More stories

  • in

    Resolving the intricate role of climate in litter decomposition

    Swift, M. J., Heal, O. W. & Anderson, J. M. Decomposition in Terrestrial Ecosystems. Vol. 5.5 (Blackwell, 1979).Aerts, R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79, 439 (1997).Article 

    Google Scholar 
    Makkonen, M. et al. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol. Lett. 15, 1033–1041 (2012).Article 

    Google Scholar 
    Coûteaux, M. M., Bottner, P. & Berg, B. Litter decomposition, climate and liter quality. Trends Ecol. Evol. 10, 63–66 (1995).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).Article 

    Google Scholar 
    Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).Article 
    CAS 

    Google Scholar 
    Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104, 229–238 (2016).Article 
    CAS 

    Google Scholar 
    Joly, F.-X. et al. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol. 214, 1281–1293 (2017).Article 
    CAS 

    Google Scholar 
    Bradford, M. A. et al. A test of the hierarchical model of litter decomposition. Nat. Ecol. Evol. 1, 1836–1845 (2017).Article 

    Google Scholar 
    Berg, B. et al. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20, 127–159 (1993).Article 

    Google Scholar 
    Powers, J. S. et al. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecol. 97, 801–811 (2009).Article 
    CAS 

    Google Scholar 
    Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. 628–629, 1369–1394 (2018).Article 

    Google Scholar 
    Cornelissen, J. H. C. & Thompson, K. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol. 135, 109–114 (1997).Article 
    CAS 

    Google Scholar 
    Coq, S., Souquet, J.-M., Meudec, E., Cheynier, V. & Hättenschwiler, S. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91, 2080–2091 (2010).Article 

    Google Scholar 
    Sun, T. et al. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc. Natl Acad. Sci. USA 115, 10392–10397 (2018).Article 
    CAS 

    Google Scholar 
    Baeten, L. et al. A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect. Plant Ecol. Evol. Syst. 15, 281–291 (2013).Article 

    Google Scholar 
    Hobbie, S. E. et al. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87, 2288–2297 (2006).Article 

    Google Scholar 
    von Arx, G., Graf Pannatier, E., Thimonier, A. & Rebetez, M. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J. Ecol. 101, 1201–1213 (2013).Article 

    Google Scholar 
    Ayres, E. et al. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol. Biochem. 41, 606–610 (2009).Article 
    CAS 

    Google Scholar 
    Freschet, G. T., Aerts, R. & Cornelissen, J. H. C. Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J. Ecol. 100, 619–630 (2012).Article 

    Google Scholar 
    Meentemeyer, V. Macroclimate and lignin control of litter decomposition rates. Ecology 59, 465–472 (1978).Article 
    CAS 

    Google Scholar 
    Currie, W. S. et al. Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale. Glob. Change Biol. 16, 1744–1761 (2010).Article 

    Google Scholar 
    Canessa, R. et al. Relative effects of climate and litter traits on decomposition change with time, climate and trait variability. J. Ecol. 109, 447–458 (2021).Article 

    Google Scholar 
    García-Palacios, P., Shaw, E. A., Wall, D. H. & Hättenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19, 554–563 (2016).Article 

    Google Scholar 
    Prescott, C. E. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101, 133–149 (2010).Article 
    CAS 

    Google Scholar 
    Prescott, C. E. & Vesterdal, L. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manage. 498, 119522 (2021).Article 

    Google Scholar 
    Stadler, S. J. in Encyclopedia of World Climatology 89–94 (Springer, 2005).Moore, T. R., Bubier, J. L. & Bledzki, L. Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10, 949–963 (2007).Article 

    Google Scholar 
    Austin, A. T. Has water limited our imagination for aridland biogeochemistry. Trends Ecol. Evol. 26, 229–235 (2011).Article 

    Google Scholar 
    Joly, F.-X., Kurupas, K. & Throop, H. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition. Ecology 98, 2255–2260 (2017).Article 

    Google Scholar 
    Scherer-Lorenzen, M., Bonilla, J. L. & Potvin, C. Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos 116, 2108–2124 (2007).Article 

    Google Scholar 
    Vivanco, L. & Austin, A. T. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J. Ecol. 96, 727–736 (2008).Article 
    CAS 

    Google Scholar 
    Fanin, N. et al. Home‐field advantage of litter decomposition: from the phyllosphere to the soil. New Phytol. 231, 1353–1358 (2021).Article 

    Google Scholar 
    Hättenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).Article 

    Google Scholar 
    Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M. & Hefting, M. M. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol. Evol. 4, 1070–1075 (2013).Article 

    Google Scholar 
    Thakur, M. P. et al. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Change 8, 75–78 (2018).Article 

    Google Scholar 
    Harrison, A. F., Latter, P. M. & Walton, D. W. H. (eds) Cotton Strip Assay: An Index of Decomposition in Soils (Institute of Terrestrial Ecology, 1988).García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–1053 (2013).Article 

    Google Scholar 
    Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).Article 

    Google Scholar 
    Dawud, S. M. et al. Tree species functional group is a more important driver of soil properties than tree species diversity across major European forest types. Funct. Ecol. 31, 1153–1162 (2017).Article 

    Google Scholar 
    Pollastrini, M. et al. Taxonomic and ecological relevance of the chlorophyll a fluorescence signature of tree species in mixed European forests. New Phytol. 212, 51–65 (2016).Article 
    CAS 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2013).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar  More

  • in

    Benthic composition changes on coral reefs at global scales

    Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, R942–R995 (2019).Article 

    Google Scholar 
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).Article 
    CAS 

    Google Scholar 
    Arrigo, K. R. et al. Synergistic interactions among growing stressors increase risk to an Arctic ecosystem. Nat. Commun. 11, 6255 (2020).Article 
    CAS 

    Google Scholar 
    Kopf, R. K., Finlayson, C. M., Humphries, P., Sims, N. C. & Hladyz, S. Anthropocene baselines: assessing change and managing biodiversity in human-dominated aquatic ecosystems. Bioscience 65, 798–811 (2015).Article 

    Google Scholar 
    Chapin, F. S. et al. Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol. Evol. 25, 241–249 (2010).Article 

    Google Scholar 
    Seastedt, T. R., Hobbs, R. J. & Suding, K. N. Management of novel ecosystems: are novel approaches required? Front. Ecol. Environ. 6, 547–553 (2008).Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).Article 
    CAS 

    Google Scholar 
    Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article 

    Google Scholar 
    Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: embracing new futures. Curr. Opin. Environ. Sustain. 7, 9–14 (2014).Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 
    CAS 

    Google Scholar 
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).Article 
    CAS 

    Google Scholar 
    Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).Article 
    CAS 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Teh, L. S. L., Teh, L. C. L. & Sumaila, U. R. A global estimate of the number of coral reef fishers. PLoS ONE 8, e65397 (2013).Article 
    CAS 

    Google Scholar 
    Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 3794 (2014).Article 
    CAS 

    Google Scholar 
    Skirving, W. J. et al. The relentless march of mass coral bleaching: a global perspective of changing heat stress. Coral Reefs 38, 547–557 (2019).Article 

    Google Scholar 
    Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980 (2021).Article 
    CAS 

    Google Scholar 
    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).Article 

    Google Scholar 
    Diaz-Pulido, G. & McCook, L. J. The fate of bleached corals: patterns and dynamics of algal recruitment. Mar. Ecol. Prog. Ser. 232, 115–128 (2002).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).Article 
    CAS 

    Google Scholar 
    Jouffray, J. B. et al. Parsing human and biophysical drivers of coral reef regimes. Proc. R. Soc. B Biol. Sci. 286, 20182544 (2019).Article 

    Google Scholar 
    Reverter, M., Helber, S. B., Rohde, S., Goeij, J. M. & Schupp, P. J. Coral reef benthic community changes in the Anthropocene: biogeographic heterogeneity, overlooked configurations, and methodology. Glob. Chang. Biol. 28, 1956–1971 (2022).Article 

    Google Scholar 
    Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Chang. Biol. 23, 1511–1524 (2017).Article 

    Google Scholar 
    Done, T. in Perspectives on Coral Reefs (ed. Barnes, D. J.) 107–147 (Brian Clouston, 1983).Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected areas improve reef resilience? Ann. Rev. Mar. Sci. 11, 307–334 (2019).Article 

    Google Scholar 
    Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).Article 
    CAS 

    Google Scholar 
    Schutte, V. G. W., Selig, E. R. & Bruno, J. F. Regional spatio-temporal trends in Caribbean coral reef benthic communities. Mar. Ecol. Prog. Ser. 402, 115–122 (2010).Article 

