More stories

  • in

    The impact of the striped field mouse’s range expansion on communities of native small mammals

    Wilkinson, D. M. Dispersal biogeography. Encyclopedia of Life Science. (Nature Publishing Group, 2001).Jan, P.L. et al. Range expansion is associated with increased survival and fecundity in a long-lived bat species. Proc. R. Soc. B. 286, 1–9. https://doi.org/10.1098/rspb.2019.0384 (2019).Article 

    Google Scholar 
    IUCN. IUCN Guidelines for the Prevention of Biodiversity Loss Caused by Alien Invasive Species. https://portals.iucn.org/library/node/12413(2000).McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biological Conservation 127, 247–260. https://doi.org/10.1016/j.biocon.2005.09.005 (2006).
    Google Scholar 
    Galko, J. et al. Invázne a nepôvodné druhy v lesoch Slovenska: hmyz—huby—rastliny. (Národné lesnícke centrum, 2018).Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion ecology_draft_2ed. (John Wiley & Sons, 2013).Colautti, R. I. & MacIsaac, H. J. A neutral terminology to define ‘invasive’ species: Defining invasive species. Divers. Distrib. 10, 135–141. https://doi.org/10.1111/j.1366-9516.2004.00061.x (2004).Article 

    Google Scholar 
    Ambros, M., Dudich, A., MIKLÓS, P., Stollmann, A. & Žiak, D. Ryšavka tmavopása (Apodemus agrarius)–novỳ druh cicavca Podunajskej roviny (Rodentia: Muridae). Lynx, series nova 41, (2010).Bradley, B. A. et al. Disentangling the abundance—impact relationship for invasive species. Proc. Natl. Acad. Sci. 116, 9919–9924. https://doi.org/10.5281/zenodo.2605254 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Nackley, L. L., West, A. G., Skowno, A. L. & Bond, W. J. The nebulous ecology of native invasions. Trends Ecol. Evol. 32, 814–824. https://doi.org/10.1016/j.tree.2017.08.003 (2017).Article 

    Google Scholar 
    Archer, S. Tree-grass dynamics in a Prosopis-thornscrub savanna parkland: reconstructing the past and predicting the future. Ecoscience 2, 83–99. https://doi.org/10.1080/11956860.1995.11682272 (1995).Article 

    Google Scholar 
    Wigley, B. J., Bond, W. J. & Hoffman, M. T. Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? Global Change Biol. 16, 964–976. https://doi.org/10.1111/j.1365-2486.2009.02030.x (2010).Spiegel, C. S., Hart, P. J., Woodworth, B. L., Tweed, E. J. & LeBrun, J. J. Distribution and abundance of forest birds in low-altitude habitat on Hawai’i Island: Evidence for range expansion of native species. Bird Conserv. Int. 16, 175–185. https://doi.org/10.1017/S0959270906000244 (2006).Article 

    Google Scholar 
    Livezey, K. B. Range expansion of Barred Owls, part II: facilitating ecological changes. Am. Midland Nat. 323–349 (2009).Veech, J. A., Small, M. F. & Baccus, J. T. The effect of habitat on the range expansion of a native and an introduced bird species. J. Biogeogr. 38, 69–77. https://doi.org/10.1111/j.1365-2699.2010.02397.x (2011).Article 

    Google Scholar 
    Krupa, J. J. & Haskins, K. E. Invasion of the meadow vole (Microtus pennsylvanicus) in southeastern Kentucky and its possible impact on the southern bog lemming (Synaptomys cooperi). American Midland Naturalist 14–22 (1996).Jareño, D. et al. Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain. Biol. Invasions 17, 2315–2327. https://doi.org/10.1007/s10530-015-08774 (2015).Article 

    Google Scholar 
    Malygin, V. M., Baskevich, M. I. & Khlyap, L. A. Invasions of the common vole sibling species. Russ. J. Biol. Invas. 11, 47–65 (2020).Article 

    Google Scholar 
    Tong, X., Wang, R. & Chen, X.-Y. Expansion or invasion? A Response to Nackley et al. Trends Ecol. Evol. 33, 234–235. https://doi.org/10.1016/j.tree.2018.01.008 (2018).Thompson, K. & Davis, M. A. Why research on traits of invasive plants tell us very little. Trends Ecol. Evol. 24,115–116. https://doi.org/10.1016/j.tree.2011.01.007 (2011).Davis, M. A. & Thompson, K. Eight ways to be a colonizer; two ways to be an invader: A proposed nomenclature scheme for invasion ecology. Bull. Ecol. Soc. Am. 81, 226–230 (2000).
    Google Scholar 
    Davis, M. A., Thompson, K., Grime, J. P. & Charles, S. Elton and the dissociation of invasion ecology from the rest of ecology. Diversity and Distribution 7, 97–102. https://doi.org/10.1046/j.1472-4642.2001.00099.x (2001).Article 

    Google Scholar 
    Davis, M. A. Invasion biology. (Oxford University Press on Demand, 2009).Davis, M. A. et al. Don’t judge species on their origins. Nature 474, 153–154 (2011).Article 
    CAS 

    Google Scholar 
    Klempa, B. et al. Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: Definition of genotypes and their characteristics. Adv. Virol. 158, 521–529. https://doi.org/10.1007/s00705-012-1514-5 (2013).CAS 

    Google Scholar 
    Kraljik, J. et al. Genetic diversity of Bartonella genotypes found in the striped field mouse (Apodemus agrarius) in Central Europe. Parasitology 143, 1437–1442. https://doi.org/10.1017/S0031182016000962 (2016).Article 

    Google Scholar 
    Latinne, A. et al. Phylogeography of the striped field mouse, Apodemus agrarius (Rodentia: Muridae), throughout its distribution range in the Palaearctic region. Mamm. Biol. 100, 19–31. https://doi.org/10.1007/s42991-019-00001-0 (2020).Article 

    Google Scholar 
    Dudich, A. & Szabó, I. Über die Verbreitung der Hystrichopsylla Taschenberg, 1880 (Siphonaptera) in Ungarn. Folia Entomol. Hung 45, 27–32 (1984).
    Google Scholar 
    Dudich, A. Dynamika areálu ryšavky tmavopásej (Apodemus agrarius Pall.)–expanzia či invázia. Pp.: 53–62. Invázie a invázne organizmy. SEKOS pre SNK SCOPE, Nitra (1997).Karaseva, E. V., Tikhonova, G. N. & Bogomolov, P. L. Distribution of the Striped field mouse (Apodemus agrarius) and peculiarities of its ecology in different parts of its range. Zoologičeskij žurnal 71, 106–115 (1992).
    Google Scholar 
    Polechová, J. & Graciasová, R. Návrat myšice temnopásé, Apodemus agrarius (Rodentia: Muridae) na jižní Moravu. Lynx (Praha), ns 31, 153–155 (2000).Bryja, J. & Řehák, Z. Další doklady současné expanze areálu myšice temnopásé (Apodemus agrarius) na Moravě. Lynx (Praha), ns (2002).Herzig-Straschil, B., Bihari, Z. & Spitzenberger, F. Recent changes in the distribution of the field mouse (Apodemus agrarius) in the western part of the Carpathian basin. Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie 421–428 (2003).Dudich, A., Ambros, M., Stollmann, A., Uhrin, M. & Urban, P. Ryšavka tmavopása Apodemus agrarius (Pallas) v Novohrade. Príroda okresu Veľký Krtíš – 15 rokov od celoslovenského tábora ochrancov prírody 110–115 (2003).Horáček, I. & Ložek, V. Biostratigraphic investigation in the Hámorská cave (Slovak karst). Pp.: 49–60. Krasové sedimenty. Fosilní záznam klimatickỳch oscilací a změn prostředí. Knihovna České speleologické společnosti, Svazek 21, (1993).Pazonyi, P. & Kordos, L. Late Eemian (Late Pleistocene) vertebrate fauna from the Horváti-lik (Uppony, NE Hungary). Fragmenta Palaeontologica Hungarica 22, 107–117 (2004).
    Google Scholar 
    Obuch, J., Danko, S. & Noga, M. Recent and subrecent diet of the barn owl (Tyto alba) in Slovakia. Slovak Raptor J. 10, 1–50 . https://doi.org/10.1515/srj-2016-0003 (2016).Article 

    Google Scholar 
    Obuch, J. Temporal changes in proportions of small mammals in the diet of the mammalian and avian predators in Slovakia. Lynx, n. s 55, 86–106. https://doi.org/10.37520/lynx.2021.007 (2022).Niethammer, J. Die Verbreitung der Brandmaus (Apodemus agrarius) in der Bundesrepublik Deutschland. Acta Sc. Nat. Brno 10, 43–55 (1976).
    Google Scholar 
    von Lehmann, E. Die Brandmaus in Hessen als Beispiel für die Problematik der Verbreitungsgrenzen vieler Säugetierarten. Natur und Museum 106, 112–117.Farský, O. Úlovky myšice temnopásé, Apodemus agrarius (Pallas), na Moravě a ve Slezsku v letech 1920 až 1940 [Caughts of the striped field mouse, Apodemus agrarius (Pallas), in Moravia and Silesia in the years 1920–1940]. Lynx, n. s 5, 11–18 (1965).Heroldová, M., Homolka, M. & Zejda, J. Některé nepublikované nálezy Apodemus agrarius v Čechách a na Moravě v návaznosti na současnỳ stav znalostí o jejím rozšíření (Rodentia: Muridae). Lynx, series nova 44, (2013).Ambros, M., Dudich, A. & Stollmann, A. Fauna drobných hmyzožravcov a hlodavcov (Insectivora, Rodentia) vybraných mokraďných biotopov južného Slovenska. Rosalia (Nitra) 14, 195–202 (1999).
    Google Scholar 
    Balát, F. Potrava sovy pálené na jižní Moravě a na jižním Slovensku [Food of Barn owl on the south Moravia and south Slovakia]. Zoologické listy 5, 237–256 (1956).
    Google Scholar 
    Baláž, I., Stollmann, A., Ambros, M. & Dudich, A. Drobné cicavce rezervácie Lohótsky močiar. Chránené územia Slovenska 58, 27–29 (2003).
    Google Scholar 
    Bridišová, Z., Baláž, I. & Ambros, M. Drobné cicavce prírodnej rezervácie Alúvium Žitavy [Small mammals of Alúvium Žitavy natural reservation]. Chránené územia Slovenska 69, 7–9 (2006).
    Google Scholar 
    Dudich, A., Lysỳ, J. & Štollmann, A. Súčasné poznatky o rozšírení drobnỳch zemnỳch cicavcov (Insectivora, Rodentia) južnej časti Podunajskej nížiny. Spravodaj Oblastného múzea v Komárne, Prírodné vedy 5, 157–186 (1985).
    Google Scholar 
    Kristofik, J. Small mammals in floodplain forests. Folia Zoologica (Czech Republic) (1999).Méhely, L. Két új poczokfaj a magyar faunában. Állattani közlemények 7, 3–14 (1908).
    Google Scholar 
    Noga, M. The wintering and food ecology of Long-eared Owl in South-Western part of Slovakia (Comenius University in Bratislava, 2007).
    Google Scholar 
    Pachinger, K., Novackỳ, M., Facuna, V. & Ambruš, B. Dynamika a zloženie synúzií mikromammálií na izolovanỳch ostrovoch vnútozemskej delty Dunaja v oblasti vodného diela Gabčíkovo. Acta Environ. Universitatis Comenianae 9, 71–77 (1997).
    Google Scholar 
    Poláčiková, Z. Small terrestrial mammals’ (Eulipotyphla, Rodentia) synusia of selected localities in western Slovakia. Ekológia (Bratislava) 29, 131–139. https://doi.org/10.4149/ekol_2010_02_131 (2010).
    Google Scholar 
    Reiterová, K. et al. Úloha drobnỳch cicavcov–dôležitỳch rezervoárov v cirkulácii larválnej toxoplazmózy. Slovenskỳ Veterinárny Časopis 4, 217–222 (2010).
    Google Scholar 
    Stanko, M., Mošanský, L. & Fričová, J. Small mammal communities (Eulipotyphla, Rodentia) of the middle part of alluvium Ipeľ river (Lučenská and Ipeľská basins). Ochrana prírody 26, 43–52 (2010).
    Google Scholar 
    Spitzenberger, F. & Engelberg, S. A new look at the dynamic western distribution border of Apodemus agrarius in Central Europe (Rodentia: Muridae). Lynx, series nova 45, (2014).Sládkovičová, V. H., Žiak, D. & Miklós, P. Synúzie drobných zemných cicavccov mokradných biotopov Podunajskej roviny. Folia faunistica Slovaca 18, 13–19 (2013).
    Google Scholar 
    Tulis, F. et al. Expansion of the Striped field mouse (Apodemus agrarius) in the south-western Slovakia during 2010–2015. Folia Oecologica 43, 64–73 (2016).
    Google Scholar 
    Ambros, M. et al. Zmeny v rozšírení ryšavky tmavopásej (Apodemus agrarius) na Slovensku. in Zborník príspevkov z vedeckého kongresu ‘Zoológia 2022’ 10 (2022).Dudich, A. Ektoparazitofauna cicavcov a vtákov južnej časti Podunajskej nížiny so zreteľom na Žitný ostrov. 1. Siphonaptera. Žitnoostrovské múzeum Dunajská Streda—Spravodaj múzea 9, 61–96 (1986).Dudich, A. Príspevok k poznaniu drobných zemných cicavcov (Insectivora, Rodentia) a ich ektoparazitov (Acarina, Anoplura, Siphonaptera) okolia ŠPR Čenkovská lesostep (Podunajská nížina). Iuxta Danubium (Komárno) 10, 186–191 (1993).
    Google Scholar 
    Cyprich, D., Krumpál, M. & Dúha, J. Blchy (Siphonaptera) cicavcov (Mammalia) Štátnej prírodnej rezervácii Šúr. Ochrana prírody 8, 241–289 (1987).
    Google Scholar 
    Lapin, M., Faško, P., Melo, M., Štastný, P. & Tomlain, J. Climate zones. in Landscape Atlas of the Slovak Republic (Harmanec: VKÚ, 2002).Faško, P. & Štastný, P. Average annual precipitation. in Landscape Atlas of the Slovak Republic (2002).Russell, J. C., Stjernman, M., Lindström, Å. & Smith, H. G. Community occupancy before-after-control-impact (CO-BACI) analysis of Hurricane Gudrun on Swedish forest birds. Ecol. Appl. 25, 685–694.  https://doi.org/10.1890/14-0645.1 (2015).Article 

