More stories

  • in

    A possible unique ecosystem in the endoglacial hypersaline brines in Antarctica

    Martínez, G. M. & Renno, N. O. Water and brines on Mars: Current evidence and implications for MSL. Sp. Sci. Rev. 175(1), 29–51 (2013).Article 
    ADS 

    Google Scholar 
    Orosei, et al. Radar evidence of subglacial liquid water on Mars. Science 361(6401), 490–493. https://doi.org/10.1126/science.aar7268 (2018).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. et al. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nat. Commun. 6(6831), 1–9 (2015).
    Google Scholar 
    Forte, E., Dalle Fratte, M., Azzaro, M. & Guglielmin, M. Pressurized brines in continental Antarctica as a possible analogue of Mars. Sci. Rep. 6, 33158 (2016).Article 
    ADS 

    Google Scholar 
    Siegert, M. J., Kennicutt, M. C. & Bindschadler, R. A. Antarctic Subglacial Aquatic Environments (Wiley, 2013).
    Google Scholar 
    Boulton, G. S., Caban, P. E. & van Gijssel, K. Groundwater flow beneath ice sheets: Part I—Large-scale patterns. Quatern. Sci. Rev. 14, 545–562 (1995).Article 
    ADS 

    Google Scholar 
    Fricker, H. A., Carter, S. P., Bell, R. E. & Scambos, T. Active lakes of Recovery Ice Stream, East Antarctica: A bedrock-controlled subglacial hydrological system. J. Glaciol. 60(223), 1015–1030. https://doi.org/10.3189/2014JoG14J063 (2014).Article 
    ADS 

    Google Scholar 
    Siegert, M. J. A wide variety of unique environments beneath the Antarctic ice sheet. Geology 44(5), 399–400. https://doi.org/10.1130/focus052016.1 (2016).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Lyons, W. B. et al. The geochemistry of englacial brine from Taylor Glacier, Antarctica. J. Geophys. Res. Biogeosci. 124, 633–648. https://doi.org/10.1029/2018JG004411 (2019).Article 

    Google Scholar 
    Campbell, S., Courville, Z., Sinclair, S. & Wilner, J. Brine, englacial structure and basal properties near the terminus of McMurdo Ice Shelf, Antarctica. Ann. Glaciol. 58, 74. https://doi.org/10.1017/aog.2017.26 (2017).Article 

    Google Scholar 
    Greene, S. et al. Canadian Shield brine from the Con Mine, Yellowknife, NT, Canada: Noble gas evidence for an evaporated Palaeozoic seawater origin mixed with glacial meltwater and Holocene recharge. Geochim. Cosmochim. Acta 72, 4008–4019. https://doi.org/10.1016/j.gca.2008.05.058 (2008).Article 
    ADS 

    Google Scholar 
    Siegfried, M. R., Fricker, H. A., Carter, S. P. & Tulaczyk, S. Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica. Geophys. Res. Lett. 43, 2640–2648. https://doi.org/10.1002/2016GL067758 (2016).Article 
    ADS 

    Google Scholar 
    Stearns, L. A., Smith, B. E. & Hamilton, G. S. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 1(12), 827–831. https://doi.org/10.1038/ngeo356 (2008).Article 
    ADS 

    Google Scholar 
    Kennicutt, M. C. et al. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct. Sci. 27(01), 3–18. https://doi.org/10.1017/S0954102014000674 (2015).Article 
    ADS 

    Google Scholar 
    Welch, K. A. et al. Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. Antarct. Sci. 22(06), 662–672. https://doi.org/10.1017/S0954102010000702 (2010).Article 
    ADS 

    Google Scholar 
    Skidmore, M., Tranter, M., Tulaczyk, S. & Lanoil, B. Hydrochemistry of ice stream beds—evaporitic or microbial effects?. Hydrol. Process. 24(4), 517–523 (2010).
    Google Scholar 
    Lüttge, A. & Conrad, P. G. Direct observation of microbial inhibition of calcite dissolution. Appl. Environ. Microbiol. 20, 1627–1632 (2004).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. & Priscu, J. C. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl. Environ. Microbiol. 73(12), 4029–4039 (2007).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. et al. A contemporary microbially maintained subglacial ferrous “Ocean”. Science 324(5925), 397–400. https://doi.org/10.1126/science.1167350 (2009).Article 
    ADS 

    Google Scholar 
    Chua, M. J. et al. Genomic and physiological characterization and description of Marinobacter gelidimuriae sp. Nov., a psychrophilic, moderate halophile from Blood Falls, an Antarctic subglacial brine. FEMS Microbiol. Ecol. 94, fiy021 (2018).Article 

    Google Scholar 
    Murray, A. E. et al. Microbial life at −13 °C in the brine of an ice-sealed Antarctic lake. PNAS 109, 20626–20631. https://doi.org/10.1073/pnas.1208607109 (2012).Article 
    ADS 

    Google Scholar 
    Borruso, L. et al. A thin ice layer segregates two distinct fungal communities in Antarctic brines from Tarn Flat (Northern Victoria Land). Sci. Rep. 8, 1–9 (2018).Article 

    Google Scholar 
    Papale, M. et al. Microbial assemblages in pressurized Antarctic brine pockets (Tarn Flat, Northern Victoria Land): A hotspot of biodiversity and activity. Microorganisms 7, 333 (2019).Article 

    Google Scholar 
    Azzaro, M. et al. The prokaryotic community in an extreme Antarctic environment: The brines of Boulder Clay lakes (Northern Victoria Land). Hydrobiologia 848, 1837–1857. https://doi.org/10.1007/s10750-021-04557-2 (2021).Article 

    Google Scholar 
    Lo Giudice, A. et al. Prokaryotic diversity and metabolically active communities in brines from two perennially ice-covered Antarctic lakes. Astrobiology 21, 551–565 (2021).Article 
    ADS 

    Google Scholar 
    Sannino, C. et al. Intra-and inter-cores fungal diversity suggests interconnection of different habitats in an Antarctic frozen lake (Boulder Clay, Northern Victoria Land). Environ. Microbiol. 22, 3463–3477 (2020).Article 

    Google Scholar 
    Bratina, B. J., Stevenson, B. S., Green, W. J. & Schmidt, T. M. Manganese reduction by microbes from oxic regions of the lake vanda (Antarctica) water column. Appl. Environ. Microbiol. 64, 3791–3797 (1998).Article 
    ADS 

    Google Scholar 
    Tregoning, G. S. et al. A halophilic bacterium inhabiting the warm, CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 81, 1988–1995 (2015).Article 
    ADS 

    Google Scholar 
    Kwon, M. et al. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environ. Microbiol. 19, 2258–2271 (2017).Article 

    Google Scholar 
    Forte, E., Azzaro, M. & Guglielmin, M. Evidence of an unprecedented water erosion and supraglacial-fluvial sedimentation on an Antarctic glacier in the Holocene. Sci. Total Environ. 20, 20 (2022).
    Google Scholar 
    Doran, P. T. et al. Radiocarbon distribution and the effect of legacy in lakes of the McMurdo Dry Valleys, Antarctica. Limnol. Oceanogr. 59(3), 811–826. https://doi.org/10.4319/lo.2014.59.3.0811 (2014).Article 
    ADS 

