Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats
1.
Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Analysis (Oxford University Press, Oxford, 2009).
Google ScholarÂ
2.
GimĂ©nez GĂłmez, V. C., VerdĂș, J. R., Guerra Alonso, C. B. & Zurita, G. A. Relationship between land uses and diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina: which are the key factors?. Biodivers. Conserv.27, 3201â3213 (2018).
Google ScholarÂ
3.
Nichols, E. et al. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol. Conserv.137, 1â19 (2007).
Google ScholarÂ
4.
BarragĂĄn, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE6, e17976. https://doi.org/10.1371/journal.pone.0017976 (2011).
ADS CAS Article PubMed PubMed Central Google ScholarÂ
5.
GimĂ©nez GĂłmez, V. C., VerdĂș, J. R., GĂłmez-Cifuentes, A., Vaz-de-Mello, F. Z. & Zurita, G. A. Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. Insect Conserv. Divers.11, 554â564 (2018).
Google ScholarÂ
6.
GĂłmez-Cifuentes, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J. Insect Conserv.21, 147â156 (2017).
Google ScholarÂ
7.
GĂłmez-Cifuentes, A., GimĂ©nez GĂłmez, V. C., Moreno, C. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest. Basic Appl. Ecol.34, 64â74 (2019).
Google ScholarÂ
8.
Halffter, G. & Arellano, L. Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica34, 144â154 (2002).
Google ScholarÂ
9.
Gardner, T. A., HernĂĄndez, M. I. M., Barlow, J. & Peres, C. A. Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. J. Appl. Ecol45, 883â893 (2008).
Google ScholarÂ
10.
Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology94, 180â189 (2013).
PubMed Google ScholarÂ
11.
Sowig, P. Habitat selection and offspring survival rate in three paracoprid dung beetles: the influence of soil type and soil moisture. Ecography18, 147â154 (1995).
Google ScholarÂ
12.
Davis, A. L. V., Van Aarde, R. J., Scholtz, C. H. & Delport, J. H. Increasing representation of localized dung beetles across a chronosequence of regenerating vegetation and natural dune forest in South Africa. Glob. Ecol. Biogeogr.11, 191â209 (2002).
Google ScholarÂ
13.
Almeida, S., Louzada, J., Sperber, C. & Barlow, J. Subtle land use change and tropical biodiversity: dung beetle communities in Cerrado grasslands and exotic pastures. Biotropica43, 704â710 (2011).
Google ScholarÂ
14.
Piccini, I. et al. Dung beetles as drivers of ecosystem multifunctionality: are response and effect traits interwoven?. Sci. Total Environ.616â617, 1440â1448 (2018).
ADS PubMed Google ScholarÂ
15.
Di Bitetti, M. S., Placci, G. & Dietz, L. A. A Biodiversity Vision for the Upper ParanĂĄ Atlantic Forest Ecoregion: Designing a Biodiversity Conservation Landscape and Setting Priorities for Conservation Action (World Wild life Fund, Gland, 2003).
Google ScholarÂ
16.
Ribeiro, M. C., Metzger, J. P., Camargo Martensen, A., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv.142, 1141â1153 (2009).
Google ScholarÂ
17.
SalomĂŁo, R. P. & Lannuzzi, L. Dung beetle (Coleoptera, Scarabaeidae) assemblage of a highly fragmented landscape of Atlantic forest: from small to the largest fragments of northeastern Brazilian region. Rev. Bras. Entomol.59, 126â131 (2015).
Google ScholarÂ
18.
Bartholomew, G. A. & Heinrich, B. Endothermy in African dung beetles during flight, ball making, and ball rolling. J. Exp. Biol.73, 65â83 (1978).
Google ScholarÂ
19.
VerdĂș, J. R., Arellano, L., Numa, C. & MicĂł, E. Roles of endothermy in niche differentiation for ball-rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecol. Entomol.32, 544â551 (2007).
Google ScholarÂ
20.
Caveney, S., Scholtz, C. H. & McIntyre, P. Patterns of daily flight activity in onitine dung beetles (Scarabaeinae: Onitini). Oecologia103, 444â452 (1995).
ADS PubMed Google ScholarÂ
21.
