More stories

  • in

    Unaltered fungal community after fire prevention treatments over widespread Mediterranean rockroses (Halimium lasianthum)

    Cairney, J. W. G. & Bastias, B. A. Influences of fire on forest soil fungal communities. Can. J. For. Res. 37, 207–215 (2007).Article 

    Google Scholar 
    Fernández, C., Vega, J. A. & Fonturbel, T. The effects of fuel reduction treatments on runoff, infiltration and erosion in two shrubland areas in the north of Spain. J. Environ. Manage. 105, 96–102 (2012).Article 

    Google Scholar 
    Reazin, C., Morris, S., Smith, J. E., Cowan, A. D. & Jumpponen, A. Fires of differing intensities rapidly select distinct soil fungal communities in a Northwest US ponderosa pine forest ecosystem. For. Ecol. Manage. 377, 118–127 (2016).Article 

    Google Scholar 
    Durán-Manual, F. et al. Prescribed burning in Pinus cubensis-dominated tropical natural forests: A myco-friendly fire-prevention tool. For. Syst. 31, e012 (2022).
    Google Scholar 
    Busse, M. D., Hubbert, K. R., Fiddler, G. O., Shestak, C. J. & Powers, R. F. Lethal soil temperatures during burning of masticated forest residues. Int. J. Wildl. Fire 14, 267–276 (2005).Article 

    Google Scholar 
    Frazão, D. F. et al. Cistus ladanifer (Cistaceae): A natural resource in Mediterranean-type ecosystems. Planta 247, 289–300 (2018).Article 

    Google Scholar 
    Keeley, J. E., Bond, W. J., Bradstock, R. A., Pausas, J. G. & Rundel, P. W. Fire in mediterranean ecosystems. Fire Medit. Ecosyst. https://doi.org/10.1017/cbo9781139033091 (2011).Article 

    Google Scholar 
    Louro, R., Peixe, A. & Santos-silva, C. New insights on Cistus salviifolius L. micropropagation. J. Bot. Sci. 6, 10–14 (2017).CAS 

    Google Scholar 
    Valbuena, L., Tarrega, R. & Luis, E. Influence of heat on seed germination of Cistus laurifolius and Cistus ladanifer. J. Wildl. Fire 2, 15–20 (1992).Article 

    Google Scholar 
    Martín-Pinto, P., Vaquerizo, H., Peñalver, F., Olaizola, J. & Oria-De-Rueda, J. A. Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifer and Pinus pinaster in Spain. For. Ecol. Manage. 225, 296–305 (2006).Article 

    Google Scholar 
    Comandini, O., Contu, M. & Rinaldi, A. C. An overview of Cistus ectomycorrhizal fungi. Mycorrhiza 16, 381–395 (2006).Article 
    CAS 

    Google Scholar 
    Zuzunegui, M. et al. Growth response of Halimium halimifolium at four sites with different soil water availability regimes in two contrasted hydrological cycles. Plant Soil 247, 271–281 (2002).Article 

    Google Scholar 
    Civeyrel, L. et al. Molecular systematics, character evolution, and pollen morphology of Cistus and Halimium (Cistaceae). Plant Syst. Evol. 295, 23–54 (2011).Article 

    Google Scholar 
    Leonardi, M., Furtado, A. N. M., Comandini, O., Geml, J. & Rinaldi, A. C. Halimium as an ectomycorrhizal symbiont: New records and an appreciation of known fungal diversity. Mycol. Prog. 19, 1495–1509 (2020).Article 

    Google Scholar 
    Oria-De-Rueda, J. A., Martín-Pinto, P. & Olaizola, J. Bolete productivity of cistaceous scrublands in northwestern Spain. Econ. Bot. 62, 323–330 (2008).Article 

    Google Scholar 
    Fernández, C., Vega, J. A. & Fonturbel, T. Does shrub recovery differ after prescribed burning, clearing and mastication in a Spanish heathland?. Plant Ecol. 216, 429–437 (2015).Article 

    Google Scholar 
    Ponte, E. D., Costafreda-Aumedes, S. & Vega-Garcia, C. Lessons learned from arson wildfire incidence in reforestations and natural stands in Spain. Forests 10, 1–18 (2019).Article 

    Google Scholar 
    Franco-Manchón, I., Salo, K., Oria-de-Rueda, J. A., Bonet, J. A. & Martín-Pinto, P. Are wildfires a threat to fungi in European Pinus forests? A case study of boreal and Mediterranean forests. Forests 10, 309 (2019).Article 

    Google Scholar 
    Mediavilla, O., Oria-de-Rueda, J. A. & Martin-Pinto, P. Changes in sporocarp production and vegetation following wildfire in a Mediterranean Forest Ecosystem dominated by Pinus nigra in Northern Spain. For. Ecol. Manage. 331, 85–92 (2014).Article 

    Google Scholar 
    Tomao, A., Antonio Bonet, J., Castaño, C. & De-Miguel, S. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manage. 457, 117678 (2020).
    Article 

    Google Scholar 
    Espinosa, J., Rodríguez de Rivera, O., Madrigal, J., Guijarro, M. & Hernando, C. Predicting potential cambium damage and fire resistance in Pinus nigra Arn. ssp. salzmannii. For. Ecol. Manage. 474, 118372 (2020).Article 

    Google Scholar 
    Potts, J. B. & Stephens, S. L. Invasive and native plant responses to shrubland fuel reduction: Comparing prescribed fire, mastication and treatment season. Biol. Conserv. 142, 1657–1664 (2009).Article 

    Google Scholar 
    Agee, J. K. & Skinner, C. N. Basic principles of forest fuel reduction treatments. For. Ecol. Manage. 211, 83–96 (2005).Article 

    Google Scholar 
    Fernández, C., Vega, J. A. & Fonturbel, T. Fuel reduction at a Spanish heathland by prescribed fire and mechanical shredding: Effects on seedling emergence. J. Environ. Manage. 129, 621–627 (2013).Article 

    Google Scholar 
    Huggett, R. J., Abt, K. L. & Shepperd, W. Efficacy of mechanical fuel treatments for reducing wildfire hazard. For. Policy Econ. 10, 408–414 (2008).Article 

    Google Scholar 
    Fernández, C. & Vega, J. A. Shrub recovery after fuel reduction treatments and a subsequent fire in a Spanish heathland. Plant Ecol. 215, 1233–1243 (2014).Article 

    Google Scholar 
    Fernández, C., Vega, J. A. & Fonturbel, T. Does fire severity influence shrub resprouting after spring prescribed burning?. Acta Oecologica 48, 30–36 (2013).Article 
    ADS 

    Google Scholar 
    Ellsworth, J. W., Harrington, R. A. & Fownes, J. H. Seedling emergence, growth, and allocation of Oriental bittersweet: Effects of seed input, seed bank, and forest floor litter. For. Ecol. Manage. 190, 255–264 (2004).Article 

    Google Scholar 
    Castaño, C. et al. Resistance of the soil fungal communities to medium-intensity fire prevention treatments in a Mediterranean scrubland. For. Ecol. Manage. 472, 118217 (2020).Article 

    Google Scholar 
    Anderson, I. C., Bastias, B. A., Genney, D. R., Parkin, P. I. & Cairney, J. W. G. Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning. Mycol. Res. 111, 482–486 (2007).Article 
    CAS 

    Google Scholar 
    Hernández-Rodríguez, M. et al. Soil fungal community composition in a Mediterranean shrubland is primarily shaped by history of major disturbance, less so by current fire fuel reduction treatments. Unpublished (2015).Oria de Rueda, J. A., Martín-Pinto, P. & Olaizola, J. Boletus edulis PRODUCTION IN XEROPHILIC AND PIROPHITIC SCHRUBS OF Cistus ladanifer AND Halimium lasianthum IN WESTERN SPAIN. in IV International Workshop on Edible Mycorrhizal Mushrooms (2005).Hart, B. T. N., Smith, J. E., Luoma, D. L. & Hatten, J. A. Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains. Oregon. For. Ecol. Manage. 422, 11–22 (2018).Article 

    Google Scholar 
    Hernández-Rodríguez, M., Oria-de-Rueda, J. A., Pando, V. & Martín-Pinto, P. Impact of fuel reduction treatments on fungal sporocarp production and diversity associated with Cistus ladanifer L. ecosystems. For. Ecol. Manage. 353, 10–20 (2015).Article 

    Google Scholar 
    Fernandes, P. M. Scientific support to prescribed underburning in southern Europe: What do we know?. Sci. Total Environ. 630, 340–348 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Day, N. J. et al. Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada. Glob. Chang. Biol. 25, 2310–2324 (2019).Article 
    ADS 

    Google Scholar 
    Salo, K., Domisch, T. & Kouki, J. Forest wildfire and 12 years of post-disturbance succession of saprotrophic macrofungi (Basidiomycota, Ascomycota). For. Ecol. Manage. 451, 117454 (2019).Article 

    Google Scholar 
    Zakaria, A. J. & Boddy, L. Mycelial foraging by Resinicium bicolor: Interactive effects of resource quantity, quality and soil composition. FEMS Microbiol. Ecol. 40, 135–142 (2002).Article 
    CAS 

    Google Scholar 
    Hul, S. et al. Fungal community shifts in structure and function across a boreal forest fire chronosequence. Appl. Environ. Microbiol. 81, 7869–7880 (2015).Article 
    ADS 

    Google Scholar 
    Vázquez-Veloso, A. et al. Prescribed burning in spring or autumn did not affect the soil fungal community in Mediterranean Pinus nigra natural forests. For. Ecol. Manage. 512, 120161 (2022).Article 

    Google Scholar 
    Lindahl, B. D. et al. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 173, 611–620 (2007).Article 
    CAS 

    Google Scholar 
    Salomón, R., Rodríguez-Calcerrada, J., González-Doncel, I., Gil, L. & Valbuena-Carabaña, M. On the general failure of coppice conversion into high forest in Quercus pyrenaica stands: A genetic and physiological approach. Folia Geobot. 52, 101–112 (2017).Article 

    Google Scholar 
    Williams, R. J., Hallgren, S. W. & Wilson, G. W. T. Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. For. Ecol. Manage. 265, 241–247 (2012).Article 

    Google Scholar 
    Semenova-Nelsen, T. A., Platt, W. J., Patterson, T. R., Huffman, J. & Sikes, B. A. Frequent fire reorganizes fungal communities and slows decomposition across a heterogeneous pine savanna landscape. New Phytol. 224, 916–927 (2019).Article 

