretical and real-world applications of cryptography, including work on succinct and easily verifiable non-interactive proofs. She received her bachelor’s degree from the Hebrew University of Jerusalem, a master’s degree at the Weizmann Institute of Science, and a PhD from MIT.Sendhil Mullainathan will join the departments of EECS and Economics as a professor in July. His research uses machine learning to understand complex problems in human behavior, social policy, and medicine. Previously, Mullainathan spent five years at MIT before joining the faculty at Harvard in 2004, and then the University of Chicago in 2018. He received his BA in computer science, mathematics, and economics from Cornell University and his PhD from Harvard University.Alex Rives will join the Department of EECS as an assistant professor in September, with a core membership in the Broad Institute of MIT and Harvard. In his research, Rives is focused on AI for scientific understanding, discovery, and design for biology. Rives worked with Meta as a New York University graduate student, where he founded and led the Evolutionary Scale Modeling team that developed large language models for proteins. Rives received his BS in philosophy and biology from Yale University and is completing his PhD in computer science at NYU.Sungho Shin will join the Department of Chemical Engineering as an assistant professor in July. His research interests include control theory, optimization algorithms, high-performance computing, and their applications to decision-making in complex systems, such as energy infrastructures. Shin is a postdoc at the Mathematics and Computer Science Division at Argonne National Laboratory. He received a BS in mathematics and chemical engineering from Seoul National University and a PhD in chemical engineering from the University of Wisconsin-Madison.Jessica Stark joined the Department of Biological Engineering as an assistant professor in January. In her research, Stark is developing technologies to realize the largely untapped potential of cell-surface sugars, called glycans, for immunological discovery and immunotherapy. Previously, Stark was an American Cancer Society postdoc at Stanford University. She earned a BS in chemical and biomolecular engineering from Cornell University and a PhD in chemical and biological engineering at Northwestern University.Thomas John “T.J.” Wallin joined the Department of Materials Science and Engineering as an assistant professor in January. As a researcher, Wallin’s interests lay in advanced manufacturing of functional soft matter, with an emphasis on soft wearable technologies and their applications in human-computer interfaces. Previously, he was a research scientist at Meta’s Reality Labs Research working in their haptic interaction team. Wallin earned a BS in physics and chemistry from the College of William and Mary, and an MS and PhD in materials science and engineering from Cornell University.Gioele Zardini joined the Department of Civil and Environmental Engineering as an assistant professor in September. He will also join LIDS and the Institute for Data, Systems, and Society. Driven by societal challenges, Zardini’s research interests include the co-design of sociotechnical systems, compositionality in engineering, applied category theory, decision and control, optimization, and game theory, with society-critical applications to intelligent transportation systems, autonomy, and complex networks and infrastructures. He received his BS, MS, and PhD in mechanical engineering with a focus on robotics, systems, and control from ETH Zurich, and spent time at MIT, Stanford University, and Motional. More