    Google Scholar 
    Desrosiers, M., Planas, D. & Mucci, A. Short-term responses to watershed logging on biomass mercury and methylmercury accumulation by periphyton in boreal lakes. Can. J. Fish. Aquat. Sci. 63, 1734–1745. https://doi.org/10.1139/f06-077 (2006).Article 
    CAS 

    Google Scholar 
    Hanisch, J. R., Tonn, W. M., Paszkoswki, C. A. & Scrimgeour, G. J. Stocked trout have minimal effects on littoral invertebrate assemblages of productive fish-bearing lakes: A whole-lake BACI study: Stocked trout have minimal effects on littoral invertebrates. Freshw. Biol. 58, 895–907. https://doi.org/10.1111/fwb.12095 (2013).Article 

    Google Scholar 
    Louhi, P., Mäki-Petäys, A., Erkinaro, J., Paasivaara, A. & Muotka, T. Impacts of forest drainage improvement on stream biota: A multisite BACI-experiment. For. Ecol. Manage. 260, 1315–1323. https://doi.org/10.1016/j.foreco.2010.07.024 (2010).Article 

    Google Scholar 
    Conner, M. M., Saunders, W. C., Bouwes, N. & Jordan, C. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration. Environ Monit Assess 188, 555. https://doi.org/10.1007/s10661-016-5526-6
    (2016).Article 

    Google Scholar 
    Popescu, V. D., de Valpine, P., Tempel, D. & Peery, M. Z. Estimating population impacts via dynamic occupancy analysis of Before-After Control–Impact studies. Ecol. Appl. 22, 1389–1404. https://doi.org/10.1890/11-1669.1 (2012).Article 

    Google Scholar 
    Horváth, G. F. & Herczeg, R. Site occupancy response to natural and anthropogenic disturbances of root vole: Conservation problem of a vulnerable relict subspecies. J. Nat. Conserv. 21, 350–358. https://doi.org/10.1016/j.jnc.2013.03.004 (2013).Article 

    Google Scholar 
    Pounder, K. C. et al. Novel Hantavirus in Wildlife, United Kingdom. Emerg. Infect. Dis. 19, 673–675. https://doi.org/10.3201/eid1904.121057 (2013).Article 

    Google Scholar 
    Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Phil. Trans. R. Soc. B 370, 20140295. https://doi.org/10.1098/rstb.2014.0295 (2015).Article 

    Google Scholar 
    Kim, H.-C. et al. Hantavirus surveillance and genetic diversity targeting small mammals at Camp Humphreys, a US military installation and new expansion site Republic of Korea. PLoS ONE 12, e0176514. https://doi.org/10.1371/journal.pone.0176514 (2017).Article 

    Google Scholar 
    Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite corrections: Further analysis of the data by akaike’ s. Commun. Stat. Theory Methods 7, 13–26 (1978).Article 
    MATH 

    Google Scholar 
    Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524. https://doi.org/10.1002/ece3.1155 (2014).Article 

    Google Scholar 
    Ingram, J. C. Berger–Parker Index. in Encyclopedia of Ecology 332–334 (Elsevier, 2008). https://doi.org/10.1016/B978-008045405-4.00091-4.Bürkner, P.-C. brms : An R package for bayesian multilevel models using Stan. J. Stat. Soft. 80, (2017).Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical Methods for Analysing Multivariate Abundance Data. (2022).Warton, D. I., Thibaut, L. & Wang, Y. A. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses. PLoS ONE 12, e0181790. https://doi.org/10.1371/journal.pone.0181790 (2017).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2022).R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).Szacki, J. & Liro, A. Movements of small mammals in the heterogeneous landscape. Landsc. Ecol. 5, 219–224 (1991).Article 

    Google Scholar 
    Szacki, J., Babinska-Werka, J. & Liro, A. The influence of landscape spatial structure on small mammal movements. Acta Theriol. 2, (1993).Pimentel, D., Pimentel, M. & Wilson, A. Plant, animal, and microbe invasive species in the United States and World. Biol. Invasions 193 (2007).Valéry, L., Hervé, F., Lefeuvre, J. C. & Simberloff, D. Invasive species can also be native. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2009.07.003 (2009).Article 

    Google Scholar 
    Deinet, S. et al. Wildlife comeback in Europe: The recovery of selected mammal and bird species. (2013).Gompper, M. Top Carnivores in the Suburbs? Ecological and Conservation Issues Raised by Colonization of North-eastern North America by Coyotes: The expansion of the coyote’s geographical range may broadly influence community structure, and rising coyote densities in the suburbs may alter how the general public views wildlife. BioScience 52, 185–190. https://doi.org/10.1641/0006-3568 (2002).Dalecky, A. et al. Range expansion of the invasive house mouse Mus musculus domesticus in Senegal, West Africa: A synthesis of trapping data over three decades, 1983–2014. Mammal. Rev. 45, 176–190. https://doi.org/10.1111/mam.12043 (2015).Article 

    Google Scholar 
    Konečnỳ, A. et al. Invasion genetics of the introduced black rat (Rattus rattus) in Senegal West Africa. Mol. Ecol. 22, 286–300. https://doi.org/10.1111/mec.12112 (2013).Article 

    Google Scholar 
    Bramley, G. N. Home ranges and interactions of kiore (Rattus exulans) and Norway rats (R. norvegicus) on Kapiti Island, New Zealand. New Zeal. J. Ecol. 328–334 (2014).O’Rourke, R. L., Anson, J. R., Saul, A. M. & Banks, P. B. Limits to alien black rats (Rattus rattus) acting as equivalent pollinators to extinct native small mammals: The influence of stem width on mammal activity at native Banksia ericifolia inflorescences. Biol. Invasions 22, 329–338. https://doi.org/10.1007/s10530-019-02090-x (2020).Article 

    Google Scholar 
    White, T. A. et al. Range expansion in an invasive small mammal: influence of life-history and habitat quality. Biol. Invasions 14, 2203–2215. https://doi.org/10.1007/s10530-012-0225-x (2012).Article 

    Google Scholar 
    McDevitt, A. D. et al. Invading and expanding: Range dynamics and ecological consequences of the greater white-toothed shrew (Crocidura russula) invasion in Ireland. PLoS ONE 9, e100403. https://doi.org/10.1371/journal.pone.0100403 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Aguilar, J.-P., Pélissié, T., Sigé, B. & Michaux, J. Occurrence of the stripe field mouse lineage (Apodemus agrarius Pallas 1771; Rodentia; Mammalia) in the Late Pleistocene of southwestern France. C.R. Palevol 7, 217–225 (2008).Article 

    Google Scholar 
    Kordos, L. Historico-zoogeographical and ecological investigation of the subfossil vertebrate fauna of the Aggtelek Karst. Vert. Hung. 18, 85–100 (1978).
    Google Scholar 
    Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).Article 

    Google Scholar 
    Agnew, P., Hide, M., Sidobre, C. & Michalakis, Y. A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol. Entomol. 27, 396–402 (2002).Article 

    Google Scholar 
    Krebs, C. J. Beyond population regulation and limitation. Wildl. Res. 29, 1–10 (2002).Article 

    Google Scholar 
    Huitu, O., Norrdahl, K. & Korpimäki, E. Competition, predation and interspecific synchrony in cyclic small mammal communities. Ecography 27, 197–206.  https://doi.org/10.1111/j.0906-7590.2003.03684.x (2004).Article 

    Google Scholar 
    Lofgren, O. Niche expansion and increased maturation rate of Clethrionomys glareolus in the absence of competitors. J. Mammal. 76, 1100–1112 (1995).Article 

    Google Scholar 
    Hansson, L. Competition between Rodents in Successional Stages of Taiga Forests: Microtus agrestis vs. Clethrionomys glareolus. Oikos 40, 258 (1983).Article 

    Google Scholar 
    Eccard, J. A. & Ylönen, H. Direct interference or indirect exploitation? An experimental study of fitness costs of interspecific competition in voles. Oikos 99, 580–590. https://doi.org/10.1034/j.1600-0706.2002.11833.x (2002).Article 

    Google Scholar 
    Gliwicz, J. Competition among forest rodents: Effects of Apodemus flavicollis and Clethrionomys glareolus on A. agrarius. Acta Zool. Fennica 1984. (1984).Neet, C. R. & Hausser, J. Habitat selection in zones of parapatric contact between the common shrew Sorex araneus and Millet’s shrew S. coronatus. J. Anim. Ecol. 235–250 (1990).Zub, K., Jędrzejewska, B., Jędrzejewski, W. & Bartoń, K. A. Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest. Acta Theriol. 57, 205–216 (2012).Article 
    CAS 