    Google Scholar 
    Hughes, T. P. Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).Article 
    CAS 

    Google Scholar 
    Souter, D. et al. Status of Coral Reefs of the World: 2020 (Global Coral Reef Monitoring Network, 2021).Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2, e711 (2007).Article 

    Google Scholar 
    Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).Article 

    Google Scholar 
    Bellwood, D. R., Hemingson, C. R. & Tebbett, S. B. Subconscious biases in coral reef fish studies. Bioscience 70, 621–627 (2020).Article 

    Google Scholar 
    Kench, P. S. et al. Sustained coral reef growth in the critical wave dissipation zone of a Maldivian atoll. Commun. Earth Environ. 3, 9 (2022).Article 

    Google Scholar 
    Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).Article 

    Google Scholar 
    Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).Article 
    CAS 

    Google Scholar 
    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).Article 

    Google Scholar 
    Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90, 1478–1484 (2009).Article 

    Google Scholar 
    Renema, W. et al. Hopping hotspots: global shifts in marine biodiversity. Science 321, 654–657 (2008).Article 
    CAS 

    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92, 878–901 (2017).Article 

    Google Scholar 
    Roff, G. Evolutionary history drives biogeographic patterns of coral reef resilience. Bioscience 71, 26–39 (2021).
    Google Scholar 
    Siqueira, A. C., Bellwood, D. R. & Cowman, P. F. The evolution of traits and functions in herbivorous coral reef fishes through space and time. Proc. R. Soc. B Biol. Sci. 286, 20182672 (2019).Article 

    Google Scholar 
    Birrell, C. L., McCook, L. J., Willis, B. L. & Diaz-Pulido, G. A. Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr. Mar. Biol. Annu. Rev. 46, 25–63 (2008).
    Google Scholar 
    Speare, K. E., Duran, A., Miller, M. W. & Burkepile, D. E. Sediment associated with algal turfs inhibits the settlement of two endangered coral species. Mar. Pollut. Bull. 144, 189–195 (2019).Article 
    CAS 

    Google Scholar 
    Diaz-Pulido, G., Harii, S., McCook, L. J. & Hoegh-Guldberg, O. The impact of benthic algae on the settlement of a reef-building coral. Coral Reefs 29, 203–208 (2010).Article 

    Google Scholar 
    Johns, K. A. et al. Macroalgal feedbacks and substrate properties maintain a coral reef regime shift. Ecosphere 9, e02349 (2018).Article 

    Google Scholar 
    Houk, P. et al. Commercial coral-reef fisheries across Micronesia: a need for improving management. Coral Reefs 31, 13–26 (2012).Article 

    Google Scholar 
    Edwards, C. B. et al. Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc. R. Soc. B Biol. Sci. 281, 20131835 (2014).Article 
    CAS 

    Google Scholar 
    Choat, J. H. & Clements, K. D. Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst. 29, 375–403 (1998).Article 

    Google Scholar 
    Tebbett, S. B., Morais, R. A., Goatley, C. H. R. & Bellwood, D. R. Collapsing ecosystem functions on an inshore coral reef. J. Environ. Manag. 289, 112471 (2021).Article 

    Google Scholar 
    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl Acad. Sci. USA. 118, e2015265118 (2021).Article 
    CAS 

    Google Scholar 
    Diaz-Pulido, G. et al. Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs. Nat. Commun. 5, 3310 (2014).Article 

    Google Scholar 
    Nash, M. C. et al. Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nat. Clim. Chang. 3, 268–272 (2013).Article 
    CAS 

    Google Scholar 
    Lyons, M., Larsen K. & Skone, M. Allen Coral Atlas. Imagery, maps and monitoring of the world’s tropical coral reefs. Zenodo https://doi.org/10.5281/zenodo.3833242 (2020).Tebbett, S. B. & Bellwood, D. R. Algal turf sediments on coral reefs: what’s known and what’s next. Mar. Pollut. Bull. 149, 110542 (2019).Article 
    CAS 

    Google Scholar 
    Nugues, M. M. & Bak, R. P. M. Long-term dynamics of the brown macroalga Lobophora variegata on deep reefs in Curaçao. Coral Reefs 27, 389–393 (2008).Article 

    Google Scholar 
    Tsounis, G. & Edmunds, P. J. Three decades of coral reef community dynamics in St. John, USVI: a contrast of scleractinians and octocorals. Ecosphere 8, e01646 (2017).Article 

    Google Scholar 
    Toth, L. T. et al. Do no-take reserves benefit Florida’s corals? 14 years of change and stasis in the Florida Keys National Marine Sanctuary. Coral Reefs 33, 565–577 (2014).Article 

    Google Scholar 
    Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B Biol. Sci. 283, 20151985 (2016).Article 

    Google Scholar 
    Wolfe, K., Kenyon, T. M. & Mumby, P. J. The biology and ecology of coral rubble and implications for the future of coral reefs. Coral Reefs 40, 1769–1806 (2021).Article 

    Google Scholar 
    Harris, J. L., Lewis, L. S. & Smith, J. E. Quantifying scales of spatial variability in algal turf assemblages on coral reefs. Mar. Ecol. Prog. Ser. 532, 41–57 (2015).Article 

    Google Scholar 
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, T. P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).Article 

    Google Scholar 
    Crisp, S. K., Tebbett, S. B. & Bellwood, D. R. A critical evaluation of benthic phase shift studies on coral reefs. Mar. Environ. Res. 178, 105667 (2022).Article 
    CAS 

    Google Scholar 
    WebPlotDigitizer v. 4.3 (A. Rohatgi, 2020); https://automeris.io/WebPlotDigitizerKulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS ONE 8, e81847 (2013).Article 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    R Core Team: R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Zychaluk, K., Bruno, J. F., Clancy, D., McClanahan, T. R. & Spencer, M. Data-driven models for regional coral-reef dynamics. Ecol. Lett. 15, 151–158 (2012).Article 

    Google Scholar 
    Dudgeon, S. R., Aronson, R. B., Bruno, J. F. & Precht, W. F. Phase shifts and stable states on coral reefs. Mar. Ecol. Prog. Ser. 413, 201–216 (2010).Article 

    Google Scholar 
    Jost, L., Chao, A. & Chazdon, R. L. in Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran, A. E. & McGill, B. J.) 66–84 (Oxford Univ. Press, 2011).Oksanen, J. F. et al. Vegan: Community ecology package. R package version 2.5-6 (2019).Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Worton, B. J. Kernel methods for estimating the utilization distribution in home‐range studies. Ecology 70, 164–168 (1989).Article 

    Google Scholar 
    Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman & Hall/CRC, 2017).Gräler, B., Pebesma, E. & Heuvelink, G. Spatio-temporal interpolation using gstat. R. J. 8, 204–218 (2016).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0 (2020).Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.1 (2020).Wickham, H. et al. tidyverse: easily install and load the ‘tidyverse’. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).Article 

    Google Scholar 
    South, A. rnaturalearth: World map data from natural earth. R package version 0.1.0 (2017).Hamilton, N. E. & Ferry, M. ggtern: ternary diagrams using ggplot2. J. Stat. Softw., Code Snippets 87, 1–17 (2018).
    Google Scholar 
    Pedersen, T. L. patchwork: The composer of plots. R package version 1.1.1 (2020). More

  • in

    Tracking the British agricultural revolution through the isotopic analysis of dated parchment

    Jones, E. L. Agriculture and economic growth in England, 1660–1750: Agricultural change. J. Econ. Hist. 25, 1–18 (1965).Article 

    Google Scholar 
    Chambers, J. D. & Mingay, G. E. The Agricultural Revolution: 1750–1880 (Batsford, 1966).
    Google Scholar 
    Kerridge, E. The Agricultural Revolution (Allen & Unwin, Paris, 1967).
    Google Scholar 
    Thompson, F. M. L. The second agricultural revolution, 1815–1880. Econ. Hist. Rev. 21, 62–77 (1968).
    Google Scholar 
    Overton, M. Agricultural Revolution in England: The Transformation of the Agrarian Economy 1500–1850 (Cambridge University Press, 1996).Book 

    Google Scholar 
    Turner, M. E., Beckett, J. V. & Afton, B. Farm Production in England 1700–1914 (Oxford University Press, 2001).Book 

    Google Scholar 
    Williamson, T. The Transformation of Rural England: Farming and the Landscape, 1700–1870 (University of Exeter Press, 2002).
    Google Scholar 
    Davis, J. M. & Beckett, J. V. Animal husbandry and agricultural improvement: The archaeological evidence from animal bones and teeth. Rural Hist. 10, 1–17 (1999).Article 
    CAS 