  • in

    MIT scholars will take commercial break with entrepreneurial scholarship

    Two MIT scholars, each with a strong entrepreneurial drive, have received 2024 Kavanaugh Fellowship awards, advancing their quest to turn pioneering research into profitable commercial enterprises.The Kavanaugh Translational Fellows Program gives scholars training to lead organizations that will bring their research to market. PhD candidates Grant Knappe and Arjav Shah are this year’s recipients. Knappe is developing a drug delivery platform for an emerging class of medicines called nucleic acid therapeutics. Shah is using hydrogel microparticles to clean up water polluted by heavy metals and other contaminants.Knappe and Shah will begin their fellowship with years of entrepreneurial expertise under their belts. They’ve developed and refined their business plans through MIT’s innovation ecosystem, including the Sandbox, the Legatum Center, the Venture Mentoring Service, the National Science Foundation’s I-Corps Program, and Blueprint by The Engine. Now, the yearlong Kavanaugh Fellowship will give the scholars time to focus exclusively on testing their business plans and exercising decision-making skills — critical to startup success — with the guidance of MIT mentors.“It’s a testament to the support and direction they’ve received from the MIT community that their entrepreneurial aspirations have evolved and matured over time,” says Michael J. Cima, program director for the Kavanaugh program and the David H. Koch Professor of Engineering in the Department of Materials Science and Engineering.Founded in 2016, the Kavanaugh program was instrumental in helping past fellows launch several robust startups, including low-carbon cement manufacturer Sublime Systems and SiTration, which is using a new type of filtration membrane to extract critical materials such as lithium.A safer way to deliver breakthrough medicinesNucleic acid therapeutics, including mRNA and CRISPR, are disrupting today’s clinical landscape thanks to their promise of targeting disease treatment according to genetic blueprints. But the first methods of delivering these molecules to the body used viruses as their transport, raising patient safety concerns.“Humans have figured out how to engineer certain viruses found in nature to deliver specific cargoes [for disease treatment],” says Knappe. “But because they look like viruses, the human immune system sees them as a danger signal and creates an immune reaction that can be harmful to patients.”Given the safety profile issues of viral delivery, researchers turned to non-viral technologies that use lipid nanoparticle technology, a mixture of different lipid-like materials, assembled into particles to protect the mRNA therapeutic from getting degraded before it reaches a cell of interest. “Because they don’t look like viruses there, the immune system generally tolerates them,” adds Knappe.Recent data show lipid nanoparticles can now target the lung, opening the potential for novel treatments of deadly cancers and other diseases.Knappe’s work in MIT’s Bathe BioNanoLab focused on building such a non-viral delivery platform based on a different technology: nucleic acid nanoparticles, which combine the attractive components of both viral and non-viral systems. Knappe will spend his Kavanaugh Fellowship year developing proof-of-concept data for his drug delivery method and building the team and funding needed to commercialize the technology.A PhD candidate in the Department of Chemical Engineering (ChemE), Knappe was initially attracted to MIT because of its intellectual openness. “You can work with any faculty member in other departments. I wasn’t restricted to the chemical engineering faculty,” says Knappe, whose supervisor, Professor Mark Bathe, is in the Department of Biological Engineering.Knappe, who is from New Jersey, welcomes the challenges that will come in his Kavanaugh year, including the need to pinpoint the right story that will convince venture capitalists and other funders to bet on his technology. Attracting talent is also top of mind. “How do you convince really talented people that have a lot of opportunities to work on what you work on? Building the first team is going to be critical,” he says. The network Knappe has been building in his years at MIT is paying dividends now.Targeting “forever chemicals” in waterThat network includes Shah. The two fellows met when they worked on the MIT Science Policy Review, a student-run journal concerned with the intersection of science, technology, and policy. Knappe and Shah did not compete directly academically but used their biweekly coffee walks as a welcome sounding board. Naturally, they were pleased when they found out they had both been chosen for the Kavanaugh Fellowship. So far, they have been too busy to celebrate over a beer.