Seasonal and environmental variation in volatile emissions of the New Zealand native plant Leptospermum scoparium in weed-invaded and non-invaded sites
1.
Li, S., Wang, P., Yuan, W., Su, Z. & Bullard, S. H. Endocidal regulation of secondary metabolites in the producing organisms. Sci. Rep. 6, 29315. https://doi.org/10.1038/srep29315 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
2.
Dudareva, N., Negre, F., Nagegowda, D. A. & Orlova, I. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 25, 417–440. https://doi.org/10.1080/07352680600899973 (2006).
CAS Article Google Scholar
3.
Holopainen, J. K. Multiple functions of inducible plant volatiles. Trends Plant Sci. 9, 529–533. https://doi.org/10.1016/j.tplants.2004.09.006 (2004).
CAS Article PubMed Google Scholar
4.
Dudareva, N., Klempien, A., Muhlemann, J. K. & Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16–32. https://doi.org/10.1111/nph.12145 (2013).
CAS Article PubMed Google Scholar
5.
Effah, E., Holopainen, J. K. & Clavijo McCormick, A. Potential roles of volatile organic compounds in plant competition. Perspect. Plant Ecol. Evol. Syst. 38, 58–63. https://doi.org/10.1016/j.ppees.2019.04.003 (2019).
Article Google Scholar
6.
Flamini, G., Tebano, M. & Cioni, P. L. Volatiles emission patterns of different plant organs and pollen of Citrus limon. Anal. Chim. Acta 589, 120–124 (2007).
CAS Article Google Scholar
7.
Holopainen, J. K. & Gershenzon, J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15, 176–184. https://doi.org/10.1016/j.tplants.2010.01.006 (2010).
CAS Article PubMed Google Scholar
8.
Bracho-Nunez, A., Welter, S., Staudt, M. & Kesselmeier, J. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation. J. Geophys. Res. Atmos. https://doi.org/10.1029/2010jd015521 (2011).
Article Google Scholar
9.
Vivaldo, G., Masi, E., Taiti, C., Caldarelli, G. & Mancuso, S. The network of plants volatile organic compounds. Sci. Rep. 7, 1–18 (2017).
CAS Article Google Scholar
10.
Himanen, S. J. et al. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants—a mechanism for associational herbivore resistance? New Phytol. 186, 722–732. https://doi.org/10.1111/j.1469-8137.2010.03220.x (2010).
CAS Article PubMed Google Scholar
11.
Camacho-Coronel, X., Molina-Torres, J. & Heil, M. Sequestration of exogenous volatiles by plant cuticular waxes as a mechanism of passive associational resistance: a proof of concept. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00121 (2020).
Article PubMed PubMed Central Google Scholar
12.
Clavijo McCormick, A. Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecol. Evol. 6, 8569–8582. https://doi.org/10.1002/ece3.2567 (2016).
Article PubMed PubMed Central Google Scholar
13.
Shiojiri, K. et al. Functions of plant infochemicals in tritrophic interactions between plants, herbivores and carnivorous natural enemies. Jpn. J. Appl. Entomol. Zool. 46, 117–133 (2002).
CAS Article Google Scholar
14.
Pichersky, E. & Gershenzon, J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5, 237–243 (2002).
CAS Article Google Scholar
15.
Kigathi, R. N., Weisser, W. W., Reichelt, M., Gershenzon, J. & Unsicker, S. B. Plant volatile emission depends on the species composition of the neighboring plant community. BMC Plant Biol. 19, 58. https://doi.org/10.1186/s12870-018-1541-9 (2019).
Article PubMed PubMed Central Google Scholar
16.
Effah, E. et al. Natural variation in volatile emissions of the invasive weed Calluna vulgaris in New Zealand. Plants 9, 283 (2020).
Article Google Scholar
17.
Inderjit, S. et al. Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology 92, 316–324. https://doi.org/10.1890/10-0400.1 (2011).
CAS Article PubMed Google Scholar
18.
Broz, A. K. et al. Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol. 10, 115. https://doi.org/10.1186/1471-2229-10-115 (2010).
CAS Article PubMed PubMed Central Google Scholar
19.
Corbin, J. D. & D’Antonio, C. M. Competition between native perennial and exotic annual grasses: implications for an historical invasion. Ecology 85, 1273–1283. https://doi.org/10.1890/02-0744 (2004).
Article Google Scholar
20.
Leger, E. A. & Espeland, E. K. Perspective: coevolution between native and invasive plant competitors: implications for invasive species management. Evol. Appl. 3, 169–178. https://doi.org/10.1111/j.1752-4571.2009.00105.x (2010).
Article PubMed PubMed Central Google Scholar
21.
Alvarez-Suarez, J. M., Gasparrini, M., Forbes-Hernández, T. Y., Mazzoni, L. & Giampieri, F. The composition and biological activity of honey: a focus on Manuka honey. Foods 3, 420–432 (2014).
Article Google Scholar
22.