    Google Scholar 
    Oliver, A. K., Callaham, M. A. & Jumpponen, A. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem. For. Ecol. Manage. 345, 1–9 (2015).Article 

    Google Scholar 
    Sanz-Benito, I., Mediavilla, O., Casas, A., Oria-de-Rueda, J. A. & Martín-Pinto, P. Effects of fuel reduction treatments on the sporocarp production and richness of a Quercus/Cistus mixed system. For. Ecol. Manage. 503, 119798 (2022).Article 

    Google Scholar 
    Santos-Silva, C., Gonçalves, A. & Louro, R. Canopy cover influence on macrofungal richness and sporocarp production in montado ecosystems. Agrofor. Syst. 82, 149–159 (2011).Article 

    Google Scholar 
    Lin, W. R. et al. The impacts of thinning on the fruiting of saprophytic fungi in Cryptomeria japonica plantations in central Taiwan. For. Ecol. Manage. 336, 183–193 (2015).Article 

    Google Scholar 
    Aragón, G., López, R. & Martínez, I. Effects of Mediterranean dehesa management on epiphytic lichens. Sci. Total Environ. 409, 116–122 (2010).Article 
    ADS 

    Google Scholar 
    Hämäläinen, A., Kouki, J. & Lohmus, P. The value of retained Scots pines and their dead wood legacies for lichen diversity in clear-cut forests: The effects of retention level and prescribed burning. For. Ecol. Manage. 324, 89–100 (2014).Article 

    Google Scholar 
    Schimmel, J. & Granstrom, A. Fire severity and vegetation response in the boreal Swedish. Ecol. Soc. Am. 77, 1436–1450 (1996).
    Google Scholar 
    Hinojosa, M. B., Albert-Belda, E., Gómez-Muñoz, B. & Moreno, J. M. High fire frequency reduces soil fertility underneath woody plant canopies of Mediterranean ecosystems. Sci. Total Environ. 752, 141877 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 205, 1525–1536 (2015).Article 
    CAS 

    Google Scholar 
    Tedersoo, L. et al. Disentangling global soil fungal diversity. Science 346, 1052–1053 (2014).Article 

    Google Scholar 
    Adamo, I. et al. Sampling forest soils to describe fungal diversity and composition. Which is the optimal sampling size in Mediterranean pure and mixed pine oak forests?. Fungal Biol. https://doi.org/10.1016/j.funbio.2021.01.005 (2021).Article 

    Google Scholar 
    Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in northern Europe. Front. Microbiol. 11, 1953 (2020).Article 

    Google Scholar 
    Peay, K., Garbelotto, M. & Bruns, T. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology 91, 3631–3640 (2010).Article 

    Google Scholar 
    Koivula, M. & Vanha-Majamaa, I. Experimental evidence on biodiversity impacts of variable retention forestry, prescribed burning, and deadwood manipulation in Fennoscandia. Ecol. Process. 9, 1–22 (2020).Article 

    Google Scholar 
    Fox, S. et al. Fire as a driver of fungal diversity—A synthesis of current knowledge. Mycologia 00, 1–27 (2022).
    Google Scholar 
    Raudabaugh, D. B. et al. Where are they hiding? Testing the body snatchers hypothesis in pyrophilous fungi. Fungal Ecol. 43, 100870 (2020).Article 

    Google Scholar 
    Izzo, A., Canright, M. & Bruns, T. D. The effects of heat treatments on ectomycorrhizal resistant propagules and their ability to colonize bioassay seedlings. Mycol. Res. 110, 196–202 (2006).Article 

    Google Scholar 
    Kipfer, T., Moser, B., Egli, S., Wohlgemuth, T. & Ghazoul, J. Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167, 219–228 (2011).Article 
    ADS 

    Google Scholar 
    Glassman, S. I., Levine, C. R., Dirocco, A. M., Battles, J. J. & Bruns, T. D. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: Some like it hot. ISME J. 10, 1228–1239 (2016).Article 

    Google Scholar 
    Buscardo, E. et al. Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biol. 114, 628–636 (2010).Article 

    Google Scholar 
    Pringle, A., Vellinga, E. & Peay, K. The shape of fungal ecology: Does spore morphology give clues to a species’ niche?. Fungal Ecol. 17, 213–216 (2015).Article 

    Google Scholar 
    Zhang, K., Cheng, X., Shu, X., Liu, Y. & Zhang, Q. Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment. Plant Soil 431, 19–36 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Xiang, X. et al. Arbuscular mycorrhizal fungal communities show low resistance and high resilience to wildfire disturbance. Plant Soil 397, 347–356 (2015).Article 
    CAS 

    Google Scholar 
    Dove, N. C., Klingeman, D. M., Carrell, A. A., Cregger, M. A. & Schadt, C. W. Fire alters plant microbiome assembly patterns: Integrating the plant and soil microbial response to disturbance. New Phytol. 230, 2433–2446 (2021).Article 
    CAS 

    Google Scholar 
    Fernandes, P. M. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc. Urban Plan. 110, 175–182 (2013).Article 

    Google Scholar 
    Fontúrbel, M. T., Fernández, C. & Vega, J. A. Prescribed burning versus mechanical treatments as shrubland management options in NW Spain: Mid-term soil microbial response. Appl. Soil Ecol. 107, 334–346 (2016).Article 

    Google Scholar 
    Geml, J. et al. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol. Ecol. 23, 2452–2472 (2014).Article 
    CAS 

    Google Scholar 
    Chu, H. et al. Effects of slope aspects on soil bacterial and arbuscular fungal communities in a boreal forest in China. Pedosphere 26, 226–234 (2016).Article 

    Google Scholar 
    Geml, J. Soil fungal communities reflect aspect-driven environmental structuring and vegetation types in a Pannonian forest landscape. Fungal Ecol. 39, 63–79 (2019).Article 

    Google Scholar 
    Castaño, C. et al. Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytol. 220, 1211–1221 (2018).Article 

    Google Scholar 
    Collado, E. et al. Mushroom productivity trends in relation to tree growth and climate across different European forest biomes. Sci. Total Environ. 689, 602–615 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Ihrmark, K., Bödeker, I. & Cruz-Martinez, K. New primers to amplify the fungal ITS2 region—Evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).Article 
    CAS 

    Google Scholar 
    White, T., Bruns, S., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, 1990).
    Google Scholar 
    Kent, M. Vegetation Description and Data Analysis: A Practical Approach (Wiley, 2011).

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).Article 
    CAS 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).Article 

    Google Scholar 
    Abarenkov, K. et al. Plutof-a web based workbench for ecological and taxonomic research, with an online implementation for fungal its sequences. Evol. Bioinforma. 2010, 189–196 (2010).
    Google Scholar 
    Põlme, S. et al. FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article 

    Google Scholar 
    Agerer, R. Fungal relationships and structural identity of their ectomycorrhizae. Mycol. Prog. 5, 67–107 (2006).Article 

    Google Scholar 
    Tedersoo, L. & Smith, M. E. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27, 83–99 (2013).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1–128. http://CRAN.R-project.org/package=nlme (2016).Chao, A. & Chiu, C. Species richness: Estimation and comparison. Wiley StatsRef https://doi.org/10.1002/9781118445112.stat03432.pub2 (2016).Article 

    Google Scholar 
    Chiu, C. H., Wang, Y. T., Walther, B. A. & Chao, A. An improved nonparametric lower bound of species richness via a modified good-turing frequency formula. Biometrics 70, 671–682 (2014).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.4–2. https://CRAN.R-project.org/package=vegan. (2017).Oksanen, J., Blanchet, F., Kindt, R. & Al, E. vegan: Community Ecology Package. R package version 2.3–0. (2015). More

  • in

    Differential effects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes

    Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, P. et al. The genome evolution and domestication of tropical fruit mango. Genome Biol. 21, 60 (2020).Article 

    Google Scholar 
    Yang, H. et al. Advances in the regulatory mechanisms of pollen response to heat stress in crops. Chin. Bull. Bot. 54(2), 157–167 (2019).CAS 

    Google Scholar 
    Liang, Q. Z. et al. Transcriptome and metabolome analyses reveal the involvement of multiple pathways in flowering intensity in mango. Front. Plant Sci. 13, 933923 (2022).Article 

    Google Scholar 
    Ranasinghe, C. S., Waidyarathna, K. P., Pradeep, A. P. C. & Meneripitiya, M. S. K. Approach to screen coconut varieties for high temperature tolerance by in-vitro pollen germination. COCOS. 19, 01–11 (2010).
    Google Scholar 
    Das, S., Krishnan, P., Nayak, M. & Ramakrishnan, B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ. Exp. Bot. 101, 36–46 (2014).Article 

    Google Scholar 
    Balasubramanian, S., Sureshkumar, S., Lempe, J. & Weigel, D. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2(7), e106 (2006).Article 

    Google Scholar 
    Sakata, T., Takahashi, H., Nishiyama, I. & Higashitani, A. Effects of high temperature on the development of pollen mother cells and microspores in Barley Hordeum vulgare L.. J. Plant Res. 113(4), 395–402 (2000).Article 

    Google Scholar 
    Hedhly, A., Hormaza, J. I. & Herrero, M. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol. 7(5), 476–483 (2005).Article 
    CAS 

    Google Scholar 
    Pirlak, L. The effects of temperature on pollen germination and pollen tube growth of apricot and sweet cherry. Gartenbauwissenschaft 67(2), 61–64 (2002).
    Google Scholar 
    Koti, S., Reddy, K. R., Reddy, V. R., Kakani, V. G. & Zhao, D. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. J. Exp. Bot. 56(412), 725–736 (2004).Article 

    Google Scholar 
    Pham, V. T., Herrero, M. & Hormaza, J. I. Effect of temperature on pollen germination and pollen tube growth in longan (Dimocarpus longan Lour.). Sci. Hort. 197, 470–475 (2015).Article 

    Google Scholar 
    Meehl, T. G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Reddy, K. R., Hodges, H. F. & Reddy, V. R. Temperature effects on cotton fruit retention. Agron. J. 84, 26–30 (1992).Article 

    Google Scholar 
    Reddy, K. R., Reddy, V. R. & Hodges, H. F. Effects of temperature on early season cotton growth and development. Agron. J. 84, 229–237 (1992).Article 