“We are good collaborators with research, as well,” says Shah. “Now we’re going on this entrepreneurial journey together. It’s been exciting.”Shah is a PhD candidate in ChemE’s Chemical Engineering Practice program. He got interested in the global imperative for cleaner water at a young age. His hometown of Surat is the heart of India’s textile industry. “Growing up, it wasn’t hard to see the dye-colored water flowing into your rivers and streams,” Shah says. “Playing a role in fostering positive change in water treatment fills me with a profound sense of purpose.”Shah’s work, broadly, is to clean toxic chemicals called micropollutants from water in an efficient and sustainable manner. “It’s humanly impossible to turn a blind eye to our water problems,” he says, which can be categorized as accessibility, availability, and quality. Water problems are global and complex, not just because of the technological challenges but also sociopolitical ones, he adds.Manufactured chemicals called per- and polyfluoroalkyl substances (PFAS), or “forever chemicals,” are in the news these days. PFAS, which go into making nonstick cookware and waterproof clothing, are just one of more than 10,000 such emerging contaminants that have leached into water streams. “These are extremely difficult to remove using existing systems because of their chemical diversity and low concentrations,” Shah says. “The concentrations are akin to dropping an aspirin tablet in an Olympic-sized swimming pool.” But no less toxic for that.In the lab at MIT, Shah is working with Devashish Gokhale, a fellow PhD student, and Patrick S. Doyle, the Robert T. Haslam (1911) Professor of Chemical Engineering, to commercialize an innovative microparticle technology, hydroGel, to remove these micropollutants in an effective, facile, and sustainable manner. Hydrogels are a broad class of polymer materials that can hold large quantities of water.“Our materials are like Boba beads. We are trying to save the world with our Boba beads,” says Shah with a laugh. “And we have functionalized these particles with tunable chemistries to target different micropollutants in a single unit operation.”Due to its outsized environmental impact, industrial water is the first application Shah is targeting. Today, wastewater treatment emits more than 3 percent of global carbon dioxide emissions, which is more than the shipping industry’s emissions, for example. The current state of the art for removing micropollutants in the industry is to use activated carbon filters. “[This technology] comes from coal, so it’s unsustainable,” Shah says. And the activated carbon filters are hard to reuse. “Our particles are reusable, theoretically infinitely.”“I’m very excited to be able to take advantage of the mentorship we have from the Kavanaugh team to take this technology to its next inflection point, so that we are ready to go out in the market and start making a huge impact,” he says.A dream communityShah and Knappe have become adept at navigating the array of support and mentorship opportunities MIT has to offer. Shah worked with a small team of seasoned professionals in the water space from the MIT Venture Mentoring Service. “They’ve helped us every step of the way as we think about commercializing the technology,” he says.Shah worked with MIT Sandbox, which provides a seed grant to help find the right product-market fit. He is also a fellow with the Legatum Center for Development and Entrepreneurship, which focuses on entrepreneurship in emerging countries in growth markets.“We’re exploring the potential for this technology and its application in a lot of different markets, including India. Because that’s close to my heart,” Shah says. “The Legatum community has been unique, where you can have those extremely hard conversations, confront yourself with those fears, and then talk it out with the group of fellows.”The Abdul Latif Jameel Water and Food Systems Lab, or J-WAFS, has been an integral part of Shah’s journey with research and commercialization support through its Solutions Grant and a travel award to the Stockholm World Water Week in August 2023.Knappe has also taken advantage of many innovation programs, including MIT’s Blueprint by the Engine, which helps researchers explore commercial opportunities of their work, plus programs outside of MIT but with strong on-campus ties such as Nucleate Activator and Frequency Bio.It was during one of these programs that he was inspired by two postdocs working in Bathe’s lab and spinning out biotech startups from their research, Floris Engelhardt and James Banal. Engelhardt helped spearhead Kano Therapeutics, and Banal launched Cache DNA.“I was passively absorbing and watching everything that they were going through and what they were excited about and challenged with. I still talk to them pretty regularly to this day,” Knappe says. “It’s been really great to have them as continual mentors, throughout my PhD and as I transition out of the lab.”Shah says he is grateful not only for being selected for the Kavanaugh Fellowship but to MIT as a community. “MIT has been more than a dream come true,” he says. He will have the opportunity to explore a different side of the institution as he enters the MBA program at MIT Sloan School of Management this fall. Shah expects this program, along with his Kavanaugh training, will supply the skills he needs to scale the business so it can make a difference in the world.“I always keep coming back to the question ‘How does what I do matter to the person on the street?’ This guides me to look at the bigger picture, to contextualize my research to solving important problems,” Shah says. “So many great technologies are being worked on each day, but only a minuscule fraction make it to the market.”Knappe is equally dedicated to serving a larger purpose. “With the right infrastructure, between basic fundamental science, conducted in academia, funded by government, and then translated by companies, we can make products that could improve everyone’s life across the world,” he says.Past Kavanaugh Fellows are credited with spearheading commercial outfits that have indeed made a difference. This year’s fellows are poised to follow their lead. But first they will have that beer together to celebrate. More