    Google Scholar 
    Saccò, M. et al. Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 96, 2828–2850 (2021).Article 

    Google Scholar 
    Ramoneda, J. et al. Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system. FEMS Microbiol. Ecol. 97, fiab044 (2021).Article 

    Google Scholar 
    Saxton, M. A. et al. Sulfate reduction and methanogenesis in the hypersaline deep waters and sediments of a perennially ice-covered lake. Limnol. Oceanogr. 66, 1804–1818 (2021).Article 
    ADS 

    Google Scholar 
    Frey, B. et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 92, fiw018. https://doi.org/10.1093/femsec/fiw018 (2016).Article 

    Google Scholar 
    Hu, W. et al. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau. Extremophiles 20, 337–349 (2016).Article 

    Google Scholar 
    Alekseev, I., Zverev, A. & Abakumov, E. Microbial communities in permafrost soils of Larsemann Hills, Eastern Antarctica: Environmental controls and effect of human impact. Microorganisms 8(8), 1202 (2020).Article 

    Google Scholar 
    Tian, R. et al. Small and mighty: Adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020).Article 

    Google Scholar 
    Bowman, J. P., McCammon, S. A., Rea, S. M. & McMeekin, T. A. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol. Lett. 183, 81–88 (2000).Article 

    Google Scholar 
    Aislabie, J. & Bowman J. P. “Archaeal Diversity in Antarctic Ecosystems.” Polar Microbiology: The Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments 31–59 (CRC Press, 2010).
    Google Scholar 
    Zhang, C. J. et al. Spatial and seasonal variation of methanogenic community in a river-bay system in South China. Appl. Microbiol. Biotechnol. 104, 4593–4603. https://doi.org/10.1007/s00253-020-10613-z (2020).Article 

    Google Scholar 
    Bapteste, E., Brochier, C. & Boucher, Y. Higher-level classification of the archaea: Evolution of methanogenesis and methanogens. Archaea 1, 353–363 (2005).Article 

    Google Scholar 
    Bowman, J. P. et al. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov.. Microbiology 144, 1601–1609 (1998).Article 

    Google Scholar 
    Donachie, S. P., Bowman, J. P. & Alam, M. Psychroflexus tropicus sp. Nov., an obligately halophilic Cytophaga-Flavobacterium-Bacteroides group bacterium from an Hawaiian hypersaline lake. Int. J. Syst. Evol. Microbiol. 54, 935–940 (2004).Article 

    Google Scholar 
    Zhong, Z. P. et al. Psychroflexus salis sp. Nov. and Psychroflexus planctonicus sp. Nov., isolated from a salt lake. Int. J. Syst. Evol. Microbiol. 66, 125–131 (2016).Article 

    Google Scholar 
    Chun, J., Kang, J. Y. & Jahng, K. Y. Psychroflexus salarius sp. Nov., isolated from Gomso salt pan. Int. J. Syst. Evol. Microbiol. 64, 3467–3472 (2014).Article 

    Google Scholar 
    Yoon, J. H., Kang, S. J., Jung, Y. T. & Oh, T. K. Psychroflexus salinarum sp. Nov., isolated from a marine solar saltern. Int. J. Syst. Evol. Microbiol. 59, 2404–2407 (2009).Article 

    Google Scholar 
    Buzzini, P., Turchetti, B. & Yurkov, A. Extremophilic yeasts: The toughest yeasts around?. Yeast 35, 487–497 (2018).Article 

    Google Scholar 
    Coleine, C., Stajich, J. E. & Selbmann, L. Fungi are key players in extreme ecosystems. Trends Ecol. Evol. S0169–5347(22), 00025–00028 (2022).
    Google Scholar 
    Gonçalves, V. N. et al. Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles 21, 1005–1015 (2017).Article 

    Google Scholar 
    Ogaki, M. B. et al. Cultivable fungi present in deep-sea sediments of Antarctica: Taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 24, 227–238 (2020).Article 

    Google Scholar 
    Wedin, M., Döring, H. & Gilenstam, G. Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol. 164, 459–465 (2004).Article 

    Google Scholar 
    Sterflinger, K. Black yeasts and meristematic fungi: Ecology, diversity and identification. In Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook (eds Péter, G. & Rosa, C.) 501–514 (Springer, 2006).Chapter 

    Google Scholar 
    Canini, F. et al. Growth forms and functional guilds distribution of soil Fungi in coastal versus inland sites of Victoria Land, Antarctica. Biology (Basel) 10, 320 (2021).
    Google Scholar 
    Vaniman, D. T. et al. Magnesium sulfate salts and the history of water on Mars. Nature 431, 663–665 (2004).Article 
    ADS 

    Google Scholar 
    Gendrin, A. et al. Sulfates in martian layered terrains: The OMEGA/Mars Express view. Science 307, 1587–1591 (2005).Article 
    ADS 

    Google Scholar 
    Carr, M. H. & Head, J. W. I. I. I. Geologic history of Mars. Earth Planet Sci. Lett. 294, 185–203 (2010).Article 
    ADS 

    Google Scholar 
    Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015).Article 
    ADS 

    Google Scholar 
    Cragin, J. H., Gow, A. J. & Kovacs, A. Chemical fractionation of brine in the McMurdo Ice Shelf, Antarctica. CRREL Rep. 20, 83–86 (1983).
    Google Scholar 
    Frank, T. D. & Gui, Z. Cryogenic origin for brine in the subsurface of southern McMurdo Sound, Antarctica. Geology 38(7), 587–590. https://doi.org/10.1130/G30849.1 (2010).Article 
    ADS 

    Google Scholar 
    Gardner, C. B. & Lyons, W. B. Modeled geochemical composition of cryogenically produced subglacial Brines, Antarctica. Antarct. Sci. 31(3), 165–166 (2019).Article 
    ADS 

    Google Scholar 
    Lyons, W. B. et al. Halogen geochemistry of the McMurdo Dry Valleys lakes, Antarctica: Clues to the origin of solutes and lake evolution. Geochim. Cosmochim. Acta 69, 305–323 (2005).Article 
    ADS 

    Google Scholar 
    Armienti, P. & Baroni, C. Cenozoic climatic change in Antarctica recorded by volcanic activity and landscape evolution. Geology 27(7), 617–620 (1999).Article 
    ADS 

    Google Scholar 
    Di Nicola, L. et al. Multiple cosmogenic nuclides document complex Pleistocene exposure history of glacial drifts in Terra Nova Bay (northern Victoria Land, Antarctica). Quatern. Res. 71(1), 83–92 (2009).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Levy, R. et al. Late Neogene climate and glacial history of the Southern Victoria Land coast from integrated drill core, seismic and outcrop data. Glob. Planet. Change 80–81, 61–84 (2012).Article 
    ADS 

    Google Scholar 
    Prebble, J. G., Raine, J. I., Barrett, P. J. & Hannah, M. J. Vegetation and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 41–57 (2006).Article 

    Google Scholar 
    Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. Myco Keys 10, 1–43 (2015).Article 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. (2010).Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).Article 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47, D259–D264. https://doi.org/10.1093/nar/gky1022 (2019).Article 

    Google Scholar  More

  • in

    A new long-snouted marine reptile from the Middle Triassic of China illuminates pachypleurosauroid evolution