    Google Scholar 
    Thomas, R. Zooarchaeology, improvement and the British agricultural revolution. Int. J. Hist. Archaeol. 9, 71–88 (2005).Article 

    Google Scholar 
    Sologestoa, I. G. & Albarella, U. (eds) The Rural World in the Sixteenth Century: Exploring the Archaeology of Innovation in Europe (Brepols, 2002).
    Google Scholar 
    Doherty, S. P. & Henderson, S. Production of parchment legal deeds in England, 1690–1830. Hist. Res. 95, 575–585 (2022).Article 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).Article 
    ADS 
    CAS 

    Google Scholar 
    Bateman, A. S. & Kelly, S. D. Fertilizer nitrogen isotope signatures. Isotopes Environ. Health Stud. 43, 237–247 (2007).Article 
    CAS 

    Google Scholar 
    Szpak, P. Complexities of nitrogen isotope biogeochemistry in plant–soil systems: Implications for the study of ancient agricultural and animal management practices. Front. Plant Sci. 5, 288 (2014).Article 
    ADS 

    Google Scholar 
    Trentacoste, A. et al. Heading for the hills? A multi-isotope study of sheep management in first-millennium BC Italy. J. Archaeol. Sci. Rep. 29, 102036 (2020).
    Google Scholar 
    Doherty, S., Alexander, M. M., Vnouček, J., Newton, J. & Collins, M. J. Measuring the impact of parchment production on skin collagen stable isotope (δ13C and δ15N) values. STAR Sci. Technol. Archaeol. Res. 7, 1–12 (2021).
    Google Scholar 
    Doherty, S. P. et al. A modern baseline for the paired isotopic analysis of skin and bone in terrestrial mammals. R. Soc. Open Sci. 9, 211587 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Camin, F. et al. Multi-element (H, C, N, S) stable isotope characteristics of lamb meat from different European regions. Anal. Bioanal. Chem. 389, 309–320 (2007).Article 
    CAS 

    Google Scholar 
    Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl. Acad. Sci. U.S.A. 107, 19691–19695 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Clarkson, L. A. The manufacture of leather. In The Agrarian History of England and Wales, Vol VI, 1750–1820 (ed. Mingay, G. E.) 466–485 (Cambridge University Press, 1989).
    Google Scholar 
    Millard, A. R., Dodd, L. & Nowell, G. Palace Green Library excavations 2013 (PGL13): Isotopic Studies Project Report (2015).Bleasdale, M. et al. Multidisciplinary investigations of the diets of two post-medieval populations from London using stable isotopes and microdebris analysis. Archaeol. Anthropol. Sci. 11, 6161–6181 (2019).Article 

    Google Scholar 
    Thirsk, J. The English Rural Landscape (Oxford University Press, 2000).
    Google Scholar 
    Home, T. H. The Complete Grazier 5th edn. (Baldwin & Cradock, 1830).
    Google Scholar 
    Ellman, J. On folding sheep. The Farmers Magazine 110 (1831).Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I. The impact of manuring on nitrogen isotope ratios in cereals: Archaeological implications for reconstruction of diet and crop management practices. J. Archaeol. Sci. 34, 335–343 (2007).Article 

    Google Scholar 
    Schwertl, M., Auerswald, K., Schäufele, R. & Schnyder, H. Carbon and nitrogen stable isotope composition of cattle hair: Ecological fingerprints of production systems?. Agric. Ecosyst. Environ. 109, 153–165 (2005).Article 
    CAS 

    Google Scholar 
    Trow-Smith, R. A History of British Livestock Husbandry, 1700–1900 (Keegan & Paul, 1959).
    Google Scholar 
    Babraj, J. A. et al. Collagen synthesis in human musculoskeletal tissues and skin. Am. J. Physiol. Endocrinol. Metab. 289, E864–E869 (2005).Article 
    CAS 

    Google Scholar 
    El-Harake, W. A. et al. Measurement of dermal collagen synthesis rate in vivo in humans. Am. J. Physiol. 274, E586–E591 (1998).CAS 

    Google Scholar 
    Fuller, B. T., Fuller, J. L., Harris, D. A. & Hedges, R. E. M. Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios. Am. J. Phys. Anthropol. 129, 279–293 (2006).Article 
    CAS 

    Google Scholar 
    Houghton, J. Friday 7th 1694. In Husbandry and Trade Improv’d (ed. Bradley, R.) 323–330 (Woodman and Lyon, 1728).
    Google Scholar 
    de La Lande, J. & McCauley, G. The art of making parchment. Art Transl. 13, 326–386 (2021).Article 

    Google Scholar 
    Reed, R. Ancient Skins, Parchments and Leather (Seminar Press, 1973).
    Google Scholar 
    Mekota, A.-M., Grupe, G., Ufer, S. & Cuntz, U. Serial analysis of stable nitrogen and carbon isotopes in hair: Monitoring starvation and recovery phases of patients suffering from anorexia nervosa. Rapid Commun. Mass Spectrom. 20, 1604–1610 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Neuberger, F. M., Jopp, E., Graw, M., Püschel, K. & Grupe, G. Signs of malnutrition and starvation–reconstruction of nutritional life histories by serial isotopic analyses of hair. Forensic Sci. Int. 226, 22–32 (2013).Article 
    CAS 

    Google Scholar 
    Hargis, A. M. & Myers, S. The intergument. In Pathological Basis of Veterinary Disease 6th edn (ed. Zachary, J. F.) 1009–1146 (Elsevier, 2017).Chapter 

    Google Scholar 
    Hansard’s Parliamentary Debates, Volume 28, Third Series, comprising the period from 22nd May to 26th June 1835. (T.C. Hansard, 1835).US Department of Agriculture. Foot Rot of Sheep, FB2206 (USDA, 1972).
    Google Scholar 
    The House of Commons. Reports from Committees, Volume 8, Part 1 79–288 (Select Committee on Agricultural Distress, 1836).
    Google Scholar 
    Pálsson, H. & Vergés, J. B. Effects of the plane of nutrition on growth and the development of carcass quality in lambs Part I. The effects of High and Low planes of nutrition at different ages. J. Agric. Sci. 42, 1–92 (1952).Article 

    Google Scholar 
    Grau-Sologestoa, I. & Albarella, U. The ‘long’ sixteenth century: A key period of animal husbandry change in England. Archaeol. Anthropol. Sci. 11, 2781–2803 (2019).Article 

    Google Scholar 
    Fisher, A. & Thomas, R. Isotopic and zooarchaeological investigation of later medieval and post-medieval cattle husbandry at Dudley Castle, West Midlands. Environ. Archaeol. 17, 151–167 (2012).Article 

    Google Scholar 
    Jones, E. L. The Development of English Agriculture, 1815–1873 (Palgrave, 1968).Book 

    Google Scholar 
    Perren, R. Agriculture in Depression 1870–1940 (Cambridge University Press, 1995).
    Google Scholar 
    Osorio, M. T., Moloney, A. P., Schmidt, O. & Monahan, F. J. Beef authentication and retrospective dietary verification using stable isotope ratio analysis of bovine muscle and tail hair. J. Agric. Food Chem. 59, 3295–3305 (2011).Article 
    CAS 

    Google Scholar 
    Zazzo, A. et al. Isotopic composition of sheep wool records seasonality of climate and diet. Rapid Commun. Mass Spectrom. 29, 1357–1369 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Anonymous. Supplementary Chapter to ‘An Essay on Calcareous Manures’. in The Farmer’s Register. Vol. I. 76–79 (Printed for Edmund Ruffin, 1834).Szpak, P., Longstaffe, F. J., Millaire, J.-F. & White, C. D. Stable isotope biogeochemistry of seabird guano fertilization: Results from growth chamber studies with maize (Zea mays). PLoS One 7, e33741 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Caird, S. J. English Agriculture in 1850–51 (Longman, Brown, Green, and Longmans, 1852).Book 

    Google Scholar 
    Prothero, R. E. English Farming, Past and Present (Longmans, Green, 1912).
    Google Scholar 
    Doherty, S. P., Henderson, S., Fiddyment, S., Finch, J. & Collins, M. J. Scratching the surface: The use of sheepskin parchment to deter textual erasure in early modern legal deeds. Herit. Sci. 9, 29 (2021).Article 
    CAS 

    Google Scholar 
    Fiddyment, S. et al. Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting. Proc. Natl. Acad. Sci. U.S.A. 112, 15066–15071 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Campana, M. G. et al. A flock of sheep, goats and cattle: Ancient DNA analysis reveals complexities of historical parchment manufacture. J. Archaeol. Sci. 37, 1317–1325 (2010).Article 