  • in

    Making steel with electricity

    Steel is one of the most useful materials on the planet. A backbone of modern life, it’s used in skyscrapers, cars, airplanes, bridges, and more. Unfortunately, steelmaking is an extremely dirty process.The most common way it’s produced involves mining iron ore, reducing it in a blast furnace through the addition of coal, and then using an oxygen furnace to burn off excess carbon and other impurities. That’s why steel production accounts for around 7 to 9 percent of humanity’s greenhouse gas emissions worldwide, making it one of the dirtiest industries on the planet.Now Boston Metal is seeking to clean up the steelmaking industry using an electrochemical process called molten oxide electrolysis (MOE), which eliminates many steps in steelmaking and releases oxygen as its sole byproduct.The company, which was founded by MIT Professor Emeritus Donald Sadoway, Professor Antoine Allanore, and James Yurko PhD ’01, is already using MOE to recover high-value metals from mining waste at its Brazilian subsidiary, Boston Metal do Brasil. That work is helping Boston Metal’s team deploy its technology at commercial scale and establish key partnerships with mining operators. It has also built a prototype MOE reactor to produce green steel at its headquarters in Woburn, Massachusetts.And despite its name, Boston Metal has global ambitions. The company has raised more than $370 million to date from organizations across Europe, Asia, the Americas, and the Middle East, and its leaders expect to scale up rapidly to transform steel production in every corner of the world.“There’s a worldwide recognition that we need to act rapidly, and that’s going to happen through technology solutions like this that can help us move away from incumbent technologies,” Boston Metal Chief Scientist and former MIT postdoc Guillaume Lambotte says. “More and more, climate change is a part of our lives, so the pressure is on everyone to act fast.”To the moon and backThe origins of Boston Metal’s technology start on the moon. In the mid 2000s, Sadoway, who is the John F. Elliott Professor Emeritus of Materials Chemistry in MIT’s Department of Materials Science, received a grant from NASA to explore ways to produce oxygen for future lunar bases. Sadoway and other MIT researchers explored the idea of sending an electric current through the iron oxide rock on the moon’s surface, using rock from an old asteroid in Arizona for their experiments. The reaction produced oxygen, with metal as a byproduct.The research stuck with Sadoway, who noticed that down here on Earth, that metal byproduct would be of interest. To help make the electrolysis reaction he studied more viable, he joined forces with Allanore, who is a professor of metallurgy at MIT and the Lechtman Chair in the Department of Materials Science and Engineering. The professors were able to identify a less expensive anode and partnered with Yurko, a former student, to found Boston Metal.“All of the fundamental studies and the initial technologies came out of MIT,” Lambotte says. “We spun out of research that was patented at MIT and licensed from MIT’s Technology Licensing Office.”Lambotte joined the company shortly after Boston Metal’s team published a 2013 paper in Nature describing the MOE platform.“That’s when it went from the lab, with a coffee cup-sized experiment to prove the fundamentals and produce a few grams, to a company that can produce hundreds of kilograms, and soon, tons of metal,” Lambotte says.

    Boston Metal’s process takes place in modular MOE cells the size of a school bus. Here is a schematic of the process.

    Boston Metal’s molten oxide electrolysis process takes place in modular MOE cells the size of a school bus. Iron ore rock is fed into the cell, which contains the cathode (the negative terminal of the MOE cell) and an anode immersed in a liquid electrolyte. The anode is inert, meaning it doesn’t dissolve in the electrolyte or take part in the reaction other than serving as the positive terminal. When electricity runs between the anode and cathode and the cell reaches around 1,600 degrees Celsius, the iron oxide bonds in the ore are split, producing pure liquid metal at the bottom that can be tapped. The byproduct of the reaction is oxygen, and the process doesn’t require water, hazardous chemicals, or precious-metal catalysts.The production of each cell depends on the size of its current. Lambotte says with about 600,000 amps, each cell could produce up to 10 tons of metal every day. Steelmakers would license Boston Metal’s technology and deploy as many cells as needed to reach their production targets.Boston Metal is already using MOE to help mining companies recover high-value metals from their mining waste, which usually needs to undergo costly treatment or storage. Lambotte says it could also be used to produce many other kinds of metals down the line, and Boston Metal was recently selected to negotiate grant funding to produce chromium metal — critical for a number of clean energy applications — in West Virginia.“If you look around the world, a lot of the feedstocks for metal are oxides, and if it’s an oxide, then there’s a chance we can work with that feedstock,” Lambotte says. “There’s a lot of excitement because everyone needs a solution capable of decarbonizing the metal industry, so a lot of people are interested to understand where MOE fits in their own processes.”Gigatons of potentialBoston Metal’s steel decarbonization technology is currently slated to reach commercial-scale in 2026, though its Brazil plant is already introducing the industry to MOE.“I think it’s a window for the metal industry to get acquainted with MOE and see how it works,” Lambotte says. “You need people in the industry to grasp this technology. It’s where you form connections and how new technology spreads.”The Brazilian plant runs on 100 percent renewable energy.“We can be the beneficiary of this tremendous worldwide push to decarbonize the energy sector,” Lambotte says. “I think our approach goes hand in hand with that. Fully green steel requires green electricity, and I think what you’ll see is deployment of this technology where [clean electricity] is already readily available.”Boston Metal’s team is excited about MOE’s application across the metals industry but is focused first and foremost on eliminating the gigatons of emissions from steel production.“Steel produces around 10 percent of global emissions, so that is our north star,” Lambotte says. “Everyone is pledging carbon reductions, emissions reductions, and making net zero goals, so the steel industry is really looking hard for viable technology solutions. People are ready for new approaches.” More

