Vertical distribution of brittle star larvae in two contrasting coastal embayments: implications for larval transport
1.
Uthicke, S., Schaffelke, B. & Byrne, M. A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol. Monogr. 79, 3–24 (2009).
Google Scholar
2.
Sala, E. & Knowlton, N. Global marine biodiversity trends. Annu. Rev. Environ. Resour. 31, 93–122 (2006).
Google Scholar
3.
Fabricius, K. E., Okaji, K. & De’ath, G. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29, 593–605 (2010).
ADS Google Scholar
4.
Hock, K., Wolff, N. H., Condie, S. A., Anthony, K. R. N. & Mumby, P. J. Connectivity networks reveal the risks of crown-of-thorns starfish outbreaks on the Great Barrier Reef. J. Appl. Ecol. 51, 1188–1196 (2014).
Google Scholar
5.
Wolfe, K., Graba-Landry, A., Dworjanyn, S. A. & Byrne, M. Larval phenotypic plasticity in the boom-and-bust crown-of-thorns seastar, Acanthaster planci. Mar. Ecol. Prog. Ser. 539, 179–189 (2015).
ADS Google Scholar
6.
Pearson, T. H., Josefson, A. B. & Rosenberg, R. Petersen’s benthic stations revisited. I. Is the Kattegatt becoming eutrophic?. J. Exp. Mar. Biol. Ecol. 92, 157–206 (1985).
Google Scholar
7.
Barnes, D. K. A., Verling, E., Crook, A., Davidson, I. & O’Mahoney, M. Local population disappearance follows (20 yr after) cycle collapse in a pivotal ecological species. Mar. Ecol. Prog. Ser. 226, 311–313 (2002).
ADS Google Scholar
8.
Hereu, B. et al. Multiple processes regulate long-term population dynamics of sea urchins on Mediterranean rocky reefs. PLoS ONE 7, e36901 (2012).
ADS CAS PubMed PubMed Central Google Scholar
9.
Guillou, M. Biotic and abiotic interactions controlling starfish outbreaks in the Bay of Douarnenez, Brittany, France. Oceonol. Acta 19, 415–420 (1996).
Google Scholar
10.
Van Nes, E. H., Amaro, T., Scheffer, M. & Duineveld, G. C. A. Possible mechanisms for a marine benthic regime shift in the North Sea. Mar. Ecol. Prog. Ser. 330, 39–47 (2007).
ADS Google Scholar
11.
Blanchet-Aurigny, A. et al. Multi-decadal changes in two co-occurring ophiuroid populations. Mar. Ecol. Prog. Ser. 460, 79–90 (2012).
ADS Google Scholar
12.
Guillou, M., Blanchet-Aurigny, A. & Le Goaster, E. Density fluctuations of the ophiuroids Ophiothrix fragilis and Ophiocomina nigra in the Bay of Douarnenez, Brittany, France. Mar. Biodivers. Rec. 6, 1–5 (2013).
Google Scholar
13.
Blanchet-Aurigny, A., Dubois, S. F., Quéré, C., Guillou, M. & Pernet, F. Trophic niche of two co-occurring ophiuroid species in impacted coastal systems, derived from fatty acid and stable isotope analyses. Mar. Ecol. Prog. Ser. 525, 127–141 (2015).
ADS CAS Google Scholar
14.
Murat, A., Méar, Y., Poizot, E., Dauvin, J. C. & Beryouni, K. Silting up and development of anoxic conditions enhanced by high abundance of the geoengineer species Ophiothrix fragilis. Cont. Shelf Res. 118, 11–22 (2016).
ADS Google Scholar
15.
Geraldi, N. R. et al. Aggregations of brittle stars can perform similar ecological roles as mussel reefs. Mar. Ecol. Prog. Ser. 563, 157–167 (2017).
ADS CAS Google Scholar
16.
Mortensen, T. Die Echinodermen-larven. Nord. Plankt. 9, 1–30 (1900).
Google Scholar
17.
Mortensen, T. Studies of the development and larval forms of Echinoderms. Copenhagen 266 pp (1921).
18.
Strathmann, R. R. The feeding behavior of planktotrophic echinoderm larvae: mechanisms, regulation, and rates of suspension-feeding. J. Exp. Mar. Biol. Ecol. 6, 109–160 (1971).