    Google Scholar 
    Stainforth, D. et al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, 403–406 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, Z., Yuan, Y., Liu, S., Yu, X. & Rao, L. Screening for high temperature tolerant cotton cultivars by testing in vitro pollen germination, pollen tube growth and boll retention. J. Integr. Plant Biol. 48, 706–714 (2006).Article 

    Google Scholar 
    Kakani, V. G., Prasad, P. V. V., Craufurd, P. Q. & Wheeler, T. R. Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ. 25, 1651–1661 (2002).Article 

    Google Scholar 
    Kakani, V. G. et al. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann. Bot. 96(1), 59–67 (2005).Article 
    CAS 

    Google Scholar 
    Hebbar, K. B. et al. Differences in in vitro pollen germination and pollen tube growth of coconut (Cocos nucifera L.) genotypes in response to high temperature stress. Environ. Ex. Bot. 153, 35–44 (2018).Article 

    Google Scholar 
    Aloni, B., Peet, M., Pharr, M. & Karmi, L. The effect of high temperaturare and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiol. Plant 112, 505–512 (2001).Article 
    CAS 

    Google Scholar 
    Dai, Q., Shaobing, P., Chavez, A. Q. & Vergara, B. S. Intraspecific responses of 188 rice cultivars to enhanced UVB radiation. Environ. Exp. Bot. 34(4), 433–442 (1994).Article 

    Google Scholar 
    Hepler, P. K., Vidali, L. & Cheung, A. Y. Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol. 17(1), 159–187 (2001).Article 
    CAS 

    Google Scholar 
    Prado, A. M., Porterfield, D. M. & Feijo, J. A. Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131(11), 2707–2714 (2004).Article 
    CAS 

    Google Scholar 
    Potocky, M., Jones, M. A., Bezvoda, R., Smirnoff, N. & Zarsky, V. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 174(4), 742–751 (2007).Article 
    CAS 

    Google Scholar 
    Lassig, R., Gutermuth, T., Bey, T. D., Konrad, K. R. & Romeis, T. Pollen tube NAD (P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 78(1), 94–106 (2014).Article 
    CAS 

    Google Scholar 
    McInnis, S. M., Desikan, R., Hancock, J. T. & Hiscock, S. J. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk?. New Phytol. 172(2), 221–228 (2006).Article 
    CAS 

    Google Scholar 
    Duan, Q. et al. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 5, 3129 (2014).Article 
    ADS 

    Google Scholar 
    You, J. & Chan, Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci. 6, 1092 (2015).Article 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).Article 
    CAS 

    Google Scholar 
    Pandhair, V. & Sekhon, B. S. Reactive oxygen species and antioxidants in plants: An overview. J. Plant Biochem. Biot. 15(2), 71–78 (2006).Article 
    CAS 

    Google Scholar 
    Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. https://doi.org/10.1155/2012/217037 (2012).Article 

    Google Scholar 
    Luo, C. et al. Construction of a high-density genetic map based on large-scale marker development in mango using specific-locus amplified fragment sequencing (SLAF-seq). Front. Plant Sci. 7, 1310 (2016).Article 

    Google Scholar 
    IPCC. IPCC Fourth Assessment Report. http://www.ipcc.ch/. Accessed 15 Jan 2010 (2007)Reddy, K. R. & Kakani, V. G. Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Sci. Hort. 112, 130–135 (2007).Article 

    Google Scholar 
    Armendariz, B. H. C., Oropeza, C., Chan, J. L., Maust, B., Aguilar, C. C. C., & Saenz, L. Pollen Fertility and Female Flower Anatomy of Micropropagated Coconut Palms. 373–378 (Revista Fitotecnia Mexicana, Sociedad Mexicana de Fitogenetica, A C. Mexico, 2006)Binelli, G., Manincor, E. V. & Ottaviano, E. Temperature effects on pollen germination and pollen tube growth in maize. Genetica Agraria 39, 269–281 (1985).
    Google Scholar 
    Matlob, A. N. & Kelly, W. C. Effect of high temperature on pollen tube growth of snake melon and cucumber. J. Am. Soc. Hortic. Sci. 98, 296–300 (1973).Article 

    Google Scholar 
    Zhou, Q. F. An Empirical Study on the Evolution of Mango Production in China. 1–53 (Hainan University, 2017)He, L. et al. Grafting trial on mango varieties in hot-dry region Jinsha River. Subtropic. Agric. Res. 6(3), 21–24 (2010) (in Chinese with English abstract).
    Google Scholar 
    Gong, D. Y., Liu, Q. G., Zhang, Y. & Zhang, X. B. Studies on adaptability and application of mango varieties in south subtropical regions of Guizhou. Acta Agricult. Jiangxi 24(7), 28–31 (2012) (in Chinese).CAS 

    Google Scholar 
    Liu, Z. T. Performance and cultivation techniques of coconut mango in Panxi hot area. Trop. Agricult. Guangxi 3(110), 11–12 (2007).
    Google Scholar 
    Gajanayake, B., Trader, B. W., Reddy, K. R. & Harkess, R. L. Screening ornamental pepper cultivars for temperature tolerance using pollen and physiological parameters. Hortic. Sci. 46, 878–884 (2011).
    Google Scholar 
    Salem, M. A., Kakani, V. G., Koti, S. & Reddy, K. R. Pollen-based screening of soybean genotypes for high temperatures. Crop Sci. 47, 219–231 (2007).Article 

    Google Scholar 
    Young, L. W., Wilen, R. W. & Bonham-Smith, P. C. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55, 485–495 (2004).Article 
    CAS 

    Google Scholar 
    Kafizadeh, N., Carapetian, J. & Kalantari, K. M. Effects of heat stress on pollen viability and pollen tube growth in pepper. Res. J. Biol. Sci. 3, 1159–1162 (2008).
    Google Scholar 
    Pressman, E., Peet, M. M. & Pharr, D. M. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot. 90, 613–636 (2002).Article 

    Google Scholar 
    Sukhvibul, N. et al. Effect of temperature on pollen germination and pollen tube growth of four cultivars of mango (Mangifera indica L.). J. Hortic. Sci. Biotechnol. 75(2), 214–222 (2000).Article 

    Google Scholar 
    Koubouris, G. C., Metzidakis, I. T. & Vasilakakis, M. D. Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environ. Exp. Bot. 67(1), 209–214 (2009).Article 

    Google Scholar 
    Huang, J. H. et al. Effects of low temperatures on sexual reproduction of ‘Tainong 1’ mango (Mangifera indica). Sci. Horticult. 126(2), 109–119 (2010) (in Chinese with English abstract).Article 

    Google Scholar 
    Çetinbaş-Gença, A., Cai, G., Vardara, F. & Ünal, M. Differential effects of low and high temperature stress on pollen germination and tube length of hazelnut (Corylus avellana L.) genotypes. Sci. Horticult. 255, 61–69 (2019).Article 

    Google Scholar 
    Sorkheh, K. et al. Interactive effects of temperature and genotype on almond (Prunus dulcis L.) pollen germination and tube length. Sci. Hortic. 227, 162–168 (2018).Article 

    Google Scholar 
    Wang, L. et al. Analysis of common errors of custom enzyme activity units and suggestions for standardized use. Chin. J. Sci. Technol. 24(5), 1009–1011 (2013).
    Google Scholar 
    Wang, W. et al. Combined cytological and transcriptomic analysis reveals a nitric oxide signaling pathway involved in cold-inhibited Camellia sinensis pollen tube growth. Front. Plant Sci. 7, 456 (2016).
    Google Scholar 
    He, J. M., Bai, X. L., Wang, R. B., Cao, B. & She, X. P. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro. Physiol. Plant 131(2), 273–282 (2007).CAS 

    Google Scholar 
    Gao, Y. et al. Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in Pyrus pyrifolia. Physiol. Plant 153(4), 603–615 (2015).Article 
    CAS 

    Google Scholar 
    Hall, A. E. Breading for heat tolerance. Plant Breed. Rev. (SAS Institute) 10, 129–168 (1999) (SAS/STAT user’s guide, version 9.2. SAS Institute, 1992).Mearns, L. O., Easterling, W., Hays, C. & Marx, D. Comparison of agricultural impacts of climate change calculated from high and low resolution climate change scenarios. Part I. The uncertainty due to spatial scale. Clim. Change. 51, 131–172 (2001).Article 

    Google Scholar 
    SAS Institute SAS/STAT User’s Guide, Version 9.1.3. (SAS Institute Inc., 2004).Li, H. S., Sun, Q., Zhao, S. J. & Zhang, W. H. Experiment Principle and Technology of Plant Physiology and Biochemistry (Higher Education Press, 2000).
    Google Scholar 
    Cai, Q. S. Plant Physiology Experiment. Vol. 4(1). 182–186 (China Agricultural University Press, 2013) (in Chinese).Jia, M. X. et al. ROS-induced oxidative stress is closely related to pollen deterioration following cryopreservation. In Vitro Cell Dev. Biol. Plant 53(4), 433–439 (2017).Article 
    CAS 