  • in

    Researchers develop a detector for continuously monitoring toxic gases

    Most systems used to detect toxic gases in industrial or domestic settings can be used only once, or at best a few times. Now, researchers at MIT have developed a detector that could provide continuous monitoring for the presence of these gases, at low cost.The new system combines two existing technologies, bringing them together in a way that preserves the advantages of each while avoiding their limitations. The team used a material called a metal-organic framework, or MOF, which is highly sensitive to tiny traces of gas but whose performance quickly degrades, and combined it with a polymer material that is highly durable and easier to process, but much less sensitive.The results are reported today in the journal Advanced Materials, in a paper by MIT professors Aristide Gumyusenge, Mircea Dinca, Heather Kulik, and Jesus del Alamo, graduate student Heejung Roh, and postdocs Dong-Ha Kim, Yeongsu Cho, and Young-Moo Jo.Highly porous and with large surface areas, MOFs come in a variety of compositions. Some can be insulators, but the ones used for this work are highly electrically conductive. With their sponge-like form, they are effective at capturing molecules of various gases, and the sizes of their pores can be tailored to make them selective for particular kinds of gases. “If you are using them as a sensor, you can recognize if the gas is there if it has an effect on the resistivity of the MOF,” says Gumyusenge, the paper’s senior author and the Merton C. Flemings Career Development Assistant Professor of Materials Science and Engineering.The drawback for these materials’ use as detectors for gases is that they readily become saturated, and then can no longer detect and quantify new inputs. “That’s not what you want. You want to be able to detect and reuse,” Gumyusenge says. “So, we decided to use a polymer composite to achieve this reversibility.”The team used a class of conductive polymers that Gumyusenge and his co-workers had previously shown can respond to gases without permanently binding to them. “The polymer, even though it doesn’t have the high surface area that the MOFs do, will at least provide this recognize-and-release type of phenomenon,” he says.The team combined the polymers in a liquid solution along with the MOF material in powdered form, and deposited the mixture on a substrate, where they dry into a uniform, thin coating. By combining the polymer, with its quick detection capability, and the more sensitive MOFs, in a one-to-one ratio, he says, “suddenly we get a sensor that has both the high sensitivity we get from the MOF and the reversibility that is enabled by the presence of the polymer.”The material changes its electrical resistance when molecules of the gas are temporarily trapped in the material. These changes in resistance can be continuously monitored by simply attaching an ohmmeter to track the resistance over time. Gumyusenge and his students demonstrated the composite material’s ability to detect nitrogen dioxide, a toxic gas produced by many kinds of combustion, in a small lab-scale device. After 100 cycles of detection, the material was still maintaining its baseline performance within a margin of about 5 to 10 percent, demonstrating its long-term use potential.In addition, this material has far greater sensitivity than most presently used detectors for nitrogen dioxide, the team reports. This gas is often detected after the use of stove ovens. And, with this gas recently linked to many asthma cases in the U.S., reliable detection in low concentrations is important. The team demonstrated that this new composite could detect, reversibly, the gas at concentrations as low as 2 parts per million.While their demonstration was specifically aimed at nitrogen dioxide, Gumyusenge says, “we can definitely tailor the chemistry to target other volatile molecules,” as long as they are small polar analytes, “which tend to be most of the toxic gases.”Besides being compatible with a simple hand-held detector or a smoke-alarm type of device, one advantage of the material is that the polymer allows it to be deposited as an extremely thin uniform film, unlike regular MOFs, which are generally in an inefficient powder form. Because the films are so thin, there is little material needed and production material costs could be low; the processing methods could be typical of those used for industrial coating processes. “So, maybe the limiting factor will be scaling up the synthesis of the polymers, which we’ve been synthesizing in small amounts,” Gumyusenge says.“The next steps will be to evaluate these in real-life settings,” he says. For example, the material could be applied as a coating on chimneys or exhaust pipes to continuously monitor gases through readings from an attached resistance monitoring device. In such settings, he says, “we need tests to check if we truly differentiate it from other potential contaminants that we might have overlooked in the lab setting. Let’s put the sensors out in real-world scenarios and see how they do.”The work was supported by the MIT Climate and Sustainability Consortium (MCSC), the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) at MIT, and the U.S. Department of Energy. More

