More stories

  • in

    Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm

    1.
    Wikramanayake, E. D. et al. An ecology-based method for defining priorities for large mammal conservation: the tiger as case study. Conserv. Biol. 12, 865–868 (1998).
    Google Scholar 
    2.
    Walston, J. et al. Bringing the tiger back from the brink—the six percent solution. PLoS Biol. 8(9), e1000485 (2010).
    PubMed  PubMed Central  Google Scholar 

    3.
    Smith, J. L. D. The role of dispersal in structuring the Chitwan tiger population. Behaviour 124(3–4), 165–195 (1993).
    Google Scholar 

    4.
    Dinerstein, E. et al. The fate of wild tigers. Bioscience 57, 508–514 (2007).
    Google Scholar 

    5.
    Sanderson, E. et al. Setting priorities for the conservation and recovery of wild tigers: 2005–2015. The technical assessment. In Tigers of the World. A Review of Tigers of the World: The Biology, Biopolitics, Management, and Conservation of an Endangered Species 2nd edn (eds Ronald, L. T. & Ulysses, S. S.) 143–161 (Elsevier, New York, 2006).
    Google Scholar 

    6.
    Jhala, Y. V., Qureshi, Q. & Gopal, R. Can the abundance of tigers be assessed from their signs?. J. Appl. Ecol. 48, 14–24 (2011).
    Google Scholar 

    7.
    IPCC. Global Warming of 15 °C. 26 (Intergovernmental Panel on Climate Change, Switzerland, 2018).
    Google Scholar 

    8.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15(4), 365–377 (2012).
    PubMed  PubMed Central  Google Scholar 

    9.
    Gaston, K. J. The structure and dynamics of geographic ranges (Oxford University Press, London, 2003).
    Google Scholar 

    10.
    Cahill, A. E. et al. How does climate change cause extinction?. Proc. R. Soc. B. 280, 20121890. https://doi.org/10.1098/rspb.2012.1890 (2012).
    Article  PubMed  Google Scholar 

    11.
    Gienapp, P., Teplitsky, C., Alho, J., Mills, J. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17(1), 167–178 (2008).
    CAS  PubMed  Google Scholar 

    12.
    Moritz, C. et al. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322(5899), 261–264 (2008).
    ADS  CAS  PubMed  Google Scholar 

    13.
    Myers, P., Lundrigan, B. L., Hoffman, S. M., Haraminac, A. P. & Seto, S. H. Climate induced changes in the small mammal communities of the northern Great Lakes region. Glob. Change Biol. 15(6), 1434–1454 (2009).
    ADS  Google Scholar 

    14.
    Burns, C. E., Johnston, K. M. & Schmitz, O. J. Global climate change and mammalian species diversity in US national parks. PNAS 100(20), 11474–11477 (2003).
    ADS  CAS  PubMed  Google Scholar 

    15.
    Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J. & Benton, T. G. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods Ecol. Evol. 4, 167–174 (2013).
    Google Scholar 

    16.
    Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).
    Google Scholar 

    17.
    Cunningham, M. A. & Johnson, D. H. Proximate and landscape factors influence grassland bird distributions. Ecol. Appl. 16, 1062–1075 (2006).
    PubMed  Google Scholar 

    18.
    Thogmartin, W. E. & Knutson, M. G. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model. Landsc. Ecol. 22, 61–75 (2007).
    Google Scholar 

    19.
    Wasserman, T. N., Cushman, S. A., Wallin, D. O. & Hayden, J. Multi Scale Habitat Relationships of Martes americana in Northern Idaho, USA (US Department of Agriculture and Forest Service Rocky Mountain Research Station, Fort Collins, 2012).
    Google Scholar 

    20.
    Mateo Sanchez, M. C., Cushman, S. A. & Saura, S. Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int. J. Geogr. Inf. Sci. 28(8), 1531–1546 (2013).
    Google Scholar 

    21.
    Vergara, M., Cushman, S. A., Urra, F. & Ruiz-Gonzalez, A. Shaken but not stirred: multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula. Landsc. Ecol. 31(6), 1241–1260 (2016).
    Google Scholar 

    22.
    Elith, J. Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. In Quantitative Methods for Conservation Biology (eds Ferson, S. & Burgman, M.) 39–58 (Springer, New York, 2002).
    Google Scholar 

    23.
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
    Google Scholar 

    24.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 

    25.
    Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
    Google Scholar 

    26.
    Breiman, L. Random forests. Mach. Learn. 45(1), 5–32 (2001).
    MATH  Google Scholar 

    27.
    Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Trees (Chapman and Hall/CRC Press, Boca Raton, 1984).
    Google Scholar 

    28.
    Cushman, S. A. & Wasserman, T. N. Landscape applications of machine learning: comparing random forests and logistic regression in multi-scale optimized predictive modeling of American marten occurrence in northern Idaho, USA. In Machine Learning for Ecology and Sustainable Natural Resource Management (eds Humpshires, G., Magness, D. et al.) 185–203 (Springer, New York, 2018).
    Google Scholar 

    29.
    Cushman, S. A., Gutzwiller, K., Evans, J. S. & McGarigal, K. The gradient paradigm: a conceptual and analytical framework for landscape ecology. In Spatial Complexity, Informatics, and Wildlife Conservation (eds Cushman, S. A. & Huettman, F.) 83–108 (Springer, Tokyo, 2010).
    Google Scholar 

    30.
    Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. Modeling species distribution and change using random forest. In Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications (eds Drew, C. A. et al.) 139–159 (Springer, New York, 2011).
    Google Scholar 

    31.
    Drew, C. A., Wiersma, Y. F. & Huettmann, F. Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications (Springer, New York, 2010).
    Google Scholar 

    32.
    Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. 67, 93–104 (2012).
    Google Scholar 

    33.
    Schneider, A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sens. Environ. 124, 689–704 (2012).
    ADS  Google Scholar 

    34.
    Cushman, S. A., Macdonald, E. A., Landguth, E. L., Halhi, Y. & Macdonald, D. W. Multiple-scale prediction of forest-loss risk across Borneo. Landsc. Ecol. 32, 1581–1598 (2017).
    Google Scholar 

    35.
    Buermann, W. et al. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J. Biogeogr. 35, 1160–1176 (2008).
    Google Scholar 

    36.
    Lentz, D. L., Bye, R. & Sánchez-Cordero, V. Ecological niche modeling and distribution of wild sunflower (Helianthus annuus L.) in Mexico. Int. J. Plant Sci. 169(4), 541–549 (2008).
    Google Scholar 

    37.
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–3288 (2008).
    PubMed  Google Scholar 

    38.
    Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).
    CAS  PubMed  Google Scholar 

    39.
    Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J. & Moritz, C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58, 1781–1793 (2004).
    PubMed  Google Scholar 

    40.
    Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).
    PubMed  Google Scholar 

    41.
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
    Google Scholar 

    42.
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
    Google Scholar 

    43.
    Cola, Di. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
    Google Scholar 

    44.
    Brown, J. L. & Carnaval, A. C. A tale of two niches: methods, concepts and evolution. Front. Biogeogr. 11, 44158. https://doi.org/10.21425/F5FBG44158 (2019).
    Article  Google Scholar 

    45.
    Qiao, H., Escobar, L. E. & Peterson, A. T. Accessible areas in ecological niche comparisons of invasive species: recognized but still overlooked. Sci. Rep. 7, 1213 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    46.
    Wan, J. Z., Wang, C. J., Tan, J. F. & Yu, F. H. Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change. Ecol. Evol. 7(5), 1541–1552 (2017).
    PubMed  PubMed Central  Google Scholar 

    47.
    Khosravi, R., Hemani, M. R. & Cushman, S. A. Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran. Landsc. Ecol. 34, 2451–2467 (2019).
    Google Scholar 

    48.
    Hayward, M. W., Jędrzejewski, W. & Jêdrzejewska, B. Prey preferences of the tiger. J. Zool. (London) 286, 221–231 (2012).
    Google Scholar 

    49.
    Wilson, D. E. M. & Russell, A. Handbook of the Mammals of the World Vol. 2 (Lynx Edicions, Barcelona, 2009).
    Google Scholar 

    50.
    Myers, N. Conservation of Africa’s cats: problems and opportunities. In Cats of the World (eds Miller, S. D. & Everett, D. D.) 437–457 (National Wildlife Federation, Washington, DC, 1986).
    Google Scholar 

    51.
    Hamilton, P.H. The movements of leopards in Tsavo National Park, Kenya, as determined by radio-tracking. M.Sc. Thesis (University of Nairobi, Kenya 1976).

    52.
    Odden, M., Wegge, P. & Fredriksen, T. Do tigers displace leopards? If so, why?. Ecol. Res. 25, 875–881 (2010).
    Google Scholar 

    53.
    Bagchi, S., Goyal, S. P. & Sankar, K. Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forests in western India. J. Zool. (London) 260(3), 285–290 (2003).
    Google Scholar 

    54.
    Johnsingh, A. J. T. Large mammalian predators in Bandipur. J. Bombay Nat. Hist. Soc. 80, 1–57 (1983).
    Google Scholar 

    55.
    Khan, J. A., Chellam, R., Rodgers, W. A. & Johnsingh, A. J. T. Ungulate densities and biomass in the tropical dry deciduous forests of Gir, Gujarat, India. J. Trop. Ecol. 12(01), 149–162 (1996).
    Google Scholar 

    56.
    Wilson, D. E. & Russell, A. Handbook of the Mammals of the World. Carnivores Vol. 1 (Lynx Edicions, Barcelona, 2009).
    Google Scholar 

    57.
    Singh, H. S. Status of the leopard Panthera pardus in India. Cat News 42, 15–17 (2005).
    Google Scholar 

    58.
    Athreya, V. Is relocation a viable management option for unwanted animals? The case of the leopard in India. Conserv. Soc. 4, 419–423. https://www.conservationandsociety.org/text.asp?2006/4/3/419/49275 (2006).