    Systematic paleontologySauropterygia Owen, 186038.Eosauropterygia Rieppel, 199439.Pachypleurosauroidea Huene, 195640.Pachypleurosauridae Nopcsa, 192841.Luopingosaurus imparilis gen. et sp. nov.EtymologyThe genus name refers to the Luoping County, at which the fossil site is located. Species epithet imparilis (Latin) means peculiar and unusual.HolotypeA ventrally exposed skeleton with a posterior part of the caudal missing, IVPP V19049.Locality and horizonLuoping, Yunnan, China; Second (Upper) Member of Guanling Formation, Pelsonian (~ 244 Ma), Anisian, Middle Triassic37.DiagnosisA pachypleurosaurid distinguishable from other members of this family by the following combination of features (those unique among pachypleurosaurids identified with an asterisk): snout (preorbital portion) long and anteriorly pointed, 55.0% of skull length (*); orbital length about one quarter of skull length; internal naris retracted, without contribution from premaxilla; nasal ending at level of anterior margin of prefrontal; dentary length 71.7% of mandibular length; hyoid length 9.7% of mandibular length; presence of entepicondylar foramen in humerus; 21 cervical and 27 dorsal vertebrae (*); distinct expansions of distal heads of posterior two sacral ribs; six pairs of caudal ribs; phalangeal formula 2–3-5–5-3 for manus and 2–3-4–6-4 for pes (*); Metatarsal I short and stout with expanded proximal end, 56.4% of Metatarsal V in length (*); and Metatarsal IV being longest phalange in pes.Comparative descriptionThe holotype and only currently known specimen of Luopingosaurus has a preserved length of 46.2 cm from the rostral tip to the 30th caudal vertebra (for measurements, see Table 1). The estimated total length of the body may have reached 64 cm, assuming similar tail proportions of pachypleurosaurids. As such, Luopingosaurus is longer than most of other pachypleurosauroids that are small-sized with a maximum total length rarely exceeding 50 cm4,9,10,11,12,14,15,16,18,23,25, although some pachypleurosaurids are notably larger (e.g., 88 cm in Diandongosaurus cf. acutidentatus22, ~ 120 cm in Neusticosaurus edwardsii8, and ~ 130 cm in Wumengosaurus delicatomandibularis13).Table 1 Measurements (in mm) of the holotype (IVPP V19049) of Luopingosaurus imparilis gen. et sp. nov. R, right.Full size tableThe pre-orbital portion, distinctly longer than the postorbital region, measures 55% of the total skull length (the premaxillary symphysis to the occipital condyle) and 51% of the mandibular length. The paired premaxillae form most of the snout anterior to the naris with a pointed anterior tip, similar to the conditions in Wumengosaurus13,30 and Honghesaurus23. By contrast, other pachypleurosauroids uniformly have a blunt rostrum4,6,7,8,9,10,11,12,14,15,16,18,22,25. The premaxilla bears a long posteromedial process inserting between the anterior parts of the elongate nasals (Fig. 3). The premaxillary teeth are homodont with a tall peduncle and a short, conical crown, but the tooth number is hard to estimate because of occlusion of jaws. The posterior parts of nasals contact each other medially, and posteriorly, they contact the frontals in an interdigitating suture at the level of the anterior margin of the prefrontal. In Honghesaurus23, Wumengosaurus30, Neusticosaurus8 and Serpianosaurus9, the even longer nasal extends posteriorly beyond this level and ends at the anterior portion of the orbit.Figure 3Skull and mandible of Luopingosaurus imparilis gen. et sp. nov., IVPP V19049. Head before (a) and after (b) dusted with ammonium chloride. (c), Line- drawing. (d, e), two computed laminography scanning slices. (f), reconstruction in ventral view. ac, acetabulum; an, angular; ar, articular; ax, axis; c, cervical vertebra; den, dentary; eo, exoccipital; f, frontal; hy, hyoid; in, internal naris; j, jugal; m, maxilla; n, nasal; p, parietal; par, prearticular; pof, postfrontal; prf, prefrontal; pt, pterygoid; q, quadrate; qj, quadratojugal; sa, surangular; sp, splenial; sq, squamosal; stf, supratemporal fossa; v, vomer.Full size imageThe orbit is oval and large, measuring 24.8% of the skull length (Fig. 3). The lateral margin of the frontal contacts the prefrontal anteriorly and the postfrontal posteriorly, and defines most of the medial border of the orbit. The L-shaped jugal, together with the posterolateral process of the maxilla, forms the lateral border of the orbit. No distinct lacrimal is discernable; the bone is probably absent as in other sauropterygians. The postfrontal contacts the dorsal process of the triradiate postorbital ventrally, and both bones define the posterior border of the orbit. Additionally, the posterior process of the postorbital contacts the anterior process of the squamosal, forming the bar between the supratemporal fossa and the ventrally open infratemporal fenestra. The jugal extends beyond the ventral margin of the postorbital and also contacts the anterior process of the squamosal, resembling the conditions in Wumengosaurus30, Honghesaurus23 and Diandongosaurus15. This contact is absent in other pachypleurosauroids4,6,7,8,9,10,11,12.A pair of vomers and pterygoids and a right palatine are discernable in the palate (Fig. 3a–c). The vomer is elongate and slender, extending anteriorly well beyond the nasal. The internal naris, partly covered by the detached splenial, is longitudinally retracted, corresponding to a retracted external naris (Fig. 3d–f). The medial margin of the naris is defined by the nasal, without contribution from the premaxilla. A retracted naris is otherwise present in Wumengosaurus13,30, Qianxisaurus16 and Honghesaurus23. Similar to the condition in Honghesaurus23, the retracted naris of Luopingosaurus is relatively short, having a longitudinal diameter distinctly less than half of the longitudinal diameter of the orbit. By contrast, other pachypleurosauroids4,6,7,8,9,10,11,12,25 generally have an oval-shaped naris. The elongate palatine has a slightly convex medial margin suturing with the pterygoid. Because of the coverage of the detached splenial, the lateral portion of the palatine is unexposed, and it is hard to know whether an ectopterygoid is present or not. The pterygoid is the largest and longest element of the palate, measuring 55.2% of the mandibular length. It has an anterior projection that contacts the vomer anteromedially, and does not participate in the margin of the internal naris. At the level of the posterior orbital margin, the pterygoid has a triangular lateral extension, which was termed as the ectopterygoid process of the pterygoid in Neusticosaurus8. The pterygoid extends back to the occipital condyle, and covers the basicranium and parietals in ventral view. Additionally, the bone has a broad posterolateral process that is set off from the palatal surface by a distinct ridge, resembling the conditions in Serpianosaurus9 and Neusticosaurus8. Posteriorly, the basioccipital is exposed in ventral view, showing the area for attachment to the right exoccipital.The left quadrate is exposed in lateral view with its dorsal process extending underneath the base of the descending process of the squamosal. The posterior margin of the quadrate is excavated, as in many other pachypleurosaurids (e.g., Serpianosaurus9 and Honghesaurus23). The quadratojugal is narrow and splint-like, flanking the anterior margin of the quadrate. A pair of hyoids are ossified. They are rod-like, slightly expanded at both ends. The dentary is wedge-shaped, being 71.7% of the mandibular length. Laterally, it bears a longitudinal series of pores and grooves parallel to the oral margin of the bone (Fig. 3a). The elongate angular tapers at both ends, contacting the dentary anterodorsally and the surangular dorsally in ventral view. The surangular, slightly shorter than the angular, contacts the articular posterodorsally, with a pointed anterior tip wedging into the notched posterior margin of the dentary. The retroarticular process of the articular is very short with a rounded posterior margin. Medially, the splenial and prearticular form most of the inner wall of the mandible. The splenial tapers at both ends and enters the mandibular symphysis anteriorly, having a length similar to the dentary. The relatively slender prearticular contacts the splenial anterodorsally, extends posteriorly and abuts the articular dorsally, measuring 41.1% of the mandibular length.The whole series of 21 cervical vertebrae (including the atlas-axis complex) is well exposed ventrally. The atlas centrum is oval, much smaller than the axis centrum (Fig. 3c). From the axis, the cervical vertebrae increase gradually in size toward the trunk vertebrae posteriorly. The bicephalous cervical ribs have typical free anterior and posterior processes as in other pachypleurosauroids8,9. The trunk is relatively long, including 27 dorsal vertebrae. The posterior dorsal ribs show certain pachyostosis (Fig. S1). Each gastralium consists of five elements (a short and more massive median element and two slender rods in line towards each side; Figs. 3, 4a, b, S1), similar to the conditions in most of other pachypleurosauroids9,11,18,25 (except Neusticosaurus8). Three sacral ribs are clearly revealed by X-ray computed microtomography (Fig. 4c–f). They are relatively short and stout, with the posterior twos bearing a distinct expansion on their distal heads. The distal expansion of the sacral rib is also present in Keichousaurus11, Prosantosaurus25, Qianxisaurus16 and Wumengosaurus13, but it is not pronounced in other pachypleurosauroids4,6,7,8,9,10. The caudal ribs are relatively few, six pairs in number. Additionally, several chevron bones are visible in the proximal caudal region, and they are gradually reduced in length posteriorly (Fig. 4d).Figure 4Girdles, limbs and vertebrae of Luopingosaurus imparilis gen. et sp. nov., IVPP V19049. Photo (a) and line-drawing (b) of pectoral girdle, forelimbs and anterior dorsal vertebrae. Photo (c), line-drawing (d) and two computed laminography scanning slices (e, f) of pelvic girdle, hind limbs and posterior vertebrae. as, astragalus; ca, caudal vertebra; cal, calcaneum; car, caudal rib; co, coracoid; d, dorsal vertebra; dltp, deltopectoral crest; enf, entepicondylar foramen; fe, femur; fi, fibula; h, humerus; il, ilium; int, intermedium; is, ischium; mc, metacarpal; mt, metatarsal; pu, pubis; s, sacral vertebra; sc, scapula; sr, sacral rib; ti, tibia; ul, ulna; uln, ulnare.Full size imageThe paired clavicles and the median interclavicle form a transverse bar at the 20th cervical vertebrae (Fig. 4a, b). The blade-like clavicle tapers posterolaterally with its distal projection overlapped by the scapula in ventral view. The left clavicle contacts the right one anterodorsally to the interclavicle. The interclavicle tapers laterally to a point at each end. The anterior margin of the interclavicle is convex and its posterior margin is slightly concave without a midline projection (contra the condition in Anarosaurus42). The scapula consists of a broad ventral portion and a relatively narrow and elongate dorsal wing that varies little through its length. The coracoid is hourglass-shaped with a slightly concave posterolateral margin and a conspicuously concave anteromedial margin. The medial margin is straight, along which the coracoids would articulate each other in the midline. The humerus is constricted at the middle portion with a nearly straight preaxial margin and a concave postaxial margin. A slit in the expanded distal portion of this bone indicates the possible presence of an entepicondylar foramen (Fig. 4a, b). The radius, slightly longer than the ulna, is more expanded proximally than distally. The ulna is straight with a slightly constricted shaft. In each forelimb, there is two nearly rounded carpals, ulnare and intermedium; the former is half the width of the latter. Five metacarpals are rod-like, slightly expanded at both ends. Among them, Metacarpal I is the shortest, 48% of the length of Metacarpal II. Metacarpal III is slightly shorter than Metacarpal IV, which is the longest. Metacarpal V is 71% of the length of Metacarpal IV. The phalangeal formula is 2–3–5–5–3 for the manus, indicating presence of hyperphalangy in Luopingosaurus (see Discussion below).In the pelvic girdle, the ilia, pubes and ischia are well exposed (Fig. 4c–f). The ilium is nearly triangular with a relatively long and tapering posterior process. The plate-like pubis is well constricted at its middle portion, with the medial portion nearly equal to the lateral portion. The obturator foramen is slit-like, located at the posterolateral corner of this bone (Fig. 4e). The ischium is also plate-like, having a relatively narrow lateral portion and an expanded medial portion that is notably longer than the medial portion of the pubis. The posterolateral ischial margin is highly concave. The posterior pubic margin and anterior ischial margin are moderately concave, and both together would enclose the thyroid fenestra. The femur is slightly longer than the humerus, with a constricted shaft and equally expanded ends (Fig. 4d). No internal trochanter is developed. The tibia is nearly equal to the fibula in length; the former is straight and thicker than the slightly curved latter. Two ossified tarsals, calcaneum and astragalus, are nearly rounded; the latter is significantly larger than the former. As in Honghesaurus23, the astragalus lacks a proximal concavity. The right metatarsals are well-preserved. Metatarsal I is the shortest and stoutest phalange with an expanded proximal end, and Metatarsal IV is the longest. Metatarsal II is nearly twice the length of Metatarsal I. Metatarsal III is slightly shorter than Metatarsal IV, and Metatarsal V is 76% of the length of Metatarsal IV. The phalangeal count is 2–3–4–6–4, which is complete judging from the appearance of the distal phalanges in the right pes (Fig. 4c). More