    Google Scholar  More

  • in

    Author Correction: Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance

    Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, DenmarkPatrick Munk, Christian Brinch, Frederik Duus Møller, Thomas N. Petersen, Rene S. Hendriksen, Anne Mette Seyfarth, Jette S. Kjeldgaard, Christina Aaby Svendsen & Frank M. AarestrupCentre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UKBram van Bunnik & Mark WoolhouseCentre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, SwedenFanny Berglund & D. G. Joakim LarssonDepartment of Viroscience, Erasmus MC, Rotterdam, The NetherlandsMarion KoopmansInstitute of Public Health, Tirana, AlbaniaArtan BegoUniversidad de Buenos Aires, Buenos Aires, ArgentinaPablo PowerMelbourne Water Corporation, Melbourne, AustraliaCatherine Rees & Kris CoventryCharles Darwin University, Darwin, AustraliaDionisia LambrinidisUniversity of Copenhagen, Frederiksberg C, DenmarkElizabeth Heather Jakobsen Neilson & Yaovi Mahuton Gildas HounmanouCharles Darwin University, Darwin Northern Territory, AustraliaKaren GibbCanberra Hospital, Canberra, AustraliaPeter CollignonALS Water, Scoresby, AustraliaSusan CassarAustrian Agency for Health and Food Safety (AGES), Vienna, AustriaFranz AllerbergerUniversity of Dhaka, Dhaka, BangladeshAnowara Begum & Zenat Zebin HossainEnvironmental Protection Department, Bridgetown, St. Michael, BarbadosCarlon WorrellLaboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Brussels, BelgiumOlivier VandenbergAQUAFIN NV, Aartselaar, BelgiumIlse PietersPolytechnic School of Abomey-Calavi, Abomey-Calavi, BeninDougnon Tamègnon VictorienUniversidad Catσlica Boliviana San Pablo, La Paz, BoliviaAngela Daniela Salazar Gutierrez & Freddy SoriaPublic Health Institute of the Republic of Srpska, Faculty of Medicine University of Banja Luka, Banja Luka, Bosnia and HerzegovinaVesna Rudić GrujićPublic Health Institute of the Republic of Srpska, Banja Luka, Bosnia and HerzegovinaNataša MazalicaBotswana International University of Science and Technology, Palapye, BotswanaTeddie O. RahubeUniversidade Federal de Minas Gerais, Belo Horizonte, BrazilCarlos Alberto Tagliati & Larissa Camila Ribeiro de SouzaOswaldo Cruz Institute, Rio de Janeiro, BrazilDalia RodriguesVale Institute of Technology, Belιm, PA, BrazilGuilherme OliveiraNational Center of Infectious and Parasitic Diseases, Sofia, BulgariaIvan IvanovUniversity of Ouagadougou, Ouagadougou, Burkina FasoBonkoungou Isidore Juste & Traoré OumarInstitut Pasteur du Cambodge, Phnom Penh, CambodiaThet Sopheak & Yith VuthyCentre Pasteur du Cameroun, Yaoundι, CameroonAntoinette Ngandjio, Ariane Nzouankeu & Ziem A. Abah Jacques OlivierUniversity of Regina, Regina, CanadaChristopher K. YostEau Terre Environnement Research Centre (INRS-ETE), Quebec City G1K 9A9, Canada and Indian Institute of Technology, Jammu, IndiaPratik KumarEau Terre Environnement Research Centre (INRS-ETE), Quebec City G1K 9A9, Canada and Lassonde School of Enginerring, York University, Toronto, CanadaSatinder Kaur BrarUniversity of N’Djamena, N’Djamena, ChadDjim-Adjim TaboEscuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, ChileAiko D. AdellInstitute of Public Health, Santiago, ChileEsteban Paredes-Osses & Maria Cristina MartinezUniversidad Catolica del Maule, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Talca, ChileSara Cuadros-OrellanaGuangdong Provincial Center for Disease Control and Prevention, Guangzhou, ChinaChangwen Ke, Huanying Zheng & Li BaishengThe Hong Kong Polytechnic University, Hong Kong, ChinaLok Ting Lau & Teresa ChungShantou University Medical College, Shantou, ChinaXiaoyang JiaoNanjing University of Information Science and Technology, Nanjing, ChinaYongjie YuCenter for Disease Control and Prevention of Henan province, Zhengzhou, ChinaZhao JiaYongColombian Integrated Program for Antimicrobial Resistance Surveillance – Coipars, CI Tibaitatα, Corporaciσn Colombiana de Investigaciσn Agropecuaria (AGROSAVIA), Tibaitatα – Mosquera, Cundinamarca, ColombiaJohan F. Bernal Morales, Maria Fernanda Valencia & Pilar Donado-GodoyInstitut Pasteur de Côte d’Ivoire, Abidjan, Côte d’IvoireKalpy Julien CoulibalyUniversity of Zagreb, Zagreb, CroatiaJasna HrenovicAndrija Stampar Teaching Institute of Public Health, Zagreb, CroatiaMatijana JergovićVeterinary Research Institute, Brno, Czech RepublicRenáta KarpíškováCentre de Recherche en Sciences Naturelles de Lwiro (CRSN-LWIRO), Bukavu, Democratic Republic of CongoZozo Nyarukweba DeogratiasBIOFOS A/S, Copenhagen K, DenmarkBodil ElsborgTechnical University of Denmark, Kgs., Lyngby, DenmarkLisbeth Truelstrup Hansen & Pernille Erland JensenSuez Canal University, Ismailia, EgyptMohamed AbouelnagaUniversity of Sadat City, Sadat City, EgyptMohamed Fathy SalemMinistry of Health, Environmental Microbiology, Tallinn, EstoniaMarliin KoolmeisterAddis Ababa University, Addis Ababa, EthiopiaMengistu Legesse & Tadesse EgualeUniversity of Helsinki, Helsinki, FinlandAnnamari HeikinheimoFrench Institute Search Pour L’exploitation De La Mer (Ifremer), Nantes, FranceSoizick Le Guyader & Julien SchaefferInstituto Nacional de Investigaciσn en Salud Pϊblica-INSPI (CRNRAM), Galαpagos, Quito, EcuadorJose Eduardo VillacisNational Public Health Laboratories, Ministry of Health and Social Welfare, Kotu, GambiaBakary SannehNational Center for Disease Control and Public Health, Tbilisi, GeorgiaLile MalaniaRobert Koch Institute, Berlin, GermanyAndreas Nitsche & Annika BrinkmannTechnische Universitδt Dresden, Institute of Hydrobiology, Dresden, GermanySara Schubert, Sina Hesse & Thomas U. BerendonkUniversity for Development Studies, Tamale, GhanaCourage Kosi Setsoafia SabaUniversity of Ghana, Accra, GhanaJibril MohammedKwame Nkrumah University of Science and Technology, Kumasi, PMB, GhanaPatrick Kwame FegloCouncil for Scientific and Industrial Research Water Research Institute, Accra, GhanaRegina Ama BanuVeterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Thermi, GreeceCharalampos KotzamanidisAthens Water Supply and Sewerage Company (EYDAP S.A.), Athens, GreeceEfthymios LytrasUniversidad de San Carlos de Guatemala, Guatemala City, GuatemalaSergio A. LickesSemmelweis University, Institute of Medical Microbiology, Budapest, HungaryBela KocsisUniversity of Veterinary Medicine, Budapest, HungaryNorbert SolymosiUniversity of Iceland, Reykjavνk, IcelandThorunn R. ThorsteinsdottirCochin University of Science and Technology, Cochin, IndiaAbdulla Mohamed HathaKasturba Medical College, Manipal, IndiaMamatha BallalApollo Diagnostics, Mangalore, IndiaSohan Rodney BangeraShiraz University of Medical Sciences, Shiraz, IranFereshteh FaniShahid Beheshti University of Medical Sciences, Tehran, IranMasoud AlebouyehNational University of Ireland Galway, Galway, IrelandDearbhaile Morris, Louise O’Connor & Martin CormicanBen Gurion University of the Negev and Ministry of Health, Beer-Sheva, IsraelJacob Moran-GiladIstituto Zooprofilattico Sperimentale del Lazio e della Toscana, Rome, ItalyAntonio Battisti, Elena Lavinia Diaconu & Patricia AlbaCNR – Water Research Institute, Verbania, ItalyGianluca Corno & Andrea Di CesareNational Institute of Infectious Diseases, Tokyo, JapanJunzo Hisatsune, Liansheng Yu, Makoto Kuroda, Motoyuki Sugai & Shizuo KayamaNational Center of Expertise, Taldykorgan, KazakhstanZeinegul ShakenovaMount Kenya University, Thika, KenyaCiira KiiyukiaKenya Medical Research Institute, Nairobi, KenyaEric Ng’enoUniversity of Prishtina “Hasan Prishtina” & National Institute of Public Health of Kosovo, Pristina, KosovoLul RakaKuwait Institute for Scientific Research, Kuwait City, KuwaitKazi Jamil, Saja Adel Fakhraldeen & Tareq AlaatiInstitute of Food Safety, Riga, LatviaAivars Bērziņš, Jeļena Avsejenko, Kristina Kokina, Madara Streikisa & Vadims BartkevicsAmerican University of Beirut, Beirut, LebanonGhassan M. MatarCentral Michigan University & Michigan Health Clinics, Saginaw, MI, USAZiad DaoudNational Food and Veterinary Risk Assessment Institute, Vilnius, LithuaniaAsta Pereckienė & Ceslova Butrimaite-AmbrozevicieneLuxembourg Institute of Science and Technology, Belvaux, LuxembourgChristian PennyInstitut Pasteur de Madagascar, Antananarivo, MadagascarAlexandra Bastaraud & Jean-Marc CollardUniversity of Antananarivo, Centre d’Infectiologie Charles Mιrieux, Antananarivo, MadagascarTiavina Rasolofoarison, Luc Hervé Samison & Mala Rakoto AndrianariveloUniversity of Malawi, Blantyre, MalawiDaniel Lawadi BandaMalaysian Genomics Resource Centre Berhad, Kuala Lumpur, MalaysiaArshana AminAIMST University, COMBio, Kedah, MalaysiaHeraa Rajandas & Sivachandran ParimannanWater Services Corporation, Luqa, MaltaDavid SpiteriEnvironmental Health Directorate, St. Venera, MaltaMalcolm Vella HaberUniversity of Mauritius, Reduit, MauritiusSunita J. SantchurnInstitute for Public Health Montenegro, Podgorica, MontenegroAleksandar Vujacic & Dijana DjurovicInstitut Pasteur du Maroc, Casablanca, MoroccoBrahim Bouchrif & Bouchra KarraouanCentro de Investigaηγo em Saϊde de Manhiηa (CISM), Maputo, MozambiqueDelfino Carlos VubilAgriculture and Forestry University, Kathmandu, NepalPushkar PalNational Institute for Public, Health and the Environment (RIVM), Bilthoven, The NetherlandsHeike Schmitt & Mark van PasselUniversity of Otago, Dunedin, New ZealandGert-Jan Jeunen & Neil GemmellUniversity of Otago, Christchurch, New ZealandStephen T. ChambersUniversity of Central America, Managua, NicaraguaFania Perez Mendoza & Jorge Huete-PιrezUniversidad Nacional Autσnoma de Nicaragua-Leσn, Leσn, NicaraguaSamuel VilchezUniversity of Ilorin, Ilorin, NigeriaAkeem Olayiwola Ahmed, Ibrahim Raufu Adisa & Ismail Ayoade OdetokunUniversity of Ibadan, Ibadan, NigeriaKayode FashaeNorwegian Institute of Public Health, Oslo, NorwayAnne-Marie Sørgaard & Astrid Louise WesterVEAS, Slemmestad, NorwayPia Ryrfors & Rune HolmstadUniversity of Agriculture, Faisalabad, PakistanMashkoor MohsinAga Khan University, Karachi, PakistanRumina Hasan & Sadia ShakoorLaboratorio Central de Salud Publica, Asuncion, ParaguayNatalie Weiler Gustafson & Claudia Huber SchillInstituto Nacional de Salud, Lima, PeruMaria Luz Zamudio RojasUniversidad de Piura, Piura, PeruJorge Echevarria Velasquez & Felipe Campos YauceWHO Environmental and Occupational Health, Manila, PhilippinesBonifacio B. MagtibayMaynilad Water Services, Inc., Quezon City, PhilippinesKris Catangcatang & Ruby SibuloNational Veterinary Research Institute, Pulawy, PolandDariusz WasylUniversidade Catσlica Portuguesa, CBQF – Centro de Biotecnologia e Quνmica Fina – Laboratσrio Associado, Escola Superior de Biotecnologia, Porto, PortugalCelia Manaia & Jaqueline RochaAguas do Tejo Atlantico, Lisboa, PortugalJose Martins & Pedro ÁlvaroGwangju Institute of Science and Technology, Gwangju, Republic of KoreaDoris Di Yoong Wen, Hanseob Shin & Hor-Gil HurKorea Advanced Institute of Science and Technology, Daejeon, Republic of KoreaSukhwan YoonInstitute of Public Health of the Republic of North Macedonia, Skopje, Republic of North MacedoniaGolubinka Bosevska & Mihail KochubovskiState Medical and Pharmaceutical University, Chișinău, Republic of MoldovaRadu CojocaruNational Agency for Public Health, Chișinău, Republic of MoldovaOlga BurduniucKing Abdullah University of Science and Technology, Thuwal, Saudi ArabiaPei-Ying HongUniversity of Edinburgh, Edinburgh, Scotland, UKMeghan Rose PerryInstitut Pasteur de Dakar, Dakar, SenegalAmy GassamaInstitute of Veterinary Medicine of Serbia, Belgrade, SerbiaVladimir RadosavljevicNanyang Technological University, Singapore, SingaporeMoon Y. F. Tay, Rogelio Zuniga-Montanez & Stefan WuertzPublic Health Authority of the Slovak Republic, Bratislava, SlovakiaDagmar Gavačová, Katarína Pastuchová & Peter TruskaNational Laboratory of Health, Environment and Food, Ljubljana, SloveniaMarija TrkovIndependent consultant, Johannesburg, South AfricaKaren KeddyDaspoort Waste Water Treatment Works, Pretoria, South AfricaKerneels EsterhuyseKorea Advanced Institute of Science and Technology, Daejeon, South KoreaMin Joon SongSchool of Veterinary Sciences, Lugo, SpainMarcos Quintela-BalujaLabaqua, Santiago de Compostela, SpainMariano Gomez LopezIRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, SpainMarta Cerdà-CuéllarUniversity of Kelaniya, Ragama, Sri LankaR. R. D. P. Perera, N. K. B. K. R. G. W. Bandara & H. I. PremasiriMedical Research Institute, Colombo, Sri LankaSujatha PathirageCaribbean Public Health Agency, Catries, Saint LuciaKareem CharlemagneThe Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SwedenCarolin RutgerssonSwedish University of Agricultural Sciences, Uppsala, SwedenLeif Norrgren & Stefan ÖrnFederal Food Safety and Veterinary Office (FSVO), Bern, SwitzerlandRenate BossAra Region Bern AG, Herrenschwanden, SwitzerlandTanja Van der HeijdenCenters for Disease Control, Taipei, TaiwanYu-Ping HongKilimanjaro Clinical Research Institute, Moshi, TanzaniaHappiness Houka KumburuSokoine University of Agriculture, Morogoro, TanzaniaRobinson Hammerthon MdegelaFaculty of Science and Technology, Suratthani Rajabhat University, Surat Thani, ThailandKaknokrat ChonsinFaculty of Public Health, Mahidol University, Bangkok, ThailandOrasa SuthienkulFaculty of Medicine Siriraj Hospital, Bangkok, ThailandVisanu ThamlikitkulNational Institute for Public Health and the Environment (RIVM), Bilthoven, NetherlandsAna Maria de Roda HusmanNational Institute of Hygiene, Lomι, TogoBawimodom BidjadaAgence de Mιdecine Prιventive, Dapaong, TogoBerthe-Marie Njanpop-LafourcadeDivision of Integrated Surveillance of Health Emergencies and Response, Lomι, TogoSomtinda Christelle Nikiema-PessinabaPublic Health Institution of Turkey, Ankara, TurkeyBelkis LeventHatay Mustafa Kemal University, Hatay, TurkeyCemil KurekciMakerere University, Kampala, UgandaFrancis Ejobi & John Bosco KaluleAbu Dhabi Public Health Center, Abu Dhai, United Arab EmiratesJens ThomsenDubai municipality, WWTP Al Aweer, Dubai, UAEOuidiane ObaidiRashid Hospital, Dubai, UAELaila Mohamed JassimNorthumbrian Water, Northumbria House, Abbey Road, Pity Me, Durham, UKAndrew MooreUniversity of Exeter Medical School, Cornwall, UKAnne Leonard, Lihong Zhang & William H. GazeNewcastle University, Newcastle upon Tyne, UKDavid W. Graham & Joshua T. BunceBrightwater Treatment Plant, Woodinville, WA, USABrett LeforDepartment of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USADrew Capone & Joe BrownUniversity of North Carolina, Chapel Hill, USAEmanuele Sozzi & Mark D. SobseyUniversity of Washington, Seattle, WA, USAJohn Scott Meschke, Nicola Koren Beck, Pardi Sukapanpatharam & Phuong TruongBaylor University, Waco, USAMichael DavisColumbia Boulevard WWTP, Portland, USARonald LilienthalEastern Illinois University, Charleston, USASanghoon KangThe Ohio State University, Columbus Ohio, USAThomas E. WittumLaboratorio Tecnolσgico del Uruguay, Montevideo, UruguayNatalia Rigamonti & Patricia BaklayanInstitute of Public Health in Ho Chi Minh City, Ho Chi Minh, VietnamChinh Dang Van, Doan Minh Nguyen Tran & Nguyen Do PhucUniversity of Zambia, Lusaka, ZambiaGeoffrey Kwenda More