    59.
    Karanth, K. U. & Stith, B. M. Prey depletion as a critical determinant of tiger population viability. In Riding the Tiger: Tiger Conservation in Human Dominated Landscapes (eds Seidensticker, J., Christie, S. et al.) 100–113 (Cambridge University Press, Cambridge, 1999).
    Google Scholar 

    60.
    Rowe, K. C. et al. Spatially heterogeneous impact of climate change on small mammals of montane California. Proc. R. Soc. 282, 20141857. https://doi.org/10.1098/rspb.2014.1857 (2015).
    Article  Google Scholar 

    61.
    Pandey, R. & Papeş, M. Changes in future potential distributions of apex predator and mesopredator mammals in North America. Reg. Environ. Change 18, 1223–1233 (2018).
    Google Scholar 

    62.
    Tian, Y., Wu, J., Wang, T. & Ge, J. Climate change and landscape fragmentation jeopardize the population viability of Siberian tiger (Panthera tigris altaica). Landsc. Ecol. 29, 621–637 (2014).
    CAS  Google Scholar 

    63.
    Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M. & Igor, K. Modeling the response of an endangered flagship predator to climate in Iran. Mamm. Res. 64(1), 39–51 (2019).
    Google Scholar 

    64.
    Karanth, K. U., Nichols, J. D., Kumar, N. S., Link, W. A. & Hines, J. E. Tigers and their prey: predicting carnivore densities from prey abundance. PNAS 101(14), 4854–4858 (2004).
    ADS  CAS  PubMed  Google Scholar 

    65.
    Seidensticker, J. On the ecological separation between tigers and leopards. Biotropica 8(4), 225–234 (1976).
    Google Scholar 

    66.
    McDougal, C. Leopard and tiger interactions at Royal Chitwan National Park, Nepal. J. Bombay Nat. Hist. Soc. 85, 609–610 (1988).
    Google Scholar 

    67.
    Seidensticker, J., Sunquist, M. E. & McDougal, C. Leopards living at the edge of the Royal Chitwan National Park, Nepal. In Conservation in Developing Countries: Problems and Prospects (eds Daniel, J. C. & Serrao, J. S.) 415–423 (Bombay Natural History Society and Oxford University Press, Bombay, 1990).
    Google Scholar 

    68.
    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).
    ADS  CAS  PubMed  Google Scholar 

    69.
    Schoener, T. W. Field experiments on interspecific competition. Am. Nat. 122, 240–285 (1983).
    Google Scholar 

    70.
    Fedriani, J. M. et al. Niche relations among three sympatric Mediterranean carnivores. Oecologia 121, 138–148 (1999).
    ADS  PubMed  Google Scholar 

    71.
    Loveridge, A. J. & Macdonald, D. W. Niche separation in sympatric jackals (Canis mesomelas and Canis adustus). J. Zool. 259, 143–153 (2003).
    Google Scholar 

    72.
    Vieira, E. M. & Port, D. Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. J. Zool. 272, 57–63 (2007).
    Google Scholar 

    73.
    Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Government of India Press, New Delhi, 1968).
    Google Scholar 

    74.
    Johnsingh, A. J. T. Prey selection in three sympatric carnivores in Bandipur. Mammalia 56, 517–526 (1992).
    Google Scholar 

    75.
    Karanth, K. U. & Sunquist, M. E. Prey selection by tiger, leopard and dhole in tropical forests. J. Appl. Ecol. 64, 439–450 (1995).
    Google Scholar 

    76.
    Andheria, A., Karanth, K. U. & Kumar, N. Diet and prey profiles of three sympatric large carnivores in Bandipur Tiger Reserve, India. J. Zool. 273, 169–175 (2007).
    Google Scholar 

    77.
    Brown, J. L. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).
    Google Scholar 

    78.
    Titeux, N. Modelling species distribution when habitat occupancy depart from suitability. Application to birds in a landscape context. Ph.D. thesis (Universite´ Catholique de Louvain, Louvain-la-Neuve, 2006).

    79.
    Mateo, R. G., Croat, T. B., Felicisimo, A. M. & Munoz, J. Profile or group discriminative techniques? Generating reliable pseudo-absences and target-group absences from natural history collections. Divers. Distrib. 16, 84–94 (2010).
    Google Scholar 

    80.
    Graham, C. H. & Hijmans, R. J. A comparison of methods for mapping species richness. Glob. Ecol. Biogeogr. 15, 578–587 (2006).
    Google Scholar 

    81.
    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 3, 18–22 https://www.R-project.org (2002)

    82.
    R core Team. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna https://www.R-project.org/ (2019).

    83.
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1), 27–46 (2013).
    Google Scholar 

    84.
    Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 30(6), 751–777 (2006).
    Google Scholar 

    85.
    Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004. https://doi.org/10.1029/2005RG000183 (2007).
    ADS  Article  Google Scholar 

    86.
    Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. 57(4), 241–262 (2003).
    Google Scholar 

    87.
    Beaumont, L. J., Hughes, L. & Pitman, A. J. Why is the choice of future climate scenarios for species distribution modelling important?. Ecol. Lett. 11(11), 1135–1146 (2008).
    PubMed  Google Scholar 

    88.
    Perkins, S., Pitman, A., Holbrook, N. & McAveney, J. Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature and precipitation over Australia using probability density functions. J. Clim. 20, 4356–4376 (2007).
    ADS  Google Scholar 

    89.
    Watanabe, M. et al. Improved Climate Simulation by MIROC5: mean states, variability, and climate sensitivity. J. Clim. 23(23), 6312–6335 (2010).
    ADS  Google Scholar 

    90.
    Calvente, M. E. et al. Can gypsophytes distinguish different types of gypsum habitats?. Acta. Bot. Gallica. 156(1), 63–78 (2009).
    Google Scholar 

    91.
    van Vurren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5. https://doi.org/10.1007/s10584-011-0148-z (2011).
    ADS  Article  Google Scholar 

    92.
    Wayne, G.P. The beginner’s guide to representative concentration pathways. Skeptical Science 25 https://skepticalscience.com/rcp.php (2013)

    93.
    Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).
    ADS  Google Scholar 

    94.
    Steffan-Dewenter, I., Munzenberg, U., Burger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).
    Google Scholar 

    95.
    Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Bioscience 54, 227–233 (2004).
    Google Scholar 

    96.
    McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C. & Cushman, S. A. Multi-scale habitat modeling: a review and outlook. Landsc. Ecol. 31, 1161–1175 (2016).
    Google Scholar 

    97.
    Sandri, M. & Zuccolotto, P. Variable selection using random forests. In Data Analysis, Classification and the Forward Search (eds Zani, S. & Cerioli, A.) 263–270 (Springer, Berlin, 2005).
    Google Scholar 

    98.
    Diaz-Uriarte, R. & Alvarez de Andres, S. Gene selection and classification of microarray data using randomForest. BMC Bioinform. 7, 3 (2006).
    Google Scholar 

    99.
    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 31, 2225–2236 (2010).
    Google Scholar 

    100.
    Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for randomforests. BMC Bioinform. 9, 307 (2008).
    Google Scholar 

    101.
    Evans, J. S. & Cushman, S. A. Gradient modeling of conifer species using random forests. Landsc. Ecol. 24(5), 673–683 (2009).
    Google Scholar 

    102.
    Pontius, R. G. Jr. & Milones, M. Death to Kappa: Birth of quality disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 32, 4407–4429 (2011).
    ADS  Google Scholar 

    103.
    Pontius, R. G. Jr. & Si, K. The total operating characteristic to measure diagnostic ability for multiple thresholds. Int. J. Geogr. Inf. Sci. 28, 570–583 (2014).
    Google Scholar 

    104.
    Hof, C., Rahbek, C. & Araújo, M. B. Phylogenetic signals in the climatic niches of the world’s amphibians. Ecography 33, 242–250 (2010).
    Google Scholar 

    105.
    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Google Scholar 

    106.
    Saupe, E. E. et al. Reconstructing ecological niche evolution when niches are incompletely characterized. Syst. Biol. 67, 428–438 (2017).
    Google Scholar  More

  • in

    Mechanism and consequences for avoidance of superparasitism in the solitary parasitoid Cotesia vestalis

    1.
    Vinson, S. B. Host selection by insect parasitoids. Annual Review of Entomology 21, 109–133 (1976).
    Google Scholar 
    2.
    Tormos, J. et al. Superparasitism in laboratory rearing of Spalangia cameroni (Hymenoptera: Pteromalidae), a parasitoid of medfly (Diptera: Tephritidae). Bulletin of Entomological Research 102, 51–61 (2012).
    CAS  PubMed  Google Scholar 

    3.
    Reynolds, K. T. & Hardy, I. C. W. Superparasitism: a non-adaptive strategy? Trends in Ecology & Evolution 19, 347–348 (2004).
    Google Scholar 

    4.
    Parker, G. A. & Courtney, S. P. Models of clutch size in insect oviposition. Theoretical Population Biology 26, 27–48 (1984).
    MATH  Google Scholar 

    5.
    Potting, R. P. J., Snellen, H. M. & Vet, L. E. M. Fitness consequences of superparasitism and mechanism of host discrimination in the stemborer parasitoid Cotesia flavipes. Entomologia Experimentalis et Applicata 82, 341–348 (1997).
    Google Scholar 

    6.
    Van Alphen, J. J. & Visser, M. E. Superparasitism as an adaptive strategy for insect parasitoids. Annual Review of Entomology 35, 59–79 (1990).
    PubMed  Google Scholar 

    7.
    Hubbard, S. F., Harvey, I. F. & Fletcher, J. P. Avoidance of superparasitism: a matter of learning? Animal Behaviour 57, 1193–1197 (1999).
    CAS  PubMed  Google Scholar 

    8.
    Khafagi, W. E. & Hegazi, E. M. Does superparasitism improve host suitability for parasitoid development? A case study in the Microplitis rufiventris – Spodoptera littoralis system. Biocontrol 53, 427–438 (2008).
    Google Scholar 

    9.
    Böckmann, E. A., Tormos, J., Beitia, F. & Fischer, K. Offspring production and self-superparasitism in the solitary ectoparasitoid Spalangia cameroni (Hymenoptera: Pteromalidae) in relation to host abundance. Bulletin of Entomological Research 102, 131–137 (2012).
    PubMed  Google Scholar 

    10.
    Luna, M. G., Desneux, N. & Schneider, M. I. Encapsulation and self-superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Plos One 11 (2016).

    11.
    Varaldi, J., Fouillet, P., Bouletreau, M. & Fleury, F. Superparasitism acceptance and patch-leaving mechanisms in parasitoids: a comparison between two sympatric wasps. Animal Behaviour 69, 1227–1234 (2005).
    Google Scholar 

    12.
    Van Lenteren, J. C. The development of host discrimination and the prevention of superparasitism in the parasite Pseudeucoila bochei Weld (Hym.: Cynipidae). Netherlands Journal of Zoology 26, 1–83 (1975).
    Google Scholar 

    13.
    Agboka, K. et al. Self-, intra-, and interspecific host discrimination in Telenomus busseolae Gahan and Tisis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). Journal of Insect Behavior 15, 1–12 (2002).
    Google Scholar 

    14.
    Gauthier, N. & Bénédet, F. Y., T., Monge, J. P. & Huignard, J. Marking behavior and discrimination of concealed hosts by the ectoparasitoid, Dinarmus basalis Rond. (Hym. Pteromalidae). Journal of Insect Behavior 15, 589–606 (2002).
    Google Scholar 

    15.
    Jaloux, B., Errard, C., Mondy, N., Vannier, F. & Monge, J. P. Sources of chemical signals which enhance multiparasitism preference by a cleptoparasitoid. Journal of Chemical Ecology 31, 1325–1337 (2005).
    CAS  PubMed  Google Scholar 

    16.
    Stelinski, L. L., Oakleaf, R. & Rodriguez, C. Oviposition-deterring pheromone deposited on blueberry fruit by the parasitic wasp, Diachasma alloeum. Behaviour 144, 429–445 (2007).
    Google Scholar 

    17.
    Wu, Z. X. & Nordlund, D. A. Superparasitism of Lygus hesperus Knight eggs by Anaphes iole Girault in the Laboratory. Biological Control 23, 121–126 (2002).
    Google Scholar 

    18.
    Ganesalingam, V. K. Mechanism of discrimination between parasitized and unparasitized hosts by Venturia canescens (Hymenoptera: Ichneumonidae). Entomologia Experimentalis et Applicata 17, 36–44 (1974).
    Google Scholar 

    19.
    Micha, S. G., Stammel, J. & Höller, C. 6-methyl-5-heptene-2-one, a putative sex and spacing pheromone of the aphid hyperparasitoid, Alloxysta victrix (Hymenoptera: Alloxystidae). European Journal of Entomology 90, 439–442 (1993).
    CAS  Google Scholar 

    20.
    Sheehan, W., Wäckers, F. L. & Lewis, W. J. Discrimination of previously searched, host-free sites by Microplitis croceipes (Hymenoptera: Braconidae). Journal of Insect Behavior 6, 323–331 (1993).
    Google Scholar 

    21.
    Syvertsen, T. C., Jackson, L. L., Blomquist, G. J. & Vinson, S. B. Alkadienes mediating courtship in the parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). Journal of Chemical Ecology 21, 1971–1989 (1995).
    CAS  PubMed  Google Scholar 

    22.
    Van Baaren, J. & Boivin, G. Learning affects host discrimination behavior in a parasitoid wasp. Behavioral Ecology & Sociobiology 42, 9–16 (1998).
    Google Scholar 

    23.
    Ruschioni, S., van Loon, J. J. A., Smid, H. M. & van Lenteren, J. C. Insects can count: Sensory basis of host discrimination in parasitoid wasps revealed. Plos One 10 (2015).