  • in

    The greater wax moth, Galleria mellonella (L.) uses two different sensory modalities to evaluate the suitability of potential oviposition sites

    Refsnider, J. M. & Janzen, F. J. Putting eggs in one basket: Ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 41, 39–57 (2010).Article 

    Google Scholar 
    Rudolf, V. H. W. & Rodel, M. O. Oviposition site selection in a complex and variable environment: The role of habitat quality and conspecific cues. Oecologia 142, 316–325 (2005).Article 
    ADS 

    Google Scholar 
    Blaustein, L. Oviposition site selection in response to risk of predation: Evidence from aquatic habitats and consequences for population dynamics and community structure. In Evolutionary Theory and Processes: Modern Perspectives (ed. Wasser, S. P.) 441–456 (Springer, 1999).Chapter 

    Google Scholar 
    Elsensohn, J. E., Schal, C. & Burrack, H. J. Plasticity in oviposition site selection behavior in drosophila suzukii (diptera: drosophilidae) in relation to adult density and host distribution and quality. J. Econ. Entomol. 114, 1517–1522 (2021).Article 

    Google Scholar 
    Kempraj, V., Park, S. J. & Taylor, P. W. Forewarned is forearmed: Queensland fruit flies detect olfactory cues from predators and respond with predator-specific behaviour. Sci. Rep. 10, 7297 (2020).Article 
    ADS 