Google Scholar
19.
Cowen, R. K., Gawarkiewicz, G., Pineda, J., Thorrold, S. R. & Werner, F. E. Population connectivity in marine systems: An overview. Oceanography 20, 14–21 (2007).
Google Scholar
20.
Uthicke, S., Doyle, J., Duggan, S., Yasuda, N. & McKinnon, A. D. Outbreak of coral-eating crown-of-thorns creates continuous cloud of larvae over 320 km of the Great Barrier Reef. Sci. Rep. 5, 1–7 (2015).
Google Scholar
21.
Pratchett, M. S. et al. Thirty years of research on crown-of-thorns starfish (1986–2016): Scientific advances and emerging opportunities. Diversity 9, 1–50 (2017).
Google Scholar
22.
Wolfe, K., Graba-Landry, A., Dworjanyn, S. A. & Byrne, M. Superstars: Assessing nutrient thresholds for enhanced larval success of Acanthaster planci, a review of the evidence. Mar. Pollut. Bull. 116, 307–314 (2017).
CAS PubMed Google Scholar
23.
Metaxas, A. & Saunders, M. Quantifying the ‘Bio-’ components in biophysical models of larval transport in marine benthic invertebrates: advances and pitfalls. Biol. Bull. 216, 257–272 (2009).
PubMed Google Scholar
24.
Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).
PubMed Google Scholar
25.
Pineda, J., Hare, J. A. & Sponaugle, S. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20, 22–39 (2007).
Google Scholar
26.
Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).
PubMed Google Scholar
27.
DiBacco, C., Sutton, D. & McConnico, L. Vertical migration behavior and horizontal distribution of brachyuran larvae in a low-inflow estuary: Implications for bay-ocean exchange. Mar. Ecol. Prog. Ser. 217, 191–206 (2001).
ADS Google Scholar
28.
Chia, F. S. Locomotion of marine invertebrate larvae: A review. Can. J. Zool. 62, 1205–1222 (1984).
Google Scholar
29.
Thiébaut, E., Dauvin, J. C. & Lagadeuc, Y. Transport of Owenia fusiformis larvae (Annelida: Polychaeta) in the Bay of Seine. I. Vertical distribution in relation to water column stratification and ontogenetic vertical migration. Mar. Ecol. Prog. Ser. 80, 29–39 (1992).
ADS Google Scholar
30.
Kunze, H. B., Morgan, S. G. & Lwiza, K. M. Field test of the behavioral regulation of larval transport. Mar. Ecol. Prog. Ser. 487, 71–87 (2013).
ADS Google Scholar
31.
Miyake, Y. et al. Roles of vertical behavior in the open-ocean migration of teleplanic larvae: A modeling approach to the larval transport of Japanese spiny lobster. Mar. Ecol. Prog. Ser. 539, 93–109 (2015).
ADS Google Scholar
32.
Gallager, S. M., Manuel, J. L., Manning, D. A. & O’Dor, R. Ontogenetic changes in the vertical distribution of giant scallop larvae, Placopecten magellanicus, in 9-m deep mesocosms as a function of light, food, and temperature stratification. Mar. Biol. 124, 679–692 (1996).
Google Scholar
33.
Daigle, R. M. & Metaxas, A. Modeling of the larval response of green sea urchins to thermal stratification using a random walk approach. J. Exp. Mar. Biol. Ecol. 438, 14–23 (2012).
Google Scholar
34.
Bonicelli, J. et al. Diel vertical migration and cross-shore distribution of barnacle and bivalve larvae in the central Chile inner-shelf. J. Exp. Mar. Biol. Ecol. 485, 35–46 (2016).
Google Scholar
35.
Lefebvre, A. & Davoult, D. Vertical distribution of the ophioplutei of Ophiothrix fragilis (Echinodermata: Ophiuroidea) in the Dover Strait (Eastern English Channel, France). In Fifth European Conference on Echinoderms—Echinoderm Research 1998 (eds Carnevali, M. D. C. & Bonasoro, F.) 505–509 (Balkema, Rotterdam, 1998).
Google Scholar
36.
Grünbaum, D. & Strathmann, R. R. Form, performance and trade-offs in swimming and stability of armed larvae. J. Mar. Res. 61, 659–691 (2003).
Google Scholar
37.