    Google Scholar 
    Henttonen, H. et al. Long-term population dynamics of the common shrew Sorex araneus in Finland. in Annales Zoologici Fennici 349–355 (JSTOR, 1989).Gębczyńska, Z., Gębczyński, M., Morzuch, K. & Zielińska, D. M. Food eaten by four species of rodents in polluted forests. Acta Theriol. 34, 465–477 (1989).Article 

    Google Scholar 
    Babinska-Werka, J. Response of rodents to an increased and quantitatively diverse food base. Acta theriologica 35, (1990).Margaletic, J., Glavaš, M. & Bäumler, W. The development of mice and voles in an oak forest with a surplus of acorns. J. Pest Sci. 75, 95–98 (2002).Holisova, V. The food of Apodemus agrarius (Pall.). Zoologické listy 16, 1–14 (1967).Obrtel, R. & Hološová, V. The trophic niche of Apodemus agrarius in northern Moravia. Folia Zool. 30, 125–138 (1981).
    Google Scholar 
    Grant, P. R. Interspecific competition among rodents. Annu. Rev. Ecol. Syst. 3, 79–106 (1972).Article 

    Google Scholar 
    Redfield, J. A., Krebs, C. J. & Taitt, M. J. Competition between Peromyscus maniculatus and Microtus townsendii in grasslands of coastal British Columbia. J. Anim. Ecol. 607–616 (1977).Kincaid, W. B. & Cameron, G. N. Effects of species removal on resource utilization in a Texas rodent community. J. Mammal. 63, 229–235 (1982).Article 

    Google Scholar 
    Yurkonis, K. A., Meiners, S. J. & Wachholder, B. E. Invasion impacts diversity through altered community dynamics. J. Ecol. 93, 1053–1061 (2005).Article 

    Google Scholar 
    Powell, K. I., Chase, J. M. & Knight, T. M. A synthesis of plant invasion effects on biodiversity across spatial scales. Am. J. Bot. 98, 539–548. https://doi.org/10.3732/ajb.1000402 (2011).Article 

    Google Scholar 
    Jaksic, F. M. Vertebrate invaders and their ecological impacts in Chile. Biodivers. Conserv. 7, 1427–1445 (1998).Article 

    Google Scholar 
    Richter-Boix, A. et al. Effects of the non-native amphibian species Discoglossus pictus on the recipient amphibian community: Niche overlap, competition and community organization. Biol. Invasions 15, 799–815. https://doi.org/10.1007/s10530-012-0328-4 (2013).Article 

    Google Scholar 
    Kumschick, S., Bacher, S. & Blackburn, T. M. What determines the impact of alien birds and mammals in Europe? Biol. Invasions 15, 785–797. https://doi.org/10.1007/s10530-012-0326-6 (2013).Article 

    Google Scholar 
    Tedeschi, L., Biancolini, D., Capinha, C., Rondinini, C. & Essl, F. Introduction, spread, and impacts of invasive alien mammal species in Europe. Mam. Rev. Mam. 12277. https://doi.org/10.1111/mam.12277 (2021).Harris, D. B. Review of negative effects of introduced rodents on small mammals on islands. Biol. Invasions 11, 1611–1630. https://doi.org/10.1007/s10530-008-9393-0 (2009).Article 

    Google Scholar 
    Traveset, A. et al. A review on the effects of alien rodents in the Balearic (Western Mediterranean Sea) and Canary Islands (Eastern Atlantic Ocean). Biol. Invasions 11, 1653–1670. https://doi.org/10.1007/s10530-008-9395-y (2009).Article 

    Google Scholar 
    Jung, T. S., Nagorsen, D. W., Kukka, P. M. & Barker, O. E. Alien invaders: recent establishment of an urban population of house mice (Mus musculus) in the Yukon. Northwest. Nat. 93, 240–242 (2012).Article 

    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453. https://doi.org/10.1016/S0169-5347(99)01679-1 (1999).Article 
    CAS 

    Google Scholar 
    MacGregor-Fors, I., Morales-Pérez, L., Quesada, J. & Schondube, J. E. Relationship between the presence of House Sparrows (Passer domesticus) and Neotropical bird community structure and diversity. Biol. Invasions 12, 87–96. https://doi.org/10.1007/s10530-009-9432-5 (2010).Article 

    Google Scholar 
    Phillips, B. L. Behaviour on Invasion Fronts, and the Behaviour of Invasion Fronts. in Biological Invasions and Animal Behaviour (eds. Weis, J. S. & Sol, D.) 82–95 (Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781139939492.007.Pietrek, A. G., Goheen, J. R., Riginos, C., Maiyo, N. J. & Palmer, T. M. Density dependence and the spread of invasive big-headed ants (Pheidole megacephala) in an East African savanna. Oecologia 195, 667–676. https://doi.org/10.1007/s00442-021-04859-1 (2021).Article 
    ADS 

    Google Scholar 
    Stanko, M. Ryšavka tmavopása (Apodemus agrarius, Rodentia) na Slovensku. (Parazitologický ústav SAV, 2014).Thompson, K., Hodgson, J. G. & Rich, T. C. Native and alien invasive plants: more of the same?. Ecography 18, 390–402 (1995).Article 

    Google Scholar  More

  • in

    Global patterns of climate change impacts on desert bird communities

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 1–7 (2017).Article 

    Google Scholar 
    Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).Article 
    ADS 

    Google Scholar 
    Gooseff, M. N. et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat. Ecol. Evol. 1, 1334–1338 (2017).Article 

    Google Scholar 
    Iknayan, K. J. & Beissinger, S. R. In transition: Avian biogeographic responses to a century of climate change across desert biomes. Glob. Change Biol. 26, 3268–3284 (2020).Article 
    ADS 

    Google Scholar 
    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Change Biol. 18, 3063–3070 (2012).Article 
    ADS 

    Google Scholar 
    Ward, D. The Biology of Deserts (OUP Oxford, 2016).Reid, V. W. et al. Millennium Ecosystem Assessment, 2005. In Ecosystems and Human Well-being: Synthesis (Island Press, 2005).Zhou, L., Chen, H. & Dai, Y. Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett. 10, 064012 (2015).Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. et al. 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds Masson-Delmotte, V. et al.) Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 175-312, https://doi.org/10.1017/9781009157940.005.Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 2283–2288 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O. E. & Ganopolski, A. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2, e1501923 (2016).Article 
    ADS 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1665–1679 (2012).Article 

    Google Scholar 
    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).Article 

    Google Scholar 
    Bicudo, J. E. P., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds Vol. 2 (Oxford University Press, 2010).McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).Article 

    Google Scholar 
    Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Williams, J. B. & Tieleman, B. I. Physiological adaptation in desert birds. BioScience 55, 416–425 (2005).Article 

    Google Scholar 
    Iknayan, K. J. & Beissinger, S. R. Collapse of a desert bird community over the past century driven by climate change. Proc. Natl Acad. Sci. USA 115, 8597–8602 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Albright, T. P. et al. Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 1, art12 (2010).Article 

    Google Scholar 
    Cruz-McDonnell, K. K. & Wolf, B. O. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Glob. Change Biol. 22, 237–253 (2016).Article 
    ADS 

    Google Scholar 
    Dawson, W. R. Temperature Regulation and Water Requirements of the Brown and Abert Towhees, Pipilo Fuscus and Pipilo Aberti.[With Plates.] (University of California Press, 1954).Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1908791116 (2019).Wolf, B. Global warming and avian occupancy of hot deserts; a physiological and behavioral perspective. Rev. Chil. Hist. Nat. 73, 395–400 (2000).Article 

    Google Scholar 
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Ioffe, S. Improved consistent sampling, weighted Minhash and L1 sketching. In Proceedings of the 2010 IEEE International Conference on Data Mining 246–255 (IEEE Computer Society, 2010).Losos, E., Hayes, J., Phillips, A., Wilcove, D. & Alkire, C. Taxpayer-subsidized resource extraction harms species. BioScience 45, 446–455 (1995).Article 

    Google Scholar 
    Rodríguez-Estrella, R. Land use changes affect distributional patterns of desert birds in the Baja California peninsula, Mexico. Divers. Distrib. 13, 877–889 (2007).Article 

    Google Scholar 
    Stralberg, D. et al. Climate-change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).Article 

    Google Scholar 
    Hinkel, J. et al. Sea-level rise scenarios and coastal risk management. Nat. Clim. Change 5, 188–190 (2015).Article 
    ADS 

    Google Scholar 
    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the anthropocene. Curr. Biol. 29, R1021–R1035 (2019).Article 
    CAS 

    Google Scholar 
    C. B. D. Zero Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/2/3. https://www.cbd.int/doc/c/efb0/1f84/a892b98d2982a829962b6371/wg2020-02-03-en.pdf Convention on Biology Diversity, Montreal, Canada (2020).Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Meigs, P. World distributions of arid and semi-arid homoclimates. In Review of Research on Arid Zone Hydrology (UNESCO, 1953).Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 
    ADS 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR – an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Pattinson, N. B. et al. Heat dissipation behaviour of birds in seasonally hot arid-zones: are there global patterns? J. Avian Biol. 51, e02350 (2020).Smith, E. K., O’Neill, J., Gerson, A. R. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail. J. Exp. Biol. 218, 3636–3646 (2015).Article 

    Google Scholar 
    Smith, E. K., O’Neill, J. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds. J. Exp. Biol. 220, 3290–3300 (2017).
    Google Scholar 
    Kearney, M. NicheMapR: R implementation of Niche Mapper software for biophysical modelling. https://github.com/mrke/NicheMapR. (2020).Cunningham, S. J., Martin, R. O. & Hockey, P. A. Can behaviour buffer the impacts of climate change on an arid-zone bird? Ostrich 86, 119–126 (2015).Article 

    Google Scholar 
    Czenze, Z. J. et al. Regularly drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. 34, 1589–1600 (2020).Article 

    Google Scholar 
    Smit, B. et al. Avian thermoregulation in the heat: phylogenetic variation among avian orders in evaporative cooling capacity and heat tolerance. J. Exp. Biol. 221, jeb174870 (2018).Worcester, S. E. The scaling of the size and stiffness of primary flight feathers. J. Zool. 239, 609–624 (1996).Article 

    Google Scholar 
    Wang, X., Nudds, R. L., Palmer, C. & Dyke, G. J. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds. J. Evol. Biol. 25, 547–555 (2012).Article 
    CAS 

    Google Scholar 
    McKechnie, A. E., Gerson, A. R. & Wolf, B. O. Thermoregulation in desert birds: scaling and phylogenetic variation in heat tolerance and evaporative cooling. J. Exp. Biol. 224, jeb229211 (2021).Flint, L. E., Flint, A. L., Thorne, J. H. & Boynton, R. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecol. Process. 2, 25 (2013).Article 

    Google Scholar 
    Handbook of the Birds of the World and BirdLife International. Handbook of the Birds of the World and BirdLife International digital checklist of the birds of the world. Version 5. http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v5_Dec20.zip (2020).Brooks, T. M. et al. Measuring terrestrial Area of Habitat (AOH) and its utility for the IUCN red list. Trends Ecol. Evol. 34, 977–986 (2019).Article 

    Google Scholar 
    Pastore, M. Overlapping: a R package for estimating overlapping in empirical distributions. J. Open Source Softw. 3, 1023 (2018).Article 
    ADS 

    Google Scholar 
    UNEP-WCMC and IUCN, Protected Planet: The World Database on Protected Areas (WDPA) [Online], June 2021, Cambridge, UK: UNEP-WCMC and IUCN www.protectedplanet.net (2021).Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article 

    Google Scholar 
    Dudley, N. Guidelines for Applying Protected Area Management Categories (ICUN, 2008).Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. https://CRAN.R-project.org/package=rcompanion. (2021).Crawford, C. L., Estes, L. D., Searchinger, T. D. & Wilcove, D. S. Consequences of underexplored variation in biodiversity indices used for land-use prioritization. Ecol. Appl. 31, e02396 (2021).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Conservation setbacks? The secrets to lifting morale