  • in

    Q&A: Exploring ethnic dynamics and climate change in Africa

    Evan Lieberman is the Total Professor of Political Science and Contemporary Africa at MIT, and is also director of the Center for International Studies. During a semester-long sabbatical, he’s currently based at the African Climate and Development Initiative at the University of Cape Town.In this Q&A, Lieberman discusses several climate-related research projects he’s pursuing in South Africa and surrounding countries. This is part of an ongoing series exploring how the School of Humanities, Arts, and Social Sciences is addressing the climate crisis.Q: South Africa is a nation whose political and economic development you have long studied and written about. Do you see this visit as an extension of the kind of research you have been pursuing, or a departure from it?A: Much of my previous work has been animated by the question of understanding the causes and consequences of group-based disparities, whether due to AIDS or Covid. These are problems that know no geographic boundaries, and where ethnic and racial minorities are often hardest hit. Climate change is an analogous problem, with these minority populations living in places where they are most vulnerable, in heat islands in cities, and in coastal areas where they are not protected. The reality is they might get hit much harder by longer-term trends and immediate shocks.In one line of research, I seek to understand how people in different African countries, in different ethnic groups, perceive the problems of climate change and their governments’ response to it. There are ethnic divisions of labor in terms of what people do — whether they are farmers or pastoralists, or live in cities. So some ethnic groups are simply more affected by drought or extreme weather than others, and this can be a basis for conflict, especially when competing for often limited government resources.In this area, just like in my previous research, learning what shapes ordinary citizen perspectives is really important, because these views affect people’s everyday practices, and the extent to which they support certain kinds of policies and investments their government makes in response to climate-related challenges. But I will also try to learn more about the perspectives of policymakers and various development partners who seek to balance climate-related challenges against a host of other problems and priorities.Q: You recently published “Until We Have Won Our Liberty,” which examines the difficult transition of South Africa from apartheid to a democratic government, scrutinizing in particular whether the quality of life for citizens has improved in terms of housing, employment, discrimination, and ethnic conflicts. How do climate change-linked issues fit into your scholarship?A: I never saw myself as a climate researcher, but a number of years ago, heavily influenced by what I was learning at MIT, I began to recognize more and more how important the issue of climate change is. And I realized there were lots of ways in which the climate problem resonated with other kinds of problems I had tackled in earlier parts of my work.There was once a time when climate and the environment was the purview primarily of white progressives: the “tree huggers.” And that’s really changed in recent decades as it has become evident that the people who’ve been most affected by the climate emergency are ethnic and racial minorities. We saw with Hurricane Katrina and other places [that] if you are Black, you’re more likely to live in a vulnerable area and to just generally experience more environmental harms, from pollution and emissions, leaving these communities much less resilient than white communities. Government has largely not addressed this inequity. When you look at American survey data in terms of who’s concerned about climate change, Black Americans, Hispanic Americans, and Asian Americans are more unified in their worries than are white Americans.There are analogous problems in Africa, my career research focus. Governments there have long responded in different ways to different ethnic groups. The research I am starting looks at the extent to which there are disparities in how governments try to solve climate-related challenges.Q: It’s difficult enough in the United States taking the measure of different groups’ perceptions of the impact of climate change and government’s effectiveness in contending with it. How do you go about this in Africa?A: Surprisingly, there’s only been a little bit of work done so far on how ordinary African citizens, who are ostensibly being hit the hardest in the world by the climate emergency, are thinking about this problem. Climate change has not been politicized there in a very big way. In fact, only 50 percent of Africans in one poll had heard of the term.In one of my new projects, with political science faculty colleague Devin Caughey and political science doctoral student Preston Johnston, we are analyzing social and climate survey data [generated by the Afrobarometer research network] from over 30 African countries to understand