Almasaudi, S. B. et al. Antioxidant, anti-inflammatory, and antiulcer potential of manuka honey against gastric ulcer in rats. Oxid. Med. Cell. Longev. 2016, 3643824 (2016).
Article Google Scholar
23.
Ronghua, Y., Mark, A. F. & Wilson, J. B. Aspects of the ecology of the indigenous shrub Leptospermum scoparium (Myrtaceae) in New Zealand. N. Z. J. Bot. 22, 483–507. https://doi.org/10.1080/0028825X.1984.10425282 (1984).
Article Google Scholar
24.
Stephens, J. M. C., Molan, P. C. & Clarkson, B. D. A review of Leptospermum scoparium (Myrtaceae) in New Zealand. N. Z. J. Bot. 43, 431–449. https://doi.org/10.1080/0028825X.2005.9512966 (2005).
Article Google Scholar
25.
Smale, M. C. Ecology of Dracophyllum subulatum-dominant heathland on frost flats at Rangitaiki and north Pureora, central North Island New Zealand. N. Z. J. Bot. 28, 225–248. https://doi.org/10.1080/0028825X.1990.10412311 (1990).
Article Google Scholar
26.
Rogers, G. M. North Island seral tussock grasslands 1. Origins and land-use history. N. Z. J. Bot. 32, 271–286. https://doi.org/10.1080/0028825X.1994.10410471 (1994).
Article Google Scholar
27.
Bagnall, A. Heather at Tongariro. A study of a weed introduction. Tussock Grassl. Mountainlands Inst. Rev. 41, 17–21 (1982).
Google Scholar
28.
Buddenhagen, C. E. Broom Control Monitoring at Tongariro National Park. (Department of Conservation, 2000).
29.
Perry, N. B. et al. Essential oils from New Zealand manuka and kanuka: chemotaxonomy of Leptospermum. Phytochemistry 44, 1485–1494. https://doi.org/10.1016/S0031-9422(96)00743-1 (1997).
CAS Article Google Scholar
30.
Douglas, M. H. et al. Essential oils from New Zealand manuka: triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 65, 1255–1264. https://doi.org/10.1016/j.phytochem.2004.03.019 (2004).
CAS Article PubMed Google Scholar
31.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K. & Fall, R. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J. Geophys. Res. Atmos. 98, 12609–12617. https://doi.org/10.1029/93jd00527 (1993).
ADS Article Google Scholar
32.
Pratt, J. D., Keefover-Ring, K., Liu, L. Y. & Mooney, K. A. Genetically based latitudinal variation in Artemisia californica secondary chemistry. Oikos 123, 953–963. https://doi.org/10.1111/oik.01156 (2014).
Article Google Scholar
33.
Soler, C. C. L., Proffit, M., Bessière, J.-M., Hossaert-McKey, M. & Schatz, B. Evidence for intersexual chemical mimicry in a dioecious plant. Ecol. Lett. 15, 978–985. https://doi.org/10.1111/j.1461-0248.2012.01818.x (2012).
Article PubMed Google Scholar
34.
Anderson, M. J. Permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland 26, 32–46 (2005).
35.
Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley statsref: statistics reference online, 1–15 (2014).
36.
Copolovici, L. & Niinemets, Ü. In Deciphering Chemical Language of Plant Communication 35–59 (Springer, 2016).
37.
Valolahti, H., Kivimäenpää, M., Faubert, P., Michelsen, A. & Rinnan, R. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions. Glob. Change Biol. 21, 3478–3488. https://doi.org/10.1111/gcb.12953 (2015).
ADS Article Google Scholar
38.
Laothawornkitkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic compounds in the Earth system. New Phytol. 183, 27–51. https://doi.org/10.1111/j.1469-8137.2009.02859.x (2009).
CAS Article PubMed Google Scholar
39.
Loreto, F. & Schnitzler, J.-P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15, 154–166. https://doi.org/10.1016/j.tplants.2009.12.006 (2010).
CAS Article PubMed Google Scholar
40.
Possell, M. & Loreto, F. In Biology, Controls and Models of Tree Volatile Organic Compound Emissions 209–235 (Springer, Berlin, 2013).
41.
Peñuelas, J. & Staudt, M. BVOCs and global change. Trends Plant Sci. 15, 133–144. https://doi.org/10.1016/j.tplants.2009.12.005 (2010).
CAS Article PubMed Google Scholar
42.
Pare, P. W. & De Tumlinson, J. H. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114, 1161. https://doi.org/10.1104/pp.114.4.1161 (1997).
CAS Article PubMed PubMed Central Google Scholar
43.
Holopainen, J. & Blande, J. Where do herbivore-induced plant volatiles go?. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00185 (2013).
Article PubMed PubMed Central Google Scholar
44.
Niinemets, Ü, Kännaste, A. & Copolovici, L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00262 (2013).
Article PubMed PubMed Central Google Scholar
45.
Litt, A. R., Cord, E. E., Fulbright, T. E. & Schuster, G. L. Effects of invasive plants on arthropods. Conserv. Biol. 28, 1532–1549. https://doi.org/10.1111/cobi.12350 (2014).