    Conservationist Jim Groombridge in Hawaii (standing) performing a ‘heli-hook-up’, in which a net full of equipment is hooked up to the hovering helicopter, to save it needing to land.Credit: Jim Groombridge/Maui Forest Bird Recovery Project

    Since his undergraduate degree, Jim Groombridge has been part of several teams that work with critically endangered animals, including the Mauritius kestrel (Falco punctatus), which was brought back from the brink of extinction. But he has also experienced the devastation of some species being lost forever, despite all possible interventions. After receiving his PhD from Queen Mary University of London in 2000, he worked as a project coordinator at the Maui Forest Bird Recovery Project in Makawao, Hawaii. Conservation science spans many topics including climate change, working with local communities, epidemiology, genomics and designing protected areas. Projects can range from single-species conservation to ecosystem-level or landscape conservation, such as restoring whole islands. Now a professor in biodiversity conservation at the University of Kent’s Durrell Institute of Conservation and Ecology in Canterbury, UK, Groombridge teaches bachelor’s and master’s students about leadership of conservation teams and how to motivate them in the face of setbacks.What is special about leading conservation teams?Conservation field teams are slightly quirky, and those quirks can define what makes a team work well or not. One is that team leaders are rarely trained in management tasks, such as overseeing a budget, interacting with project partners and local governments, dealing with team members who feel passionate about what they do and facing the high stakes involved. Team members are enthusiastic, passionate and seldom motivated by money.Another quirk is that, in a small conservation team of four to six people, there is often a mix of skill sets and experience. You can have highly experienced specialists in a particular area, such as screening parrots for diseases, or reintroduction biology, and you might also have volunteers with only passion and enthusiasm to offer.How do you lead a team with such variable experience?Even with those different levels of expertise, you still need to meet high standards for specimen and data collection. At the moment, for example, I’m sequencing the genome of the pink pigeon (Nesoenas mayeri), using samples collected in the 1990s. There’s a sense of responsibility, especially if you’re working with species that are rare, because if you mess it up, they could go extinct. It’s not unusual to have volunteers with only two or three weeks’ worth of experience handling extremely rare samples or working with valuable data sets. Their learning curve is pretty steep. As a leader, you need to make sure that you understand the details — ranging from tasks such as collecting data and monitoring and recording invasive species to, for example, knowing how to trap a mongoose — so that you can make sure that everyone is collecting the data in the same way.

    Jim Groombridge (far left), who studies biodiversity conservation at the University of Kent, UK, with one of the field crews involved in an operation to translocate a bird called the po‘ouli in Hawaii.Credit: Jim Groombridge/Maui Forest Bird Recovery Project

    What do team members tend to have in common?They often share a passion for nature. They want to save the environment, they want to save a species from going extinct, they want to make a difference. That level of emotion is important. It creates an energy, which needs to be channelled proactively and positively into the project to make it a success.In 2002, for example, I was leading a team working to save a bird called the po‘ouli (Melamprosops phaeosoma) on the island of Maui, part of the Hawaiian archipelago. We were trying to translocate one of the last known birds into the range of another one to give them the opportunity to breed. There was huge excitement, but after four weeks of failing to catch the bird, there was also a lot of frustration.How do you manage a team with such strong emotions?Morale is really important. So is being able to deal with difficulties when they arise. That’s what gets small teams through tough times. With the po‘ouli, I had to make sure that the team had fun, and that people genuinely enjoyed themselves. That meant taking time out with the team in the evenings and ensuring that everyone had a bit of a laugh, so it wasn’t deadly serious all the time. Also, I made sure that team members got to perform the aspects of the job that they were good at, to increase their confidence and well-being. We eventually trapped the po‘ouli and moved it, but even though the birds were in the same territory, they didn’t breed.How do you manage expectations amid failure?I had to remind the team about the broader picture of what we had achieved. This was the first time anyone had followed the po‘ouli in the forest for ten days. I think we learnt more about the ecology of that species in that time than anyone had learnt in 30 years. We held the translocated bird for about two hours before we released it, and it took food items from us, which showed that the birds could be kept in captivity if necessary. We learnt a huge amount that could be applied to another project.
    Treading carefully: saving frankincense trees in Yemen
    You have to manage people’s expectations and have goals that are achievable. If you are starting a project on a species with fewer than ten individuals left in the wild, and your goal is to have thousands, that’s a difficult leap of imagination. Instead, perhaps start with finding a food that a species would eat in captivity. People need to remain connected with what’s achievable. There’s a delicate balance between being aspirational and being pragmatic.As a team member, what do you wish more conservation leaders knew?Often, there is too much emphasis placed on the command structure. Innovation in a conservation team is undersold, and easily quashed by a type of line-manager approach. The hierarchy in a team is important because people know what to do and who to report to, but you also have to encourage team members to use their initiative and ask questions. I remember when my team and I were in the cloud forests, tropical mountain regions covered by clouds for most of the year in Hawaii, we were struggling with baiting rats, which prey on eggs and fledglings of native birds. It’s one of the wettest places on Earth, and the rat poison basically turns to cottage cheese. However, one of my colleagues designed a bait box, which kept the bait dry for many weeks. When you’re working with critically endangered species and in field conditions, ingenuity is crucial.
    This interview has been edited for length and clarity. More

  • in

    Variable effects of vegetation characteristics on a recreation service depending on natural and social environment

    Study areaWe focused on hiking activity in the four main islands of Japan (Honshu, Hokkaido, Kyushu, and Shikoku) and nearby small islands connected to the main islands by a bridge (Fig. 1a). These islands lie between latitudes 31.0° and 45.5°N, and the total area is 361,000 km2. The islands are generally mountainous and tallest mountains in central Honshu exceed 3000 m a.s.l. (Fig. 1c). In Tokyo, mean monthly temperatures range between 5.2 °C in January and 26.4 °C in August, while they range between − 18.4 °C in January and 6.2 °C in August at the summit of the highest mountain, Mt. Fuji (3776 m a.s.l., Japan Meteorological Agency). In northern Honshu and Hokkaido, snow depth can exceed 1 m even at low elevations and high mountains are covered with snow even in southern Japan.Vegetation excluding farmland and pasture covers 70.9% of the study area and the 93.9% is forest. Plantations of mostly evergreen conifers such as Japanese cedar (Cryptomeria japonica) occupy 37.6% of the vegetation area (National Surveys on the Natural Environment by the Biodiversity Center of Japan 2nd–7th; http://www.biodic.go.jp/trialSystem/top_en.html). Secondary vegetation after past human disturbances occupies 39.4% of the total vegetation and the remaining 23.0% is primary vegetation. The typical primary vegetation types are, from north to south, boreal mixed forest, deciduous broad leaved forest, and evergreen broad leaved forest.Grid squaresRecords of hiking activity were summarized for 4244 secondary grid squares based on Standard Grid Square System, which was defined by the Minister’s Order of Administrative Management Agency in 1973. In the system, the secondary grid was defined as a grid of 5′ in latitude and 7′ 30″ in longitude, which roughly corresponds to a 10 km grid in the study area. This is the standard grid system of the government and we adopted the system for convenience in future application uses and communication with practitioners. The grids, which are defined by latitude and longitude, are different in the area up to 22% between the north and south ends. Therefore, area of each grid was included in a model as an offset term.Hiking activityAccording to a government survey in 2016, (the Survey on Time Use and Leisure Activities by the Statistics Bureau of Japan, http://www.stat.go.jp/english/data/shakai/index.htm), 10.0% (about 10.7 million people) of Japan’s population age 15 or over enjoyed hiking/mountaineering in the last year. The census showed also that hiking is more popular among urban residents in the metropolitan areas. Both multi-day expedition to high mountains and day trek to low mountains in suburban areas are popular. Because of the severe winter climate, unskilled hikers use the high mountains in summer and early autumn only. During a summer vacation, whose peak time in Japan is August, many hikers enjoy multi-day trips to distant mountains. Spring and autumn are also popular seasons because of the mild weather and the scenic beauty of the fresh green or autumn colors.Data collectionIn this study, we used number of hiking records accumulated on the most popular social networking service for hikers in Japan (Yamareco; https://www.yamareco.com) as a surrogate for flow of recreation service. For all the registered destinations in the study area, the number of hiking records for each month and the latitude and longitude of the destination were collected from the service in September 2016 with the rvest28 package in R software29. This service launched in October 2005 hosts records of the hiking route, photos, participants, and impressions of a hiking trip and facilitates communication among users. Although monthly number of records for each destination is always available on the site, the exact date of each hiking record is not always public information for privacy reasons; therefore, all of the records from the almost 11 years since the start of the service were lumped together in our analysis. Hikers may record multiple places in a single trip, so the total number of records must be larger than the number of unique trips. Users of the service sometime record a place that is not a destination, e.g. start points and stations of trails, parking areas, stations of transports, and bus stops. Such records were excluded before analyses as far as it can be judged from the name of the place. As a result, the total number of hiking records was 4,708,229 records for 16,179 destinations. Finally, these records were assigned to the 4244 grids based on the latitude and longitude of each destination and then total number of records for each grid was used as a surrogate of the recreation service flow in our analysis. Not only total number but also monthly number was used in our analysis to examine seasonal changes in associations between the service and vegetation. Total record number of the grids was strongly right-skewed; no record (handled as 0 in our analysis) was found in 2036 grids while mean and maximum record number were 1109 and 350,384, respectively.Explanation variablesFifty ecological, environmental, and social/infrastructural variables (Table S1) were prepared for each grid by using ArcGIS version 10.5 (ESRI, Redlands, CA, USA). For vegetation and land-use attributes, National Surveys on the Natural Environment by the Biodiversity Center of Japan (2nd–7th; http://www.biodic.go.jp/trialSystem/top_en.html) and National Land Numerical Information (http://nlftp.mlit.go.jp/ksj-e/index.html) were used. The proportion of sea, that of total vegetation cover (excluding agricultural land and pasture) to land area, that of agricultural land (including pasture) to land area, that of natural vegetation (vegetation excluding plantations) to total vegetated area, and that of primary vegetation (vegetation with no record or evidence of a disturbance) to natural vegetation were summarized at four spatial scales: a radius of 10 km, 20 km, 50 km, and 100 km from the center of each grid. Spatial patterns of the three vegetation variables in 10 km radius were summarized in Fig. 1d–f.Maximum elevation, minimum elevation, and ruggedness (index of topographic heterogeneity30) were summarized at the four spatial scales based on a digital elevation model (10-m resolution) provided by the Geospatial Information Authority of Japan (https://fgd.gsi.go.jp/download/menu.php). For climatic variables (annual and monthly mean temperature, annual and monthly precipitation, annual and monthly hours of sunshine, and annual maximum snow depth), the National Land Numeric Information provided by the Ministry of Land, Infrastructure, Transport and Tourism of Japan (http://nlftp.mlit.go.jp/ksj-e/index.html) was referenced. Densities of population and roads at the four spatial scales were prepared from population census data from the Statistics Bureau of Japan (http://e-stat.go.jp/SG2/eStatGIS/page/download.html) and the National Land Numeric Information. For calculation of these densities, the sea surface was excluded. In addition, latitude and longitude of center of each grid were also used as explanatory variables to average effects of spatial coordinates.Statistical analysisIn this study, we employed BRT, a machine-learning method based on regression trees31 for modeling the complex relationship between a CES flow and landscape attributes12. BRT is an ensemble learning method where multiple regression trees are sequentially combined to minimize the loss function by means of gradient descent. This technique has advantage in the development of a model with a high predictive performance, in which high-dimensional interactions among explanatory variables and nonlinear responses are fully accounted for. In ecology, BRT has been frequently used for modeling of a species distribution32.Total and monthly numbers of hiking records were modeled as a function of the 50 variables described above under the assumption of a Poisson response. For temperature, precipitation, and hours of sunshine, annual and monthly average were used for the analysis of total and monthly records, respectively. In modeling by BRT, parameters for building of each learner and assembly of the learners must be carefully chosen to maximize generalization ability of a model31. In our case, candidate parameters were 2, 5, and 10 for the maximum depth of variable interactions for each learner; 2, 5, 10, and 20 for the minimum number of observations in the terminal nodes for each learner; 0.5 and 0.75 for the proportion of training data used for building each learner; and 1000, 2000, 4000, 6000, 8000 and 10,000 for the total number of learners (Table S2). In the model assembling process, the value of 0.01 was used as a shrinkage parameter. Ten-fold cross validation was used to obtain the best suites of parameters. R2 based on sum of squares:$${R}^{2}=1-frac{{sum ({y}_{i}-widehat{{y}_{i}})}^{2}}{{sum ({y}_{i}-overline{{y }_{i}})}^{2}}$$
    was used for evaluation of the model’s prediction performance. The importance of explanatory variables was evaluated as an increase of mean absolute error after 100-times permutation of a variable33.Effects of each explanatory variable (a landscape attribute) on the response variable (record number) and the context dependence were visually inspected by individual conditional expectation (ICE) plot34. ICE plot visualizes the effect of a given explanatory variable for each observation by connecting outcome of a model for shifting values of the focal explanatory variable throughout the range while keeping other explanatory variables as the original value. Predictions were performed in log-scale and each line was centered to be zero at the left end of the x-axis to show relative effects of explanatory variables (c-ICE plot sensu Goltstein et al.34). Each line in ICE plot can be colored based on value of the second explanatory variable to assist assessment of the interactive effects of the two predictors. Friedman’s H statistic35 was used to detect explanatory variables whose interaction with the vegetation variables are important and therefore should be used for color-coding of an ICE plot. Friedman’s H is defined as a proportion of variance of partial dependence estimates explained by interactive effects for arbitrary suites of explanatory variables.Then, expected impacts of 0.1 decrease in the three local vegetation variables were assessed by the trained model and mapped. Although vegetation variables were sometimes more important at larger spatial scales (see “Results”), we focused on vegetation at a local (10 km radius) scale because most changes in vegetation occur at the scale in Japan (National Surveys on the Natural Environment by the Biodiversity Center of Japan, https://www.biodic.go.jp/kiso/fnd_list_h.html).All statistical analyses were performed using the R software packag29. The gbm36 package was used for BRT, the iml37 package was used for calculation of Friedman’s H statistic, and the cv.models (Oguro, https://github.com/Marchen/cv.models) packages was used for cross validation and parameter tuning. More