  • in

    Anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’ has a pleomorphic life cycle

    Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).Article 
    CAS 

    Google Scholar 
    Chadwick, G. L. et al. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol. 20, e3001508 (2022).Article 

    Google Scholar 
    Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).Article 
    CAS 

    Google Scholar 
    Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).Article 
    CAS 

    Google Scholar 
    McGlynn, S. E. Energy metabolism during anaerobic methane oxidation in ANME Archaea. Microbes Environ. 32, 5–13 (2017).Article 

    Google Scholar 
    Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).Article 
    CAS 

    Google Scholar 
    McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).Article 
    CAS 

    Google Scholar 
    Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).Article 
    CAS 

    Google Scholar 
    Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 12, 1929–1939 (2018).Article 
    CAS 

    Google Scholar 
    Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).Article 
    CAS 

    Google Scholar 
    Leu, A. O. et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 14, 1030–1041 (2020).Article 
    CAS 

    Google Scholar 
    Leu, A. O. et al. Lateral gene transfer drives metabolic flexibility in the anaerobic methane-oxidizing archaeal family Methanoperedenaceae. mBio 11, e01325-20 (2020).Cai, C. et al. Response of the anaerobic methanotrophic archaeon Candidatus ‘Methanoperedens nitroreducens’ to the long-term ferrihydrite amendment. Front. Microbiol. 13, 799859 (2022).Arshad, A. et al. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like Archaea. Front. Microbiol. 6, 1423 (2015).Article 

    Google Scholar 
    Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).Article 
    CAS 

    Google Scholar 
    Walker, D. J. F. et al. The archaellum of Methanospirillum hungatei is electrically conductive. mBio 10, e00579-19 (2019).Article 
    CAS 

    Google Scholar 
    Krukenberg, V. et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ. Microbiol. 20, 1651–1666 (2018).Article 
    CAS 

    Google Scholar 
    Schubert, C. J. et al. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol. Ecol. 76, 26–38 (2011).Article 
    CAS 

    Google Scholar 
    Stahl, D. A. & Amann, R. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) 205–248 (Wiley, 1991).Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143 (1993).Article 
    CAS 

    Google Scholar 
    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome- assembled genome (MIMAG) of Bacteria and Archaea. Nat. Biotechnol. 36, 660 (2018).Article 
    CAS 

    Google Scholar 
    Vo, C. H., Goyal, N., Karimi, I. A. & Kraft, M. First observation of an acetate switch in a methanogenic autotroph (Methanococcus maripaludis S2). Microbiol. Insights 13, 1178636120945300 (2020).Article 

    Google Scholar 
    Cai, C. et al. Acetate production from anaerobic oxidation of methane via intracellular storage compounds. Environ. Sci. Technol. 53, 7371–7379 (2019).Article 
    CAS 

    Google Scholar 
    Ratcliff, W. C. & Denison, R. F. Bacterial persistence and bet hedging in Sinorhizobium meliloti. Commun. Integr. Biol. 4, 98–100 (2011).Article 
    CAS 

    Google Scholar 
    Ma, K., Schicho, R. N., Kelly, R. M. & Adams, M. W. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc. Natl Acad. Sci. USA 90, 5341–5344 (1993).Article 
    CAS 

    Google Scholar 
    Simon, G.-C. et al. Response of the anaerobic methanotroph “Candidatus Methanoperedens nitroreducens” to oxygen stress. Appl. Environ. Microbiol. 84, e01832-18 (2018).
    Google Scholar 
    van der Star, W. R. L. et al. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng. 101, 286–294 (2008).Article 

    Google Scholar 
    Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).Article 
    CAS 

    Google Scholar 
    Schwarzer, S., Rodriguez-Franco, M., Oksanen, H. M. & Quax, T. E. F. Growth phase dependent cell shape of Haloarcula. Microorganisms 9, 231 (2021).Article 
    CAS 

    Google Scholar 
    Dang, H. Y. & Lovell, C. R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80, 91–138 (2016).Article 
    CAS 

    Google Scholar 
    Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).Article 

    Google Scholar 
    Pires, D. P., Melo, L. D. R. & Azeredo, J. Understanding the complex phage–host interactions in biofilm communities. Annu. Rev. Virol. 8, 73–94 (2021).Canchaya, C., Proux, C., Fournous, G., Bruttin, A. & Brüssow, H. Prophage genomics. Microbiol. Mol. Biol. Rev. 67, 238–276 (2003).Article 
    CAS 