    24.
    Nufio, C. R. & Papaj, D. R. Host marking behavior in phytophagous insects and parasitoids. Entomologia Experimentalis et Applicata 99, 273–293 (2001).
    Google Scholar 

    25.
    Velasco, L. R. I. The life history of Apanteles plutellae Kurdj. (Braconidae), a parasitoids of the diamondback moth. Philippines Entomology 5, 385–399 (1982).
    Google Scholar 

    26.
    Talekar, N. S. & Yang, J. C. Characteristic of parasitism of diamondback moth by two larval parasites. Entomophaga 36, 95–104 (1991).
    Google Scholar 

    27.
    Shi, Z. H., Liu, S. S. & Li, Y. X. Cotesia plutellae parasitizing Plutella xylostella: Host-age dependent parasitism and its effect on host development and food consumption. Biocontrol 47, 499–511 (2002).
    Google Scholar 

    28.
    De Boer, J. G., Ode, P. J., Vet, L. E. M., Whitfield, J. & Heimpel, G. E. Complementary sex determination in the parasitoid wasp Cotesia vestalis (C. plutellae). Journal of Evolutionary Biology 20, 340–348 (2010).
    Google Scholar 

    29.
    Li, Y., Liu, Y. & Liu, S. Effect of superparasitism on bionomics of Cotesia plutellae. Chinese Journal of Biological Control 17, 151–154 (2001).
    ADS  Google Scholar 

    30.
    Yu, R.-X., Shi, M., Huang, F. & Chen, X.-X. Immature development of Cotesia vestalis (Hymenoptera: Braconidae), an endoparasitoid of Plutella xylostella (Lepidoptera: Plutellidae). Annals of the Entomological Society of America 101, 189–196 (2008).
    Google Scholar 

    31.
    Mitsunaga, T., Shimoda, T. & Yano, E. Influence of food supply on longevity and parasitization ability of a larval endoparasitoid, Cotesia plutellae (Hymenoptera: Braconidae). Appl. Entomol. Zoolog 39, 691–697 (2004).
    Google Scholar 

    32.
    Roux, O., Van Baaren, J., Gers, C., Arvanitakis, L. & Legal, L. Antennal structure and oviposition behavior of the Plutella xylostella specialist parasitoid: Cotesia plutellae. Microscopy Research & Technique 68, 36–44 (2005).
    Google Scholar 

    33.
    Potting, R. P. J., Poppy, G. M. & Schuler, T. H. The role of volatiles from cruciferous plants and pre‐flight experience in the foraging behaviour of the specialist parasitoid Cotesia plutellae. Entomologia Experimentalis et Applicata 93, 87–95 (1999).
    CAS  Google Scholar 

    34.
    Chen, W. B. et al. Parasitised caterpillars suffer reduced predation: potential implications for intra-guild predation. Scientific Reports 7 (2017).

    35.
    Liu, T. S. et al. Isolation and characterization of microsatellite loci for Cotesia plutellae (Hymenoptera: Braconidae). Insects 8 (2017).

    36.
    Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295 (2006).
    Google Scholar 

    37.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Jervis, M. A., Ellers, J. & Harvey, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annual Review of Entomology 53, 361–385 (2008).
    CAS  PubMed  Google Scholar 

    39.
    Couchoux, C. & van Nouhuys, S. Effects of intraspecific competition and host-parasitoid developmental timing on foraging behaviour of a parasitoid wasp. Journal of Insect Behavior 27, 283–301 (2014).
    PubMed  Google Scholar 

    40.
    McKay, T. & Broce, A. B. Discrimination of self-parasitized hosts by the pupal parasitoid Muscidifurax zaraptor (Hymenoptera: Pteromalidae). Annals of the Entomological Society of America 97, 592–599 (2004).
    Google Scholar 

    41.
    Yamada, Y. Y. & Sugaura, K. Evidence for adaptive self-superparasitism in the dryinid parasitoid Haplogonatopus atratus when conspecifics are present. Oikos 103, 175–181 (2003).
    Google Scholar 

    42.
    Gariepy, T. D., Kuhlmann, U., Gillott, C. & Erlandson, M. Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods. Journal of Applied Entomology 131, 225–240 (2007).
    CAS  Google Scholar 

    43.
    Santolamazza-Carbone, S. & Rivera, A. C. Superparasitism and sex ratio adjustment in a wasp parasitoid: results at variance with local mate competition? Oecologia 136, 365–373 (2003).
    ADS  PubMed  Google Scholar 

    44.
    Zhang, L., Bai, S., Yu, H. & Li, X. Intraspecific competition in Cotesia vestalis, a solitary endoparasitoid of Plutella xylostella larvae. Chinese Journal of Biological Control 30, 128–133 (2014).
    Google Scholar 

    45.
    Lebreton, S., Christidès, J. P., Bagnères, A. G., Chevrier, C. & Darrouzet, E. Modifications of the chemical profile of hosts after parasitism allow parasitoid females to assess the time elapsed since the first attack. Journal of Chemical Ecology 36, 513–521 (2010).
    CAS  PubMed  Google Scholar 

    46.
    Strand, M. R. & Godfray, H. C. J. Superparasitism and ovicide in parasitic Hymenoptera: theory and a case study of the ectoparasitoid Bracon hebetor. Behavioral Ecology & Sociobiology 24, 421–432 (1989).
    Google Scholar 

    47.
    Tena, A., Kapranas, A., Garcia-Marí, F. & Luck, R. F. Host discrimination, superparasitism and infanticide by a gregarious endoparasitoid. Animal Behaviour 76, 789–799 (2008).
    Google Scholar 

    48.
    Yamada, Y. Y. & Ikawa, K. Superparasitism strategy in a semisolitary parasitoid with imperfect self/non-self recognition, Echthrodelphax fairchildii. Entomologia Experimentalis et Applicata 114, 143–152 (2005).
    Google Scholar 

    49.
    Field, S., Keller, M. & Calbert, G. The pay-off from superparasitism in the egg parasitoid Trissolcus basalis, in relation to patch defence. Ecological Entomology 22, 142–149 (1997).
    Google Scholar 

    50.
    Díazfleischer, F., Galvez, C. & Montoya, P. Oviposition, superparasitism, and egg load in the solitary parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae): response to host availability. Annals of the Entomological Society of America 108, 235–241 (2015).
    Google Scholar 

    51.
    Gauthier, N., Monge, J. P. & Huignard, J. Superparasitism and host discrimination in the solitary ectoparasitoid Dinarmus basalis. Entomologia Experimentalis et Applicata 79, 91–99 (1996).
    Google Scholar 

    52.
    Weber, C. A., Smilanick, J. M., Ehler, L. E. & Zalom, F. G. Ovipositional behavior and host discrimination in three scelionid egg parasitoids of stink bugs. Biological Control 6, 245–252 (1996).
    Google Scholar 

    53.
    Darrouzet, E., Bignon, L. & Chevrier, C. Impact of mating status on egg-laying and superparasitism behaviour in a parasitoid wasp. Entomologia Experimentalis et Applicata 123, 279–285 (2007).
    Google Scholar 

    54.
    Lebreton, S., Labarussias, M., Chevrier, C. & Darrouzet, E. Discrimination of the age of conspecific eggs by an ovipositing ectoparasitic wasp. Entomologia Experimentalis et Applicata 130, 28–34 (2009).
    Google Scholar 

    55.
    Hoffmeister, T. S. & Roitberg, B. D. Evolutionary ecology of oviposition marking pheromones. In: Hilker, M., Meiners, T., (eds.), Chemoecology of insect eggs and egg deposition. (Germany: Blackwell Publishing, 2008).

    56.
    Ito, E. & Yamada, Y. Y. Self-/conspecific discrimination and superparasitism strategy in the ovicidal parasitoid Echthrodelphax fairchildii (Hymenoptera: Dryinidae). Insect Science 21, 741–749 (2014).
    PubMed  Google Scholar 

    57.
    Liang, Q. F., Jia, Y. J. & Liu, T. X. Self- and conspecific discrimination between unparasitized and parasitized green peach aphid (Hemiptera: Aphididae), by Aphelinus asychis (Hymenoptera: Aphelinidae). Journal of Economic Entomology 110, 430–437 (2017).
    PubMed  Google Scholar 

    58.
    Yazdani, M., Glatz, R. & Keller, M. Host discrimination by the solitary endoparasitoid Dolichogenidea tasmanica (Hymenopotera: Braconidae). Biocontrol Sci. Technol. 25, 155–162 (2015).
    Google Scholar 

    59.
    Wang, X. G. & Keller, M. A. A comparison of the host-searching efficiency of two larval parasitoids of Plutella xylostella. Ecological Entomology 27, 105–114 (2002).
    CAS  Google Scholar  More

  • in

    Group structure and kinship in beluga whale societies

    1.
    Hamilton, W. D. The genetical evolution of social behavior I. J. Theor. Biol. 7, 1–6 (1964).
    CAS  PubMed  Google Scholar 
    2.
    Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).
    Google Scholar 

    3.
    Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).
    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

    4.
    Maynard Smith, J. Game theory and the evolution of cooperation. In Evolution from Molecules to Men (ed. Bendall, D. S.) 445–456 (Cambridge University Press, Cambridge, 1983).
    Google Scholar 

    5.
    Clutton-Brock, T. Cooperation between non-kin in animal societies. Nature 462, 51–57 (2009).
    ADS  CAS  PubMed  Google Scholar 

    6.
    Kokko, H., Johnstone, R. A. & Clutton-Brock, T. H. The evolution of cooperative breeding through group augmentation. Proc. R. Soc. B 268, 187–196 (2001).
    CAS  PubMed  Google Scholar 

    7.
    Kingma, S. A., Santema, P., Taborsky, M. & Komdeur, J. Group augmentation and the evolution of cooperation. Trends Ecol. Evol. 29, 476–484 (2014).
    PubMed  Google Scholar 

    8.
    Hamilton, W. D. Geometry for the selfish herd. J. Theor. Biol. 31, 295–311 (1971).
    CAS  PubMed  Google Scholar 

    9.
    Reluga, T. C. & Viscido, S. Simulated evolution of selfish herd behavior. J. Theor. Biol. 234, 213–225 (2005).
    MathSciNet  PubMed  Google Scholar 

    10.
    Nowak, M. A., Tarnita, C. E. & Wilson, E. O. The evolution of eusociality. Nature 446, 1057–1062 (2010).
    ADS  Google Scholar 

    11.
    Wilson, E. O. The Social Conquest of Earth (Norton, New York, 2012).
    Google Scholar 

    12.
    Dawkins, R. The Descent of Edward Wilson. Prospect. May 24 (2012).

    13.
    Whitehead, H. & Rendell, L. The Cultural Lives of Whales and Dolphins (The University of Chicago Press Ltd., Chicago, 2015).
    Google Scholar 