within and across countries the ways in which ethnic identities structure people’s perception of the climate crisis, and their beliefs in what government ought to be doing. In largely agricultural African societies, people routinely experience drought, extreme rain, and heat. They also lack the infrastructure that can shield them from the intense variability of weather patterns. But we’re adding a lens, which is looking at sources of inequality, especially ethnic differences.I will also be investigating specific sectors. Africa is a continent where in most places people cannot take for granted universal, piped access to clean water. In Cape Town, several years ago, the combination of failure to replace infrastructure and lack of rain caused such extreme conditions that one of the world’s most important cities almost ran out of water.While these studies are in progress, it is clear that in many countries, there are substantively large differences in perceptions of the severity of climate change, and attitudes about who should be doing what, and who’s capable of doing what. In several countries, both perceptions and policy preferences are differentiated along ethnic lines, more so than with respect to generational or class differences within societies.This is interesting as a phenomenon, but substantively, I think it’s important in that it may provide the basis for how politicians and government actors decide to move on allocating resources and implementing climate-protection policies. We see this kind of political calculation in the U.S. and we shouldn’t be surprised that it happens in Africa as well.That’s ultimately one of the challenges from the perch of MIT, where we’re really interested in understanding climate change, and creating technological tools and policies for mitigating the problem or adapting to it. The reality is frustrating. The political world — those who make decisions about whether to acknowledge the problem and whether to implement resources in the best technical way — are playing a whole other game. That game is about rewarding key supporters and being reelected.Q: So how do you go from measuring perceptions and beliefs among citizens about climate change and government responsiveness to those problems, to policies and actions that might actually reduce disparities in the way climate-vulnerable African groups receive support?A: Some of the work I have been doing involves understanding what local and national governments across Africa are actually doing to address these problems. We will have to drill down into government budgets to determine the actual resources devoted to addressing a challenge, what sorts of practices the government follows, and the political ramifications for governments that act aggressively versus those that don’t. With the Cape Town water crisis, for example, the government dramatically changed residents’ water usage through naming and shaming, and transformed institutional practices of water collection. They made it through a major drought by using much less water, and doing it with greater energy efficiency. Through the government’s strong policy and implementation, and citizens’ active responses, an entire city, with all its disparate groups, gained resilience. Maybe we can highlight creative solutions to major climate-related problems and use them as prods to push more effective policies and solutions in other places.In the MIT Global Diversity Lab, along with political science faculty colleague Volha Charnysh, political science doctoral student Jared Kalow, and Institute for Data, Systems and Society doctoral student Erin Walk, we are exploring American perspectives on climate-related foreign aid, asking survey respondents whether the U.S. should be giving more to people in the global South who didn’t cause the problems of climate change but have to suffer the externalities. We are particularly interested in whether people’s desire to help vulnerable communities rests on the racial or national identity of those communities.From my new seat as director of the Center for International Studies (CIS), I hope to do more and more to connect social science findings to relevant policymakers, whether in the U.S. or in other places. CIS is making climate one of our thematic priority areas, directing hundreds of thousands of dollars for MIT faculty to spark climate collaborations with researchers worldwide through the Global Seed Fund program. COP 28 (the U.N. Climate Change Conference), which I attended in December in Dubai, really drove home the importance of people coming together from around the world to exchange ideas and form networks. It was unbelievably large, with 85,000 people. But so many of us shared the belief that we are not doing enough. We need enforceable global solutions and innovation. We need ways of financing. We need to provide opportunities for journalists to broadcast the importance of this problem. And we need to understand the incentives that different actors have and what sorts of messages and strategies will resonate with them, and inspire those who have resources to be more generous. More