    Google Scholar 
    Zhang, X. et al. Polyhydroxyalkanoate-driven current generation via acetate by an anaerobic methanotrophic consortium. Water Res. 221, 118743 (2022).Article 
    CAS 

    Google Scholar 
    Knittel, K., Lösekann, T., Boetius, A., Kort, R. & Amann, R. Diversity and distribution of methanotrophic Archaea at cold seeps. Appl. Environ. Microbiol. 71, 467–479 (2005).Article 
    CAS 

    Google Scholar 
    Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D. & DeLong, E. F. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002).Article 
    CAS 

    Google Scholar 
    Orphan, V. J. et al. Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California. Chem. Geol. 205, 265–289 (2004).Article 
    CAS 

    Google Scholar 
    Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).Article 
    CAS 

    Google Scholar 
    Robinson, R. W. Life cycles in the methanogenic archaebacterium Methanosarcina mazei. Appl. Environ. Microbiol. 52, 17–27 (1986).Article 
    CAS 

    Google Scholar 
    Daims, H., Stoecker, K. & Wagner, M. in Molecular Microbial Ecology (eds Osborn, A. M. & Smith, C. J.) 213–239 (Taylor & Francis, 2005).Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 

    Google Scholar 
    Yilmaz, L. S., Parnerkar, S. & Noguera, D. R. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl. Environ. Microbiol. 77, 1118–1122 (2011).Article 
    CAS 

    Google Scholar 
    Stoecker, K., Dorninger, C., Daims, H. & Wagner, M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76, 922–926 (2010).Article 
    CAS 

    Google Scholar 
    Fuchs, B. M., Glockner, F. O., Wulf, J. & Amann, R. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 66, 3603–3607 (2000).Article 
    CAS 

    Google Scholar 
    Manz, W., Amann, R., Ludwig, W., Wagner, M. & Schleifer, K.-H. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593–600 (1992).Article 

    Google Scholar 
    Ostle, A. G. & Holt, J. G. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl. Environ. Microbiol. 44, 238–241 (1982).Article 
    CAS 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).Article 
    CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 1091 (2019).Article 
    CAS 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Eren, A. M., Vineis, J. H., Morrison, H. G. & Sogin, M. L. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS ONE 8, e66643 (2013).Article 

    Google Scholar 
    Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 12, R112 (2011).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 

    Google Scholar 
    Warren, R. L. et al. LINKS: scalable, alignment-free scaffolding of draft genomes with long reads. GigaScience 4, 35 (2015).Article 

    Google Scholar 
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).Article 

    Google Scholar 
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).Article 
    CAS 

    Google Scholar 
    Wick, R. R. et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 22, 266 (2021).Article 
    CAS 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).Article 
    CAS 

    Google Scholar 
    Wick, R. R. & Holt, K. E. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res. 8, 2138 (2021).Vaser, R. & Šikić, M. Time- and memory-efficient genome assembly with Raven. Nat. Comput. Sci. 1, 332–336 (2021).Article 

    Google Scholar 
    Wick, R. R. & Holt, K. E. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput. Biol. 18, e1009802 (2022).Article 
    CAS 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).
    Google Scholar 
    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).Article 
    CAS 

    Google Scholar 
    Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2017).Article 

    Google Scholar 
    Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915 (2019).Article 
    CAS 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
    CAS 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).Article 
    CAS 

    Google Scholar 
    Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).Article 
    CAS 

    Google Scholar 
    Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).Article 

    Google Scholar 
    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).Article 
    CAS 

    Google Scholar 
    Haft, D. H. et al. TIGRFAMs and genome properties in 2013. Nucleic Acids Res. 41, D387–D395 (2013).Article 
    CAS 

    Google Scholar 
    Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).Article 
    CAS 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).Article 
    CAS 

    Google Scholar 
    Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).Article 
    CAS 

    Google Scholar 
    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).Article 
    CAS 

    Google Scholar 
    Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).Article 
    CAS 

    Google Scholar 
    Schmid, M. C. et al. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl. Environ. Microbiol. 71, 1677–1684 (2005).Article 
    CAS 

    Google Scholar 
    Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).Article 
    CAS 

    Google Scholar 
    Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).Article 

    Google Scholar  More

  • in

    Altered gut microbiota in individuals with episodic and chronic migraine

    ParticipantsIn total, 80, 63, and 56 participants in the EM, CM, and control groups, respectively, initially agreed to participate in this study. Nevertheless, 28, 12, and 13 individuals in the EM, CM, and control groups, respectively, withdrew their participation and did not bring any fecal samples to the study site. After providing fecal samples, 10 and 6 individuals with EM and CM, respectively, reported intake of probiotics and were excluded from the analysis. No participant in the control group consumed probiotics during the study period. Eventually, 42, 45, and 43 participants in the EM, CM, and control groups, respectively, were enrolled (Fig. 1). The demographic and clinical characteristics of participants are summarized in Table 1. All participants with EM and CM used acute treatments for migraine. Moreover, 25 (59.5%) and 27 (60.0%) participants with EM and CM, respectively, received prophylactic treatment for migraine. Of the 42 participants with EM, 20 used anti-epileptic medications, 11 used beta blockers, 2 used an anti-depressant, and 1 used a calcium-channel blocker for prophylactic treatment. Of the 45 participants with CM, 23 used anti-epileptic medications, 8 used beta blockers, 1 used an anti-depressant, and no participant used calcium-channel blockers for prophylactic treatment. No participant in the EM, CM, and control groups was infected with SARS-CoV-2 before or during participation in the study.Figure 1Flow of participants in a study on the composition of gut microbiota in participants with episodic or chronic migraine.Full size imageTable 1 Demographic and clinical characteristics of participants with episodic and chronic migraine and the control.Full size tableCollection of 16 s RNA sequencing dataWe obtained 7,802,425 read sequences, accounting for 99.8% of the valid sequences from the fecal samples of 130 participants. According to barcode and primer sequence filtering, an average of 59,305 (range, 3716–90,832) observed sequences per sample was recovered for downstream analysis. Thus, 2,242,325 sequences were obtained from the controls for phylogenetic analysis, whereas 2,747,952 and 2,812,148 sequences were obtained from the EM and CM groups, respectively.Microbial diversityAlpha diversity was defined as microbial community richness and evenness. Alpha diversities in the genus richness, as evaluated by Chao1 (Fig. 2A), Shannon (Fig. 2B), and Simpson (Fig. 2C) indices, did not differ significantly among the EM, CM, and control groups. Beta diversity represented the community composition dissimilarity between samples. PCoA with the weighted UniFrac distance (Fig. 3A and Supplementary Fig. S1A, p = 0.176, permutational multivariate analysis of variance [PERMANOVA]), the unweighted UniFrac distance (Fig. 3B and Supplementary Fig. S1B, p = 0.132, PERMANOVA), and the Bray–Curtis dissimilarity index (Fig. 3C and Supplementary Fig. S1C, p = 0.220, PERMANOVA) for beta diversity at the genus level among the EM, CM, and control groups revealed that these three groups could not be separated.Figure 2Alpha diversity at the genus level using Chao1 (A), Shannon (B), and Simpson (C) indices*,†. *Controls (green) and participants with episodic migraine (blue) and chronic migraine (yellow). †In the box plots, the lower boundary of the box indicates the 25th percentile; a blue line within the box marks the median, and the upper boundary of the box indicates the 75th percentile. Whiskers above (red) and below the box (green) indicate the highest and the lowest values, respectively.Full size imageFigure 3Beta diversity of microbiota in principal coordinate analysis plot with the weighted UniFrac distance (A), the unweighted UniFrac distance (B) and the Bray–Curtis dissimilarity index (C)*. *Controls (green) and participants with episodic migraine (blue) and chronic migraine (yellow).Full size imageRelative abundance of fecal microbes between participants with EM and the controlRelative abundance of fecal microbes at the phylum level did not differ significantly among participants in the control, EM, and CM groups (Supplementary Fig. S2). Moreover, Tissierellales (p = 0.001) and Tissierellia (p = 0.001) were more abundant in the EM group than that in the control group at the order and class levels, respectively (Fig. 4A). At the family level, Peptoniphilaceae (p = 0.001) and Eubacteriaceae (p = 0.045) occurred at a significantly higher proportion in the EM group than that in the control group. Furthermore, at the genus level, the abundance of 11 genera differed significantly between the two groups, including one more abundant and 10 less abundant genera in the EM group. Catenibacterium (p = 0.031) and Olsenella (p = 0.038) had the highest relative abundance in the control and EM groups, respectively.Figure 4Taxonomic differences in fecal microbiota among participants. The fold change (log2) denotes the difference in relative abundance between participants with episodic migraine and the control (A), between those with chronic migraine and the control (B), and between those with episodic and chronic migraine (C). CM chronic migraine; EM episodic migraine.Full size imageRelative abundance of fecal microbes between participants with CM and the controlThe analysis results at the class, order, family, genus, and species levels between CM and control groups are illustrated in Fig. 4B. Tissierellia (p = 0.001), Tissierellales (p = 0.001), and Peptoniphilaceae (p = 0.001) were more abundant in the CM group than that in the control group at the class, order, and family levels, respectively; however, at the genus level, the abundances of 18 genera differed significantly, including four more abundant and 14 less abundant genera in the CM group than in the control group.Relative abundance of fecal microbes between participants with EM and CMThe analysis results at the class, order, family, and genus levels between CM and EM groups are summarized in Fig. 4C. At the class level, Bacilli (p = 0.033) were less abundant in the CM group than that in the EM group; however, at the order level, Selenomonadales (p = 0.016) and Lactobacillales (p = 0.034) were less abundant in the CM group than that in the EM group. Moreover, at the class level, Selenomonadaceae (p = 0.016) and Prevotellaceae (p = 0.012) were less abundant in the CM group than that in the EM group. Furthermore, at the genus level, PAC001212_g (p = 0.019) revealed relative positive predominancy in the CM groups, whereas Prevotella (p = 0.019), Holdemanella (p = 0.009), Olsenella (p = 0.033), Adlercreutzia (p = 0.018), and Coprococcus (p = 0.040) revealed relative positive predominancy in the EM group.Association among fecal microbiota and clinical characteristics and comorbidities of migraineAmong the five genera (Roseburia, Eubacterium_g4, Agathobacter, PAC000195_g, and Catenibacterium) depicting predominance or less-predominance both in EM and CM groups, we conducted additional analyses for clinical characteristics and migraine comorbidities.Combining the results of the 42 and 45 participants with EM and CM, respectively, the Poisson regression analysis for relative abundance of microbiota revealed that a higher composition of PAC000195_g (p = 0.040) was significantly associated with lower headache frequency (Table 2). Furthermore, Agathobacter (p = 0.009) had a negative association with severe headache intensity (Table 3). Anxiety was associated with Catenibacterium (p = 0.027); however, depression did not reveal any association with the five genera (Table 3).Table 2 The association between headache frequency and the relative abundance of microbiota.*Full size tableTable 3 The association of severe headache intensity and comorbidities with the relative abundance of microbiota*.Full size tableRelative abundance of fecal microbes in participants with EM based on prophylactic treatmentAlpha and beta diversities in participants with EM did not differ significantly based on their prophylactic treatment (Supplementary Figs S3A–C, S4A–C, and S5A–C). At the genus level, Klebsiella (p = 0.009), Enterobacteriaceae_g (p = 0.006), and Faecalibacterium (p = 0.046) were more abundant in the prophylactic group than the non-prophylactic group (Supplementary Fig. S6A).Relative abundance of fecal microbes in participants with CM based on prophylactic treatmentAlpha and beta diversities in participants with CM did not differ significantly based on prophylactic treatment (Supplementary Figs S7A–C, S8A–C, and S9A–C). Emergencia (p = 0.043), Ruthenibacterium (p = 0.005), Eggerthella (p = 0.003), PAC000743_g (p = 0.034), and Anaerostipes (p = 0.039) were more abundant in the prophylactic group, whereas PAC000196_g (p = 0.049), Fusicatenibacter (p = 0.028), and Faecalibacterium (p = 0.021) were more abundant in the non-prophylactic group at the genus level (Supplementary Fig. S6B). More