    14.
    Aplin, L. M. Culture and cultural evolution in birds: a review of the evidence. Anim. Behav. 147, 179–187. https://doi.org/10.1016/j.anbehav.2018.05.001 (2019).
    Article  Google Scholar 

    15.
    Allen, J. A. Community through culture: from insects to whales. BioEssays 41, 1900060. https://doi.org/10.1002/bies.201900060 (2019).
    Article  Google Scholar 

    16.
    Kleinenberg, S. E., Yablokov, A. V., Bel’kovich, B. M. & Tarasevich, M. N. Beluga (Delphinapterus leucas) Investigation of the Species (Academy of Sciences of the USSR, Moscow, 1964).
    Google Scholar 

    17.
    Karlsen, J. D., Bisther, A., Lydersen, C., Haug, T. & Kovacs, K. M. Summer vocalizations of adult male white whales (Delphinapterus leucas) in Svalbard, Norway. Polar Biol. 25, 808–817 (2002).
    Google Scholar 

    18.
    Chmelnitsky, E. G. & Ferguson, S. H. Beluga whale, Delphinapterus leucas, vocalizations from the Churchill River, Manitoba, Canada. J. Acoust. Soc. Am. 131, 4821–4835 (2012).
    ADS  PubMed  Google Scholar 

    19.
    Bel’kovitch, V. M. & Sh’ekotov, M. N. The Belukha Whale: Natural Behavior and Bioacoustics (Woods Hole Oceanographic Institution, Woods Hole, 1993).
    Google Scholar 

    20.
    Panova, E. M., Belikov, R. A., Agafonov, A. V. & Bel’kovich, V. M. The relationship between the behavioral activity and the underwater vocalization of the beluga whale (Delphinapterus leucas). Oceanology 52, 79–87 (2012).
    ADS  Google Scholar 

    21.
    Smith, T. G., Hammill, M. O. & Martin, A. R. Herd composition and behaviour of white whales (Delphinapterus leucas) in two Canadian arctic estuaries. Meddelelsser Grønland. Biosci. 39, 175–184 (1994).
    Google Scholar 

    22.
    Loseto, L. L., Richard, P., Stern, G. A., Orr, J. & Ferguson, S. H. Segregation of Beaufort Sea beluga whales during the open-water season. Can. J. Zool. 84, 1743–1751 (2006).
    Google Scholar 

    23.
    Krasnova, V. V., Chernetsky, A. D., Kirillova, O. I. & Bel’kovich, V. M. The dynamics of the abundance, age, and sex structure of the Solovetsky reproductive gathering of the beluga whale Delphinapterus leucas (Onega Bay, White Sea). Russ. J. Mar. Biol. 38, 218–225 (2012).
    Google Scholar 

    24.
    Palsbøll, P. J., Heidi-Jøgensen, M. P. & Bérubé, M. Analysis of mitochondrial control region nucleotide sequences from Baffin Bay belugas (Delphinapterus leucas): detecting pods or subpopulations?. NAMMCO Sci. Pub. 4, 39–50 (2002).
    Google Scholar 

    25.
    Bigg, M. A., Olesiuk, P. F., Ellis, G. M., Ford, J. K. B. & Balcomb, K. C. III. Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Commun. SI 12, 383–405 (1990).
    Google Scholar 

    26.
    Amos, B., Schlötterer, C. & Tautz, D. Social structure of pilot whales revealed by analytical DNA profiling. Science 260, 670–672 (1993).
    ADS  CAS  PubMed  Google Scholar 

    27.
    Richard, K. R., Dillon, M. C., Whitehead, H. & Wright, J. M. Patterns of kinship in groups of free-living sperm whales (Physeter macrocephalus) revealed by multiple molecular generic analyses. Proc. Natl. Acad. Sci. USA 93, 8792–8795 (1996).
    ADS  CAS  PubMed  Google Scholar 

    28.
    Barrett-Lennard, L. G. Population Structure and Mating Patterns of Killer Whales (Orcinus orca) as Revealed by DNA Analysis. PhD thesis (2000).

    29.
    Konrad, C. M., Gero, S., Frasier, T. & Whitehead, H. Kinship influences sperm whale social organization within, but generally not among, social units. R. Soc. Open Sci. 5, 180914. https://doi.org/10.1098/rsos.180914 (2018).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    Connor, R. C., Wells, R., Mann, J. & Read, A. The bottlenose dolphin: social relationships in a fission–fusion society. In Cetecean Societies: Field Studies of Dolphins and Whales, 91–126 (ed. Mann, J.) (The Univerisity of Chicago Press Ltd., Chicago, 2000).
    Google Scholar 

    31.
    Wiszniewski, J., Lusseau, D. & Möller, L. M. Female bisexual kinship ties maintain social cohesion in a dolphin network. Anim. Behav. 80, 895–904. https://doi.org/10.1016/j.anbehav.2010.08.013 (2010).
    Article  Google Scholar 

    32.
    Parsons, K. M. et al. Kinship as a basis for alliance formation between male bottlenose dolphins, Tursiops truncatus, in the Bahamas. Anim. Behav. 66, 185–194. https://doi.org/10.1006/anbe.2003.2186 (2003).
    Article  Google Scholar 

    33.
    Frère, C. H. et al. Home range overlap, matrilineal and biparental kinship drive female associations in bottlenose dolphins. Anim. Behav. 80, 481–486. https://doi.org/10.1016/j.anbehav.2010.06.007 (2010).
    Article  Google Scholar 

    34.
    Louis, M. et al. Evaluating the influences of ecology, sex and kinship on the social structure of resident coastal bottlenose dolphins. Mar. Biol. 165, 80. https://doi.org/10.1007/s00227-018-3341-z (2018).
    Article  Google Scholar 

    35.
    O’Corry-Crowe, G. M., Suydam, R. S., Rosenberg, A., Frost, K. J. & Dizon, A. E. Phylogeography, population structure and dispersal patterns of the beluga whale Delphinapterus leucas in the western Nearctic revealed by mitochondrial DNA. Mol. Ecol. 6, 955–970 (1997).
    Google Scholar 

    36.
    de March, B. G. E. & Postma, L. D. Molecular genetic stock discrimination of belugas (Delphinapterus leucas) hunted in eastern Hudson Bay, northern Quebec, Hudson Strait, and Sanikiluaq (Belcher Islands), Canada, and comparisons to adjacent populations. Arctic 56, 111–124 (2003).
    Google Scholar 

    37.
    Turgeon, J., Duchesne, P., Colbeck, G. J., Postma, L. D. & Hammill, M. O. Spatiotemporal segregation among summer stocks of beluga (Delphinapterus leucas) despite nuclear gene flow: implication for the endangered belugas in eastern Hudson Bay. Conserv. Gen. 13, 419–433 (2012).
    Google Scholar 

    38.
    Meschersky, I. G. et al. A genetic analysis of the beluga whale Delphinapterus leucas (Cetacea: Monodontidae) from summer aggregations in the Russian Far East. Russ. J. Mar. Biol. 39, 125–135 (2013).
    CAS  Google Scholar 

    39.
    Colbeck, G. J. et al. Groups of related belugas (Delphinapterus leucas) travel together during their seasonal migrations in and around Hudson Bay. Proc. R. Soc. B. 280, 2012–2552. https://doi.org/10.1098/rspb.2012.2552 (2013).
    Article  Google Scholar 

    40.
    O’Corry-Crowe, G. et al. Migratory culture, population structure and stock identity in North Pacific beluga whales (Delphinapterus leucas). PLoS ONE 13(3), e0194201. https://doi.org/10.1371/journal.pone.0194201 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Krasnova, V. V., Chernetsky, A. D., Zheludkova, A. I. & Bel’kovich, V. M. Parental behavior of the beluga whale (Delphinapterus leucas) in natural environment. Biol. Bull. 41, 349–356 (2014).
    Google Scholar 

    42.
    Vergara, V. & Mikus, M. Contact call diversity in natural beluga entrapments in an Arctic estuary: preliminary evidence of vocal signatures in wild belugas. Mar. Mamm. Sci. 35, 434–465 (2019).
    Google Scholar 

    43.
    Suydam, R. S., Frost, K. J., Lowry, L. F., O’Corry-Crowe, G. M. & Pikok, D. Satellite tracking of eastern Chukchi Sea beluga whales in the Arctic Ocean. Arctic 54, 237–243 (2001).
    Google Scholar 

    44.
    Lydersen, C., Martin, A. R., Kovacs, K. M. & Gjertz, I. Summer and autumn movements of white whales Delphinapterus leucas in Svalbard, Norway. Mar. Ecol. Prog. Ser. 219, 265–274 (2001).
    ADS  Google Scholar 

    45.
    Michaud, R. Distribution estivale du béluga du St.-Laurent: synthèse 1986 à 1992. Can. Tech. Rep. Fish. Aquat. Sci. 1906, 28 (1993).
    Google Scholar 

    46.
    Suydam, R. S. Age, Growth, Reproduction, and Movements of Beluga Whales (Delphinapterus leucas) from the Eastern Chukchi Sea. PhD thesis (2009).

    47.
    Lefebvre, S. L., Michaud, R., Lesage, V. & Berteaux, D. Identifying high residency areas of the threatened St. Lawrence beluga whale from fine-scale movements of individuals and coarse-scale movements of herds. Mar. Ecol. Prog. Ser. 450, 243–257 (2012).
    ADS  Google Scholar 

    48.
    Sjare, B. L. & Smith, T. G. The relationship between behavioral activity and underwater vocalizations of the white whale, Delphinapterus leucas. Can. J. Zool. 64, 2824–2831 (1986).
    Google Scholar 

    49.
    Alekseeva, Y. I., Panova, E. M. & Belkovich, V. M. Behavioral and acoustical characteristics of the reproductive gathering of beluga whales (Delphinapterus leucas) in the vicinity of Myagostrov, Golyi Sosnovets, and Roganka Islands (Onega Bay, the White Sea). Biol. Bull. 40, 307–317 (2013).
    Google Scholar 

    50.
    Smith, T. G., St. Aubin, D. J. & Hammill, M. O. Rubbing behavior of belugas, Delphinapterus leucas, in a high Arctic estuary. Can. J. Zool. 70, 2405–2409 (1992).
    Google Scholar 

    51.
    Howe, M. et al. Beluga, Delphinapterus leucas, ethogram: a tool for Cook Inlet beluga conservation. Mar. Fish. Rev. 77, 32–40 (2015).
    Google Scholar 

    52.
    Anderson, P. A., Poe, R. B., Thompson, L. A., Weber, N. & Romano, T. A. Behavioral responses of beluga whales (Delphinapterus leucas) to environmental variation in an Arctic estuary. Behav. Process. 145, 48–59 (2017).
    Google Scholar 

    53.
    Ford, J. K. B., Ellis, G. M. & Balcomb, K. C. III. Killer Whales (University of British Columbia Press, Vancouver, 200).
    Google Scholar 

    54.
    Heimlich-Boran, J. R. Social Organization of the Short-Finned Pilot Whale, Globicephala macrorhynchus, with Special Reference to the Social Ecology of Delphinids. PhD thesis (1993).