  • in

    Repurposed beer yeast may offer a cost-effective way to remove lead from water

    Every year, beer breweries generate and discard thousands of tons of surplus yeast. Researchers from MIT and Georgia Tech have now come up with a way to repurpose that yeast to absorb lead from contaminated water.Through a process called biosorption, yeast can quickly absorb even trace amounts of lead and other heavy metals from water. The researchers showed that they could package the yeast inside hydrogel capsules to create a filter that removes lead from water. Because the yeast cells are encapsulated, they can be easily removed from the water once it’s ready to drink.“We have the hydrogel surrounding the free yeast that exists in the center, and this is porous enough to let water come in, interact with yeast as if they were freely moving in water, and then come out clean,” says Patricia Stathatou, a former postdoc at the MIT Center for Bits and Atoms, who is now a research scientist at Georgia Tech and an incoming assistant professor at Georgia Tech’s School of Chemical and Biomolecular Engineering. “The fact that the yeast themselves are bio-based, benign, and biodegradable is a significant advantage over traditional technologies.”The researchers envision that this process could be used to filter drinking water coming out of a faucet in homes, or scaled up to treat large quantities of water at treatment plants.MIT graduate student Devashish Gokhale and Stathatou are the lead authors of the study, which appears today in the journal RSC Sustainability. Patrick Doyle, the Robert T. Haslam Professor of Chemical Engineering at MIT, is the senior author of the paper, and Christos Athanasiou, an assistant professor of aerospace engineering at Georgia Tech and a former visiting scholar at MIT, is also an author.Absorbing leadThe new study builds on work that Stathatou and Athanasiou began in 2021, when Athanasiou was a visiting scholar at MIT’s Center for Bits and Atoms. That year, they calculated that waste yeast discarded from a single brewery in Boston would be enough to treat the city’s entire water supply.Through biosorption, a process that is not fully understood, yeast cells can bind to and absorb heavy metal ions, even at challenging initial concentrations below 1 part per million. The MIT team found that this process could effectively decontaminate water with low concentrations of lead. However, one key obstacle remained, which was how to remove yeast from the water after they absorb the lead.In a serendipitous coincidence, Stathatou and Athanasiou happened to present their research at the AIChE Annual Meeting in Boston in 2021, where Gokhale, a student in Doyle’s lab, was presenting his own research on using hydrogels to capture micropollutants in water. The two sets of researchers decided to join forces and explore whether the yeast-based strategy could be easier to scale up if the yeast were encapsulated in hydrogels developed by Gokhale and Doyle.“What we decided to do was make these hollow capsules — something like a multivitamin pill, but instead of filling them up with vitamins, we fill them up with yeast cells,” Gokhale says. “These capsules are porous, so the water can go into the capsules and the yeast are able to bind all of that lead, but the yeast themselves can’t escape into the water.”The capsules are made from a polymer called polyethylene glycol (PEG), which is widely used in medical applications. To form the capsules, the researchers suspend freeze-dried yeast in water, then mix them with the polymer subunits. When UV light is shone on the mixture, the polymers link together to form capsules with yeast trapped inside.Each capsule is about half a millimeter in diameter. Because the hydrogels are very thin and porous, water can easily pass through and encounter the yeast inside, while the yeast remain trapped.In this study, the researchers showed that the encapsulated yeast could remove trace lead from water just as rapidly as the unencapsulated yeast from Stathatou and Athanasiou’s original 2021 study.Scaling upLed by Athanasiou, the researchers tested the mechanical stability of the hydrogel capsules and found that the capsules and the yeast inside can withstand forces similar to those generated by water running from a faucet. They also calculated that the yeast-laden capsules should be able to withstand forces generated by flows in water treatment plants serving several hundred residences.“Lack of mechanical robustness is a common cause of failure of previous attempts to scale-up biosorption using immobilized cells; in our work we wanted to make sure that this aspect is thoroughly addressed from the very beginning to ensure scalability,” Athanasiou says.After assessing the mechanical robustness of the yeast-laden capsules, the researchers constructed a proof-of-concept packed-bed biofilter, capable of treating trace lead-contaminated water and meeting U.S. Environmental Protection Agency drinking water guidelines while operating continuously for 12 days.This process would likely consume less energy than existing physicochemical processes for removing trace inorganic compounds from water, such as precipitation and membrane filtration, the researchers say.This approach, rooted in circular economy principles, could minimize waste and environmental impact while also fostering economic opportunities within local communities. Although numerous lead contamination incidents have been reported in various locations in the United States, this approach could have an especially significant impact in low-income areas that have historically faced environmental pollution and limited access to clean water, and may not be able to afford other ways to remediate it, the researchers say.“We think that there’s an interesting environmental justice aspect to this, especially when you start with something as low-cost and sustainable as yeast, which is essentially available anywhere,” Gokhale says.The researchers are now exploring strategies for recycling and replacing the yeast once they’re used up, and trying to calculate how often that will need to occur. They also hope to investigate whether they could use feedstocks derived from biomass to make the hydrogels, instead of fossil-fuel-based polymers, and whether the yeast can be used to capture other types of contaminants.“Moving forward, this is a technology that can be evolved to target other trace contaminants of emerging concern, such as PFAS or even microplastics,” Stathatou says. “We really view this as an example with a lot of potential applications in the future.”The research was funded by the Rasikbhai L. Meswani Fellowship for Water Solutions, the MIT Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), and the Renewable Bioproducts Institute at Georgia Tech. More