  • in

    Genetic basis of thiaminase I activity in a vertebrate, zebrafish Danio rerio

    Sequence analysisProtein sequence searches were conducted in the GenBank nr database with BLASTP42 using default parameters, including automatically adjusting parameters for short input sequences (Table S1). Conserved domain searches were run against the GenBank Conserved Domain Database (CDD)43. Sequence alignments were conducted in CLC Main Workbench 20.0.4 (Qiagen) with the fast alignment algorithm, gap open cost = 10, and gap extension cost = 1. Biochemical properties of the fish putative thiaminase I protein sequences were predicted with the Create Sequence Statistics function in CLC Main Workbench 20.0.4 (Qiagen, Hilden, Germany). The molecular weights were calculated from the sum of the amino acids in the sequence, and the isoelectric points (pIs) were calculated from the pKa values for the individual amino acids in the sequence.Bacteria culturePure cultures of P. thiaminolyticus strain 818822 were cultured at 37 °C in Terrific Broth (MO BIO Laboratories, Carlsbad, CA) in either a shaking incubator or in a beveled flask with a stir bar and were harvested after 48–80 h of culture. Upon harvest, cultures were processed immediately or frozen whole in 50 mL Falcon tubes at − 80 °C. Fresh or thawed cultures were spun at 14,000×g, and culture supernatant was concentrated using Amicon-ultra 10 kDa molecular weight cut-off (MWCO) filters (EMD Millipore, Billerica, MA).The zebrafish and alewife candidate thiaminase I genes were cloned and overexpressed in E. coli to determine whether they produced functional thiaminases. The recombinant thiaminase I gene from P. thiaminolyticus was overexpressed in E. coli as a positive control. Candidate and control genes were synthesized (Integrated DNA Technologies, Inc., Coralville, Iowa) and placed into the pET52b vector (EMD Millipore). Insert sequences are provided in Supplementary Figs. S10–S13. The empty pET52b vector was used as a negative control. The plasmid was transformed into E. coli (Rosetta 2(DE3)pLysS Singles Competent Cells, EMD Millipore) according to the manufacturer’s instructions, and expression of candidate genes was induced by the addition of IPTG. Cells were lysed in 1X BugBuster (Millipore) according to the manufacturer’s instructions in the presence of benzonase nuclease, and soluble and insoluble fractions were separated by centrifugation.Tissue collectionsAdult common carp were captured from Lake Erie using short-set gill nets. Adult alewife and quagga mussels (Dreissena bugensis) were collected from Sturgeon Bay, Lake Michigan using bottom trawls. Fish collections were completed during July 2007. Sex of sampled fish was not identified. Upon collection, unanesthetized animals were immediately euthanized by flash freezing between slabs of dry ice and stored at − 80 °C. Fish were harvested by the Great Lakes Science Center, U.S. Geological Survey (USGS). Laboratory use of frozen animal tissues and wild type and recombinant bacteria was in accordance with institutional guidelines and biosafety procedures at Oregon State University and USGS. Animal care and use procedures were approved by the Great Lakes Science Center, USGS. All USGS sampling and handling of fish during research are carried out in accordance with guidelines for the care and use of fishes by the American Fisheries Society44. All methods are reported in accordance with applicable ARRIVE guidelines (https://arriveguidelines.org). Zebrafish from OSU’s zebrafish facility were anesthetized and euthanized by overdose with waterborne 200 ppm ethyl 3-aminobenzoate methanesulfonate (MS-222, Sigma-Aldrich, St. Louis, MO) following protocols approved by the OSU Animal Institutional Care and Use Committee and were frozen at − 80 °C after euthanization. Gills, liver, spleen, and the intestinal tract were dissected, and gill tissue was homogenized separately from liver, spleen, and gut, which were homogenized together and designated “viscera.” Homogenization and protein preparation procedures were the same as that for alewife. Zebrafish from Columbia Environmental Research Center (CERC), USGS cultures were anesthetized and euthanized by overdose with 200 ppm ethyl 3-aminobenzoate methanesulfonate (MS-222, Sigma-Aldrich, St. Louis, MO) in water following protocols approved by CERC Institutional Animal Care and Use Committee (IACUC). Whole fish (0.2–0.6 g) were homogenized in 10 mL cold phosphate buffer, pH 6.5. Whole common carp and alewife were thawed until they could just be dissected. Preliminary trial extractions on alewife stomach and intestines, spleen, and gills revealed similar results and revealed that gills and spleen tissue produced the cleanest protein preparations. Therefore, subsequent extractions for common carp and alewife used gill tissue. Samples were pooled from 3 to 5 individual fish, haphazardly chosen from the sampled fish without exclusions. Quagga mussels were thawed just sufficiently to be husked from their shell and were used whole. Researchers were aware of the species and tissue designation of each sample throughout the experiments. Animal tissues were placed in ice-cold (4 °C) beakers containing cold extraction buffer (16 mM K3HPO4, 84 mM KH2PO4, 100 mM NaCl, pH 6.5 with 1 mM DTT, 2 mM EDTA, 3 mM Pepstatin, 1X Protease inhibitor cocktail (Sigma), and 1 mM AEBSF). All extractions were carried out at 4 °C in pre-chilled glassware. Samples were mechanically homogenized using a rotor–stator tissue grinder. Samples were stirred gently for several hours to overnight at 4 °C, centrifuged at 14,000×g to remove debris, and strained through cheesecloth to remove any insoluble lipids. Extracts were then subjected to 30–75% ammonium sulfate precipitation. Pellets from the precipitation were resuspended in buffer (83 mM KH2PO4, 17 mM K2HPO4, and 100 mM NaCl), centrifuged to remove any remaining debris, and stored in 30% glycerol at − 20 °C.Protein electrophoresisNative PAGE was run using either pre-cast TGX gels (BioRad, Hercules, California) of varying percentage (7.5% to 12% or 8–16% gradient gels) or on hand-cast gels (TGX FastCast, BioRad) made according to the manufacturer’s instructions.Blue-native PAGE was used to estimate the mass of thiaminases in their native conformation. Blue-native PAGE45 gels were run using the NativePage Novex Bis–Tris system (Life Technologies) or hand-cast equivalents46. Light blue cathode buffer was used to facilitate visualization of the activity stain.Standard denaturing SDS-PAGE was used to estimate the molecular mass of thiaminases after denaturation. Denaturing SDS-PAGE was run using one of three relatively equivalent methods: pre-cast TGX gels (BioRad) according to the manufacturer’s instructions, hand-cast Tris–HCl gels using standard Laemmli chemistry47 with an operating pH of approximately 9.5, or hand-cast Bis–Tris gels (MOPS buffer) with an operating pH of approximately 7. For all denaturing and non-denaturing SDS-PAGE applications, standard Laemmli sample buffer was used, and samples were heated to 75 °C for 15 min to facilitate denaturation followed by brief centrifugation to eliminate any precipitated debris.Non-denaturing PAGE was used as an alternative to denaturing PAGE for the common carp thiaminase that could not be renatured (i.e., activity could not be recovered) following a denaturing SDS-PAGE. Non-denaturing PAGE was conducted using any of the three aforementioned gel chemistries with SDS-containing running buffers including reductant (DTT), but samples were not heated prior to application to the gel. Samples for non-denaturing PAGE were allowed to incubate in sample buffer at room temperature for 30 min prior to gel loading. This preserves the charge-shift induced by SDS but does not result in protein denaturation, facilitating in-gel analysis of thiaminase I activity after separation.To visualize proteins following electrophoresis, gels were stained with Coomassie stain (CBR-250 at 1 g/L in methanol/acetic acid/water (4:5:1) and destained with methanol/acetic acid/water (1.7:1:11.5). Mini-gels were run on BioRad’s mini-protean gel rigs. Midi-gels (16 cm length) were run on Hoefer’s SE660, and large-format gels (32 cm length) were run on a BioRad’s Protean Slab Cell. Mini-gels were generally run at room temperature, and midi- and large-format gels were run at 4 °C. Blue-native PAGE was always run at 4 °C.Two-dimensional electrophoresis (2DE) separated proteins in the first dimension based on pI and in the second dimension based on mass (either native or denatured). 2DE was performed by combining in-gel IEF with either denaturing SDS-PAGE, non-denaturing SDS-PAGE, or native PAGE. IPG strips were incubated in TRIS-buffered equilibration solution48 either with 6 M urea, SDS, and iodacetamide (denaturing) or without urea, SDS, and iodacetamide (non-denaturing) for 20 min. Low melting point agarose was used to solidify IGP strips in place. Agarose was cooled to just above the gelling temperature, as hot agarose inactivated thiaminase I activity.Isoelectric focusingIsoelectric focusing (IEF) was conducted both in-gel and in-liquid. In-gel IEF was conducted in immobilized pH gradient (IPG) strips using a Multifor II (GE Healthcare Life Sciences). Prior to rehydration, all protein preparations were desalted in low-salt (~ 5 to 10 mM) sodium or potassium phosphate buffer (pH 6.5) using 10 kDA MWCO filters. All samples were applied using sample volumes and protein concentrations recommended by the manufacturer. For standard denaturing in-gel IEF, rehydration solution consisted of 8 M urea, 2% CHAPS, 2% IPG buffer of the appropriate pH-range, 1% bromophenol blue, and 18 mM DTT. The IEF was conducted at maximum of 2 mA total current and 5 W total power, with an EPS3500 XL power supply in gradient mode. Voltage gradients were based on standard protocols recommended by the manufacturer. In-gel IEF was also performed under native conditions to allow thiaminase I activity staining of IPG strips. Protocols were essentially the same as those for denaturing conditions, with the following exceptions: (1) urea was eliminated and the CHAPS concentration was reduced to 0.5% in the rehydration solution; (2) rehydration was conducted at 14 °C; and (3) the water in the cooling tray was cooled to 4 °C.In-liquid IEF was conducted using a Rotofor (BioRad) according to the manufacturer’s instructions. Non-denaturing in-liquid IEF was also conducted using a focusing solution including no urea, 2% pH 3–10 biolyte, 0.5% CHAPS, 20% glycerol, and 5 mM DTT. The addition of glycerol helped retain activity but also increased focusing times. The Rotofor was run at a constant 15 W with a maximum current of 20 mA and voltage set for a maximum of 2000 V. Samples containing 8 M urea were cooled to 14 °C during focusing to avoid urea precipitation, whereas samples lacking urea were cooled to 4 °C during focusing. Protein extracts in salt solutions greater than 10 mM were desalted directly in focusing solution using a 10 kDA MWCO filter. Focusing runs were allowed to proceed until the voltage stabilized and fractions were harvested with the needle array and vacuum pump. Ampholytes were removed by addition of NaCl to 1 M and then samples were desalted into phosphate buffer using a 10kD MWCO filter.Thiaminase I activity measurementsFor quantitative measurements of thiaminase I activity, we conducted a radiometric assay at CERC as previously described49. Zebrafish homogenates were diluted 1:8, 1:16, or 1:32 in cold phosphate buffer, pH 6.5. Two replicates per dilution were assayed. Activity was calculated from the greatest dilution that gave activity within the linear range of the assay and was reported as pmol thiamine consumed per g tissue (wet weight) per minute (pmol/g/min).Thiaminase I activity stainingAfter electrophoresis, gels were stained for thiaminase I activity using a previously described diazo-coupling reaction19,50. Briefly, gels were washed 3 times in water, twice in 25 mM sodium phosphate buffer with 1 mM DTT, and once in 25 mM sodium phosphate buffer without DTT. Gels were then incubated in 0.89 mM thiamine-HCl and co-substrate (1.45 mM pyridoxine, 24 mM nicotinic acid, or 20 mM pyridine) in 25 mM sodium phosphate buffer for 10 min. Gels were briefly rinsed in water and placed in a lidded container and incubated at 37 °C for 30 min to allow thiamine degradation by any thiaminases in the gel. The diazo stain19,50 was then applied to detect remaining thiamine in the gel for five minutes with gentle agitation. Stained gels were rinsed with water and photographed, and further stained with Coomassie to visualize proteins. More