    Google Scholar 
    Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
    Google Scholar 
    Dombrosky, J. A. ~1000-year 13C Suess correction model for the study of past ecosystems. Holocene 30, 474–478 (2020).Article 
    ADS 

    Google Scholar  More

  • in

    Coral reefs and coastal tourism in Hawaii

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).Article 
    CAS 

    Google Scholar 
    Arkema, K. K., Fisher, D. M., Wyatt, K., Wood, S. A. & Payne, H. J. Advancing sustainable development and protected area mManagement with social media-based tourism data. Sustainability 13, 2427 (2021).Article 

    Google Scholar 
    Tourism in the 2030 Agenda (UNWTO, 2015); https://www.unwto.org/tourism-in-2030-agendaCowburn, B., Moritz, C., Birrell, C., Grimsditch, G. & Abdulla, A. Can luxury and environmental sustainability co-exist? Assessing the environmental impact of resort tourism on coral reefs in the Maldives. Ocean Coast. Manag. 158, 120–127 (2018).Article 

    Google Scholar 
    Lin, B. Close encounters of the worst kind: reforms needed to curb coral reef damage by recreational divers. Coral Reefs 40, 1429–1435 (2021).Article 

    Google Scholar 
    Asner, G. P. et al. Large-scale mapping of live corals to guide reef conservation. Proc. Natl Acad. Sci. USA 117, 33711–33718 (2020).Article 
    CAS 

    Google Scholar 
    Wood, S. A., Guerry, A. D., Silver, J. M. & Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 3, 2976 (2013).Article 

    Google Scholar 
    Wood, S. A. et al. Next-generation visitation models using social media to estimate recreation on public lands. Sci. Rep. 10, 15419 (2020).Article 
    CAS 

    Google Scholar 
    Hausmann, A. et al. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conserv. Lett. 11, e12343 (2018).Article 

    Google Scholar 
    Tenkanen, H. et al. Instagram, Flickr, or Twitter: assessing the usability of social media data for visitor monitoring in protected areas. Sci. Rep. 7, 17615 (2017).Article 

    Google Scholar 
    Sessions, C., Wood, S. A., Rabotyagov, S. & Fisher, D. M. Measuring recreational visitation at U.S. National Parks with crowd-sourced photographs. J. Environ. Manag. 183, 703–711 (2016).Article 

    Google Scholar 
    Mancini, F., Coghill, G. M. & Lusseau, D. Using social media to quantify spatial and temporal dynamics of nature-based recreational activities. PLoS One 13, e0200565 (2018).Article 

    Google Scholar 
    Spalding, M. et al. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113 (2017).Article 

    Google Scholar 
    van Zanten, B. T. et al. Continental-scale quantification of landscape values using social media data. Proc. Natl Acad. Sci. USA 113, 12974–12979 (2016).Article 

    Google Scholar 
    Department of Land and Natural Resources. Beach Access (Office of Conservation and Coastal Lands, 2013); https://dlnr.hawaii.gov/occl/beach-access/Mobile LTE Coverage Map (Federal Communications Commission, 2021).Arkema, K. K. et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl Acad. Sci. USA 112, 7390–7395 (2015).Article 
    CAS 

    Google Scholar 
    Neuvonen, M., Pouta, E., Puustinen, J. & Sievänen, T. Visits to national parks: effects of park characteristics and spatial demand. J. Nat. Conserv. 18, 224–229 (2010).Article 

    Google Scholar 
    Rodgers, K., Cox, E. & Newtson, C. Effects of mechanical fracturing and experimental trampling on hawaiian corals. Environ. Manag. 31, 0377–0384 (2003).Article 

    Google Scholar 
    Downs, C. A. et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 70, 265–288 (2016).Article 
    CAS 

    Google Scholar 
    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B. 283, 20152592 (2016).Article 

    Google Scholar 
    Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 29778 (2016).Article 
    CAS 

    Google Scholar 
    Johnson, J. V., Dick, J. T. A. & Pincheira-Donoso, D. Local anthropogenic stress does not exacerbate coral bleaching under global climate change. Glob. Ecol. Biogeogr. (2022).Darling, E. S., McClanahan, T. R. & Côté, I. M. Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conserv. Lett. 3, 122–130 (2010).Article 

    Google Scholar 
    Severino, S. J. L., Rodgers, K. S., Stender, Y. & Stefanak, M. Hanauma Bay Biological Carrying Capacity Survey 2019–20 2nd Annual Report https://www.honolulu.gov/rep/site/dpr/hanaumabay_docs/Hanauma_Bay_Carrying_Capacity_Report_August_2020.pdf (City and County of Honolulu Parks and Recreation Department, 2020).Selenium WebDriver (Software Freedom Conservancy, 2022); https://www.selenium.dev/documentation/en/webdriver/Geospatial Data Portal. Hawaii Statewide GIS Program (Hawaii State Office of Planning, 2017); https://geoportal.hawaii.gov/Wedding, L. M. et al. Advancing the integration of spatial data to map human and natural drivers on coral reefs. PLoS One 13, e0189792 (2018).Article 

    Google Scholar 
    Nguyen, T., Liquet, B., Mengersen, K. & Sous, D. Mapping of coral reefs with multispectral satellites: a review of recent papers. Remote Sens. 13, 4470 (2021).Article 

    Google Scholar 
    Wicaksono, P., Aryaguna, P. A. & Lazuardi, W. Benthic habitat mapping model and cross validation using machine-learning classification algorithms. Remote Sens. 11, 1279 (2019).Article 

    Google Scholar  More

  • in

    Geomagnetic disturbance associated with increased vagrancy in migratory landbirds

    To investigate whether vagrancy is associated with geomagnetic disturbance and solar activity, we developed a method for quantifying the relative vagrancy of spatiotemporal records for 152 North American landbird species (nfall = 150, nspring = 124). While vagrancy is often treated as a binary classification (i.e., an individual is either a vagrant or not) and then used as a discrete variable (i.e., a count of total vagrants in an area)16,18, here we calculated it as a continuous variable by combining two large-scale ornithological datasets—captures and encounters of individually marked birds from the USGS Bird Banding Lab (BBL)49 and weekly, species-specific abundance maps for the continental United States from the eBird Status and Trends (hereafter, eBird S&T; via the R package ‘ebirdst’, version 2.1.0)69. Banding records have the advantage over other potential databases of vagrancy records (such as eBird or rare bird lists) in that efforts are long-term, continent-wide, have limited false positives, and have only one record per individual. Additionally, eBird S&T has the advantage over static range maps in that they provide weekly predictions and incorporate relative abundance. With these two data sources, we constructed a species-specific vagrancy value (Fig. S1), that measures the spatiotemporal rarity for every banding record. Inclusion of all banding records rather than just rare records allowed for the analysis of the dispersion of whole species populations, mitigating the potential bias of effort in banding operations (i.e., more vagrant records with greater effort). We then used hierarchical Bayesian random-effects models to estimate the strength of the association between geomagnetic disturbance, solar activity, and avian vagrancy.Species data and inclusionWe considered all full—or partial-migrant landbird species with a breeding, non-breeding, or migratory range in the United States or Canada. To do this, we used species distribution maps accessed through Birds of the World70. Landbird species likely to be caught through banding efforts (excluding species like raptors, nightjars, and swifts) that regularly occur in  > 3 but  10 km. Each banding record included the date, latitude and longitude (and precision), species, and age (if known;71). Banding records were filtered to those captures that occurred during the species-specific migration period as defined by eBird S&T69. eBird S&T approximates stationary and migratory periods by determining when the distribution of whole species population is moving69. Our use of banding records within species-specific eBird S&T migratory periods was designed to maximize the proportion of migrant birds in the analysis, but likely excludes some early and late records of migrating individuals.Banding records of species that underwent taxonomic divisions or aggregations during the study period were eliminated if the date occurred during a period in which the species identity according to modern taxonomy is indeterminate (see Supplement 2). Taxonomic reclassifications were not considered when species divisions/aggregations would only affect records from outside North America, such as the split of a Southern American taxon, Chestnut-collared Swallow (Petrochelidon rufocollaris) from its North American counterpart, Cave Swallow (Petrochelidon fulva). In these cases, we assumed all banding records during the study period were of the North American species. For a full list of periods where species records were excluded, see Supplement 2. Species with  More

  • in

    Exposure of aquatic organisms to natural radionuclides in irrigation drains, Qena, Egypt