VerdĂș, J. R., DĂaz, A. & Galante, E. Thermoregulatory strategies in two closery related sympatric Scarabaeus species (Coleoptera: Scarabaeinae). Physiol. Entomol.29, 32â38 (2004).
Google ScholarÂ
22.
Kingsolver, J. G. The well-temperatured biologist. Am. Nat.174, 755â768 (2009).
PubMed Google ScholarÂ
23.
Reis, M. et al. A comparative study of the short term cold resistance response in distantly related Drosophila species: the role of regucalcin and frost. PLoS ONE6, e25520. https://doi.org/10.1371/journal.pone.0025520 (2011).
ADS CAS Article PubMed PubMed Central Google ScholarÂ
24.
Harrison, J. F., Woods, H. A. & Roberts, S. P. Ecological and Environmental Physiology of Insects (Oxford University Press, Oxford, 2012).
Google ScholarÂ
25.
Chown, S. L., Scholtz, C. H., Klok, C. J., Jourbet, F. J. & Coles, K. S. Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct. Ecol.9, 30â39 (1995).
Google ScholarÂ
26.
Heath, J. E., Hanegan, J. L., Wilkin, P. J. & Heath, M. S. Adaptation to the thermal responses of insects. Integr. Comp. Biol.11, 147â158 (1971).
Google ScholarÂ
27.
Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc. R. Soc. Lond. B Biol. Sci.274, 771â778 (2007).
Google ScholarÂ
28.
VerdĂș, J. R. & Lobo, J. M. Ecophysiology of thermorregulation in endothermic dung beetles: ecological and geographical implication. In Insect Ecology and Conservation (ed. Fattorini, S.) 1â28 (Research Singnpost, Trivandrum, 2008).
Google ScholarÂ
29.
Krogh, A. & Zeuthen, E. The mechanism of flight preparation in some insects. J. Exp. Biol.18, 1â10 (1941).
Google ScholarÂ
30.
Heinrich, B. Thermoregulation of African and European honeybees during foraging, attack, and hive exits and returns. J. Exp. Biol.80, 217â229 (1979).
Google ScholarÂ
31.
VerdĂș, J. R., Alba-Tercedor, J. & JimĂ©nez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and microcomputer tomography. PLoS ONE7, e33914. https://doi.org/10.1371/journal.pone.0033914 (2012).
ADS CAS Article PubMed PubMed Central Google ScholarÂ
32.
Chown, S. L. & Terblanche, J. S. Physiological diversity in insects: ecological and evolutionary contexts. Adv. Insect. Physiol.33, 50â152 (2006).
Google ScholarÂ
33.
Terblanche, J. S., Deere, J. A., Clusells-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. Lond. B Biol. Sci.274, 2935â2942 (2007).
Google ScholarÂ
34.
Vorhees, A. S., Gray, E. M. & Bradley, T. J. Thermal resistance and performance correlate with climate in populations of a widespread mosquito. Physiol. Biochem. Zool.86, 73â81 (2013).
PubMed Google ScholarÂ
35.
Gates, D. M. Biophysical Ecology (Springer, Berlin, 1980).
Google ScholarÂ
36.
Bartholomew, G. A. & Casey, T. M. Endothermy during terrestrial activity in large beetles. Science195, 882â883 (1977).
ADS CAS PubMed Google ScholarÂ
37.
VerdĂș, J. R., Arellano, L. & Numa, C. Thermoregulation in endotermic dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. J. Insect Physiol.52, 854â860 (2006).
PubMed Google ScholarÂ
38.
Chown, S. L. & Klok, C. J. The ecological implications of physiological diversity in dung beetles. In Ecology and Evolution of Dung Beetles (eds Simmons, L. W. & Ridsdill-Smith, T. J.) 200â219 (Blackweel Publishing Ltd, Hoboken, 2011).
Google ScholarÂ
39.
Oliveira-Filho, A. T. & Fontes, I. A. M. Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica32, 793â810 (2000).
Google ScholarÂ
40.
Izquierdo, A. E., De Angelo, C. D. & Aide, T. M. Thirty years of human demography and land use change in the Atlantic Forest of Misiones, Argentina: an evaluation of the forest transition model. Ecol. Soc.13, 3 (2008).