    Google Scholar 
    Damodaram, K. J. P. et al. Centuries of domestication has not impaired oviposition site-selection function in the silkmoth, Bombyx mori. Sci. Rep. 4, 1–6 (2014).
    Google Scholar 
    Hansson, B. S. & Stensmyr, M. C. Evolution of insect olfaction. Neuron 72, 698–711 (2011).Article 

    Google Scholar 
    Ghosh, E., Sasidharan, A., Ode, P. J. & Venkatesan, R. Oviposition preference and performance of a specialist herbivore is modulated by natural enemies, larval odors, and immune status. J. Chem. Ecol. 48, 670–682 (2022).Article 

    Google Scholar 
    Nielsen, R. A. & Brister, C. D. The greater wax moth: Adult behavior. Ann. Entomol. Soc. Am. 70, 101–103 (1977).Article 

    Google Scholar 
    Kwadha, C. A., Ong’Amo, G. O., Ndegwa, P. N., Raina, S. K. & Fombong, A. T. The biology and control of the greater wax moth, Galleria mellonella. Insects 8, 61 (2017).Article 

    Google Scholar 
    Kebede, E. Prevalence of wax moth in modern hive with colonies in Kafta Humera. Anim. Vet. Sci. 3, 132–135 (2015).Article 

    Google Scholar 
    Ellis, J. D., Graham, J. R. & Mortensen, A. Standard methods for wax moth research. J. Apic. Res. 52, 1–17 (2013).Article 

    Google Scholar 
    Hepburn, H. R. & Radloff, S. E. Honeybees of Africa 227–241 (Springer, 1998). https://doi.org/10.1007/978-3-662-03604-4.Book 

    Google Scholar 
    Fletcher, D. J. C. The African Bee, Apis mellifera adansonii, Africa. Annu. Rev. Entomol. 23, 151–171 (1978).Article 

    Google Scholar 
    Li, Y. et al. Losing the arms race: Greater wax moths sense but ignore bee alarm pheromones. Insects 10, 81 (2019).Article 
    ADS 

    Google Scholar 
    Feng, B., Qian, K. & Du, Y. J. Floral volatiles from Vigna unguiculata are olfactory and gustatory stimulants for oviposition by the bean pod borer moth Maruca vitrata. Insects 8, 60 (2017).Article 

    Google Scholar 
    Janz, N. Evolutionary ecology of oviposition strategies. In Chemoecology of Insect Eggs and Egg Deposition (eds Hilker, M. & Meiners, T.) 349–376 (Willey, 2008). https://doi.org/10.1002/9780470760253.ch13.Chapter 

    Google Scholar 
    Renwick, J. A. A. & Chew, F. S. Oviposition behavior in lepidoptera. Annu. Rev. Entomol. 39, 377–400 (1994).Article 

    Google Scholar 
    Nakajima, Y. & Fujisaki, K. Fitness trade-offs associated with oviposition strategy in the winter cherry bug, Acanthocoris sordidus. Entomol. Exp. Appl. 137, 280–289 (2010).Article 

    Google Scholar 
    Murphy, P. J. Context-dependent reproductive site choice in a Neotropical frog. Behav. Ecol. 14, 626–633 (2003).Article 

    Google Scholar 
    Geoffrey, G. et al. Larviposition site selection mediated by volatile semiochemicals in Glossina palpalis gambiensis. Ecol. Entomol. 46, 301–309 (2021).Article 

    Google Scholar 
    Yao, F. L. et al. Oviposition preference and adult performance of the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae): Effect of leaf microstructure associated with ladybeetle attachment ability. Pest Manag. Sci. 77, 113–125 (2021).Article 

    Google Scholar 
    Spieler, M. & Linsenmair, K. E. Choice of optimal oviposition sites by Hoplobatrachus occipitalis (Anura: Ranidae) in an unpredictable and patchy environment. Oecologia 109, 184–199 (1997).Article 
    ADS 

    Google Scholar 
    Figiel, C. R. & Semlitsch, R. D. Experimental determination of oviposition site selection in the marbled salamander, Ambystoma opacum. J. Herpetol. 29, 452 (1995).Article 

    Google Scholar 
    Kotler, B. P. & Mitchell, W. A. The effect of costly information in diet choice. Evol. Ecol. 9, 18–29 (1995).Article 

    Google Scholar 
    Nylin, S. & Janz, N. Oviposition preference and larval performance in Polygonia c-album (Lepidoptera: Nymphalidae): the choice between bad and worse. Ecol. Entomol. 18, 394–398 (1993).Article 

    Google Scholar 
    Nagaya, H., Stewart, F. J. & Kinoshita, M. Swallowtail butterflies use multiple visual cues to select oviposition sites. Insects 12, 1047 (2021).Article 

    Google Scholar 
    Scolari, F., Valerio, F., Benelli, G., Papadopoulos, N. T. & Vaníčková, L. Tephritid fruit fly semiochemicals: Current knowledge and future perspectives. Insects 12, 408 (2021).Article 

    Google Scholar 
    Haverkamp, A., Hansson, B. S. & Knaden, M. Combinatorial codes and labelled lines: How insects use olfactory cues to find and judge food, mates, and oviposition sites in complex environments. Front. Physiol. 9, 49 (2018).Article 

    Google Scholar 
    Ichinosé, T., Honda, H. & Honda, H. Ovipositional behavior of papilio protenor demetrius Cramer and the factors involved in its host plants. Appl. Entomol. Zool. 13, 103–114 (1978).Article 

    Google Scholar 
    Spangler, H. G. Functional and temporal analysis of sound production in Galleria mellonella L. (Lepidoptera: Pyralidae). J. Comp. Physiol. A 159, 751–756 (1986).Article 

    Google Scholar 
    Spangler, H. G. & Takessian, A. Sound perception by two species of wax moths (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 76, 94–97 (1983).Article 

    Google Scholar 
    Skals, N. & Surlykke, A. Hearing and evasive behaviour in the greater wax moth, Galleria mellonella (Pyralidae). Physiol. Entomol. 25, 354–362 (2008).Article 

    Google Scholar 
    Kwadha, C. A. Determination of Attractant Semio-Chemicals of the Wax Moth, Galleria mellonella L., in Honeybee Colonies. M.Sc. Thesis, University of Nairobi, Kenya (2017).Pickard, S. C., Quinn, R. D. & Szczecinski, N. C. A dynamical model exploring sensory integration in the insect central complex substructures. Bioinspir. Biomim. 15, 026003. https://doi.org/10.1088/1748-3190/ab57b6 (2020).Article 
    ADS 

    Google Scholar 
    Kamala Jayanthi, P. D., Saravan Kumar, P. & Vyas, M. Odour cues from fruit arils of artocarpus heterophyllus attract both sexes of oriental fruit flies. J. Chem. Ecol. 47, 552–563 (2021).Article 

    Google Scholar 
    Anfora, G., Tasin, M., de Cristofaro, A., Ioriatti, C. & Lucchi, A. Synthetic grape volatiles attract mated Lobesia botrana females in laboratory and field bioassays. J. Chem. Ecol. 35, 1054–1062 (2009).Article 