    55.
    Rendell, L., Cantor, M., Gero, S., Whitehead, H. & Mann, J. Causes and consequences of female centrality in cetacean societies. Phil. Trans. R. Soc. B 374, 20180066. https://doi.org/10.1098/rstb.2018.0066 (2019).
    Article  PubMed  Google Scholar 

    56.
    Connor, R. C. et al. Male alliance behaviour and mating access varies with habitat in a dolphin social network. Sci. Rep. 7, 46354. https://doi.org/10.1038/srep46354 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Packer, C., Gilbert, D. A., Pusey, A. E. & O’Brien, S. J. A molecular genetic analysis of kinship and cooperation in African lions. Nature 351, 562–565 (1991).
    ADS  CAS  Google Scholar 

    58.
    Grinnell, J., Packer, C. & Pusey, A. E. Cooperation in male lions: kinship, reciprocity or mutualism?. Anim. Behav. 49, 95–105 (1995).
    Google Scholar 

    59.
    Gilby, I. C. et al. Fitness benefits of coalitionary aggression in male chimpanzees. Behav. Ecol. Sociobiol. 67, 373–381 (2013).
    PubMed  Google Scholar 

    60.
    Croft, D. P., Brent, L. J. N., Franks, D. W. & Cant, M. A. The evolution of prolonged life after reproduction. TREE 30(7), 407–416. https://doi.org/10.1016/j.tree.2015.04.011 (2015).
    Article  PubMed  Google Scholar 

    61.
    Brent, L. J. N. et al. Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr. Biol. 25, 746–750 (2015).
    CAS  PubMed  Google Scholar 

    62.
    Ellis, S. et al. Analyses of ovarian activity reveal repeated evolution of postreproductive lifespans in toothed Whales. Sci. Rep. 8, 12833. https://doi.org/10.1038/s41598-018-31047-8 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    63.
    Nattrass, A. et al. Postreproductive killer whale grandmothers improve the survival of their grandoffspring. PNAS https://doi.org/10.1073/pnas.1903844116 (2019).
    Article  PubMed  Google Scholar 

    64.
    McComb, K., Moss, C., Durant, S. M., Baker, L. & Sayialel, S. Matriarchs as repositories of social knowledge in African elephants. Science 292, 491–494. https://doi.org/10.1126/science.1057895 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    65.
    McComb, K. et al. Leadership in elephants: the adaptive value of age. Proc. R. Soc. B 278, 3270–3276. https://doi.org/10.1098/rspb.2011.0168 (2011).
    Article  PubMed  Google Scholar 

    66.
    Boran, J. & Heimlich, S. Pilot whales: delphinid matriarchies in deep seas. In Ethology and Behavioral Ecology of Odontocetes (ed. Würsig, B.) 281–304 (Springer, Berlin, 2019). https://doi.org/10.1007/978-3-030-16663-2_13.
    Google Scholar 

    67.
    Whitehead, H. Cultural selection and genetic diversity in matrilineal whales. Science 282, 1708–1711 (1998).
    ADS  CAS  PubMed  Google Scholar 

    68.
    Whitehead, H. Gene–culture coevolution in whales and dolphins. PNAS 114, 7814–7821. https://doi.org/10.1073/pnas.162073611 (2017).
    CAS  Article  PubMed  Google Scholar 

    69.
    Johnstone, R. A. & Cant, M. A. The evolution of menopause in cetaceans and humans: the role of demography. Proc. R. Soc. B 277, 3765–3771 (2010).
    PubMed  Google Scholar 

    70.
    Foote, A. D. Mortality rate acceleration and post-reproductive lifespan in matrilineal whale species. Biol. Let. 4, 189–191. https://doi.org/10.1098/rsbl.2008.0006 (2008).
    Article  Google Scholar 

    71.
    Westdal, K. H., Davies, J., MacPherson, A., Orr, J. & Ferguson, S. H. Behavioural changes in belugas (Delphinpaterus leucas) during a killer whale (Orcinus orca) attack in southwest Hudson Bay. Can. Field Nat. 130(4), 315–319 (2016).
    Google Scholar 

    72.
    Smith, T. G. & Sjare, B. Predation of belugas and narwhals by polar bears in nearshore areas of the Canadian High Arctic. Arctic 43, 99–102 (1990).
    Google Scholar 

    73.
    Schino, G. & Aureli, F. Reciprocity in group-living animals: partner control versus partner choice. Biol. Rev. 92, 665–672. https://doi.org/10.1111/brv.12248 (2017).
    Article  PubMed  Google Scholar 

    74.
    Gowans, S., Whitehead, H. & Hooker, S. K. Social organization in northern bottlenose whales, Hyperoodon ampullatus: not driven by deep-water foraging?. Anim. Behav. 62, 369–377 (2001).
    Google Scholar 

    75.
    Feduitin, I. D., Filatova, O. A., Mamev, E. G., Burdin, A. M. & Hoyt, E. Occurrence and social structure of Baird’s beaked whales, Berardius bairdii, in the Commander islands, Russia. Mar. Mamm. Sci. 31, 853–865 (2015).
    Google Scholar 

    76.
    Hill, K. R. et al. Co-residence patterns in hunter-gatherer societies show unique human social structure. Science 331, 1286–1289 (2011).
    ADS  CAS  PubMed  Google Scholar 

    77.
    Conkova, N., Fokkema, T. & Dykstra, P. A. Non-kin ties as a source of support in Europe: understanding the role of cultural context. Eur. Soc. 20, 131–156. https://doi.org/10.1080/14616696.2017.1405058 (2017).
    Article  Google Scholar 

    78.
    Wade, P. R., Reeves, R. R. & Mesnick, S. L. Social and behavioural factors in cetacean responses to overexploitation: are odontocetes less “resilient” than mysticetes?. J. Mar. Biol. https://doi.org/10.1155/2012/567276 (2012).
    Article  Google Scholar 

    79.
    Brakes, P. et al. Animal cultures matter for conservation. Science 363, 1032–1034 (2019).
    ADS  CAS  PubMed  Google Scholar 

    80.
    O’Corry-Crowe, G., Lucey, B., Castellote, M. & Stafford, K. Abundance, Habitat Use and Behavior of Beluga Whales in Yakutat Bay, May 2008; as Revealed by Passive Acoustic Monitoring, Visual Observations and Photo-ID. HBOI-Florida Atlantic University Rep. (2009).

    81.
    Richard, P. R., Martin, A. R. & Orr, J. R. Summer and autumn movements of belugas of the eastern Beaufort Sea stock. Arctic 54, 223–236 (2001).
    Google Scholar 

    82.
    Litovka, D. I. et al. Research of belugas Delphinapterus leucas in Anadyr Gulf (Chukotka) using satellite telemetry. Mar. Mamm. Holarctic 10, 70–80 (2002).
    Google Scholar 

    83.
    O’Corry-Crowe, G. M., Dizon, A. E., Suydam, R. S. & Lowry, L. F. Molecular genetic studies of population structure and movement patterns in a migratory species: the beluga whale (Delphinapterus leucas) in the western Nearctic. In Molecular and Cell Biology of Marine Mammals (ed. Pfeiffer, C. J.) 53–64 (Krieger Publishing Co., Malabar, 2002).
    Google Scholar 

    84.
    O’Corry-Crowe, G., Lucey, W., Archer, F. I. & Mahoney, B. The genetic ecology and population origins of the beluga whales of Yakutat Bay. Mar. Fish. Rev. 71, 47–48 (2015).
    Google Scholar 

    85.
    O’Corry-Crowe, G. M. L. et al. Population genetic structure and evolutionary history of North Atlantic beluga whales (Delphinapterus leucas) from West Greenland, Svalbard and the White Sea. Polar Biol. 33, 1179–1194 (2010).
    Google Scholar 

    86.
    Fain, S. R. & LeMay, J. P. Gender identification of humans and mammalian wildlife species from PCR amplified sex linked genes. Proc. Am. Acad. Forensic Sci. 1, 34 (1995).
    Google Scholar 

    87.
    Citta, J. J. et al. Assessing the abundance of Bristol Bay belugas with genetic mark-recapture methods. Mar. Mamm. Sci. 34, 666–686. https://doi.org/10.1111/mms.12472 (2018).
    Article  Google Scholar 

    88.
    Wang, J. conancestry: a program for simulating, estimating and analyzing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).
    PubMed  Google Scholar 

    89.
    Kalinowski, S. T., Wagner, A. P. & Taper, M. L. ml-relate: a computer program for maximum likelihood estimation of relatedness and relationships. Mol. Ecol. Notes 6, 576–579 (2006).
    CAS  Google Scholar 

    90.
    Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89, 135–153 (2007).
    CAS  PubMed  Google Scholar 

    91.
    Queller, D. C. & Goodnight, K. F. Estimating relatedness using molecular markers. Evolution 43, 258–275 (1989).
    PubMed  Google Scholar 

    92.
    Kraemer, P. & Gerlach, G. Demrelate: calculating interindividual relatedness for kinship analysis based on codominant diploid genetic markers in R. Mol. Ecol. Resour. 17, 1371–1377 (2017).
    CAS  PubMed  Google Scholar 

    93.
    Kraemer, P. & Gerlach G. Package ‘Demrelate’ Version 0.9-3: Functions to Calculate Relatedness on Diploid Genetic Data. https://cran.r-project.org/web/packages%20s%20Demrelate/index.html (2017).

    94.
    Blouin, M., Parsons, M., Lacaille, V. & Lotz, S. Use of microsatellite loci to classify individuals by relatedness. Mol. Ecol. 5, 393–401 (1996).
    CAS  PubMed  Google Scholar 

    95.
    Kivelä, M., Arnaud-Haond, S. & Saramäki, J. EDENetworks Version 218: Ecological and Evolutionary Networks (Oxford University Press, Oxford, 2014).
    Google Scholar  More

  • in

    Biological rhythms in the deep-sea hydrothermal mussel Bathymodiolus azoricus

    1.
    Kumar, V. Biological Timekeeping. (Springer, India, 2017). .
    2.
    Tessmar-Raible, K., Raible, F. & Arboleda, E. Another place, another timer: marine species and the rhythms of life. Bioessays 33, 165–172 (2011).
    PubMed  PubMed Central  Google Scholar 

    3.
    de la Iglesia, H. O. & Johnson, C. H. Biological clocks: riding the tides. Curr. Biol. 23, R921–R923 (2013).
    PubMed  PubMed Central  Google Scholar 

    4.
    Oosthuizen, M. K., Cooper, H. M. & Bennett, N. C. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (Family: Bathyergidae). J. Biol. Rhythms 18, 481–490 (2003).
    PubMed  Google Scholar 

    5.
    van Oort, B. E. H. et al. Circadian organization in reindeer. Nature 438, 1095–1096 (2005).
    ADS  PubMed  Google Scholar 

    6.
    Childress, J. J. & Thuesen, E. V. in Deep-Sea Food Chains and the Global Carbon Cycle (eds. Rowe, G. T. & Pariente, V.) 217–236 (Springer, Netherlands, 1992).

    7.
    Turekian, K. K. et al. Slow growth rate of a deep-sea clam determined by 228Ra chronology. Proc. Natl Acad. Sci. USA 72, 2829–2832 (1975).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Levin, L. A. et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front. Marine Sci. https://doi.org/10.3389/fmars.2016.00072 (2016).

    9.
    Du Preez, C. & Fisher, C. R. Long-term stability of back-arc basin hydrothermal vents. Front. Marine Sci. https://doi.org/10.3389/fmars.2018.00054 (2018).

    10.
    Cuvelier, D. et al. Community dynamics over 14 years at the Eiffel Tower hydrothermal edifice on the Mid-Atlantic Ridge. Limnol. Oceanogr. 56, 1624–1640 (2011).
    ADS  Google Scholar 

    11.
    Garrett, C. Internal tides and ocean mixing. Science 301, 1858–1859 (2003).
    CAS  PubMed  Google Scholar 

    12.
    Childress, J. J. & Fisher, C. R. The biology of hydrothermal vent animals: Physiology, biochemistry, and autotrophic symbioses. Oceanogr. Mar. Biol. Ann. Rev. 30, 337–441 (1992).