    Samples collection and preparationFreshwater and sediment samples were collected from 5 irrigation drains (EL-Shikah, EL- Tramsa, EL-Mahrosa, EL-Aslia, and EL-Rawy) located in the geographical area of Qena city, the capital of Qena Governorate, 600 km south of Cairo, (Figs. 1 and 2). 3 sites inside each drain were randomly selected as sampling site; one of these sites represents the outlet of the drain into the Nile River. In addition, one site facing each drain in the main stream of the Nile River was selected to collect freshwater only, thus the total number of samples are 20 freshwater and 15 sediment samples.Figure 1Location map of the area under study (ArcGIS software 10.8.1; ArcGIS Online).Full size imageFigure 2Irrigation drain under study.Full size imagePolyethylene Marinelli beakers with a capacity of 1.4 L are used as collection and measuring containers. The beakers were washed with dilute hydrochloric acid and distilled water before use, filled to brim, and then pressed the tight lid to eliminate the internal air. Drops of HNO3 were added to the samples to prevent the adhesive of radionuclides with bottle walls8.Sediment samples were collected by Ekman grab sediment sampler. The collected samples were dried using electrical oven at a temperature of 105℃ for 24 h, then sieved through 200 mesh size. The dried samples were filled in hermetical sealed 500 ml polyethylene beakers. The prepared water and sediment samples were stored for 4 weeks to reach a secular equilibrium of radium and thorium with their progenies9.Measuring systemsGamma-ray spectrometer consisting of ″3 × 3″ NaI (Tl) detector enclosed in 5 cm thick cylindrical lead shield to reduce the background radiation and connected with 1024 multichannel analyzer was used. The spectrometer was calibrated for energy using 60Co and 137Cs standard point sources, and calibrated for efficiency using a multi-nuclides standard solution which covers a wide range of energy10. The spectrum was accumulated from each sample over 24 h and analyzed by Maestro software. The background was measured under the same condition of sample measurement.226Ra was determined using 214Bi and 214Pb gamma-lines at 609 keV and 352 keV, respectively, while 232Th from gamma-lines of 228Ac (911 keV) and 212Pb (238 keV). 40K was determined from its single gamma-line at 1460 keV. The activity concentration was calculated using the following formula (Eq. 1)11.$$A = frac{{C_{n} }}{{T times varepsilon { } times {text{P}} times {text{V }}left( {{text{or}}} right){text{M}}}}$$
    (1)

    where A is the activity concentration (Bq kg−1) or (Bq l−1), Cn is the net counts under a given peak area, T the sample counting time, (varepsilon) is the detection efficiency at measured energy, P is the emission probability and V is the sample volume in liter, M is the sample mass in kilogram. Minimum detectable activity (MDA) was estimated according to Currie definition using Eq. 212 and the MDA values were 0.031, 0.035 and 1.94 Bq L−1 for 226Ra, 232Th, and 40K, respectively.$${text{MDA}} = frac{2.71 + 465sqrt B }{{T times varepsilon times P times V}}$$
    (2)

    where B is the background counts under a given peak area,T,ɛ, P, and V are defined above.Doses for aquatic organismsThe external and internal absorbed dose rate for aquatic organisms (Phytoplankton, Mollusca, and Crustacean) in the studied irrigation drains was calculated based on the measured activity concentrations of 226Ra, 232Th, and 40K in environmental media (water and sediment) and using dose conversion coefficients of a given radionuclide for the reference organisms according to the method outlined by Brown et al. described below13,14.$$begin{aligned}& left( {Sediment,, conc. ,,wet} right)_{radionuclide} = (Sediment ,,conc. ,,dry)_{radionuclide} times left( {solids ,,fraction} right) \& qquad qquad + (water ,,conc.)_{radionuclide} times (1 – left( {solids ,,fraction} right). \ end{aligned}$$
    (3)
    $$begin{aligned}& left( {user2{External ,,dose ,,rate}} right)_{radionuclide,, organism} = DPUC_{radionuclide, ,organism}^{external} times left[ {Sediment ,conc. ,wet_{radionuclide} times left( {fsed_{organism} + fsedsur_{organism} /2} right)} right. \& quad quad left. { + left( {fwater_{organism} + fsedsur_{organism} /2} right) times water ,conc._{radionuclide } /1000} right] \ end{aligned}$$
    (4)
    $$left( {user2{Internal,dose,rate}} right)_{{radionuclide,,organism}} = ~left( {water,conc.} right)_{{radionuclide}} times CF_{{radionuclide}}^{{organism}} times DPUC_{{radionuclide,,organism}}^{{internal}}$$
    (5)

    where sediment conc. is the sediment activity concentration of a given radionuclide in Bq kg−1,water conc. is the water activity concentration of a given radionuclide in Bq m−3, CF is distribution coefficient factors for given radionuclide in freshwater sediment in m3 kg−1, DPUC is the dose rate per unit concentration coefficients (fresh weight) in μGy h−1 per Bq kg−1 weighted for radiation type (alpha = 10, low energy beta = 3, and high energy beta and gamma = 1), solids fraction of wet sediment (0.4), fsed organism is the time fraction spends by organism in sediment, fsedsur organism is the time fraction spends by organism at the sediment/water interface, fwater organism is the time fraction spends by organism in the water column. All parameters used in calculation are taken from Pröhl (2003)15 and Vives i Battle et al. (2004)16. The total dose is then calculated by summating the external and internal doses. More

  • in

    Ecological insights into soil health according to the genomic traits and environment-wide associations of bacteria in agricultural soils

    Doran JW. Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ. 2002;88:119–27.Article 

    Google Scholar 
    Wander MM, Cihacek LJ, Coyne M, Drijber RA, Grossman JM, Gutknecht JLM, et al. Developments in Agricultural Soil Quality and Health: Reflections by the Research Committee on Soil Organic Matter Management. Front Environ Sci. 2019;7:1–9.Article 

    Google Scholar 
    Stewart RD, Jian J, Gyawali AJ, Thomason WE, Badgley BD, Reiter MS, et al. What we talk about when we talk about soil health. Agric Environ Lett. 2018;3:5–9.Article 

    Google Scholar 
    Rinot O, Levy GJ, Steinberger Y, Svoray T, Eshel G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci Total Environ. 2019;648:1484–91.Article 
    CAS 

    Google Scholar 
    Hurisso TT, Culman SW, Zhao K. Repeatability and spatiotemporal variability of emerging soil health indicators relative to routine soil nutrient tests. Soil Sci Soc Am J. 2018;82:939–48.Article 
    CAS 

    Google Scholar 
    Lilburne L, Sparling G, Schipper L. Soil quality monitoring in New Zealand: Development of an interpretative framework. Agric Ecosyst Environ. 2004;104:535–44.Article 

    Google Scholar 
    Moebius-Clune BN, Moebius-Clune DJ, Gugino BK, Idowu OJ, Schindelbeck RR, Ristow AJ, et al. Comprehensive assessment of soil health – the Cornell framework manual, 3rd ed. Ithaca, NY:Cornell University; 2017.Fierer N, Wood SA, Bueno de Mesquita CP. How microbes can, and cannot, be used to assess soil health. Soil Biol Biochem. 2021;153:108111.Article 
    CAS 

    Google Scholar 
    Amsili JP, van Es HM, Schindelbeck RR. Cropping system and soil texture shape soil health outcomes and scoring functions. Soil Secur. 2021;4:100012.Article 

    Google Scholar 
    Wade J, Culman SW, Gasch CK, Lazcano C, Maltais-Landry G, Margenot AJ, et al. Rigorous, empirical, and quantitative: a proposed pipeline for soil health assessments. Soil Biol Biochem. 2022;170:108710.Article 
    CAS 

    Google Scholar 
    Simonin M, Voss KA, Hassett BA, Rocca JD, Wang SY, Bier RL, et al. In search of microbial indicator taxa: shifts in stream bacterial communities along an urbanization gradient. Environ Microbiol. 2019;21:3653–68.Article 

    Google Scholar 
    Bissett A, Brown MV, Siciliano SD, Thrall PH. Microbial community responses to anthropogenically induced environmental change: Towards a systems approach. Ecol Lett. 2013;16:128–39.Article 

    Google Scholar 
    Wilhelm RC, Cardenas E, Maas KR, Leung H, McNeil L, Berch S, et al. Biogeography and organic matter removal shape long-term effects of timber harvesting on forest soil microbial communities. ISME J. 2017;11:2552–68.Article 

    Google Scholar 
    Gibbons SM, Scholz M, Hutchison AL, Dinner AR, Gilbert JA, Colemana ML, et al. Disturbance regimes predictably alter diversity in an ecologically complex bacterial system. MBio. 2016;7:1–10.Article 

    Google Scholar 
    Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front Plant Sci. 2016;7:1–13.Article 

    Google Scholar 
    Jiao S, Xu Y, Zhang J, Hao X. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems. 2019;4:1–16.Article 