Article PubMed Google Scholar
46.
Dicke, M. & Baldwin, I. T. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15, 167–175. https://doi.org/10.1016/j.tplants.2009.12.002 (2010).
CAS Article PubMed Google Scholar
47.
Clavijo McCormick, A., Unsicker, S. B. & Gershenzon, J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 17, 303–310. https://doi.org/10.1016/j.tplants.2012.03.012 (2012).
CAS Article PubMed Google Scholar
48.
Turlings, T. C. J. & Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63, 433–452. https://doi.org/10.1146/annurev-ento-020117-043507 (2018).
CAS Article PubMed Google Scholar
49.
Bernasconi, M. L., Turlings, T. C. J., Ambrosetti, L., Bassetti, P. & Dorn, S. Herbivore-induced emissions of maise volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol. Exp. Appl. 87, 133–142. https://doi.org/10.1046/j.1570-7458.1998.00315.x (1998).
CAS Article Google Scholar
50.
De Moraes, C. M., Mescher, M. C. & Tumlinson, J. H. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410, 577–580. https://doi.org/10.1038/35069058 (2001).
ADS CAS Article PubMed Google Scholar
51.
Clavijo McCormick, A. et al. Herbivore-induced volatile emission in black poplar: regulation and role in attracting herbivore enemies. Plant Cell Environ. 37, 1909–1923. https://doi.org/10.1111/pce.12287 (2014).
Article PubMed Google Scholar
52.
Irmisch, S. et al. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant J. 80, 1095–1107. https://doi.org/10.1111/tpj.12711 (2014).
CAS Article PubMed Google Scholar
53.
Ehrenfeld, J. G. Effects of exotic plant invasions on soil Nutrient cycling processes. Ecosystems 6, 503–523. https://doi.org/10.1007/s10021-002-0151-3 (2003).
CAS Article Google Scholar
54.
Vallés, S. M., Fernández, J. B. G., Dellafiore, C. & Cambrollé, J. Effects on soil, microclimate and vegetation of the native-invasive Retama monosperma (L.) in coastal dunes. Plant Ecol. 212, 169–179. https://doi.org/10.1007/s11258-010-9812-z (2011).
Article Google Scholar
55.
Rogers, G. M. Demography, and post-control response of heather in the central north island. Sci. Conserv. 9, 20 (1995).
Google Scholar
56.
Fogarty, G. & Facelli, J. M. Growth and competition of Cytisus scoparius, an invasive shrub, and Australian native shrubs. Plant Ecol. 144, 27–35. https://doi.org/10.1023/A:1009808116068 (1999).
Article Google Scholar
57.
Haubensak, K. A. & Parker, I. M. Soil changes accompanying invasion of the exotic shrub Cytisus scoparius in glacial outwash prairies of western Washington [USA]. Plant Ecol. 175, 71–79. https://doi.org/10.1023/B:VEGE.0000048088.32708.58 (2004).
Article Google Scholar
58.
Caldwell, B. A. Effects of invasive scotch broom on soil properties in a Pacific coastal prairie soil. Appl. Soil. Ecol. 32, 149–152. https://doi.org/10.1016/j.apsoil.2004.11.008 (2006).
Article Google Scholar
59.
Chen, Y., Schmelz, E. A., Wäckers, F. & Ruberson, J. R. Cotton plant, Gossypium hirsutum L., defense in response to nitrogen fertilization. J. Chem. Ecol. 34, 1553–1564. https://doi.org/10.1007/s10886-008-9560-x (2008).
CAS Article PubMed Google Scholar
60.
Peñuelas, J. & Llusià, J. Influence of intra- and inter-specific Interference on terpene emission by Pinus Halepensis and Quercus Ilex seedlings. Biol. Plant. 41, 139–143. https://doi.org/10.1023/A:1001789222741 (1998).
Article Google Scholar
61.
Ormeño, E., Fernandez, C. & Mévy, J. P. Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry 68, 840–852. https://doi.org/10.1016/j.phytochem.2006.11.033 (2007).
CAS Article PubMed Google Scholar
62.
Kigathi, R. N., Weisser, W. W., Veit, D., Gershenzon, J. & Unsicker, S. B. Plants suppress their emission of volatiles when growing with conspecifics. J. Chem. Ecol. 39, 537–545. https://doi.org/10.1007/s10886-013-0275-2 (2013).
CAS Article PubMed Google Scholar
63.
Ishizaki, S., Shiojiri, K., Karban, R. & Ohara, M. Effect of genetic relatedness on volatile communication of sagebrush (Artemisia tridentata). J. Plant Interact. 6, 193–193 (2011).
CAS Article Google Scholar
64.
Wason, E. L. & Hunter, M. D. Genetic variation in plant volatile emission does not result in differential attraction of natural enemies in the field. Oecologia 174, 479–491 (2014).
ADS Article Google Scholar
65.
Karban, R. & Shiojiri, K. Self-recognition affects plant communication and defense. Ecol. Lett. 12, 502–506 (2009).
Article Google Scholar More