    13.
    Barreyre, T. et al. Temporal variability and tidal modulation of hydrothermal exit-fluid temperatures at the Lucky Strike deep-sea vent field, Mid-Atlantic Ridge: MAR vent-field temperature monitoring. J. Geophys. Res.: Solid Earth 119, 2543–2566 (2014).
    ADS  Google Scholar 

    14.
    Lelièvre, Y. et al. Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates. Proc. R. Society B: Biol. Sci. 284, 20162123 (2017).

    15.
    Cuvelier, D., Legendre, P., Laes, A., Sarradin, P.-M. & Sarrazin, J. Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main endeavour field – a multidisciplinary deep-sea observatory approach. PLoS ONE 9, e96924 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    16.
    Cuvelier, D., Legendre, P., Laës-Huon, A., Sarradin, P.-M. & Sarrazin, J. Biological and environmental rhythms in (dark) deep-sea hydrothermal ecosystems. Biogeosciences 14, 2955–2977 (2017).
    ADS  Google Scholar 

    17.
    Nedoncelle, K. et al. Bathymodiolus growth dynamics in relation to environmental fluctuations in vent habitats. Deep Sea Res. Part I: Oceanographic Res. Pap. 106, 183–193 (2015).
    ADS  Google Scholar 

    18.
    Chiesa, J. J., Aguzzi, J., García, J. A., Sardà, F. & de la Iglesia, H. O. Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). J. Biol. Rhythms 25, 277–287 (2010).
    PubMed  Google Scholar 

    19.
    Sbragaglia, V. et al. Identification, characterization, and diel pattern of expression of canonical clock genes in Nephrops norvegicus (Crustacea: Decapoda) eyestalk. PLOS ONE 10, e0141893 (2015).
    PubMed  PubMed Central  Google Scholar 

    20.
    Modica, L., Cartes, J. E. & Carrassón, M. Food consumption of five deep-sea fishes in the Balearic Basin (western Mediterranean Sea): are there daily feeding rhythms in fishes living below 1000 m?: feeding rhythm and rations in deep-sea fishes. J. Fish. Biol. 85, 800–820 (2014).
    CAS  PubMed  Google Scholar 

    21.
    Wagner, H.-J., Kemp, K., Mattheus, U. & Priede, I. G. Rhythms at the bottom of the deep sea: cyclic current flow changes and melatonin patterns in two species of demersal fish. Deep Sea Res. Part I: Oceanographic Res. Pap. 54, 1944–1956 (2007).
    ADS  Google Scholar 

    22.
    Hui, M., Song, C., Liu, Y., Li, C. & Cui, Z. Exploring the molecular basis of adaptive evolution in hydrothermal vent crab Austinograea alayseae by transcriptome analysis. PLoS ONE 12, e0178417 (2017).
    PubMed  PubMed Central  Google Scholar 

    23.
    Mercier, A. & Hamel, J.-F. in Annual, Lunar, and Tidal Clocks: Patterns and Mechanisms of Nature’s Enigmatic Rhythms (eds. Numata, H. & Helm, B.) 99–120 (Springer, Japan, 2014).

    24.
    Husson, B., Sarradin, P.-M., Zeppilli, D. & Sarrazin, J. Picturing thermal niches and biomass of hydrothermal vent species. Deep Sea Res. Part II: Topical Stud. Oceanogr. 137, 6–25 (2017).
    ADS  Google Scholar 

    25.
    Duperron, S. in The Vent and Seep Biota: Aspects from Microbes to Ecosystems (ed. Kiel, S.) 137–167 (Springer, Netherlands, 2010).

    26.
    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).
    CAS  PubMed  Google Scholar 

    27.
    Gosling, E. M. Marine Bivalve Molluscs. (Wiley Blackwell, 2015).

    28.
    Takeuchi, T. et al. Draft genome of the Pearl Oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res. 19, 117–130 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2012).
    ADS  PubMed  PubMed Central  Google Scholar 

    30.
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
    PubMed  Google Scholar 

    31.
    Ponnudurai, R. et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Standards Genomic Sci. 12, 50 (2017).
    Google Scholar 

    32.
    Takishita, K. et al. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biol. Evolution 9, 1148–1160 (2017).
    Google Scholar 

    33.
    Payton, L. et al. Remodeling of the cycling transcriptome of the oyster Crassostrea gigas by the harmful algae Alexandrium minutum. Sci. Rep. 7, 3480 (2017).
    Google Scholar 

    34.
    Sorek, M. et al. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome 6, 83 (2018).
    PubMed  PubMed Central  Google Scholar 

    35.
    Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. J. Biol. Rhythms 29, 391–400 (2014).
    PubMed  PubMed Central  Google Scholar 

    36.
    Ren, Y., Hong, C. I., Lim, S. & Song, S. Finding clocks in genes: a bayesian approach to estimate periodicity. BioMed. Res. Int. 2016, 1–14 (2016).
    Google Scholar 

    37.
    Radford-Knoery, J. et al. Distribution of dissolved sulfide, methane, and manganese near the seafloor at the Lucky Strike (37°17′N) and Menez Gwen (37°50′N) hydrothermal vent sites on the mid-Atlantic Ridge. Deep Sea Res. Part I: Oceanographic Res. Pap. 45, 367–386 (1998).
    ADS  CAS  Google Scholar 

    38.
    Waeles, M. et al. On the early fate of hydrothermal iron at deep-sea vents: a reassessment after in situ filtration: Fe Sulfide Precipitation Is Very Limited. Geophys. Res. Lett. 44, 4233–4240 (2017).
    ADS  Google Scholar 

    39.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
    Google Scholar 

    40.
    Sung, Windsor & Morgan, J. J. Kinetics and product of ferrous iron oxygenation in aqueous systems. Environ. Sci. Technol. 14, 561–568 (1980).
    ADS  CAS  Google Scholar 

    41.
    Tapley, D. W., Buettner, G. R. & Shick, J. M. Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol. Bull. 196, 52–56 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Hayden, M. S. & Ghosh, S. Signaling to NF-kappaB. Genes Dev. 18, 2195–2224 (2004).
    CAS  PubMed  Google Scholar 

    43.
    Courtial, L. et al. The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells. Sci. Rep. 7, 45713 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    44.
    Praveen, K. & Saxena, N. Crosstalk between Fas and JNK determines lymphocyte apoptosis after ionizing radiation. Radiat. Res. 179, 725–736 (2013).
    ADS  CAS  PubMed  Google Scholar 

    45.
    Distel, D. L. et al. Do mussels take wooden steps to deep-sea vents? Nature 403, 725–726 (2000).
    ADS  CAS  PubMed  Google Scholar 

    46.
    Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Connor, K. M. & Gracey, A. Y. Circadian cycles are the dominant transcriptional rhythm in the intertidal mussel Mytilus californianus. Proc. Natl Acad. Sci. USA 108, 16110–16115 (2011).

    48.
    Gracey, A. Y. et al. Rhythms of gene expression in a fluctuating intertidal environment. Curr. Biol. 18, 1501–1507 (2008).
    CAS  PubMed  Google Scholar 

    49.
    White, S. N., Chave, A. D., Reynolds, G. T. & Van Dover, C. L. Ambient light emission from hydrothermal vents on the Mid-Atlantic Ridge. Geophys. Res. Lett. 29, 34-1–34-4 (2002).
    Google Scholar 

    50.
    Devey, C., Fisher, C. & Scott, S. Responsible science at hydrothermal vents. Oceanography 20, 162–171 (2007).
    Google Scholar 

    51.
    Hughes, M. E. et al. Guidelines for genome-scale analysis of biological rhythms. J. Biol. Rhythms 32, 380–393 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Yoo, S.-H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).
    ADS  CAS  PubMed  Google Scholar 

    53.
    Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).
    ADS  CAS  PubMed  Google Scholar 

    54.
    Li, J., Grant, G. R., Hogenesch, J. B. & Hughes, M. E. Considerations for RNA-seq analysis of circadian rhythms. Methods Enzymol. 551, 349–367 (2015).

    55.
    O’Neill, J. S. & Reddy, A. B. Circadian clocks in human red blood cells. Nature 469, 498–503 (2011).
    ADS  PubMed  PubMed Central  Google Scholar 

    56.
    Rey, G. et al. Metabolic oscillations on the circadian time scale in Drosophila cells lacking clock genes. Mol. Syst. Biol. 14, e8376 (2018).
    PubMed  PubMed Central  Google Scholar 

    57.
    Zhang, L. et al. Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra. Curr. Biol. 23, 1863–1873 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Zantke, J. et al. Circadian and Circalunar Clock Interactions in a Marine Annelid. Cell Rep. 5, 99–113 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Mat, A. M., Perrigault, M., Massabuau, J.-C. & Tran, D. Role and expression of cry1 in the adductor muscle of the oyster Crassostrea gigas during daily and tidal valve activity rhythms. Chronobiol. Int. 33, 949–963 (2016).
    CAS  PubMed  Google Scholar 

    60.
    O’Neill, J. S. et al. Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra. Curr. Biol. 25, R326–R327 (2015).
    PubMed  PubMed Central  Google Scholar 

    61.
    Schnytzer, Y. et al. Tidal and diel orchestration of behaviour and gene expression in an intertidal mollusc. Sci. Rep. 8, 4917 (2018).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Saurel, C., Gascoigne, J. C., Palmer, M. R. & Kaiser, M. J. In situ mussel feeding behavior in relation to multiple environmental factors: regulation through food concentration and tidal conditions. Limnol. Oceanogr. 52, 1919–1929 (2007).
    ADS  Google Scholar 

    63.
    Comeau, L. A., Babarro, J. M. F., Longa, A. & Padin, X. A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa, Spain. Aquac. Rep. 9, 68–73 (2018).
    Google Scholar 

    64.
    Connor, K. M. & Gracey, A. Y. High-resolution analysis of metabolic cycles in the intertidal mussel Mytilus californianus. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 302, R103–R111 (2012).
    CAS  Google Scholar 

    65.
    Ameyaw-Akumfi, C. & Naylor, E. Temporal patterns of shell-gape in Mytilus edulis. Mar. Biol. 95, 237–242 (1987).
    Google Scholar 

    66.
    Chapman, E. C., O’Dell, A. R., Meligi, N. M., Parsons, D. R. & Rotchell, J. M. Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis. Chronobiol. Int. 34, 1300–1314 (2017).
    CAS  PubMed  Google Scholar 

    67.
    Mat, A. M., Massabuau, J.-C., Ciret, P. & Tran, D. Looking for the clock mechanism responsible for circatidal behavior in the oyster Crassostrea gigas. Mar. Biol. 161, 89–99 (2014).
    Google Scholar 

    68.
    Tran, D., Perrigault, M., Ciret, P. & Payton, L. Bivalve mollusc circadian clock genes can run at tidal frequency. Proc. R. Soc. B 287, 20192440 (2020).
    PubMed  Google Scholar 

    69.
    Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).
    CAS  PubMed  Google Scholar 

    70.
    Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).
    ADS  CAS  PubMed  Google Scholar 

    71.
    Sarrazin, J. et al. TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal vents. in OCEANS 2007 – Europe 1–4 (IEEE, 2007).