  • in

    Spatial genetic structure of European wild boar, with inferences on late-Pleistocene and Holocene demographic history

    Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L et al. (2015) Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet 47:217–225Article 
    CAS 

    Google Scholar 
    Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664Article 
    CAS 

    Google Scholar 
    Alexandri P, Megens HJ, Crooijmans RPMA, Groenen MAM, Goedbloed DJ, Herrero-Medrano JM et al. (2017) Distinguishing migration events of different timing for wild boar in the Balkans. J Biogeogr 44:259–270Article 

    Google Scholar 
    Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, Papageorgiou N et al. (2012) The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr 39:713–723Article 

    Google Scholar 
    Alves PC, Pinheiro I, Godinho R, Vicente JJ, Gortázar C, Scandura M et al. (2010) Genetic diversity of wild boar populations and domestic pig breeds (Sus scrofa) in South-western Europe. Biol J Linn Soc 101:797–822Article 

    Google Scholar 
    Apollonio M, Andersen R, Putman R (2010) European ungulates and their management in the 21st century (M Apollonio, R Andersen, and R Putman, Eds.) Cambridge University Press: Cambridge, UKAzzaroli A, De Giuli C, Ficcarelli G, Torre D (1988) Late pliocene to early mid-pleistocene mammals in Eurasia: Faunal succession and dispersal events. Palaeogeogr Palaeoclimatol Palaeoecol 66:77–100Article 

    Google Scholar 
    Bérénos C, Ellis PA, Pilkington JG, Pemberton JM (2016) Genomic analysis reveals depression due to both individual and maternal inbreeding in a free‐living mammal population. Mol Ecol 25:3152–3168Article 

    Google Scholar 
    Braga RT, Rodrigues JFM, Diniz-Filho JAF, Rangel TF (2019) Genetic population structure and allele surfing during range expansion in dynamic habitats. An da Academia Brasileira de Ciências 91:e20180179Article 

    Google Scholar 
    Bragina EV, Ives AR, Pidgeon AM, Kuemmerle T, Baskin LM, Gubar YP, Piquer-Rodríguez M, Keuler NS, Petrosyan VG, Radeloff VC (2015) Rapid Declines of Large Mammal Populations after the Collapse of the Soviet Union. Cons Biol 29:844–853Article 

    Google Scholar 
    Brewer S, Cheddadi R, de Beaulieu JL, Reille M, Allen J, Almqvist-Jacobson H et al. (2002) The spread of deciduous Quercus throughout Europe since the last glacial period. For Ecol Manag 156:27–48Article 

    Google Scholar 
    Cahill S, Llimona F, Cabañeros L, Calomardo F (2012) Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim Biodivers Conserv 35:221–233Article 

    Google Scholar 
    Canu A, Costa S, Iacolina L, Piatti P, Apollonio M, Scandura M (2014) Are captive wild boar more introgressed than free-ranging wild boar? Two case studies in Italy. Eur J Wildl Res 60:459–467Article 

    Google Scholar 
    Canu A, Vilaça STT, Iacolina L, Apollonio M, Bertorelle G, Scandura M (2016) Lack of polymorphism at the MC1R wild-type allele and evidence of domestic allele introgression across European wild boar populations. Mamm Biol 81:477–479Article 

    Google Scholar 
    Carranza J, Salinas M, de Andrés D, Pérez-González J (2016) Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity. Ecol Evol 6:905–922Article 

    Google Scholar 
    Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4:1–16Article 

    Google Scholar 
    Cheddadi R, Bar-Hen A (2009) Spatial gradient of temperature and potential vegetation feedback across Europe during the late Quaternary. Clim Dyn 32:371–379Article 

    Google Scholar 
    Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B et al. (2009) The Last Glacial Maximum. Science 325:710–714Article 
    CAS 

    Google Scholar 
    DeGiorgio M, Rosenberg NA (2013) Geographic sampling scheme as a determinant of the major axis of genetic variation in principal components analysis. Mol Biol Evol 30:480–488Article 
    CAS 

    Google Scholar 
    Deinet S, Ieronymidou C, McRae L, Burfield IJ, Foppen RP, Collen B, et al. (2013) Wildlife comeback in Europe. The recovery of selected mammal and bird species. London, UKEckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188Article 
    CAS 

    Google Scholar 
    Fang M, Berg F, Ducos A, Andersson L (2006) Mitochondrial haplotypes of European wild boars with 2n = 36 are closely related to those of European domestic pigs with 2n = 38. Anim Genet 37:459–464Article 
    CAS 

    Google Scholar 
    Ferenčaković M, Sölkner J, Curik I (2013) Estimating autozygosity from high-throughput information: Effects of SNP density and genotyping errors. Genet Sel Evol 45:42Article 

    Google Scholar 
    Ferreira E, Souto L, Soares AMVM, Fonseca C (2009) Genetic structure of the wild boar population in Portugal: Evidence of a recent bottleneck. Mamm Biol 74:274–285Article 

    Google Scholar 
    Franois O, Currat M, Ray N, Han E, Excoffier L, Novembre J (2010) Principal component analysis under population genetic models of range expansion and admixture. Mol Biol Evol 27:1257–1268Article 

    Google Scholar 
    Frantz AC, Bertouille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol Ecol 21:3445–3457Article 
    CAS 

    Google Scholar 
    Fulgione D, Rippa D, Buglione M, Trapanese M, Petrelli S, Maselli V (2016) Unexpected but welcome. Artificially selected traits may increase fitness in wild boar. Evol Appl 9:769–776Article 
    CAS 

    Google Scholar 
    Goedbloed DJ, Megens HJ, van Hooft P, Herrero-Medrano JM, Lutz W, Alexandri P et al. (2013a) Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Mol Ecol 22:856–866Article 
    CAS 

    Google Scholar 
    Goedbloed DJ, van Hooft P, Megens HJ, Langenbeck K, Lutz W, Crooijmans RPMA et al. (2013b) Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar. BMC Genet 14:2–10Article 

    Google Scholar 
    Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF et al. (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–398Article 
    CAS 

    Google Scholar 
    Herrero-Medrano JM, Megens H-J, Groenen MAM, Ramis G, Bosse M, Pérez-Enciso M et al. (2013) Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genet 14:1–13Article 

    Google Scholar 
    Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112Article 

    Google Scholar 
    Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond Ser B Biol Sci 359:183–195Article 
    CAS 

    Google Scholar 
    Hiemstra PH, Pebesma EJ, Twenhöfel CJW, Heuvelink GBM (2009) Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput Geosci 35:1711–1721Article 
    CAS 

    Google Scholar 
    Howrigan DP, Simonson MA, Keller MC (2011) Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics 12:460Article 
    CAS 

    Google Scholar 
    Huisman J, Kruuk LEB, Ellis PA, Clutton-Brock T, Pemberton JM (2016) Inbreeding depression across the lifespan in a wild mammal population. Proc Natl Acad Sci 113:3585–3590Article 
    CAS 

    Google Scholar 
    Iacolina L, Corlatti L, Buzan E, Safner T, Šprem N (2019) Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm Rev 49:45–59Article 

    Google Scholar 
    Iacolina L, Pertoldi C, Amills M, Kusza S, Megens H-J, Bâlteanu VA et al. (2018) Hotspots of recent hybridization between pigs and wild boars in Europe. Sci Rep. 8:17372Article 
    CAS 

    Google Scholar 
    Iacolina L, Scandura M, Goedbloed DJ, Alexandri P, Crooijmans RPMA, Larson G et al. (2016) Genomic diversity and differentiation of a managed island wild boar population. Heredity 116:60–67Article 
    CAS 

    Google Scholar 
    Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:1–2Article 

    Google Scholar 
    de Jong JF, Hooft van P, Megens HJ, Crooijmans RPMA, Groot de GA, Pemberton JM, Huisman J et al. (2020) Fragmentation and translocation distort the genetic landscape of ungulates: red deer in the Netherlands. Front Ecol Evol 8:535715Article 

    Google Scholar 
    Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281Article 

    Google Scholar 
    Kardos M, Åkesson M, Fountain T, Flagstad Ø, Liberg O, Olason P et al. (2018) Genomic consequences of intensive inbreeding in an isolated wolf population. Nat Ecol Evol 2:124–131Article 

    Google Scholar 
    Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034. https://doi.org/10.1016/j.quascirev.2009.09.028Koemle D, Zinngrebe Y, Yu X (2018) Highway construction and wildlife populations: Evidence from Austria. Land use policy 73:447–457Article 