Google ScholarÂ
41.
Zurita, G. A. & Bellocq, M. I. Bird assemblages in anthropogenic habitats: identifying a suitability gradient for native species in the Atlantic forest. Biotropica44, 412 (2012).
Google ScholarÂ
42.
Cabrera, A. L. FitogeografĂa de Argentina. BoletĂn de sociedad Argentina de BotĂĄnica14, 1â42 (1971).
Google ScholarÂ
43.
Campanello, P. I., Montti, L., Goldstein, G. & Mac Donagh, P. Reduced impact logging and post-harvesting forest management in the Atlantic Forest: alternative approaches to enhance canopy tree growth and regeneration and to reduce the impact of invasive species. In Forest Management (ed. Grossberg, S. P.) 39â59 (Nova Science, New York, 2009).
Google ScholarÂ
44.
Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr.67, 345â366 (1997).
Google ScholarÂ
45.
McGeoch, M. A. & Chown, S. L. Scaling up the value of bioindicators. Trends Ecol. Evol.13, 46â47 (1998).
CAS PubMed Google ScholarÂ
46.
McGeoch, M. A., van Rensburg, B. J. & Botes, A. The verification and application of bioindicators: a case of study of dung beetles in a savanna ecosystem. J. Appl. Ecol.39, 661â672 (2002).
Google ScholarÂ
47.
McCune, B. & Mefford, M. J. Multivariate Analysis of Ecological Data, Version 4.0. MjM Software, Gleneden Beach, Oregon, U.S.A. (1999).
48.
HernĂĄndez, M. I. M. The night and day of dung beetles (Coleoptera, Scarabaeidae) in the Serra do Japi, Brazil: elytra colour related to daily activity. Rev. Bras. Entomol.46, 597â600 (2002).
Google ScholarÂ
49.
HernĂĄndez, M. I. M., Monteiro, L. R. & Favila, M. E. The role of body size and shape in understanding competitive interactions within a community of neotropical dung beetles. J. Insect Sci.11, 1â14 (2011).
Google ScholarÂ
50.
Heinrich, B. Hot-blooded Insects: Strategies and Mechanisms of Thermoregulation (Harvard University Press, Cambridge, 1993).
Google ScholarÂ
51.
Vannier, G. The thermobiological limits of some freezing intolerant insects: the supercooling and thermostupor points. Acta Oecol.15, 31â41 (1994).
Google ScholarÂ
52.
Chown, S. L. & Nicolson, S. W. Insect Physiological Ecology: Mechanisms and Patterns (Oxford University Press, Oxford, 2004).
Google ScholarÂ
53.
Gallego, B., VerdĂș, J. R., Carrascal, L. M. & Lobo, J. M. A protocol for analyzing thermal stress in insects using infrared thermography. J. Therm. Biol.56, 113â121 (2016).
PubMed Google ScholarÂ
54.
Merrick, M. Temperature regulation in burying beetles (Nicrophorus spp.: Coleoptera: Silphidae): effects of body size, morphology and environmental temperature. J. Exp. Biol.207, 723â733 (2004).
PubMed Google ScholarÂ
55.
Tyndale-Biscoe, M. Age-grading methods in adult insects: a review. Bull. Entomol. Res.74, 341â377 (1984).
Google ScholarÂ
56.
VerdĂș, J. R., Casa, J. L., Lobo, J. M. & Numa, C. Dung beetles eat acorns to increase their ovarian development and thermal tolerance. PLoS ONE5, e10114. https://doi.org/10.1371/journal.pone.0010114 (2010).
ADS CAS Article PubMed PubMed Central Google ScholarÂ
57.
StatsDirect Ltd StatsDirect Statistical Software, StatsDirect, U.K.
58.
May, M. L. Thermoregulation and adaptation to temperature in dragonflies (Odonata: Anisoptera). Ecol. Monogr.46, 1â32 (1976).
Google ScholarÂ
59.
Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage. https://socserv.socsci.mcmaster.ca/jfox/Books/Companion (2011).
60.
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1â48 (2015).
Google ScholarÂ
61.