    72.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Dutilleul, P. Multi-frequential periodogram analysis and the detection of periodic components in time series. Commun. Stat. – Theory Methods 30, 1063–1098 (2001).
    MathSciNet  MATH  Google Scholar 

    74.
    Johnson, C. H., Elliott, J., Foster, R., Honma, K.-I. & Kronauer, R. in Chronobiology: Biological Timekeeping (eds. Dunlap, J. C., Loros, J. J. & DeCoursey, P. J.) 406 (Sinauer Associates, Inc. Publishers, 2004).

    75.
    Pegau, W. S., Gray, D. & Zaneveld, J. R. V. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Opt. 36, 6035–6046 (1997).
    ADS  CAS  PubMed  Google Scholar 

    76.
    Francis, W. R. et al. A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly. BMC Genomics 14, 167 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    77.
    Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. https://doi.org/10.1186/s13059-016-0881-8 (2016).

    78.
    Cabau, C. et al. Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies. PeerJ 5, e2988 (2017).
    PubMed  PubMed Central  Google Scholar 

    79.
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
    CAS  PubMed  Google Scholar 

    80.
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    PubMed  PubMed Central  Google Scholar 

    81.
    R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).

    82.
    Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).
    CAS  PubMed  Google Scholar 

    83.
    Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.36.0. (2019).

    84.
    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).
    CAS  PubMed  Google Scholar 

    85.
    Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evolution 30, 772–780 (2013).
    CAS  Google Scholar 

    86.
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evolution 32, 268–274 (2015).
    CAS  Google Scholar 

    87.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  PubMed  Google Scholar 

    88.
    Oliveri, P. et al. The Cryptochrome/Photolyase Family in aquatic organisms. Mar. Genomics 14, 23–37 (2014).
    PubMed  Google Scholar  More

  • in

    The implication of metabolically active Vibrio spp. in the digestive tract of Litopenaeus vannamei for its post-larval development

    Sampling of organisms and bioassay experiments
    Shrimp post-larvae (PL5) of Litopenaeus vannamei were collected from the aquaculture farm Parque acuícola Cruz de Piedra, Guaymas, Sonora, Mexico (27° 51′ 05.9″ N 110° 31′ 57.0″ W). Afterward, post-larval shrimp were transported in aerated tanks with the same pond water as the farm to the Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora (DICTUS), where a lab-scale system was previously tested and used. The bioassay was conducted for 80 days with healthy shrimp, each weighing 0.5 ± 0.1 g, and post-larvae were randomly distributed in the lab-scale system. The system consisted of nine 80-L culture units linked to a recirculation aquaculture system (RAS), and sterile seawater was used to fill the units to an operating volume of 60 L. Influent seawater was filtrated and flowed through a UV lamp for sterilization, and the seawater was equally dispensed to all culture units, as depicted in the supplementary material (Fig. S2). The culture units were maintained under similar indoor conditions with artificial aeration (2000F heat bonded silica; pore size, 140 µm), and the salinity was maintained at around 35‰ with the addition of sterile freshwater (MilliQ grade, Millipore) to avoid the incorporation of outside bacteria and to compensate evaporation. Finally, the effluent generated by the system flowed through a biofilter containing nitrifying bacteria to control toxic nitrogen compounds in the recirculation system (Fig. S2). The unconsumed feed, feces, moults, and dead organisms (if any) were removed daily.
    The salinity, dissolved oxygen (DO), pH, and temperature were measured twice per day (07:00 and 18:00 h) using a YSI multiprobe system 556 (YSI Incorporated).
    The bioassay started with PL5 on day 0. At this point, 40 organisms were randomly introduced into each culture unit, and the experiment lasted 80 days. Throughout the experiment, shrimp were fed twice a day at a rate of 4% wet biomass day–1 using feeding trays with the same formulated feed consisting of commercial grow-out pelletized feed with 25% crude protein, 5% lipids, and 4% fiber.
    Water quality and productive response
    The water quality was monitored daily throughout the bioassay, and samples were collected weekly from each culture unit using sterile falcon tubes by filtering the water through 0.45 μm membranes (Millipore). Nitrite (NO2–N), nitrate (NO3–N), ammonia (NH3–NH4), and phosphate (P–PO4) concentrations were measured using commercial Hanna reagent kits HI 93707-01, HI 93728-01, HI 93700-01, and HI 93717-01, respectively (Hanna Instruments, Romania).
    Biometry analyses were performed at the four different developmental stages, denominated as I, II, III, and IV, corresponding to 0–20, 20–40, 40–60, and 60–80 culture days, respectively, and the productive response was calculated15.
    Collection of intestine and water samples and DNA and RNA extraction
    To discard the transitory microbiota, the shrimp were fasted for 6 h before sampling. Once the intestines were empty, these were dissected on the corresponding dates using a sterile dissection kit, placed in sterile cryogenic tubes, and stored at – 80 °C until nucleic acid extraction. Each sample date belongs to an experimental unit with three culture tanks. The intestine samples from culture tanks were pooled and considered as a replicate, giving three replicates per sampling time. At the same sampling points, 1 L samples of water (W) from each culture unit corresponding to an experimental replicate were collected and pooled for filtration through 0.22 µm sterile filters of mixed cellulose ester membrane (Whatman, Sigma, St Louis, USA) and placed in sterile, 50 mL falcon tubes for storage at – 80 °C until nucleic acid extraction.
    Total DNA and RNA were extracted and purified from the membrane filters previously used to filter seawater samples and from intestines that were also previously sampled, both of them with the FastDNA Spin Kit for Soil15, and the FastRNA Pro Blue Kit (MP-Bio, Santa Ana, CA, USA) in combination with mechanical lysis using the FastPrep Systems (MP-BIO, Santa Ana, CA, USA). The obtained RNA samples were digested according to the TURBO DNA protocol (Ambion, Life Technologies Corporation, Carlsbad, CA, USA) and EDTA to stop the DNase activity and to ensure that any DNA residuals were presented. Finally, samples were purified according to the RNA Cleanup protocol from the RNeasy Mini Kit (Qiagen, Hamburg, Germany). The quality and concentration of nucleic acids were tested as previously described Maza-Márquez et al.39.
    qPCR and RT-qPCR assays
    Real-time polymerase chain reaction (qPCR) assays have been widely implemented for estimating total cell count based on DNA gene markers, regardless of their level of metabolic activity40,41, while reverse transcription qPCR (RT-qPCR) is a useful method for analyzing the expression of specific genes. RT-qPCR is also used because of its high sensitivity, accuracy, specificity, and rapidity in analyzing the time-specific expression of particular genes, allowing for the detection of low-abundance transcripts42. The absolute abundance of total and metabolically active populations of bacteria and Vibrio in both target samples were measured by qPCR and RT-qPCR, respectively, using a StepOne Real-Time PCR system (Applied Biosystems, USA). For RT-qPCR, the synthesis of cDNA was performed by reverse transcription of RNA with the aid of SuperScript III Reverse Transcriptase (Invitrogen, Life Technologies Corporation, Carlsbad, CA, EEUU), following the manufacturer’s specifications, in a final volume of 20 µL and using 150–200 ng of total RNA as a template (specific primers described in Table S4) (Sigma Aldrich; St. Louis, MO, USA) and dNTPs (Invitrogen; Carlsbad, USA). In addition, the cDNA quality and concentration were measured using a NanoDrop ND-1000 spectrophotometer (Thermo Scientific Waltham, MA USA). The number of copies (nbc) of 16S rRNA genes (16S rDNA) and 16S rRNA (16S rRNA) were evaluated in each sample using either extracted DNA or cDNA, respectively, as templates with a set of primers previously described (Table S4) based on the increasing fluorescence intensity of the SYBR Green dye during amplification. For the amplification and detection of specific fragments, the iTaq Universal SYBR Green Supermix (Biorad, USA) was used in a final volume of 15 µL for each reaction. All quantitative amplifications were performed in triplicate. The qPCR reaction mixtures contained 1.8 µL of cDNA or DNA, 250 ng of T4 gene 32 (QBiogene, Illkirch, France), 1.2 µL of each primer (10 mM), supplied by Sigma Aldrich (St. Louis, MO, USA), and 1 × SYBR Green Supermix. The amplification and detection conditions are described in Table S5.
    To provide absolute quantification of the target microorganisms, standard curves were constructed with the aid of a standard plasmid that contained the inserts of the targeted genes. Amplicons of the 16S rDNA were generated from culture strains of Pseudomonas putida NCB957 (quantification of bacteria) and Vibrio parahaemolyticus ATCC17802 (quantification of Vibrio). The PCR products were cloned with the aid of the pCR2.1-TOPO plasmid vector using the TOPO TA cloning system (Invitrogen, Life Technologies Corporation, Carlsbad, CA, USA), following the manufacturer’s protocols. The calibration curves for absolute quantification in the DNA samples (16S rDNA) were generated using serial ten-fold dilutions of linearized plasmid standards, and for absolute quantification in RNA samples (16S rRNA), non-linearized plasmid standards were used as templates for in vitro transcription of the target genes into RNA39,40,43. The copy number per ng was calculated as previously described43. All calibration curves had a correlation coefficient (r2) of  > 0.99 in all assays, and the efficiency of PCR amplification was always between 90 and 110%. Finally, the number of copies of the targeted genes was expressed per gram of tissue sampled, while for water samples these were expressed as the number of copies per mL.
    Statistical analyses
    All statistical analyses were performed in R Studio (version 3.6.0)44 using the following R packages: maggrittr45, ade446, factoextra47, vegan48, and gplots49. Analyses of variance (ANOVA) and multiple-range tests (Student’s-test) were used with a significance level of 95% (p  More

  • in

    The density of anthropogenic features explains seasonal and behaviour-based functional responses in selection of linear features by a social predator

    1.
    Saunders, S. C., Mislivets, M. R., Chen, J. & Cleland, D. T. Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biol. Conserv. 103, 209–225 (2002).
    Google Scholar 
    2.
    Potvin, F., Breton, L. & Courtois, R. Response of beaver, moose, and snowshoe hare to clear-cutting in a Quebec boreal forest: A reassessment 10 years after cut. Can. J. For. Res. 35, 151–160 (2005).
    Google Scholar 

    3.
    Sahlén, E., Støen, O. & Swenson, J. E. Brown bear den site concealment in relation to human activity in Sweden. Ursus 22, 152–158 (2011).
    Google Scholar 

    4.
    James, A. & Stuart-Smith, A. Distribution of caribou and wolves in relation to linear corridors. J. Wildl. Manage. 64, 154–159 (2000).
    Google Scholar 

    5.
    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of earth’s ecosystems. Science 277, 494–499 (1997).
    CAS  Google Scholar 

    6.
    Wittmer, H. U., McLellan, B. N., Serrouya, R. & Apps, C. D. Changes in landscape composition influence the decline of a threatened woodland caribou population. J. Anim. Ecol. 76, 568–579 (2007).
    PubMed  Google Scholar 

    7.
    Irwin, L. L., Rock, D. F. & Miller, G. P. Stand structures used by Northern spotted owls in managed forests. J. Raptor Res. 34, 175–186 (2000).
    Google Scholar 

    8.
    Leblond, M., Dussault, C. & Ouellet, J. P. Avoidance of roads by large herbivores and its relation to disturbance intensity. J. Zool. 289, 32–40 (2013).
    Google Scholar 

    9.
    Dickie, M., Serrouya, R., McNay, R. S. & Boutin, S. Faster and farther: Wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253–263 (2017).
    Google Scholar 

    10.
    Finnegan, L. et al. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears. PLoS ONE https://doi.org/10.1371/journal.pone.0195480 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542 (2011).
    Google Scholar 

    12.
    Sorensen, T. et al. Determining sustainable levels of cumulative effects for boreal caribou. J. Wildl. Manage. 72, 900–905 (2008).
    Google Scholar 

    13.
    Dabros, A., Pyper, M. & Castilla, G. Seismic lines in the boreal and arctic ecoystems of North America: Environmental impacts, challenges and opportunities. Environ. Rev. 26, 214–229 (2018).
    Google Scholar 

    14.
    Lee, P. & Boutin, S. Persistence and developmental transition of wide seismic lines in the western Boreal Plains of Canada. J. Environ. Manage. 78, 240–250 (2006).
    PubMed  Google Scholar 

    15.
    Pigeon, K. E. et al. Toward the restoration of caribou habitat: Understanding factors associated with human motorized use of legacy seismic lines. Environ. Manage. 58, 821–832 (2016).
    ADS  PubMed  Google Scholar 

    16.
    Schneider, R. R., Hauer, G., Adamowicz, W. L. V. & Boutin, S. Triage for conserving populations of threatened species: The case of woodland caribou in Alberta. Biol. Conserv. 143, 1603–1611 (2010).
    Google Scholar 

    17.
    Environment Canada. Recovery strategy for the woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada. in Species at Risk Act Recovery Strategy Series 138 (Environment Canada, 2012).