    Google Scholar 
    Chang HX, Haudenshield JS, Bowen CR, Allen R, Iii W, Parnell JJ, et al. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity. Front Microbiol. 2017;8:519.Article 

    Google Scholar 
    Trivedi P, Delgado-Baquerizo M, Jeffries TC, Trivedi C, Anderson IC, Lai K, et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ Microbiol. 2017;19:3070–86.Article 
    CAS 

    Google Scholar 
    Armbruster M, Goodall T, Hirsch PR, Ostle N, Puissant J, Fagan KC, et al. Bacterial and archaeal taxa are reliable indicators of soil restoration across distributed calcareous grasslands. Eur J Soil Sci. 2021;72:2430–44.Rieke EL, Cappellazzi SB, Cope M, Liptzin D, Mac Bean G, Greub KLH, et al. Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage. Soil Biol Biochem. 2022;168:108618.Article 
    CAS 

    Google Scholar 
    Wilhelm RC, Van Es HM, Buckley DH. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biol Biochem. 2022;164:108472.Article 
    CAS 

    Google Scholar 
    Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2: An improved and customizable approach for metagenome inference 2. bioRxiv. 2020. https://doi.org/10.1101/672295.Gravuer K, Eskelinen A. Nutrient and rainfall additions shift phylogenetically estimated traits of soil microbial communities. Front Microbiol. 2017;8:1–16.Article 

    Google Scholar 
    Chen Y, Maier RM, Barberán A, Neilson JW, Kushwaha P, Maier RM, et al. Life-history strategies of soil microbial communities in an arid ecosystem. ISME J. 2021;15:649–57.Article 
    CAS 

    Google Scholar 
    Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.Article 
    CAS 

    Google Scholar 
    Malik AA, Martiny JBHH, Brodie EL, Martiny AC, Treseder KK, Allison SD, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9.Article 
    CAS 

    Google Scholar 
    Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:1–7.Nunan N, Schmidt H, Raynaud X, Schmidt H. The ecology of heterogeneity: Soil bacterial communities and C dynamics. Philos Trans R Soc B Biol Sci. 2020;375:20190249.Article 
    CAS 

    Google Scholar 
    Grime JP. Evidence for the existence of three primary strategies in plants and its relevance for ecological and evolutionary theory. Am Nat. 1977;111:1169–94.Article 

    Google Scholar 
    Barnett S, Youngblut ND, Koechli CN, Buckley DH. Multisubstrate DNA stable isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. PNAS. 2021;118:e2115292118.Wilhelm RC, Pepe-Ranney C, Weisenhorn P, Lipton M, Buckley DH. Competitive exclusion and metabolic dependency among microorganisms structure the cellulose economy of an agricultural soil. MBio. 2021;12:1–19.Article 

    Google Scholar 
    Schmidt R, Gravuer K, Bossange AV, Mitchell J, Scow K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS ONE. 2018;13:1–19.Article 

    Google Scholar 
    Neal AL, Hughes D, Clark IM, Jansson JK, Hirsch PR. Microbiome Aggregated Traits and Assembly Are More Sensitive to Soil Management than Diversity. mSystems 2021;6:e0105620.Lupatini M, Korthals GW, de Hollander M, Janssens TKS, Kuramae EE. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front Microbiol. 2017;7:1–13.Article 

    Google Scholar 
    Koechli C, Campbell AN, Pepe-ranney C, Buckley DH. Assessing fungal contributions to cellulose degradation in soil by using high- throughput stable isotope probing. Soil Biol Biochem. 2019;130:150–8.Article 
    CAS 

    Google Scholar 
    Furtak K, Grządziel J, Gałązka A, Niedźwiecki J. Prevalence of unclassified bacteria in the soil bacterial community from floodplain meadows (fluvisols) under simulated flood conditions revealed by a metataxonomic approachss. Catena. 2020;188:104448.Article 
    CAS 

    Google Scholar 
    Schmidt R, Mitchell J, Scow K. Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities. Soil Biol Biochem. 2019;129:99–109.Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    Levy R, Borenstein E. Reverse Ecology: From systems to environments and back. Adv Exp Med Biol. 2012;751:329–45.Article 
    CAS 

    Google Scholar 
    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.Article 

    Google Scholar 
    Hamilton JP, Neeno-Eckwall EC, Adhikari BN, Perna NT, Tisserat N, Leach JE, et al. The Comprehensive Phytopathogen Genomics Resource: a web-based resource for data-mining plant pathogen genomes. Database. 2011;2011:bar053.Detheridge AP, Brand G, Fychan R, Crotty FV, Sanderson R, Griffith GW, et al. The legacy effect of cover crops on soil fungal populations in a cereal rotation. Agric Ecosyst Environ. 2016;228:49–61.Article 

    Google Scholar 
    McKenna TP, Crews TE, Kemp L, Sikes BA. Community structure of soil fungi in a novel perennial crop monoculture, annual agriculture, and native prairie reconstruction. PLoS ONE. 2020;15:1–15.Article 

    Google Scholar 
    Rocca JD, Simonin M, Blaszczak JR, Ernakovich JG, Gibbons SM, Midani FS, et al. The Microbiome Stress Project: Toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front Microbiol. 2019;9:3272.Article 

    Google Scholar 
    Ramirez KS, Knight CG, De Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.Article 
    CAS 

    Google Scholar 
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.Article 
    CAS 

    Google Scholar 
    Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, Haller D, et al. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep. 2016;6:1–9.Article 

    Google Scholar 
    Jurburg SD, Konzack M, Eisenhauer N, Heintz-Buschart A. The archives are half-empty: a field-wide assessment of the availability of microbial community sequencing data. Commun Biol. 2020;3:474.Emerson JB, Everhart SE, Eversole K, Frost KE, Herr JR, Huerta AI, et al. Community-driven metadata standards for agricultural microbiome research. Phytobiomes J. 2020; 4:115-121.Anderson TH, Martens R. DNA determinations during growth of soil microbial biomasses. Soil Biol Biochem. 2013;57:487–95.Article 
    CAS 

    Google Scholar 
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the Miseq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.Article 
    CAS 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.Article 
    CAS 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 

    Google Scholar 
    Harrell F, Dupont C. Hmisc: Harrell miscellaneous. R Package 2015.Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc. 1995;57:289–300.
    Google Scholar 
    Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.Article 
    CAS 

    Google Scholar 
    Mills RH, Dulai PS, Vázquez-Baeza Y, Sauceda C, Daniel N, Gerner RR, et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat Microbiol. 2022;7:262–76.Article 
    CAS 

    Google Scholar 
    De Cáceres M, Legendre P, De Caceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.Article 

    Google Scholar 
    Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. IMG/M: A data management and analysis system for metagenomes. Nucleic Acids Res. 2008;36:534–8.Article 

    Google Scholar 
    Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 2015;43:593–8.R Core Team. R: a language and environment for statistical computing. R Foundation. 2020.Wickham H. Reshaping data with the reshape package. J Stat Soft. 2007;21:1–20.Article 

    Google Scholar 
    Wickham H. The split-apply-combine strategy for data analysis. J Stat Soft. 2009;40:1–29.
    Google Scholar 
    Wickham H. Elegant graphics for data analysis. Media. 2009;35:211.
    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013;8:e61217.Grömping U. Relative importance for linear regression in R: the package relaimpo. J Stat Softw. 2006;17:1–27.Article 

    Google Scholar 
    Bastian M, Heymann S. Gephi: an open source software for exploring and manipulating networks. Proc Int AAAI Conf Web Soc Media. 2009:361–2.Hu Y. Efficient, high-quality force-directed graph drawing. Math J. 2006;10:37–71.
    Google Scholar 
    Ranea JAG, Grant A, Thornton JM, Orengo CA. Microeconomic principles explain an optimal genome size in bacteria. Trends Genet. 2005;21:21–5.Article 
    CAS 

    Google Scholar 
    Nielsen DA, Fierer N, Geoghegan JL, Gillings MR, Gumerov V, Madin JS, et al. Aerobic bacteria and archaea tend to have larger and more versatile genomes. Oikos. 2021;130:501–11.Article 
    CAS 

    Google Scholar 
    Chen Y, Leung PM, Wood JL, Bay SK, Kessler AJ, Shelley G, et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021;15:2986–3004.Article 
    CAS 

    Google Scholar 
    Brewer TE, Handley KM, Carini P, Gilbert JA, Fierer N. Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nat Microbiol. 2016;2:16198.Willms IM, Rudolph AY, Göschel I, Bolz SH, Schneider D, Penone C, et al. Globally Abundant “Candidatus Udaeobacter” Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging. mSphere. 2020;5:1–17.Article 