    Google Scholar 
    Fand, B. B. et al. Bacterial volatiles from mealybug honeydew exhibit kairomonal activity toward solitary endoparasitoid Anagyrus dactylopii. J. Pest Sci. 93, 195–206 (2020).Article 

    Google Scholar 
    Kovats, E. Gas chromatographic characterization of organic substances in the retention index system. Adv. Chromotogr. 1, 229–247 (1965).
    Google Scholar  More

  • in

    Plant traits and marsh fate

    Coleman, D. J. et al. Limnol. Oceanogr. Lett. 7, 140–149 (2022).Article 

    Google Scholar 
    Noyce, G. L. et al. https://doi.org/10.1038/s41561-022-01070-6 (2022).Kirwan, M. L. & Megonigal, J. P. Nature 504, 53–60 (2013).Article 

    Google Scholar 
    Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerve, B. & Cahoon, D. R. Ecology 83, 2869–2877 (2002).Article 

    Google Scholar 
    Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Proc. Natl Acad. Sci. 116, 21623–21628 (2019).Article 

    Google Scholar 
    Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Proc. Natl Acad. Sci. 106, 182–6186 (2009).Article 

    Google Scholar 
    Dean, J. F. et al. Rev. Geophys. 56, 207–250 (2018).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).Lin, Y. et al. Water Res. 205, 117682 (2021).Article 

    Google Scholar 
    Zakharova, L., Meyer, K. M. & Seifan, M. Ecol. Modell. 407, 108703 (2019).Article 

    Google Scholar  More

  • in

    Terrestrial invasive species alter marine vertebrate behaviour

    Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Evol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Burpee, B. T. & Saros, J. E. Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes. Environ. Sci. 22, 1166–1189 (2020).CAS 

    Google Scholar 
    Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).Article 

    Google Scholar 
    Justino, D. G., Maruyama, P. K. & Oliveira, P. E. Floral resource availability and hummingbird territorial behaviour on a Neotropical savanna shrub. J. Ornithol. 153, 189–197 (2012).Article 

    Google Scholar 
    Van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155 (2018).Gunn, R. L., Hartley, I. R., Algar, A. C., Nadiarti, N. & Keith, S. A. Variation in the behaviour of an obligate corallivore is influenced by resource availability. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-022-03132-6 (2022).Keith, S. A. et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat. Clim. Change 8, 986–991 (2018).Article 

    Google Scholar 
    Davies, N. B. & Hartley, I. R. Food patchiness, territory overlap and social systems: an experiment with dunnocks Prunella modularis. J. Anim. Ecol. 65, 837–846 (1996).Article 

    Google Scholar 
    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delarue, P. E. M., Kerr, S. E. & Rymer, T. L. Habitat complexity, environmental change and personality: a tropical perspective. Behav. Process. 120, 101–110 (2015).Stimson, J. The role of the territory in the ecology of the intertidal limpet Lottia gigantea (Gray). Ecology 54, 1020–1030 (1973).Article 

    Google Scholar 
    Sells, S. N. & Mitchell, M. S. The economics of territory selection. Ecol. Modell. 438, 109329 (2020).Article 

    Google Scholar 
    Graf, P. M., Mayer, M., Zedrosser, A., Hackländer, K. & Rosell, F. Territory size and age explain movement patterns in the Eurasian beaver. Mamm. Biol. 81, 587–594 (2016).Article 

    Google Scholar 
    Simon, C. The influence of food abundance on territory size in the Iguanid lizard Sceloporus jarrovi. Ecology 56, 993–998 (1975).Article 

    Google Scholar 
    Ippi, S., Cerón, G., Alvarez, L. M., Aráoz, R. & Blendinger, P. G. Relationships among territory size, body size, and food availability in a specialist river duck. Emu 118, 293–303 (2018).Article 

    Google Scholar 
    Berumen, M. L. & Pratchett, M. S. Effects of resource availability on the competitive behaviour of butterflyfishes (Chaetodontidae). In Proc. 10th International Coral Reef Symposium 644–650 (ReefBase, 2006); http://reefbase.org/resource_center/publication/icrs.aspx?icrs=ICRS10Brown, J. L. The evolution of diversity in avian territorial systems. Wilson Bull. 76, 160–169 (1964).
    Google Scholar 
    Peiman, K. S. & Robinson, B. W. Ecology and evolution of resource-related heterospecific aggression. Q. Rev. Biol. 85, 133–158 (2010).Article 
    PubMed 

    Google Scholar 
    Grant, J. W. A., Girard, I. L., Breau, C. & Weir, L. K. Influence of food abundance on competitive aggression in juvenile convict cichlids. Anim. Behav. 63, 323–330 (2002).Article 

    Google Scholar 
    Duda, M. P. et al. Long-term changes in terrestrial vegetation linked to shifts in a colonial seabird population. Ecosystems 23, 1643–1656 (2020).Article 
    CAS 

    Google Scholar 
    Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22, 16–26 (2008).Article 
    PubMed 

    Google Scholar 
    Honig, S. E. & Mahoney, B. Evidence of seabird guano enrichment on a coral reef in Oahu, Hawaii. Mar. Biol. 163, 22 (2016).Benkwitt, C. E., Gunn, R. L., Le Corre, M., Carr, P. & Graham, N. A. J. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr. Biol. 31, 2704–2711.e4 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Savage, C. Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci. Rep. 9, 4284 (2019).Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).Article 

    Google Scholar 
    Benkwitt, C. E., Taylor, B. M., Meekan, M. G. & Graham, N. A. J. Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish. Sci. Rep. 11, 12575 (2021).Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat. Ecol. Evol. 4, 919–926 (2020).Article 
    PubMed 

    Google Scholar 
    Robles, H. & Martin, K. Resource quantity and quality determine the inter-specific associations between ecosystem engineers and resource users in a cavity-nest web. PLoS ONE 8, e74694 (2013).Catano, L. B., Gunn, B. K., Kelley, M. C. & Burkepile, D. E. Predation risk, resource quality, and reef structural complexity shape territoriality in a coral reef herbivore. PLoS ONE 10, e0118764 (2015).Wilcox, K. A., Wagner, M. A. & Reynolds, J. D. Salmon subsidies predict territory size and habitat selection of an avian insectivore. PLoS ONE 16, e0254314 (2021).Frost, S. K. & Frost, P. G. H. Territoriality and changes in resource use by sunbirds at Leonotis leonurus (Labiatae). Oecologia 45, 109–116 (1980).Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, 1982).Book 

    Google Scholar 
    Dochtermann, N. A., Schwab, T., Anderson Berdal, M., Dalos, J. & Royauté, R. The heritability of behavior: a meta-analysis. J. Hered. 110, 403–410 (2019).Article 
    PubMed 

    Google Scholar 
    Sheppard, C. R. C. et al. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. Aquat. Conserv. 22, 232–261 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soeparno, Y. N., Shibuno, T. & Yamaoka, K. Relationship between pelagic larval duration and abundance of tropical fishes on temperate coasts of Japan. J. Fish. Biol. 80, 346–357 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).Article 
    PubMed 

    Google Scholar 
    Dall, S. R. X., Houston, A. I. & McNamara, J. M. The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol. Lett. 7, 734–739 (2004).Article 