Roy, A., Metaxas, A. & Ross, T. Swimming patterns of larval Strongylocentrotus droebachiensis in turbulence in the laboratory. Mar. Ecol. Prog. Ser. 453, 117–127 (2012).
ADS Google Scholar
38.
Sameoto, J. A., Ross, T. & Metaxas, A. The effect of flow on larval vertical distribution of the sea urchin, Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 383, 156–163 (2010).
Google Scholar
39.
Fuchs, H. L., Gerbi, G. P., Hunter, E. J., Christman, A. J. & Diez, F. J. Hydrodynamic sensing and behavior by oyster larvae in turbulence and waves. J. Exp. Biol. 218, 1419–1432 (2015).
PubMed Google Scholar
40.
Wheeler, J. D., Chan, K. Y. K., Anderson, E. J. & Mullineaux, L. S. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence. J. Exp. Biol. 219, 1303–1310 (2016).
PubMed PubMed Central Google Scholar
41.
Strathmann, R. R. & Grünbaum, D. Good eaters, poor swimmers: compromises in larval form. Integr. Comp. Biol. 46, 312–322 (2006).
PubMed Google Scholar
42.
Forward, R. B., Cronin, T. W. & Stearns, D. E. Control of diel vertical migration: Photoresponses of a larval crustacean. Limnol. Oceanogr. 29, 146–154 (1984).
ADS Google Scholar
43.
Forward, R. B. Behavioral responses of larvae of the crab Rhithropanopeus harrisii (Brachyura: Xanthidae) during diel vertical migration. Mar. Biol. 90, 9–18 (1985).
Google Scholar
44.
Garland, E. D., Zimmer, C. A. & Lentz, S. J. Larval distributions in inner-shelf waters: The roles of wind-driven cross-shelf currents and diel vertical migrations. Limnol. Oceanogr. 47, 803–817 (2002).
ADS Google Scholar
45.
Pennington, J. T. & Emlet, R. B. Ontogenetic and diel vertical migration of a planktonic echinoid larva, Dendraster excentricus (Eschscholtz): Occurrence, causes, and probable consequences. J. Exp. Mar. Biol. Ecol. 104, 69–95 (1986).
Google Scholar
46.
Lesser, M. P. & Barry, T. M. Survivorship, development, and DNA damage in echinoderm embryos and larvae exposed to ultraviolet radiation (290–400 nm). J. Exp. Mar. Biol. Ecol. 292, 75–91 (2003).
CAS Google Scholar
47.
Tauchman, E. C. & Pomory, C. M. Effect of ultraviolet radiation on growth and percent settlement of larval Lytechinus variegatus (Echinodermata: Echinoidea). Invertebr. Reprod. Dev. 55, 152–161 (2011).
Google Scholar
48.
Metaxas, A. & Burdett-Coutts, V. Response of invertebrate larvae to the presence of the ctenophore Bolinopsis infundibulum, a potential predator. J. Exp. Mar. Biol. Ecol. 334, 187–195 (2006).
Google Scholar
49.
Raby, D., Lagadeuc, Y., Dodson, J. J. & Mingelbier, M. Relationship between feeding and vertical distribution of bivalve larvae in stratified and mixed waters. Mar. Ecol. Prog. Ser. 103, 275–284 (1994).
ADS Google Scholar
50.
Burdett-Coutts, V. & Metaxas, A. The effect of the quality of food patches on larval vertical distribution of the sea urchins Lytechinus variegatus (Lamarck) and Strongylocentrotus droebachiensis (Mueller). J. Exp. Mar. Biol. Ecol. 308, 221–236 (2004).
Google Scholar
51.
Sameoto, J. A. & Metaxas, A. Interactive effects of haloclines and food patches on the vertical distribution of 3 species of temperate invertebrate larvae. J. Exp. Mar. Biol. Ecol. 367, 131–141 (2008).
Google Scholar
52.
Birrien, J. L., Wafar, M. V. M., Le Corre, P. & Riso, R. Nutrients and primary production in a shallow stratified ecosystem in the Iroise Sea. J. Plankton Res. 13, 721–742 (1991).
Google Scholar
53.
Le Corre, P., L’Helguen, S., Morin, P. & Birrien, J. L. Conditions de formation d’eaux colorées toxiques sur le plateau continental Manche-Atlantique; cas de Gyrodinium cf. aureolum. Hydroécologie Appliquée 2, 173–188 (1992).