    Google Scholar 
    Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front Cell Infect Microbiol. 2020;10:1–19.Article 

    Google Scholar 
    Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.Article 
    CAS 

    Google Scholar 
    Zhalnina K, De Quadros PD, Gano KA, Davis-Richardson A, Fagen JR, Brown CT, et al. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front Microbiol. 2013;4:1–13.Article 

    Google Scholar 
    Land M, Hauser L, Jun S, Nookaew I, Leuze MR, Ahn T, et al. Insights from 20 years of bacterial genome sequencing. Funct Integr Genom. 2015;15:141–61.Article 
    CAS 

    Google Scholar 
    Gil R, Latorre A, Postal A. Factors behind junk DNA in bacteria. Genes (Basel). 2012;3:634–50.Article 

    Google Scholar 
    Williamson KE, Radosevich M, Wommack KE. Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol. 2005;71:3119–25.Article 
    CAS 

    Google Scholar 
    Williamson KE, Corzo KA, Drissi CL, Buckingham JM, Thompson CP, Helton RR. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol Fertil Soils. 2013;49:857–69.Article 

    Google Scholar 
    Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. MBio. 2019;10:e02287-19.Westra ER, Van Houte S, Gandon S, Whitaker R, Van Houte S, Gandon S, et al. The ecology and evolution of microbial CRISPR-Cas adaptive immune systems. Philos Trans R Soc B Biol Sci. 2019;374:20190101.Martinez-Gutierrez CA, Aylward FO. Genome size distributions in bacteria and archaea are strongly linked to evolutionary history at broad phylogenetic scales. PLoS Genet. 2022;18:1–17.Article 

    Google Scholar 
    Saifuddin M, Bhatnagar JM, Finzi AC, Segrè D, Finzi AC. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat Commun. 2019;10:1–10.Article 
    CAS 

    Google Scholar  More

  • in

    Molecular analyses of pseudoscorpions in a subterranean biodiversity hotspot reveal cryptic diversity and microendemism

    Zupan Hajna, N. Dinaric karst: Geography and geology in Encyclopedia of Caves (eds. White, W. B. & Culver, D. C.) 195–203 (Academic Press, 2012).Jug-Dujaković, M., Ninčević, T., Liber, Z., Grdiša, M. & Šatović, Z. Salvia officinalis survived in situ Pleistocene glaciation in ‘refugia within refugia’ as inferred from AFLP markers. Plant Syst. Evol. 306, 1–12 (2020).Article 

    Google Scholar 
    Bănărescu, P. M. Distribution pattern of the aquatic fauna of the Balkan Peninsula in Balkan Biodiversity. Pattern and Process in the European Hotspot (eds. Griffiths, H. I., Kryštufek, B. & Reed J. M.) 203–217 (Kluwer Academic Publishers, 2004).Sket, B. Diversity patterns in the Dinaric Karst in Encyclopedia of Caves (eds. White, W. B. & Culver, D. C.) 228–238 (Academic Press, 2012).Griffiths, H. I., Kryštufek, B., & Reed, J. M. Balkan biodiversity. Pattern and Process in the European Hotspot (eds. Griffiths, H. I., Kryštufek, B., & Reed, J. M.) 1–332 (Kluwer Academic Publishers, 2004).Culver, D. C., Pipan, T. & Schneider, K. Vicariance, dispersal and scale in the aquatic subterranean fauna of karst regions. Freshw. Biol. 54, 918–929 (2009).Article 

    Google Scholar 
    Gottstein Matočec, S. et al. An overview of the cave and interstitial biota of Croatia. Nat. Croat. 11, 1–112 (2002).
    Google Scholar 
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).Article 
    ADS 

    Google Scholar 
    Bilandžija, H., Morton, B., Podnar, M. & Ćetković, H. Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): Unearthing the subterranean biodiversity of the Dinaric Karst. Front. Zool. 10, 1–18 (2013).Article 

    Google Scholar 
    Bedek, J., Taiti, S., Bilandžija, H., Ristori, E. & Baratti, M. Molecular and taxonomic analyses in troglobiotic Alpioniscus (Illyrionethes) species from the Dinaric Karst (Isopoda: Trichoniscidae). Zool. J. Linn. Soc. 187, 539–584 (2019).Article 

    Google Scholar 
    Vörös, J., Márton, O., Schmidt, B. R., Gál, J. T. & Jelić, D. Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PLoS ONE 12, e0170945. https://doi.org/10.1371/journal.pone.0170945 (2017).Article 

    Google Scholar 
    Delić, T., Švara, V., Coleman, C. O., Trontelj, P. & Fišer, C. The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda). Zool. Scr. 46, 740–752 (2017).Article 

    Google Scholar 
    Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 1–12 (2017).Article 

    Google Scholar 
    Delić, T., Stoch, F., Borko, Š., Flot, J. F. & Fišer, C. How did subterranean amphipods cross the Adriatic Sea? Phylogenetic evidence for dispersal–vicariance interplay mediated by marine regression–transgression cycles. J. Biogeogr. 47, 1875–1887 (2020).Article 

    Google Scholar 
    Podnar, M., Grbac, I., Tvrtković, N., Hörweg, C. & Haring, E. Hidden diversity, ancient divergences, and tentative Pleistocene microrefugia of European scorpions (Euscorpiidae: Euscorpiinae) in the eastern Adriatic region. J. Zool. Syst. Evol. Res. 59, 1824–1849 (2021).Article 

    Google Scholar 
    Beron, P. Zoogeography of Arachnida (ed. Beron, P.) Meth. Ecol. Evol. 1–987 (Springer Cham, 2018).Ćurčić, B. P. M. Cave-dwelling pseudoscorpions of the Dinaric karst (ed. Ćurčić, B. P. M.) 1–192 (Slovenska Akademija Znanosti in Umetnosti, 1988).Harms, D., Roberts, J. D. & Harvey, M. S. Climate variability impacts on diversification processes in a biodiversity hotspot: A phylogeography of ancient pseudoscorpions in south-western Australia. Zool. J. Linn. Soc. 186, 934–949 (2019).Article 

    Google Scholar 
    Muster, C., Schmarda, T. & Blick, T. Vicariance in a cryptic species pair of European pseudoscorpions (Arachnida, Pseudoscorpiones, Chthoniidae). Zool. Anz. 242, 299–311 (2004).Article 

    Google Scholar 
    Ozimec, R. List of Croatian pseudoscorpion fauna (Arachnida, Pseudoscorpiones). Nat. Croat. 13, 381–394 (2004).
    Google Scholar 
    World Pseudoscorpiones Catalog. Natural History Museum Bern. https://wac.nmbe.ch (2022).Ćurčić, B. P. M., Dimitrijević, R. N., Rađa, T., Makarov, S. E. & Ilić, B. S. Archaeoroncus, a new genus of pseudoscorpions from Croatia (Pseudoscorpiones, Neobisiidae), with descriptions of two new species. Acta Zool. Bulg. 64, 333–340 (2012).
    Google Scholar 
    Ćurčić, B. P. M. et al. On two new cave species of pseudoscorpions (Neobisiidae, Pseudoscorpiones) from Herzegovina and Dalmatia. Arch. Biol. Sci. 66, 377–384 (2014).Article 

    Google Scholar 
    Ćurčić, B. P. M. et al. Roncus sutikvae sp. n. (Pseudoscorpiones: Neobisiidae), a new epigean pseudoscorpion from central Dalmatia (Croatia). Arthropoda Sel. 30, 205–215 (2021).Article 

    Google Scholar 
    Ćurčić, B. P. M., Rađa, T., Dimitrijević, R., Ćurčić, N. B. & Ćurčić, S. Roncus ladestani sp. n. and Roncus pecmliniensis sp. n., two new Pseudoscorpions (Pseudoscorpiones, Neobisiidae) from Croatia and Bosnia and Herzegovina, respectively. Zool. Zhurnal. 100, 159–169 (2021).
    Google Scholar 
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. Royal Soc. B. 270, 313–321 (2003).Article 

    Google Scholar 
    Page, R. D. DNA barcoding and taxonomy: Dark taxa and dark texts. Philos. Trans. R. Soc. Lond., B. Biol. Sci. 371, 20150334. https://doi.org/10.1098/rstb.2015.0334 (2016).Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).Article 
    ADS 

    Google Scholar 
    Kekkonen, M. & Hebert, P. D. DNA barcode-based delineation of putative species: Efficient start for taxonomic workflows. Mol. Ecol. Res. 14, 706–715 (2014).Article 