    Google Scholar 
    Klumpp, D., McKinnon, D. & Daniel, P. Damselfish territories: zones of high productivity on coral reefs. Mar. Ecol. Prog. Ser. 40, 41–51 (1987).Article 

    Google Scholar 
    Carr, P. et al. Status and phenology of breeding seabirds and a review of important bird and biodiversity areas in the British Indian Ocean Territory. Bird Conserv. Int. 31, 14–34 (2020).Article 

    Google Scholar 
    Hoey, A. S. & Bellwood, D. R. Damselfish territories as a refuge for macroalgae on coral reefs. Coral Reefs 29, 107–118 (2010).Article 

    Google Scholar 
    Samways, M. J. Breakdown of butterflyfish (Chaetodontidae) territories associated with the onset of a mass coral bleaching event. Aquat. Conserv. 15, 101–107 (2005).Article 

    Google Scholar 
    Morgan, I. E. & Kramer, D. L. Determinants of social organization in a coral reef fish, the blue tang, Acanthurus coeruleus. Environ. Biol. Fishes 72, 443–453 (2005).Article 

    Google Scholar 
    Ceccarelli, D. M. Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26, 853–866 (2007).Article 

    Google Scholar 
    Gochfeld, D. J. Territorial damselfishes facilitate survival of corals by providing an associational defense against predators. Mar. Ecol. Prog. Ser. 398, 137–148 (2010).Article 

    Google Scholar 
    Gordon, T. A. C., Cowburn, B. & Sluka, R. D. Defended territories of an aggressive damselfish contain lower juvenile coral density than adjacent non-defended areas on Kenyan lagoon patch reefs. Coral Reefs 34, 13–16 (2015).Article 

    Google Scholar 
    Hays, G. C. et al. A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges. Mar. Biol. 167, 159–167 (2020).Article 

    Google Scholar 
    Nanninga, G. B., Côté, I. M., Beldade, R. & Mills, S. C. Behavioural acclimation to cameras and observers in coral reef fishes. Ethology 123, 705–711 (2017).Article 

    Google Scholar 
    Polunin, N. V. C. & Klumpp, D. W. Ecological correlates of foraging periodicity in herbivorous reef fishes of the Coral Sea. J. Exp. Mar. Biol. Ecol. 126, 1–20 (1989).Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Paola, V. D., Vullioud, P., Demarta, L., Alwany, M. A. & Ros, A. F. H. Factors affecting interspecific aggression in a year-round territorial species, the jewel damselfish. Ethology 118, 721–732 (2012).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Bürkner, P. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Soft. 80, 1–28 (2017).Article 

    Google Scholar 
    RStan: the R interface to Stan. R package version 2.21.5 (Stan Development Team, 2022).Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Soft. 33, 1–22 (2010).Article 

    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).Article 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Burkner, P. C. Rank-normalization, folding, and localization: an improved (formula presented) for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar  More

  • in

    Reply to: Measuring the world’s cropland area

    FAO. Handbook on crop statistics: improving methods for measuring crop area, production and yield. (FAO, Rome, Italy, 2018).FAO. Land use statistics and indicators: global, regional and county trends 1990-2019. FAOSTAT Anal. Brief Ser. No 28 (2021).Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 1–10 (2021) https://doi.org/10.1038/s43016-021-00429-zFAO. A system of integrated agricultural censuses and surveys. (FAO, 2005).FAO. Land use statistics and indicators. Global, regional and country trends, 2000–2020. (FAO, Rome, Italy, 2022).Loveland, T. R. et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21, 1303–1330 (2000).Article 

    Google Scholar 
    Zanaga, D. et al. ESA WorldCover 10 m 2020 v100. (2021) https://doi.org/10.5281/zenodo.5571936Cochran, W. G. Sampling techniques. (Wiley, 1977).Stehman, S. V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 35, 4923–4939 (2014).Article 

    Google Scholar 
    Tsujino, R., Kaijisa, T. & Yumoto, T. Causes and history of forest loss in Cambodia. Int. For. Rev. 21, 372–384 (2019).
    Google Scholar 
    Hu, Q. et al. Global cropland intensification surpassed expansion between 2000 and 2010: A spatio-temporal analysis based on GlobeLand30. Sci. Total Environ. 746, 141035 (2020).Grainger, A. Difficulties in tracking the long-term global trend in tropical forest area. Proc. Natl Acad. Sci. 105, 818–823 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    FAO. FAOSTAT. https://www.fao.org/faostat/en/#home (2021). More

  • in

    Myzomyia and Pyretophorus series of Anopheles mosquitoes acting as probable vectors of the goat malaria parasite Plasmodium caprae in Thailand

    Asada, M. et al. Close relationship of Plasmodium sequences detected from South American pampas deer (Ozotoceros bezoarticus) to Plasmodium spp. in North American white-tailed deer. Int. J. Parasitol. 7, 44–47. https://doi.org/10.1016/j.ijppaw.2018.01.001 (2018).Article 

    Google Scholar 
    Boundenga, L. et al. Haemosporidian parasites of antelopes and other vertebrates from Gabon, Central Africa. PLoS ONE 11, e0148958. https://doi.org/10.1371/journal.pone.0148958 (2016).Article 
    CAS 

    Google Scholar 
    Martinsen, E. S., Perkins, S. L. & Schall, J. J. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol. Phylogen. Evol. 47, 261–273. https://doi.org/10.1016/j.ympev.2007.11.012 (2008).Article 
    CAS 

    Google Scholar 
    Templeton, T. J. et al. Ungulate malaria parasites. Sci. Rep. 6, 23230. https://doi.org/10.1038/srep23230 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Templeton, T. J., Martinsen, E., Kaewthamasorn, M. & Kaneko, O. The rediscovery of malaria parasites of ungulates. Parasitology 143, 1501–1508. https://doi.org/10.1017/s0031182016001141 (2016).Article 

    Google Scholar 
    Bruce, D., Harvey, D., Hamerton, A. E. & Bruce, L. Plasmodium cephalophi, sp. nov. Proc. R. Soc. B. 87, 45–47 (1913).ADS 

    Google Scholar 
    Sheather, A. L. A malarial parasite in the blood of a buffalo. J. Comp. Pathol. 32, 223–229 (1919).Article 

    Google Scholar 
    Kandel, R. C. et al. First report of malaria parasites in water buffalo in Nepal. Vet. Parasitol. Reg. Stud. Rep. 18, 100348. https://doi.org/10.1016/j.vprsr.2019.100348 (2019).Article 

    Google Scholar 
    de Mello, F. & Paes, S. Sur une plasmodiae du sang des chèvres. C. R. Séanc. Soc. Biol 88, 829–830 (1923).
    Google Scholar 
    Kaewthamasorn, M. et al. Genetic homogeneity of goat malaria parasites in Asia and Africa suggests their expansion with domestic goat host. Sci. Rep. 8, 5827. https://doi.org/10.1038/s41598-018-24048-0 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Garnham, P. C. & Edeson, J. F. Two new malaria parasites of the Malayan mousedeer. Riv. Malariol. 41, 1–8 (1962).CAS 