    Google Scholar 
    Krže B (1982) Divji prašič: biologija, gojitev, ekologija. Lovska zveza Slovenije, Ljubljana
    Google Scholar 
    Kusza S, Podgórski T, Scandura M, Borowik T, Jávor A, Sidorovich VE et al. (2014) Contemporary genetic structure, phylogeography and past demographic processes of wild boar Sus scrofa population in central and eastern Europe. PLoS One 9:e91401Article 

    Google Scholar 
    Lorenzini R, Lovari S, Masseti M (2002) The rediscovery of the Italian roe deer: Genetic differentiation and management implications. Ital J Zool 69(4):367–379Article 

    Google Scholar 
    Lorenzini R, San José C, Braza F, Aragón S (2003) Genetic differentiation and phylogeography of roe deer in Spain, as suggested by mitochondrial DNA and microsatellite analysis. Ital J Zool 70(1):89–99Article 
    CAS 

    Google Scholar 
    Magri D (2013) Early to Middle Pleistocene dynamics of plant and mammal communities in South West Europe. Quat Int 288:63–72Article 

    Google Scholar 
    Manunza A, Zidi A, Yeghoyan S, Balteanu VA, Carsai TC, Scherbakov O et al. (2013) A high throughput genotyping approach reveals distinctive autosomal genetic signatures for European and Near Eastern wild boar. PLoS One 8:e55891Article 
    CAS 

    Google Scholar 
    Maselli V, Rippa D, De Luca A, Larson G, Wilkens B, Linderholm A et al. (2016) Southern Italian wild boar population, hotspot of genetic diversity. Hystrix 27:137–144
    Google Scholar 
    McVean G (2009) A genealogical interpretation of principal components analysis. PLoS Genet 5:e1000686Article 

    Google Scholar 
    Megens H-J, Crooijmans RP, Cristobal M, Hui X, Li N, Groenen MA (2008) Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet Sel Evol 40:103
    Google Scholar 
    Melis C, Szafrańska PA, Jȩdrzejewska B, Bartoń K (2006) Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. J Biogeogr 33:803–811Article 

    Google Scholar 
    Mihalik B, Stéger V, Frank K, Szendrei L, Kusza S (2018) Barrier effect of the M3 highway in Hungary on the genetic diversity of wild boar (Sus scrofa) population. Res J Biotechnol 13:32–38
    Google Scholar 
    NCBI (2018) Genome Organism Overview: Sus scrofa (pig). https://www.ncbi.nlm.nih.gov/genome?term=sus%20scrofa%20%5BOrganism%5D&cmd=DetailsSearch&report=OverviewNikolov IS, Gum B, Markov G, Kuehn R (2009) Population genetic structure of wild boar Sus scrofa in Bulgaria as revealed by microsatellite analysis. Acta Theriol (Warsz) 54:193–205Article 

    Google Scholar 
    Nykänen M, Rogan E, Foote AD, Kaschner K, Dabin W, Louis M et al. (2019) Postglacial colonization of northern coastal habitat by bottlenose dolphins: a marine leading-edge expansion? J Hered 110:662–674Article 

    Google Scholar 
    Palombo M, Romana AV-G (2003) Remarks on the biochronology of mammalian faunal complexes from the Pliocene to the Middle Pleistocene in France. Geol Rom: 145–163Paradis E, Claude J, Strimmer K (2004) APE: analysis of phylogenetics and evolution in R language. Bioinformatics 20:289–290Article 
    CAS 

    Google Scholar 
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al (2007) PLINK: A tool Set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. www.cog-genomics.org/plink/1.9/Putman R, Apollonio M, Andersen R (2011) Ungulate management in Europe: problems and practices. Cambridge University Press, Cambridge, UKBook 

    Google Scholar 
    R Core Team (2018) R: A language and environment for statistical computing. Vienna, AustriaRejduch B, Sota E, Ró M, Ko M (2003) Chromosome number polymorphism in a litter of European wild boar (Sus scrofa scrofa L.). Anim Sci Pap Rep. 21:57–62
    Google Scholar 
    Scandura M, Iacolina L, Apollonio M (2011a) Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild x domestic hybridization: Genetic variation in European wild boar. Mamm Rev 41:125–137Article 

    Google Scholar 
    Scandura M, Iacolina L, Cossu A, Apollonio M (2011b) Effects of human perturbation on the genetic make-up of an island population: The case of the Sardinian wild boar. Heredity 106:1012–1020Article 
    CAS 

    Google Scholar 
    Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, Russo V et al. (2008) Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: Are the effects of the last glaciation still detectable? Mol Ecol 17:1745–1762Article 
    CAS 

    Google Scholar 
    Scandura M, Fabbri G, Caniglia R, Iacolina L, Mattucci F, Mengoni C, Pante G, Apollonio M, Mucci N (2022) Resilience to Historical Human Manipulations in the Genomic Variation of Italian Wild Boar Populations. Front Ecol Evol 10:833081Article 

    Google Scholar 
    Schmitt T, Varga Z (2012) Extra-Mediterranean refugia: the rule and not the exception. Front Zool 9:22Article 

    Google Scholar 
    Sommer RS, Fahlke JM, Schmölcke U, Benecke N, Zachos FE (2009) Quaternary history of the European roe deer Capreolus capreolus. Mamm Rev 39:1–16Article 

    Google Scholar 
    Sommer RS, Nadachowski A (2006) Glacial refugia of mammals in Europe: evidence from fossil records. Mamm Rev 36:251–265Article 

    Google Scholar 
    Sommer RS, Zachos FE (2009) Fossil evidence and phylogeography of temperate species: ‘glacial refugia’ and post-glacial recolonization. J Biogeogr 36:2013–2020Article 

    Google Scholar 
    Sommer RS, Zachos FE, Street M, Jöris O, Skog A, Benecke N (2008) Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quat Sci Rev 27:714–733Article 

    Google Scholar 
    Stillfried M, Fickel J, Börner K, Wittstatt U, Heddergott M, Ortmann S et al. (2017) Do cities represent sources, sinks or isolated islands for urban wild boar population structure? J Appl Ecol 54:272–281Article 

    Google Scholar 
    Taberlet P, Fumagalli L, Wust-Saucy AG, Cossons JF (1998) Comparative phylogeography and post-glacial colonization routes in Europe. Mol Ecol 7:453–461.Article 
    CAS 

    Google Scholar 
    Veličković N, Djan M, Ferreira E, Stergar M, Obreht D, Maletić V et al. (2015) From north to south and back: the role of the Balkans and other southern peninsulas in the recolonization of Europe by wild boar. J Biogeogr 42:716–728Article 

    Google Scholar 
    Veličković N, Ferreira E, Djan M, Ernst M, Obreht Vidaković D, Monaco A et al. (2016) Demographic history, current expansion and future management challenges of wild boar populations in the Balkans and Europe. Heredity 117:348–357Article 

    Google Scholar 
    Vernesi C, Crestanello B, Pecchioli E, Tartari D, Caramelli D, Hauffe H et al. (2003) The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): A microsatellite analysis. Mol Ecol 12:585–595Article 
    CAS 

    Google Scholar 
    Vilaça ST, Biosa D, Zachos F, Iacolina L, Kirschning J, Alves PC et al. (2014) Mitochondrial phylogeography of the European wild boar: The effect of climate on genetic diversity and spatial lineage sorting across Europe. J Biogeogr 41:987–998Article 

    Google Scholar 
    Zachos FE, Frantz AC, Kuehn R, Bertouille S, Colyn M, Niedziałkowska M et al. (2016) Genetic structure and effective population sizes in European red deer (Cervus elaphus) at a continental scale: insights from microsatellite DNA. J Hered 107:318–326 More

  • in

    Global patterns of tree density are contingent upon local determinants in the world’s natural forests

    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).Article 
    CAS 

    Google Scholar 
    Asner, G. P. et al. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168, 1147–1160 (2012).Article 

    Google Scholar 
    Walker, A. P. et al. Predicting long‐term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? Glob. Biogeochem. Cy. 29, 476–495 (2015).Article 
    CAS 

    Google Scholar 
    Madrigal-González, J. et al. Climate reverses directionality in the richness–abundance relationship across the World’s main forest biomes. Nat. Commun. 11, 1–7 (2020).Article 

    Google Scholar 
    Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).Article 

    Google Scholar 
    Weiskittel, A. R., Maguire, D. A., Monserud, R. A. Development of a hybrid model for intensively managed Douglas-fir in the Pacific Northwest. In Forest Growth and Timber Quality, 49 (USDA, Portland, 2009).Paoli, G. D., Curran, L. M. & Slik, J. W. F. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155, 287–299 (2008).Article 

    Google Scholar 
    Yoda, K., Kira, T., Ogawa, H. & Hozami, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 107–129 (1963).
    Google Scholar 
    Westoby, M. The self-thinning rule. Adv. Ecol. Res. 14, 167–225 (1984).Article 

    Google Scholar 
    Weiner, J. & Freckleton, R. P. Constant final yield. Annu. Rev. Ecol. Evol. S. 41, 173–192 (2010).Article 

    Google Scholar 
    Pillet, M. et al. Disentangling competitive vs. climatic drivers of tropical forest mortality. J. Ecol. 106, 1165–1179 (2018).Article 

    Google Scholar 
    Schluter, D. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266, 798–801 (1994).Article 
    CAS 

    Google Scholar 
    Pacala, S.W. & Levin, S.A. Biologically generated spatial pattern and the coexistence of competing species. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. (Princeton University Press, Princeton, NJ, p. 204-232, 1997).Asefa, M., Cao, M., Zhang, G., Ci, X. & Li, J. Yang Environmental filtering structures tree functional traits combination and lineages across space in tropical tree assemblages. Sci. Rep. 7, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    Pretzsch, H. & Biber, P. Tree species mixing can increase maximum stand density. Can. J. For. Res. 46, 1179–1193 (2016).Article 

    Google Scholar 
    Escudero, A. et al. Every bit helps: The functional role of individuals in assembling any plant community, from the richest to monospecific ones. J. Veg. Sci. 32, e13059 (2021).Article 

    Google Scholar 
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Chang. Biol. 23, 3742–3757 (2017).Article 

    Google Scholar 
    M. Takyu, Y. Kubota, S.I. Aiba, T. Seino, T. Nishimura. Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. In Forest Ecosystems and Environments (Springer, Tokyo, 2005), pp. 49–58.Rivoire, M. & Le, G. A. Moguedec, generalized self-thinning relationship for multi-species and mixed-size forests. Ann. Sci. 69, 207–219 (2012).Article 

    Google Scholar 
    Salas‐Eljatib, C. & Weiskittel, A. R. Evaluation of modelling strategies for assessing self‐thinning behaviour and carrying capacity. Ecol. Evol. 8, 10768–10779 (2018).Article 

    Google Scholar 
    Schietti, J. et al. Forest structure along a 600 km transect of natural disturbances and seasonality gradients in central‐southern Amazonia. J. Ecol. 104, 1335–1346 (2016).Article 

    Google Scholar 
    Vanclay, J. K. & Sands, P. J. Calibrating the self-thinning frontier. For. Ecol. Manag. 259, 81–85 (2009).Article 

    Google Scholar 
    Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).Article 

    Google Scholar 
    Lieth, H. Modeling the primary productivity of the world. In H. Lieth & R. H. Whittaker, eds. Primary Productivity of the Biosphere (Springer-Verlag, New York, New York, USA, 1975), pp. 237–264.Grieser, J., Gommes, R., Cofield, S., Bernardi, M. World Maps of Climatological net Primary Production of Biomass, NPP. Food and Agriculture Organization of the United Nations. (GEONETWORK. FAO, Rome, Italy, 2006).Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).Article 