    Google Scholar 
    Christophoryová, J., Šťáhlavský, F. & Fedor, P. An updated identification key to the pseudoscorpions (Arachnida: Pseudoscorpiones) of the Czech Republic and Slovakia. Zootaxa 2876, 35–48 (2011).Article 

    Google Scholar 
    Gardini, G. A revision of the species of the pseudoscorpion subgenus Chthonius (Ephippiochthonius) (Arachnida, Pseudoscorpiones, Chthoniidae) from Italy and neighbouring areas. Zootaxa 3655, 1–151 (2013).Article 

    Google Scholar 
    Gardini, G. The species of the Chthonius heterodactylus group (Arachnida, Pseudoscorpiones, Chthoniidae) from the eastern Alps and the Carpathians. Zootaxa 3887, 101–137 (2014).Article 

    Google Scholar 
    Gardini, G. The Italian species of the Chthonius ischnocheles group (Arachnida, Pseudoscorpiones, Chthoniidae), with reference to neighbouring countries. Zootaxa 4987, 1–131 (2021).Article 

    Google Scholar 
    Zaragoza, J. A. Revision of the Ephippiochthonius complex in the Iberian Peninsula, Balearic Islands and Macaronesia, with proposed changes to the status of the Chthonius subgenera (Pseudoscorpiones, Chthoniidae). Zootaxa 4246, 1–221 (2017).Article 

    Google Scholar 
    Gams, I. Kras v Sloveniji v prostoru in času. (ed. Gams, I.) 1–516 (Postojna: Inštitut za raziskovanje Krasa, 2004).European Union, Copernicus Land Monitoring Service. https://land.copernicus.eu (2016).Maddison, W. P., & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. http://mesquiteproject.org (2019).Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).Article 

    Google Scholar 
    Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes. 7, 965–968 (2007).Article 

    Google Scholar 
    Felsenstein, J. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst. Biol. 22, 240–249 (1973).Article 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 

    Google Scholar 
    Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).Article 

    Google Scholar 
    Muster, C. et al. The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions. Ecol. Evol. 11, 13815–13829 (2021).Article 

    Google Scholar 
    Ontano, A. Z. et al. Taxonomic sampling and rare genomic changes overcome long-branch attraction in the phylogenetic placement of pseudoscorpions. Mol. Biol. Evol. 38, 2446–2467 (2021).Article 

    Google Scholar 
    Rambaut A. FigTree v1.4.3 http://tree.bio.ed.ac.uk/software/figtree/ (2016).Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).Article 

    Google Scholar 
    Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).Article 

    Google Scholar 
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).
    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article 

    Google Scholar 
    Miller, M. A., Pfeiffer, W., & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE). https://doi.org/10.1109/GCE.2010.5676129 (2010).Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).Article 
    ADS 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2020).Brown, S. D. et al. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol. Ecol. Resour. 12, 562–565 (2012).Article 

    Google Scholar 
    Meier, R., Shiyang, K., Vaidya, G. & Ng, P. K. L. DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Syst. Biol. 55, 715–728 (2006).Article 

    Google Scholar 
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. J. M. E. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).Article 

    Google Scholar 
    Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2020).Article 

    Google Scholar 
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).Article 

    Google Scholar 
    Karney, C. F. Algorithms for geodesics. J. Geod. 87, 43–55 (2013).Article 
    ADS 

    Google Scholar 
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Meth. Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Bregović, P., Fišer, C. & Zagmajster, M. Contribution of rare and common species to subterranean species richness patterns. Ecol. Evol. 9, 11606–11618 (2019).Article 

    Google Scholar 
    Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).Article 

    Google Scholar 
    Young, M. R. & Hebert, P. D. Patterns of protein evolution in cytochrome c oxidase 1 (COI) from the class Arachnida. PLoS ONE 10, e0135053. https://doi.org/10.1371/journal.pone.0135053 (2015).Article 

    Google Scholar 
    Yin, Y. et al. DNA barcoding uncovers cryptic diversity in minute herbivorous mites (Acari, Eriophyoidea). Mol. Ecol. Resour. 22, 1986–1998 (2022).Article 

    Google Scholar 
    Doña, J. et al. DNA barcoding and minibarcoding as a powerful tool for feather mite studies. Mol. Ecol. Resour. 15, 1216–1225 (2015).Article 

    Google Scholar 
    Blagoev, G. A. et al. Untangling taxonomy: A DNA barcode reference library for Canadian spiders. Mol. Ecol. Resour. 16, 325–341 (2016).Article 

    Google Scholar 
    Aliabadian, M., Kaboli, M., Nijman, V. & Vences, M. Molecular identification of birds: Performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS ONE 4, e4119. https://doi.org/10.1371/journal.pone.0004119 (2009).Article 
    ADS 

    Google Scholar 
    Moritz, C. & Cicero, C. DNA barcoding: promise and pitfalls. PLoS Biol. 2, e354. https://doi.org/10.1371/journal.pbio.0020354 (2004).Article 

    Google Scholar 
    Dellicour, S. & Flot, J. F. The hitchhiker’s guide to single-locus species delimitation. Mol. Ecol. Resour. 18, 1234–1246 (2018).Article 

    Google Scholar 
    Polak, S., Delić, T., Kostanjšek, R. & Trontelj, P. Molecular phylogeny of the cave beetle genus Hadesia (Coleoptera: Leiodidae: Cholevinae: Leptodirini), with a description of a new species from Montenegro. Arthropod Syst. 74, 241–254 (2016).
    Google Scholar 
    Lukić, M., Delić, T., Pavlek, M., Deharveng, L. & Zagmajster, M. Distribution pattern and radiation of the European subterranean genus Verhoeffiella (Collembola, Entomobryidae). Zool. Scr. 49, 86–100 (2019).Article 

    Google Scholar 
    Casale, A., Jalžić, B., Lohaj, R. & Mlejnek, R. Two new highly specialised subterranean beetles from the Velebit massif (Croatia): Velebitaphaenops (new genus) giganteus Casale & Jalžić, new species (Coleoptera: Carabidae: Trechini) and Velebitodromus ozrenlukici Lohaj, Mlejnek & Jalžić, new species (Coleoptera: Cholevidae: Leptodirini). Nat. Croat. 21, 129–153 (2012).
    Google Scholar 
    Andersen, T. et al. Blind flight? A new troglobiotic Orthoclad (Diptera, Chironomidae) from the Lukina Jama-Trojama Cave in Croatia. PLoS ONE 11, e0152884. https://doi.org/10.1371/journal.pone.0152884 (2016).Article 

    Google Scholar 
    Velić, J. et al. A geological overview of glacial accumulation and erosional occurrences at the Velebit and the Biokovo Mts., Croatia. The Min. Geol. Petrol. Eng. Bull. 32, 77–96 (2017).
    Google Scholar 
    Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).Article 

    Google Scholar 
    Trontelj, P. Adaptation and natural selection in caves in Encyclopedia of Caves (eds. White, W. B., Culver, D. B. & Pipan, T.) 40–46 (Academic Press, 2019).Beier, M. Die Höhlenpseudoscorpione der Balkanhalbinsel. Studien aus dem Gebiete der Allgemeinen Karstforschung, der Wissenschaftlichen Höhlenkunde, der Eiszeitforschung und den Nachbargebieten. 4, 1–83 (1939).
    Google Scholar 
    Antić, D., Dražina, T., Rađa, T., Tomić, V. T. & Makarov, S. E. Review of the family Anthogonidae (Diplopoda, Chordeumatida), with descriptions of three new species from the Balkan Peninsula. Zootaxa 3948, 151–181 (2015).Article 

    Google Scholar 
    Pretner, E. Koleopterološka fauna pećina i jama Hrvatske s historijskim pregledom istraživanja. Krš Jugoslavije. 8, 101–239 (1973).
    Google Scholar 
    Zaragoza, J. A. & Šťáhlavský, F. A new Roncus species (Pseudoscorpiones: Neobisiidae) from Montseny Natural Park (Catalonia, Spain), with remarks on karyology. Zootaxa 1693, 27–40 (2008).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    ADS 

    Google Scholar 
    Médail, F. & Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36, 1333–1345 (2009).Article 

    Google Scholar 
    Borko, Š., Trontelj, P., Seehausen, O., Moškrič, A. & Fišer, C. A subterranean adaptive radiation of amphipods in Europe. Nat. Commun. 12, 1–12 (2021).Article 

    Google Scholar 
    Fišer, C. et al. The European green deal misses Europe’s subterranean biodiversity hotspots. Nat. Ecol. Evol. 6, 1403–1404 (2022).Article 

    Google Scholar 
    Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).Article 

    Google Scholar  More