  • in

    Anthropogenic edge effects and aging errors by hunters can affect the sustainability of lion trophy hunting

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73. https://doi.org/10.1038/nature22900 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116. https://doi.org/10.1016/j.tree.2013.12.001 (2014).Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. J. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    ADS 

    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, e197. https://doi.org/10.1371/journal.pbio.0020197 (2004).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 124–148 (2014).Article 

    Google Scholar 
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14895–14899 (2015).Article 
    ADS 

    Google Scholar 
    Bauer, H., Page-Nicholson, S., Hinks, A. & Dickman, A. Guidelines for the Conservation of lion in Africa 17–24 (IUCN SSC Cat Specialist Group, 2018).
    Google Scholar 
    Lindsey, P. A., Roulet, P. A. & Romanach, S. S. Economic and conservation significance of the trophy hunting industry in sub-Saharan Africa. Biol. Conserv. 134, 455–469. https://doi.org/10.1016/j.biocon.2006.09.005 (2007).Article 

    Google Scholar 
    Vucetich, J. A. et al. The value of argument analysis for understanding ethical considerations pertaining to trophy hunting and lion conservation. Biol. Conserv. 235, 260–272. https://doi.org/10.1016/j.biocon.2019.04.012 (2019).Article 

    Google Scholar 
    Dube, N. Voices from the village on trophy hunting in Hwange district, Zimbabwe. Ecol. Econ. 159, 335–343. https://doi.org/10.1016/j.ecolecon.2019.02.006 (2019).Article 

    Google Scholar 
    Murombedzi, J. African wildlife and livelihoods. In The Promise and Performance of Community Conservation (eds Hulme, D. & Murphree, M.) 244–255 (James Currey, 2001).
    Google Scholar 
    Leader-Williams, N., Baldus, R. D. & Smith, R. J. Recreational hunting. In Conservation and Rural Livelihoods (eds Dickson, B. et al.) 296–316 (Blackwell Publishing Ltd., 2009).Chapter 

    Google Scholar 
    DiMinin, E., Leader-Williams, N. & Bradshaw, C. J. A. Banning trophy hunting will exacerbate biodiversity loss. Trends Ecol. Evol. 31, 99–102 (2016).Article 

    Google Scholar 
    Whitman, K., Starfield, A. M., Quadling, H. S. & Packer, C. Sustainable trophy hunting of African lions. Nature 428, 175–178 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Packer, C. et al. Sport hunting, predator control and conservation of large carnivores. PLoS ONE 4, e5941. https://doi.org/10.1371/journal.pone.0005941 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Mweetwa, T. et al. Quantifying lion (Panthera leo) demographic response following a three-year moratorium on trophy hunting. PLoS ONE 13, e0197030. https://doi.org/10.1371/journal.pone.0197030 (2018).Article 
    CAS 

    Google Scholar 
    Loveridge, A. J. et al. Conservation of large predator populations: Demographic and spatial responses of African lions to the intensity of trophy hunting. Biol. Conserv. 204, 247–254. https://doi.org/10.1016/j.biocon.2016.10.024 (2016).Article 

    Google Scholar 
    Starfield, A. M., Shiell, J. D. & Smuts, G. L. Simulation of lion control strategies in a large game reserve. Ecol. Model. 13, 17–28 (1981).Article 

    Google Scholar 
    Venter, J. & Hopkins, M. E. Use of a simulation model in the management of a lion population. S. Afr. J. Wildl. Res. 18, 126–130 (1988).
    Google Scholar 
    Starfield, A. M. & Bleloch, A. L. Modelling the effect of contraception on part of the lion population in Etosha National Park. Applied Mathematic Dept. Report R3/82, Witwaterstrand University, South Africa. 7 (1982).Dickman, A., Becker, M., Begg, C., Loveridge, A. J. & Macdonald, D. W. Guidelines for the Conservation of Lions in Africa, Ch. 6 69–75 (IUCN SSC Cat Specialist Group, 2018).
    Google Scholar 
    Creel, S. et al. Assessing the sustainability of lion trophy hunting with recomendations for policy. Ecol. Appl. 26, 2347–2357. https://doi.org/10.1002/eap.1377 (2016).Article 

    Google Scholar 
    Barthold, J., Loveridge, A. J., Macdonald, D. W., Packer, C. & Colchero, F. Bayesian estimates of male and female African lion mortality for future use in population management. J. Appl. Ecol. 53, 295–304 (2016).Article 

    Google Scholar 
    Loveridge, A. J., Valeix, M., Elliot, N. B. & Macdonald, D. W. The landscape of anthropogenic mortality: How African lions respond to spatial variation in risk. J. Appl. Ecol. 54, 815–825. https://doi.org/10.1111/1365-2664.12794 (2017).Article 

    Google Scholar 
    Loveridge, A. J. et al. Evaluating the spatial intensity and demographic impacts of wire-snare bush-meat poaching on large carnivores. Biol. Conserv. 244, 108504 (2020).Article 

    Google Scholar 
    Becker, M. S. et al. Estimating past and future male loss in three Zambian lion populations. J. Wildl. Manag. 77, 128–142 (2013).Article 

    Google Scholar 
    Kiffner, C., Meyer, B., Muhlenberg, M. & Waltert, M. Plenty of prey, few predators: What limits lions Panthera leo in Katavi National park, western Tanzania?. Oryx 43, 52–59 (2009).Article 

    Google Scholar 
    Loveridge, A. J., Searle, A. W., Murindagomo, F. & Macdonald, D. W. The impact of sport hunting on the population dynamics of an African lion population in a protected area. Biol. Conserv. 134, 548–558 (2007).Article 

    Google Scholar 
    Miller, J. R. B. et al. Aging traits and sustainable trophy hunting of African lions. Biol. Conserv. 201, 160–168 (2016).Article 

    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Gervasi, V., Linnell, J. D. C., Brøseth, H. & Gimenez, O. Failure to coordinate management in transboundary populations hinders the achievement of national management goals: The case of wolverines in Scandinavia. J. Appl. Ecol. 56, 1905–1915. https://doi.org/10.1111/1365-2664.13379 (2019).Article 

    Google Scholar 
    Breitenmoser, U. & Nobbe, C. Guidelines for the Conservation of Lions in Africa (ed IUCN CSG/SSC) 29–30 (IUCN, 2018).du Preez, B. & Lopez-Bao, J. V. Guidelines for the Conservation of the Lion in Africa (ed IUCN CSG/SSC) 76–78 (IUCN, 2018).Loveridge, A. J., Hemson, G., Davidson, Z. & Macdonald, D. W. African lions on the edge: reserve boundaries as ‘attractive sinks’ In Biology and Conservation of Wild Felids, Ch. 11 (eds Macdonald, D. W. & Loveridge, A. J.) 283–304 (Oxford University Press, London, 2010).

    Google Scholar 
    Borrego, N., Ozgul, A., Slotow, R. & Packer, C. Lion population dynamics: Do nomadic males matter?. Behav. Ecol. 29, 660–666. https://doi.org/10.1093/beheco/ary018%JBehavioralEcology (2018).Article 

    Google Scholar 
    Packer, C. et al. The case for fencing remains intact. Ecol. Lett. https://doi.org/10.1111/ele.12171 (2013).Balme, G. et al. Big cats at large: Density, structure, and spatio-temporal patterns of a leopard population free of anthropogenic mortality. Popul. Ecol. 61, 256–267. https://doi.org/10.1002/1438-390x.1023 (2019).Article 

    Google Scholar 
    Grünewald, C., Schleuning, M. & Böhning-Gaese, K. Biodiversity, scenery and infrastructure: Factors driving wildlife tourism in an African savannah national park. Biol. Conserv. 201, 60–68. https://doi.org/10.1016/j.biocon.2016.05.036 (2016).Article 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population. Regulation 132, 652–661. https://doi.org/10.1086/284880 (1988).Article 

    Google Scholar 
    Lamb, C. T. et al. The ecology of human–carnivore coexistence. Proc. Natl. Acad. Sci. 117, 17876–17883. https://doi.org/10.1073/pnas.1922097117 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Robinson, H. S., Weilgus, R. B., Cooley, H. & Cooley, S. Source—sink populations in carnivore management: cougar demography and immigration in a hunted population. Ecol. Appl. 18, 1028–1037 (2008).Article 

    Google Scholar 
    Creel, S. et al. Questionable policy for large carnivore hunting. Science 350, 1473–1475 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Cushman, S. A. et al. Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa. PLoS ONE 13, e0196213. https://doi.org/10.1371/journal.pone.0196213 (2018).Article 
    CAS 