Google Scholar
54.
Clay, T. W. & Grünbaum, D. Morphology-flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow. J. Exp. Biol. 213, 1281–1292 (2010).
CAS PubMed Google Scholar
55.
Soars, N. A. & Byrne, M. Contrasting arm elevation angles of multi- and two-armed sea urchin echinoplutei supports Grünbaum and Strathmann’s hydromechanical model. Mar. Biol. 162, 607–616 (2015).
Google Scholar
56.
Chan, K. Y. K., Grünbaum, D., Arnberg, M. & Dupont, S. Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES J. Mar. Sci. 73, 951–961 (2016).
Google Scholar
57.
Burke, R. D. Structure of the digestive tract of the pluteus larva of Dendraster excentricus (Echinodermata: Echinoida). Zoomorphology 98, 209–225 (1981).
Google Scholar
58.
Chadwick, H. C. Echinoderm larvae. L.M.B.C. Mem. XXII (1914).
59.
Mileikovsky, S. A. Speed of active movement of pelagic larvae of marine bottom invertebrates and their ability to regulate their vertical position. Mar. Biol. 23, 11–17 (1973).
Google Scholar
60.
Fortier, L. & Leggett, W. C. Fickian transport and the dispersal of fish larvae in estuaries. Can. J. Fish. Aquat. Sci. 39, 1150–1163 (1982).
Google Scholar
61.
Knights, A. M., Crowe, T. P. & Burnell, G. Mechanisms of larval transport: Vertical distribution of bivalve larvae varies with tidal conditions. Mar. Ecol. Prog. Ser. 326, 167–174 (2006).
ADS Google Scholar
62.
Rigal, F., Viard, F., Ayata, S. D. & Comtet, T. Does larval supply explain the low proliferation of the invasive gastropod Crepidula fornicata in a tidal estuary?. Biol. Invasions 12, 3171–3186 (2010).
Google Scholar
63.
Herbert, R. J. H. et al. Invasion in tidal zones on complex coastlines: Modelling larvae of the non-native Manila clam, Ruditapes philippinarum, in the UK. J. Biogeogr. 39, 585–599 (2012).
Google Scholar
64.
Hock, K. et al. Controlling range expansion in habitat networks by adaptively targeting source populations. Conserv. Biol. 30, 856–866 (2016).
PubMed Google Scholar
65.
Dupont, S., Havenhand, J., Thorndyke, W., Peck, L. & Thorndyke, M. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar. Ecol. Prog. Ser. 373, 285–294 (2008).
ADS CAS Google Scholar
66.
Strathmann, R. R., Fenaux, L. & Strathmann, M. F. Heterochronic developmental plasticity in larval sea urchins and its implications for evolution of nonfeeding larvae. Evolution 46, 972–986 (1992).
PubMed Google Scholar
67.
Augris, C. et al. Atlas thématique de l’environnement marin de la baie de Douarnenez (Finistère). Edition IFREMER, Brest (2005).
68.
Bodin, P., Boucher, D., Guillou, J. & Guillou, M. The trophic system of the benthic communities in the bay of Douarnenez (Brittany). In Proceedings of the 19th European Marine Biology Symposium, Plymouth, Devon, UK, 16–21 September 1984 (ed Gibbs, P. E.) 361–370 (Cambridge University Press, 1985).
69.
Blanchet, A., Chevalier, C., Gaffet, J. & Hamon, D. Bionomie benthique subtidale en baie de Douarnenez. DEL/EC/BB.RST.04.01, Ifremer (2004).
70.
Del Amo, Y. et al. Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. I. Seasonal evolution of nutrient limitation for the diatom-dominated phytoplankton of the Bay of Brest (France). Mar. Ecol. Prog. Ser. 161, 213–224 (1997).
ADS Google Scholar
71.
Bowmer, T. Reproduction in Amphiura filiformis (Echinodermata: Ophiuroidea): Seasonality in gonad development. Mar. Biol. 68, 281–290 (1982).
Google Scholar
72.
Lefebvre, A., Davoult, D., Gentil, F. & Janquin, M. Spatio-temporal variability in the gonad growth of Ophiothrix fragilis (Echinodermata: Ophiuroidea) in the English Channel and estimation of carbon and nitrogen outputs towards the pelagic system. Hydrobiologia 414, 25–34 (1999).