Length, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.2.3. https://CRAN.R-project.org/package=emmeans (2018).
62.
Dinno, A. Conover.test: conover-iman test of multiple comparisons using rank sums. R package version 1.1.4. https://CRAN.R-project.org/package=conover.test (2017).
63.
Di Rienzo, J. A. et al. W. InfoStat version 3241 2016. Grupo InfoStat, FCA, Universidad Nacional de CĂłrdoba, Argentina (2016).
64.
Moran, D. M. Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos100, 403â405 (2013).
Google ScholarÂ
65.
Campos, R. C. & HernĂĄndez, M. I. M. The importance of maize management on dung beetle communities in Atlantic forest fragment. PLoS ONE10, e0145000. https://doi.org/10.1371/journal.pone.0145000 (2015).
CAS Article PubMed PubMed Central Google ScholarÂ
66.
Filgueiras, B. K. C., Tabarelli, M., Leal, I., Vaz-De-Mello, F. Z. & Iannuzzi, L. Dung beetle persistence in human-modified landscapes: combining indicator species with anthropogenic land uses and fragmentation- related effects. Ecol. Indic.55, 65â73 (2015).
Google ScholarÂ
67.
Tavares, A. et al. Eucalyptus plantations as hybrid ecosystems: implications for species conservation in the Brazilian Atlantic forest. For. Ecol. Manag.433, 131â139 (2019).
Google ScholarÂ
68.
Smolka, J. et al. Dung beetles use their dung ball as a mobile thermal refuge. Curr. Biol.22, 863â864 (2012).
Google ScholarÂ
69.
VerdĂș, J. R., Cortez, V., Oliva, D. & GimĂ©nez-GĂłmez, V. Thermoregulatory syndromes of two sympatric dung beetles with low energy costs. J. Insect Physiol.118, 103945. https://doi.org/10.1016/j.jinsphys.2019.103945 (2019).
CAS Article PubMed Google ScholarÂ
70.
Heinrich, B. & Bartholomew, G. A. Roles of endothermy and size in inter- and intraspecific competition for elephant dung in an African dung beetle, Scarabaeus laevistriatus. Physiol. Zool.52, 484â496 (1979).
Google ScholarÂ
71.
Da Silva, P. G. & HernĂĄndez, M. I. M. Spatial variation of dung beetle assemblages associated with forest structure in remnants of southern Brazilian Atlantic Forest. Rev. Bras. Entomol.60, 73â81 (2016).
Google ScholarÂ
72.
May, M. L. Insect thermoregulation. Annu. Rev. Entomol.24, 313â349 (1979).
Google ScholarÂ
73.
Young, O. P. Perching of neotropical dung beetles on leaf surfaces: an example of behavioral thermoregulation?. Biotropica16, 324â327 (1984).
Google ScholarÂ
74.
Heinrich, B. Insect thermoregulation. Endeavour19, 28â33 (1995).
Google ScholarÂ
75.
Edney, E. B. Body temperatures of tenebrionid beetles in the Namib Desert of Southern Africa. J. Exp. Biol.55, 253â272 (1971).
Google ScholarÂ
76.
Casey, T. M. Thermoregulation and heat exchange. Adv. Insect Physiol.20, 119â146 (1988).
Google ScholarÂ
77.
Halffter, G. & Matthews, E. G. The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Soc. Mex. Entomol.14, 1â312 (1966).
Google ScholarÂ
78.
Audino, L. D., Louzada, J. & Comita, L. Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity?. Biol. Conserv.169, 248â257 (2014).
Google ScholarÂ
79.
Beiroz, W. et al. Spatial and temporal shifts in functional and taxonomic diversity of dung beetles in a human-modified tropical forest landscape. Ecol. Indic.95, 518â526 (2018).
Google ScholarÂ
80.
GĂłmez-Cifuentes, A., Vespa, N., SemmanrtĂn, M. & Zurita, G. A. Canopy cover is a key factor to preserve the ecological functions of dung beetles in the southern Atlantic Forest. Appl. Soil Ecol.154, 103652. https://doi.org/10.1016/j.apsoil.2020.103652 (2020).
Article Google Scholar More