    Google Scholar 
    Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).Article 

    Google Scholar 
    J.B. Grace. Structural Equation Modeling and Natural Systems. (Cambridge University Press, Cambridge, 2006).Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).Article 

    Google Scholar 
    R Core Team (2021). R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/).Wood, S., Scheipl, F. & Wood, M. S. Package ‘gamm4’. Am. Stat. 45, 339 (2017).
    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. R. Core Team nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-148 (2020).Latham J, Cumani R, Rosati I, Bloise M. FAO Global Land Cover (GLC-SHARE) Database Beta-Release 1.0, Land and Water Division. 2014. http://www.fao.org/uploads/media/glc-share-doc.pdf. More

  • in

    Potential for mercury methylation by Asgard archaea in mangrove sediments

    Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ Sci Technol. 2013;47:2441–56.Article 
    CAS 

    Google Scholar 
    Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv. 2015;1:e1500675.Article 

    Google Scholar 
    Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, et al. Unraveling microbial communities associated with methylmercury production in paddy soils. Environ Sci Technol. 2018;52:13110–8.Article 
    CAS 

    Google Scholar 
    Lee C-S, Fisher NS. Bioaccumulation of methylmercury in a marine copepod. Environ Toxicol Chem. 2017;36:1287–93.Article 
    CAS 

    Google Scholar 
    Parks JM, Johs A, Podar M, Bridou R, Hurt RAJ, Smith SD, et al. The genetic basis for bacterial mercury methylation. Science 2013;339:1332–5.Article 
    CAS 

    Google Scholar 
    McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded phylogenetic diversity and metabolic flexibility of mercury-methylating microorganisms. mSystems 2020;5:e00299–20.Article 
    CAS 

    Google Scholar 
    Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, et al. Structure determination of the HgcAB complex using metagenome sequence data: Insights into microbial mercury methylation. Commun Biol. 2020;3:320.Article 
    CAS 

    Google Scholar 
    Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol. 2006;72:7919–21.Article 
    CAS 

    Google Scholar 
    Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, et al. Mercury methylation by novel microorganisms from new environments. Environ Sci Technol. 2013;47:11810–20.Article 
    CAS 

    Google Scholar 
    Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, et al. Deltaproteobacteria and Spirochaetes-like bacteria are abundant putative mercury methylators in oxygen-deficient water and marine particles in the Baltic Sea. Front Microbiol. 2020;11:574080.Article 

    Google Scholar 
    Gionfriddo CM, Tate MT, Wick RR, Schultz MB, Zemla A, Thelen MP, et al. Microbial mercury methylation in Antarctic sea ice. Nat Microbiol. 2016;1:16127.Article 
    CAS 

    Google Scholar 
    Jones DS, Walker GM, Johnson NW, Mitchell CPJ, Coleman Wasik JK, Bailey JV. Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes. ISME J. 2019;13:1659–75.Article 
    CAS 

    Google Scholar 
    Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally AC, et al. Determining the reliability of measuring mercury cycling gene abundance with correlations with mercury and methylmercury concentrations. Environ Sci Technol. 2019;53:8649–63.Article 
    CAS 

    Google Scholar 
    Villar E, Cabrol L, Heimburger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. Environ Microbiol Rep. 2020;12:277–87.Article 
    CAS 

    Google Scholar 
    Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J. 2021;15:1810–25.Article 
    CAS 

    Google Scholar 
    King JK, Kostka JE, Frischer ME, Saunders FM, Jahnke RA. A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environ Sci Technol. 2001;35:2491–6.Article 
    CAS 

    Google Scholar 
    Regnell O, Watras CJ. Microbial mercury methylation in aquatic environments: A critical review of published field and laboratory studies. Environ Sci Technol. 2019;53:4–19.Article 
    CAS 

    Google Scholar 
    Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci China Life Sci. 2022;65:818–29.Article 
    CAS 

    Google Scholar 
    Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun. 2019;10:1822.Article 

    Google Scholar 
    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017;541:353–8.Article 
    CAS 

    Google Scholar 
    Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021;593:553–7.Article 
    CAS 

    Google Scholar 
    Zhang JW, Dong HP, Hou LJ, Liu Y, Ou YF, Zheng YL, et al. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME J. 2021;15:1826–43.Article 
    CAS 

    Google Scholar 
    Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci. 2020;63:886–97.Article 
    CAS 

    Google Scholar 
    Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.Article 
    CAS 

    Google Scholar 
    Farag Ibrahim F, Zhao R, Biddle Jennifer F, Atomi H. “Sifarchaeota,” a novel Asgard phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl Environ Micro. 2021;87:e02584–20.
    Google Scholar 
    Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25.Article 

    Google Scholar 
    Cai M, Richter-Heitmann T, Yin X, Huang W-C, Yang Y, Zhang C, et al. Ecological features and global distribution of Asgard archaea. Sci Total Environ. 2021;758:143581.Article 
    CAS 

    Google Scholar 
    Zhang C-J, Chen Y-L, Sun Y-H, Pan J, Cai M-W, Li M. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. Mar Life Sci Tech. 2020;3:252–62.Article 

    Google Scholar 
    Dai SS, Yang Z, Tong Y, Chen L, Liu SY, Pan R, et al. Global distribution and environmental drivers of methylmercury production in sediments. J Hazard Mater. 2021;407:124700.Article 
    CAS 

    Google Scholar 
    Tang WL, Liu YR, Guan WY, Zhong H, Qu XM, Zhang T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Sci Total Environ. 2020;714:136827.Article 
    CAS 

    Google Scholar 
    Tsui MTK, Finlay JC, Balogh SJ, Nollet YH. In situ production of methylmercury within a stream channel in northern California. Environ Sci Technol. 2010;44:6998–7004.Article 
    CAS 

    Google Scholar 
    Liu Y, Zhou Z, Pan J, Baker BJ, Gu JD, Li M. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J. 2018;12:1021–31.Article 
    CAS 

    Google Scholar 
    Lei P, Zhong H, Duan D, Pan K. A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Sci Total Environ. 2019;680:140–50.Article 
    CAS 

    Google Scholar 
    Beckers F, Rinklebe J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit Rev Env Sci Tec. 2017;47:693–794.Article 
    CAS 

    Google Scholar 
    de Oliveira DC, Correia RR, Marinho CC, Guimaraes JR. Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere 2015;127:214–21.Article 

    Google Scholar 
    Li R, Xu H, Chai M, Qiu GY. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen, the world’s most rapid urbanized city. Environ Moni Assess. 2016;188:87.Article 

    Google Scholar 
    O’Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ Int. 2019;126:747–61.Article 

    Google Scholar 
    Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018;47:116–40.Article 

    Google Scholar 
    Capo E, Peterson BD, Kim M, Jones DS, Acinas SG, Amyot M, et al. A consensus protocol for the recovery of mercury methylation genes from metagenomes. Mol Ecol Resour. 2022; https://doi.org/10.1111/1755-0998.13687.Gionfriddo CM, Wymore AM, Jones DS, Wilpiszeski RL, Lynes MM, Christensen GA, et al. An improved hgcAB primer set and direct high-throughput sequencing expand Hg-methylator diversity in nature. Front Microbiol. 2020;11:541554.Article 

    Google Scholar 
    Yu R-Q, Barkay T. Chapter two – microbial mercury transformations: Molecules, functions and organisms. Adv Appl Microbiol. 2022;118:31–90.Article 

    Google Scholar 
    Chételat J, Richardson MC, MacMillan GA, Amyot M, Poulain AJ. Ratio of methylmercury to dissolved organic carbon in water explains methylmercury bioaccumulation across a latitudinal gradient from north-temperate to arctic lakes. Environ Sci Technol. 2018;52:79–88.Article 

    Google Scholar 
    Liu Y-R, Dong J-X, Han L-L, Zheng Y-M, He J-Z. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils. Environ Pollut. 2016;209:53–9.Article 
    CAS 

    Google Scholar 
    Moreau JW, Gionfriddo CM, Krabbenhoft DP, Ogorek JM, DeWild JF, Aiken GR, et al. The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3. Front Microbiol. 2015;6:1389.Article 

    Google Scholar 
    Chen C-F, Ju Y-R, Chen C-W, Dong C-D. The distribution of methylmercury in estuary and harbor sediments. Sci Total Environ. 2019;691:55–63.Article 
    CAS 

    Google Scholar 
    Bravo AG, Bouchet S, Guédron S, Amouroux D, Dominik J, Zopfi J. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Water Res. 2015;80:245–55.Article 
    CAS 

    Google Scholar 
    Wang H, Su J, Zheng T, Yang X. Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem. J Soil Sediment. 2015;15:1212–23.Article 
    CAS 

    Google Scholar 
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 2020;577:519–25.Article 
    CAS 

    Google Scholar 
    Zhou J, Riccardi D, Beste A, Smith JC, Parks JM. Mercury methylation by HgcA: Theory supports carbanion transfer to Hg(II). Inorg Chem. 2014;53:772–7.Article 
    CAS 

    Google Scholar 
    Smith Steven D, Bridou R, Johs A, Parks Jerry M, Elias Dwayne A, Hurt Richard A, et al. Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation. Appl Environ Micro. 2015;81:3205–17.Article 
    CAS 

    Google Scholar 
    Sousa FL, Neukirchen S, Allen JF, Lane N, Martin WF. Lokiarchaeon is hydrogen dependent. Nat Microbiol. 2016;1:16034.Article 
    CAS 

    Google Scholar 
    Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 2011;108:8714.Article 
    CAS 

    Google Scholar 
    Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol. 2008;58:929–36.Article 

    Google Scholar 
    Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol. 2012;62:1902–7.Article 
    CAS 

    Google Scholar 
    Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, et al. What are the toxicological effects of mercury in arctic biota? Sci Total Environ. 2013;443:775–90.Article 
    CAS 

    Google Scholar 
    Gilmour Cynthia C, Bullock Allyson L, McBurney A, Podar M, Elias Dwayne A, Lovley Derek R. Robust mercury methylation across diverse methanogenic archaea. mBio 2018;9:e02403–17.
    Google Scholar 
    Pan J, Chen Y, Wang Y, Zhou Z, Li M. Vertical distribution of Bathyarchaeotal communities in mangrove wetlands suggests distinct niche preference of Bathyarchaeota subgroup 6. Micro Ecol. 2019;77:417–28.Article 

    Google Scholar 
    Zhang C-J, Pan J, Duan C-H, Wang Y-M, Liu Y, Sun J, et al. Prokaryotic diversity in mangrove sediments across southeastern China fundamentally differs from that in other biomes. mSystems 2019;4:e00442–19.Article 
    CAS 

    Google Scholar 
    Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.Article 
    CAS 

    Google Scholar 
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.Article 
    CAS 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 

    Google Scholar 
    Zhang C-J, Pan J, Liu Y, Duan C-H, Li M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome. 2020;8:94.Article 
    CAS 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.Article 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.Article 
    CAS 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 

    Google Scholar 
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;36:1925–7.
    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.Article 
    CAS 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Szklarczyk D, Jensen LJ, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 

    Google Scholar 
    Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37.Article 
    CAS 

    Google Scholar 
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.Article 
    CAS 

    Google Scholar 
    Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.Article 

    Google Scholar 
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.Article 
    CAS 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. Plos ONE. 2010;5:e9490.Article 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.Article 
    CAS 

    Google Scholar 
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9.Article 
    CAS 

    Google Scholar 
    Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.CAS 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Article 
    CAS 

    Google Scholar 
    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma (Oxf, Engl). 2010;26:841–2.Article 
    CAS 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.Article 
    CAS 

    Google Scholar  More