    Google Scholar 
    Kelly, M. J. & Durant, S. M. Viability of the Serengeti cheetah population. Conserv. Biol. 14, 786–797 (2000).Article 

    Google Scholar 
    Skalski, J. R., Ryding, K. & Millspaug, J. J. Wildlife Demography: Analysis of Sex, Age, and Count Data (Elsevier Academic Press, 2005).
    Google Scholar 
    Hamlin, K. L., Pac, D. F., Sime, C. A., DeSimone, R. M. & Dusek, G. L. Evaluating the accuracy of ages obtained by two methods for montana ungulates. J. Wildl. Manag. 64, 441–449. https://doi.org/10.2307/3803242 (2000).Article 

    Google Scholar 
    Storm, D. J. et al. Estimating ages of white-tailed deer: Age and sex patterns of error using tooth wear-and-replacement and consistency of cementum annuli. Wildl Soc Bull 38, 849–856. https://doi.org/10.1002/wsb.457 (2014).Article 
    ADS 

    Google Scholar 
    Balme, G. A., Hunter, L. & Braczkowski, A. R. Applicability of age-based hunting regulations for African Leopards. PLoS ONE 7, e35209. https://doi.org/10.1371/journal.pone.0035209 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Gipson, P. S., Ballard, W. B., Nowak, R. M. & Mech, L. D. Accuracy and precision of estimating age of gray wolves by tooth wear. J. Wildl. Manag. 64, 752–758. https://doi.org/10.2307/3802745 (2000).Article 

    Google Scholar 
    Hiller, T. L. Comparison of two age-estimation techniques for cougars. J. Northwest. Nat. 77–82, 76 (2014).
    Google Scholar 
    Begg, C. M., Miller, J. R. B. & Begg, K. S. Effective implementation of age restrictions increases selectivity of sport hunting of the African lion. J. Appl. Ecol. 55, 139–146. https://doi.org/10.1111/1365-2664.12951 (2018).Article 

    Google Scholar 
    Mandisodza-Chikerema, R., Jooste, D. & Funston, P. J. Lion aging and adaptive quota management report: Ages of lions hunted and recommended quotas for 2019 in Zimbabwe. 12 (Unpublished report, Zimbabwe Parks and Wildlife Management and Panthera, Harare, Zimbabwe, 2019).Smuts, G. L., Anderson, J. L. & Austin, J. C. Age determination of the African lion (Panthera leo). J. Zool. Lond. 185, 115–146 (1978).Article 

    Google Scholar 
    Lindsey, P. A. et al. The trophy hunting of African lions: Scale, current management practices and factors undermining sustainability. PLoS ONE 8, 1–11 (2013).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Packer, C. et al. Effects of trophy hunting on lion and leopard populations in Tanzania. Conserv. Biol. 25, 142–153 (2011).Article 
    CAS 

    Google Scholar 
    Mace, G. M. & Reynolds, J. Exploitation as a conservation issue. In Conservation of Exploited Species, Ch. 1 (eds Reynolds, J. et al.) 3–15 (Cambridge University Press, Cambridge, 2001).
    Google Scholar 
    Struhsaker, T. T. A biologists perspective on the role of sustainable harvest in conservation. Conserv. Biol. 12, 930–932 (1998).Article 

    Google Scholar  More

  • in

    Acclimation of phenology relieves leaf longevity constraints in deciduous forests

    Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).Article 

    Google Scholar 
    Hopkins, A. D. The bioclimatic law. Mon. Weather Rev. 48, 355–355 (1920).Article 

    Google Scholar 
    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).Article 

    Google Scholar 
    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).Article 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Morisette, J. T. et al. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front. Ecol. Environ. 7, 253–260 (2009).Article 

    Google Scholar 
    Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).Article 
    CAS 

    Google Scholar 
    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).Article 

    Google Scholar 
    Körner, C. & Basler, D. Plant science. Phenol. Glob. Warm. Sci. 327, 1461–1462 (2010).
    Google Scholar 
    Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).Article 

    Google Scholar 
    Klosterman, S. T. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320 (2014).Article 

    Google Scholar 
    Hufkens, K. et al. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 117, 307–321 (2012).Article 

    Google Scholar 
    Garrity, S. R. et al. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agric. For. Meteorol. 151, 1741–1752 (2011).Article 

    Google Scholar 
    Fracheboud, Y. et al. The control of autumn senescence in European aspen. Plant Physiol. 149, 1982–1991 (2009).Article 
    CAS 

    Google Scholar 
    Mariën, B. et al. Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees? Biogeosciences 18, 3309–3330 (2021).Article 

    Google Scholar 
    Fu, Y. H. et al. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob. Change Biol. 24, 2159–2168 (2018).Article 

    Google Scholar 
    Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).Article 

    Google Scholar 
    Gordo, O. & Sanz, J. J. Long-term temporal changes of plant phenology in the Western Mediterranean. Glob. Change Biol. 15, 1930–1948 (2009).Article 

    Google Scholar 
    Meier, M., Vitasse, Y., Bugmann, H. & Bigler, C. Phenological shifts induced by climate change amplify drought for broad-leaved trees at low elevations in Switzerland. Agric. For. Meteorol. 307, 108485 (2021).Basler, D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric. For. Meteorol. 217, 10–21 (2016).Article 

    Google Scholar 
    Keenan, T. F. et al. Terrestrial biosphere model performance for inter-annual variability of land–atmosphere CO2 exchange. Glob. Change Biol. 18, 1971–1987 (2012).Article 

    Google Scholar 
    Liu, G., Chen, X., Fu, Y. & Delpierre, N. Modelling leaf coloration dates over temperate China by considering effects of leafy season climate. Ecol. Modell. 394, 34–43 (2019).Article 

    Google Scholar 
    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).Article 

    Google Scholar 
    Wu, C., Hou, X., Peng, D., Gonsamo, A. & Xu, S. Land surface phenology of China’s temperate ecosystems over 1999–2013: spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity. Agric. For. Meteorol. 216, 177–187 (2016).Article 

    Google Scholar 
    Fu, Y. S. H. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).Article 
    CAS 

    Google Scholar 
    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).Article 
    CAS 

    Google Scholar 
    Paul, M. J. & Foyer, C. H. Sink regulation of photosynthesis. J. Exp. Bot. 52, 1383–1400 (2001).Article 
    CAS 

    Google Scholar 
    Herold, A. Regulation of photosynthesis by sink activity—the missing link. New Phytol. 86, 131–144 (1980).Article 
    CAS 

    Google Scholar 
    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).Article 
    CAS 

    Google Scholar 
    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci.USA 112, 436–441 (2015).Article 
    CAS 

    Google Scholar 
    Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO. New Phytol. 229, 2413–2445 (2021).Article 
    CAS 

    Google Scholar 
    Liu, Q. et al. Modeling leaf senescence of deciduous tree species in Europe. Glob. Change Biol. 26, 4104–4118 (2020).Article 

    Google Scholar 
    Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006 (NASA, 2019).Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).Article 

    Google Scholar 
    Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).Article 

    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 

    Google Scholar 
    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).Article 

    Google Scholar 
    Hänninen, H. & Tanino, K. Tree seasonality in a warming climate. Trends Plant Sci. 16, 412–416 (2011).Article 

    Google Scholar 
    Kikuzawa, K. & Lechowicz, M. J. Ecology of Leaf Longevity (Springer, 2011).Fu, Y. H. et al. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiol. 39, 1277–1284 (2019).Article 
    CAS 

    Google Scholar 
    Lim, P. O., Kim, H. J. & Nam, H. G. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).Article 
    CAS 

    Google Scholar 
    Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Cong, N. et al. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Glob. Change Biol. 19, 881–891 (2013).Article 

    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).Article 
    CAS 

    Google Scholar 
    Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol. 22, 1456–1468 (2016).Article 

    Google Scholar 
    Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Change Biol. 19, 45–63 (2013).Article 

    Google Scholar 
    Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Chung, H. et al. Experimental warming studies on tree species and forest ecosystems: a literature review. J. Plant Res. 126, 447–460 (2013).Article 

    Google Scholar 
    Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 83, 135–148 (2002).Article 

    Google Scholar 
    Tuck, S. L. et al. MODISTools—downloading and processing MODIS remotely sensed data in R. Ecol. Evol. 4, 4658–4668 (2014).Article 

    Google Scholar 
    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).Article 
    CAS 

    Google Scholar 
    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).Article 

    Google Scholar 
    Stocker, B. rsofun: A modelling framework that implements the P-model for leaf-level acclimation of photosynthesis. R package version 4.3 https://github.com/computationales/rsofun (2020).Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    Meek, D. W., Hatfield, J. L., Howell, T. A., Idso, S. B. & Reginato, R. J. A generalized relationship between photosynthetically active radiation and solar radiation 1. Agron. J. 76, 939–945 (1984).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Stocker, B. ingestr: A tool to extract environmental point data from large global files or remote data servers. R package version 1.4 https://github.com/computationales/ingestr (2020).Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).Article 
    CAS 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Myneni, R., Knyazikhin, Y. & Park, T. MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015). More

  • in

    The double life of Methanoperedens

    Galperin, M. Y. Environ. Microbiol. 6, 552–567 (2004).Article 
    CAS 

    Google Scholar 
    Higgins, D. & Dworkin, J. FEMS Microbiol. Rev. 36, 131–148 (2012).Article 
    CAS 

    Google Scholar 
    Maamar, H., Raj, A. & Dubnau, D. Science 317, 526–529 (2007).Article 
    CAS 

    Google Scholar 
    Ackermann, M. Nat. Rev. Microbiol. 13, 497–508 (2015).Article 
    CAS 

    Google Scholar 
    Robinson, R. W. Appl. Environ. Microbiol. 52, 17–27 (1986).Article 
    CAS 

    Google Scholar 
    McIlroy, S. J. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01292-9 (2023).Article 

    Google Scholar 
    Leu, A. O. et al. ISME J. 14, 1030–1041 (2020).Article 
    CAS 

    Google Scholar 
    Cui, M., Ma, A., Qi, H., Zhuang, X. & Zhuang, G. Microbiologyopen 4, 1–11 (2015).Article 

    Google Scholar 
    Haroon, M. F. et al. Nature 500, 567–570 (2013).Article 
    CAS 

    Google Scholar 
    Fritts, R. K., McCully, A. L. & McKinlay, J. B. Microbiol. Molec. Biol. Rev. 85, e00135-20 (2021).Article 

    Google Scholar  More