Google Scholar
73.
Narasimhamurti, N. The development of Ophiocoma nigra. Q. J. Microsc. Sci. 76, 63–88 (1933).
Google Scholar
74.
Morgan, R. & Jangoux, M. Larval morphometrics and influence of adults on settlement in the gregarious ophiuroid Ophiothrix fragilis (Echinodermata). Biol. Bull. 208, 92–99 (2005).
PubMed Google Scholar
75.
Dupont, S., Thorndyke, W., Thorndyke, M. C. & Burke, R. D. Neural development of the brittlestar Amphiura filiformis. Dev. Genes Evol. 219, 159–166 (2009).
PubMed Google Scholar
76.
Schlitzer, R. Ocean Data View. odv.awi.de (2018).
77.
Lazure, P. & Dumas, F. An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Water Resour. 31, 233–250 (2008).
ADS Google Scholar
78.
Jouanneau, N., Sentchev, A. & Dumas, F. Numerical modelling of circulation and dispersion processes in Boulogne-sur-mer harbour (Eastern English Channel): Sensitivity to physical forcing and harbour design. Ocean Dyn. 63, 1321–1340 (2013).
ADS Google Scholar
79.
Smagorinsky, J. General circulation experiments with the primitive equation. I. The basic experiment. Mon. Weather Rev. 111, 99–165 (1963).
ADS Google Scholar
80.
Lazure, P., Garnier, V., Dumas, F., Herry, C. & Chifflet, M. Development of a hydrodynamic model of the Bay of Biscay: Validation of hydrology. Cont. Shelf Res. 29, 985–997 (2009).
ADS Google Scholar
81.
Caillaud, M., Petton, S., Dumas, F., Rochette, S. & Mickael, V. Rejeu hydrodynamique à 500 m de résolution avec le modèle MARS3D-AGRIF-Zone Manche-Gascogne. Ifremer https://doi.org/10.12770/3edee80f-5a3e-42f4-9427-9684073c87f5 (2016).
Article Google Scholar
82.
Frontier, S. Sur une méthode d’analyse faunistique rapide du zooplancton. J. Exp. Mar. Biol. Ecol. 3, 18–26 (1969).
Google Scholar
83.
MacBride, E. W. The development of Ophiothrix fragilis. J. Cell Sci. 51, 557–606 (1907).
Google Scholar
84.
Mortensen, T. Handbook of the Echinoderms of the British Isles (Oxford University Press, London, 1927).
Google Scholar
85.
Geiger, S. R. Echinodermata: Larvae. Classes: Ophiuroidea and Echinoidea (Plutei). In Fiches d’identification du zooplancton, Sheet 105 (eds Fraser, J. H. & Hansen, V. K.) 1–5 (Andr. Fred. Høst & Fils, Copenhagen, 1964).
Google Scholar
86.
Stöhr, S. Who’s who among baby brittle stars (Echinodermata: Ophiuroidea): Postmetamorphic development of some North Atlantic forms. Zool. J. Linn. Soc. 143, 543–576 (2005).
Google Scholar
87.
Planque, B., Lazure, P. & Jegou, A. M. Typology of hydrological structures modelled and observed over the Bay of Biscay shelf. Sci. Mar. 70, 43–50 (2006).
Google Scholar
88.
Tapia, F. J., DiBacco, C., Jarrett, J. & Pineda, J. Vertical distribution of barnacle larvae at a fixed nearshore station in southern California: stage-specific and diel patterns. Estuar. Coast. Shelf Sci. 86, 265–270 (2010).
ADS Google Scholar
89.
Beet, A., Solow, A. R. & Bollens, S. M. Comparing vertical plankton profiles with replication. Mar. Ecol. Prog. Ser. 262, 285–287 (2003).
ADS Google Scholar
90.
Hayek, L.-A. C. & Buzas, M. A. Surveying natural populations: quantitative tools for assessing biodiversity (Columbia University Press, New York, 1997).
Google Scholar
91.
Rowe, P. M. & Epifanio, C. E. Flux and transport of larval weakfish in Delaware Bay, USA. Mar. Ecol. Prog. Ser. 110, 115–120 (1994).
ADS Google Scholar More