    Google Scholar 
    Garnham, P. C. & Kuttler, K. L. A malaria parasite of the white-tailed deer (Odocoileus virginianus) and its relation with known species of Plasmodium in other ungulates. Proc. R. Soc. Lond. B 206, 395–402. https://doi.org/10.1098/rspb.1980.0003 (1980).Article 
    ADS 
    CAS 

    Google Scholar 
    Martinsen, E. et al. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus). Sci. Adv. 2, e1501486. https://doi.org/10.1126/sciadv.1501486 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Rattanarithikul, R. et al. Illustrated keys to the mosquitoes of Thailand. IV. Anopheles. Southeast Asian. Trop. Med. Public Health 37, 1–128 (2006).
    Google Scholar 
    Walter Reed Biosystematics Unit. Systematic catalogue of Culicidae. http://mosquitocatalog.org (2021).Manguin, S., Garros, C., Dusfour, I., Harbach, R. E. & Coosemans, M. Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: An updated review. Infect. Genet. Evol. 8, 489–503. https://doi.org/10.1016/j.meegid.2007.11.004 (2008).Article 
    CAS 

    Google Scholar 
    Brosseau, L. et al. A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasit. Vectors 12, 223. https://doi.org/10.1186/s13071-019-3494-8 (2019).Article 

    Google Scholar 
    Paredes-Esquivel, C., Donnelly, M. J., Harbach, R. E. & Townson, H. A molecular phylogeny of mosquitoes in the Anopheles barbirostris Subgroup reveals cryptic species: implications for identification of disease vectors. Mol. Phylogen. Evol. 50, 141–151. https://doi.org/10.1016/j.ympev.2008.10.011 (2009).Article 
    CAS 

    Google Scholar 
    Taai, K. & Harbach, R. E. Systematics of the Anopheles barbirostris species complex (Diptera: Culicidae: Anophelinae) in Thailand. Zool. J. Linn. Soc. 174, 244–264. https://doi.org/10.1111/zoj.12236 (2015).Article 

    Google Scholar 
    Garros, C., Van Bortel, W., Trung, H. D., Coosemans, M. & Manguin, S. Review of the Minimus Complex of Anopheles, main malaria vector in Southeast Asia: From taxonomic issues to vector control strategies. Trop. Med. Int. Health 11, 102–114. https://doi.org/10.1111/j.1365-3156.2005.01536.x (2006).Article 
    CAS 

    Google Scholar 
    Dahan-Moss, Y. et al. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar. J. 19, 89. https://doi.org/10.1186/s12936-020-03168-x (2020).Article 
    CAS 

    Google Scholar 
    Van Bortel, W. et al. Confirmation of Anopheles varuna in Vietnam, previously misidentified and mistargeted as the malaria vector Anopheles minimus. Am. J. Trop. Med. Hyg. 65, 729–732. https://doi.org/10.4269/ajtmh.2001.65.729 (2001).Article 

    Google Scholar 
    Wharton, R. H., Eyles, D. E., Warren, M., Moorhouse, D. E. & Sandosham, A. A. Investigations leading to the identification of members of the Anopheles umbrosus group as the probable vectors of mouse deer malaria. Bull. 29, 357–374 (1963).CAS 

    Google Scholar 
    Nugraheni, Y. R. et al. Myzorhynchus series of Anopheles mosquitoes as potential vectors of Plasmodium bubalis in Thailand. Sci. Rep. 12, 5747. https://doi.org/10.1038/s41598-022-09686-9 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Tu, H. L. C. et al. Development of a novel multiplex PCR assay for the detection and differentiation of Plasmodium caprae from Theileria luwenshuni and Babesia spp. in goats. Acta Trop. 220, 105957. https://doi.org/10.1016/j.actatropica.2021.105957 (2021).Article 
    CAS 

    Google Scholar 
    Cywinska, A., Hunter, F. F. & Hebert, P. D. Identifying Canadian mosquito species through DNA barcodes. Med. Vet. Entomol. 20, 413–424. https://doi.org/10.1111/j.1365-2915.2006.00653.x (2006).Article 
    CAS 

    Google Scholar 
    Hebert, P. D., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).Article 
    CAS 

    Google Scholar 
    Ogola, E. O., Chepkorir, E., Sang, R. & Tchouassi, D. P. A previously unreported potential malaria vector in a dry ecology of Kenya. Parasit. Vectors 12, 80. https://doi.org/10.1186/s13071-019-3332-z (2019).Article 

    Google Scholar 
    Maquart, P. O., Fontenille, D., Rahola, N., Yean, S. & Boyer, S. Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia. Parasite 28, 60. https://doi.org/10.1051/parasite/2021056 (2021).Article 

    Google Scholar 
    Tainchum, K. et al. Diversity of Anopheles species and trophic behavior of putative malaria vectors in two malaria endemic areas of northwestern Thailand. J. Vector. Ecol. 39, 424–436. https://doi.org/10.1111/jvec.12118 (2014).Article 

    Google Scholar 
    Vantaux, A. et al. Anopheles ecology, genetics and malaria transmission in northern Cambodia. Sci. Rep. 11, 6458. https://doi.org/10.1038/s41598-021-85628-1 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Chookaew, S. et al. Anopheles species composition in malaria high-risk areas in Ranong Province. Dis. Control J. 46, 483–493. https://doi.org/10.14456/dcj.2020.45 (2020).Article 

    Google Scholar 
    Makanga, B. et al. Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc. Natl. Acad. Sci. USA. 113, 5329–5334. https://doi.org/10.1073/pnas.1603008113 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Ariey, F., Gay, F. & Ménard, R. Malaria Control and Elimination Vol. 254 (Springer, 2020).
    Google Scholar 
    Williams, J. & Pinto, J. Training Manual on Malaria Entomology (Springer, 2012).
    Google Scholar 
    Rigg, C. A., Hurtado, L. A., Calzada, J. E. & Chaves, L. F. Malaria infection rates in Anopheles albimanus (Diptera: Culicidae) at Ipetí-Guna, a village within a region targeted for malaria elimination in Panamá. Infect. Genet. Evol. 69, 216–223. https://doi.org/10.1016/j.meegid.2019.02.003 (2019).Article 

    Google Scholar 
    Torres-Cosme, R. et al. Natural malaria infection in anophelines vectors and their incrimination in local malaria transmission in Darién Panama. PLoS ONE 16, e0250059. https://doi.org/10.1371/journal.pone.0250059 (2021).Article 
    CAS 

    Google Scholar 
    Beebe, N. W. & Saul, A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am. J. Trop. Med. Hyg. 53, 478–481. https://doi.org/10.4269/ajtmh.1995.53.478 (1995).Article 
    CAS 

    Google Scholar 
    Perkins, S. L. & Schall, J. J. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J. Parasitol. 88, 972–978. https://doi.org/10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2 (2002).Article 
    CAS 

    Google Scholar 
    Snounou, G. et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol. 61, 315–320. https://doi.org/10.1016/0166-6851(93)90077-B (1993).Article 
    CAS 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).Article 
    CAS 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).Article 
    CAS 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300 (2015).Article 
    CAS 

    Google Scholar 
    Ventim, R. et al. Avian malaria infections in western European mosquitoes. Parasitol. Res. 111, 637–645. https://doi.org/10.1007/s00436-012-2880-3 (2012).Article 

    Google Scholar  More