    18.
    Environment Canada. Recovery strategy for the woodland Caribou, southern mountain population (Rangifer tarandus caribou) in Canada. in Species at Risk Act Recovery Strategy Series. Environment 103 (Environment Canada, Ottawa, 2014).

    19.
    Dickie, M., Serrouya, R., DeMars, C., Cranston, J. & Boutin, S. Evaluating functional recovery of habitat for threatened woodland caribou. Ecosphere 8, e01936. https://doi.org/10.1002/ecs2.1936 (2017).
    Article  Google Scholar 

    20.
    DeMars, C. A. & Boutin, S. Nowhere to hide: Effects of linear features on predator-prey dynamics in a large mammal system. J. Anim. Ecol. 87, 274–284 (2018).
    PubMed  Google Scholar 

    21.
    Johnson, C. J., Ehlers, L. P. W. & Seip, D. R. Witnessing extinction—Cumulative impacts across landscapes and the future loss of an evolutionarily significant unit of woodland caribou in Canada. Biol. Conserv. 186, 176–186 (2015).
    Google Scholar 

    22.
    Fisher, J. T. & Burton, A. C. Widlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328 (2018).
    Google Scholar 

    23.
    Ehlers, L. P. W., Johnson, C. J. & Seip, D. R. Evaluating the influence of anthropogenic landscape change on Wolf distribution: Implications for woodland caribou. Ecosphere 7, e01600. https://doi.org/10.1002/ecs2.1600 (2016).
    Article  Google Scholar 

    24.
    Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J.-P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landscape. Ecol. 25, 419–433 (2010).
    Google Scholar 

    25.
    Mysterud, A. & Ims, R. A. Functional responses in habitat use: Availability influences relative use in trade-off situations. Ecology 79, 1435–1441 (1998).
    Google Scholar 

    26.
    Lima, S. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–639 (1990).
    Google Scholar 

    27.
    Hebblewhite, M., Merrill, E. H. & McDonald, T. L. Spatial decomposition of predation risk using resource selection functions: An example in a wolf-elk predator-prey system. Oikos 111, 101–111 (2005).
    Google Scholar 

    28.
    Latham, A. D. M., Latham, M. C., Boyce, M. & Boutin, S. Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol. Appl. 21, 2854–2865 (2011).
    Google Scholar 

    29.
    Visscher, D. R. & Merrill, E. H. Temporal dynamics of forage succession for elk at two scale: Implications of forest management. For. Ecol. Manage. 257, 96–106 (2009).
    Google Scholar 

    30.
    McLoughlin, P., Dunford, J. & Boutin, S. Relating predation mortality to broad-scale habitat selection. J. Anim. Ecol. 74, 701–707 (2005).
    Google Scholar 

    31.
    Ausband, D. E. et al. Surveying predicted rendezvous sites to monitor gray wolf populations. J. Wildlife. Manage. 71, 1043–1049 (2010).
    Google Scholar 

    32.
    Corns, I. & Annas, R. M. Field Guide to Forest Ecosystems of West-Central Alberta 251 (Canadian Forest Service Northern Forestry Centre, Edmonton, 1986).
    Google Scholar 

    33.
    van Rensen, C. K., Nielsen, S. E., White, B., Vinge, T. & Lieffers, V. J. Natural regeneration of forest vegetation on legacy seismic lines in boreal habitats in Alberta’s oil sands region. Biol. Conserv. 184, 127–135 (2015).
    Google Scholar 

    34.
    Swanson, M. E. et al. The forgotten stage of forest succession: Early-successional ecoystems on forest sites. Front. Ecol. Environ. 9, 117–125 (2010).
    Google Scholar 

    35.
    Melin, M., Matala, J., Mehtätalo, L., Pusenius, J. & Packalen, P. Ecological dimensions of airborne laser scanning—Analyzing the role of forest structure in moose habitat use within a year. Remote Sens. Environ. 173, 238–247 (2015).
    ADS  Google Scholar 

    36.
    Roffler, G. H., Gregovich, D. P. & Larson, K. R. Resource selection by coastal wolves reveals the seasonal importance of seral forest and suitable prey habitat. For. Ecol. Manage. 409, 190–201 (2018).
    Google Scholar 

    37.
    DeCesare, N. J. et al. Transcending scale dependence in identifying habitat with resource selection functions. Ecology 22, 1068–1083 (2012).
    Google Scholar 

    38.
    Neufeld, L. M. Spatial Dynamics of Wolves and Woodland Caribou in an Industrial Forest Landscape in West-Central Alberta 155 (University of Alberta, Alberta, 2006).
    Google Scholar 

    39.
    Webb, N., Hebblewhite, M. & Merrill, E. Statistical methods for identifying wolf kill sites using global positioning system locations. J. Wildl. Manage. 72, 1798–1804 (2008).
    Google Scholar 

    40.
    Jedrzejewski, W., Schmidt, K., Theuerkauf, J., Jedrzejewska, B. & Okarma, H. Daily movements and territory use by radio-collared wolves (Canis lupus) in Bialowieza primeval forest in Poland. Can. J. Zool. 79, 1993–2004 (2001).
    Google Scholar 

    41.
    Mech, L. D. & Boitani, L. Wolves 472 (University of Chicago Press, Chicago, Behaviour, Ecology and Conservation, 2003).
    Google Scholar 

    42.
    Jenness, J. Topographic position index (tpi_jen.avx) extension for ArcView 3.x v. 1.3a https://www.jennessent.com/arcview/tpi.htm (2006). Accessed 15 June 2014.

    43.
    Gessler, P. E., Chadwick, O. A., Chamran, F., Althouse, L. & Holmes, K. Modeling soil–landscape and ecosystem properties using terrain attributes. Soil Sci. Soc. Am. J. 64, 2046 (2000).
    ADS  CAS  Google Scholar 

    44.
    Franklin, S. E., Peddle, D. R. & Dechka, J. A. Evidential reasoning with Landsat TM, DEM and GIS data for landcover classification in support of grizzly bear habitat mapping. Int. J. Remote Sens. 23, 4633–4652 (2002).
    ADS  Google Scholar 

    45.
    McDermid, G. J. et al. Remote sensing and forest inventory for wildlife habitat assessment. For. Ecol. Manage. 257, 2262–2269 (2009).
    Google Scholar 

    46.
    Environmental Systems Research Institute [ESRI] ArcGIS Desktop: Release 10. Redlands, California, (2015).

    47.
    MacNearney, D. et al. Heading for the hills? Evaluating spatial distribution of woodland caribou in response to a growing anthropogenic disturbance footprint. Ecol. Evol. 6, 6484–6509 (2016).
    PubMed  PubMed Central  Google Scholar 

    48.
    Nielsen, S. E., Cranston, J., Stenhouse, G. B. & Street, M. Identification of priority areas for grizzly bear conservation and recovery in Alberta, Canada. J. Conserv. Plan. 5, 38–60 (2009).
    Google Scholar 

    49.
    White, B. et al. Using the cartographic depth-to-water index to locate small streams and associated wet areas across landscapes. Can. Water Resour. J. 37, 333–347 (2012).
    Google Scholar 

    50.
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).
    ADS  CAS  PubMed  Google Scholar 

    51.
    Beyer, H. Geospatial Modelling Environment (version 0.7.2.1) https://www.spatialecology.com/gme (2012). Accessed 16 April 2016.

    52.
    Murtaugh, P. Simplicity and complexity in ecological data analysis. Ecology 88, 56–62 (2007).
    PubMed  Google Scholar 

    53.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inferences: A Practical Information-Theoretic Approach 2nd edn. (Springer, New Yirk, 2002).
    Google Scholar 

    54.
    Takahata, C., Nielsen, S. E., Takii, A. & Izumiyama, S. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape. PLoS ONE 9, e86181. https://doi.org/10.1371/journal.pone.0086181 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    55.
    Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. & Frair, J. Correlation and studies of habitat selection: Problem, red herring, or opportunity?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2233–2244 (2010).
    PubMed  PubMed Central  Google Scholar 

    56.
    Muff, S., Signer, J. & Fieberg, J. Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80–92 (2020).
    PubMed  Google Scholar 

    57.
    Fieberg, J., Rieger, R. H., Zicus, M. C. & Schildcrout, J. S. Regression modelling of correlated data in ecology: Subject-specific and population averaged response patterns. J. Appl. Ecol. 46, 1018–1025 (2009).
    Google Scholar 

    58.
    Glenn, E. M., Hansen, M. C. & Anthony, R. G. Spotted owl home-range and habitat use in young forests of western Oregon. J. Wildl. Manage. 68, 33–50 (2004).
    Google Scholar 

    59.
    Sawyer, H., Nielson, R. M., Lindzey, F. & McDonald, L. L. Winter habitat selection of mule deer before and during development of a natural gas field. J. Wildl. Manage. 70, 396–403 (2006).
    Google Scholar 

    60.
    Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals—Statistical Design and Analysis for Field Studies 2nd edn. (Kluwer Acadamic Publishers, Berlin, 2002).
    Google Scholar 

    61.
    Hebblewhite, M., Percy, M. & Merrill, E. H. Are all global positioning system collars created equal? Correcting habitat-induced bias using three brands in the central Canadian Rockies. J. Wildl. Manage. 71, 2026–2033 (2007).
    Google Scholar 

    62.
    Frair, J. L. et al. Removing GPS collar bias in habitat selection studies. J. Appl. Ecol. 41, 201–212 (2004).
    Google Scholar 

    63.
    Lumley, T. Survey: Analysis of complex survey samples. R packages version 3.30 (2014).

    64.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2015). Accessed 12 Dec 2016.

    65.
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Google Scholar 

    66.
    Matthiopoulos, J., Hebblewhite, M., Aarts, G. & Fieberg, J. Generalized functional responses for species distributions. Ecology 92, 583–589 (2011).
    PubMed  Google Scholar 

    67.
    McKenzie, H. W., Merrill, E. H., Spiteri, R. J. & Lewis, M. A. How linear features alter predator movement and the functional response. Interface Focus. 2, 205–216 (2012).
    PubMed  PubMed Central  Google Scholar 

    68.
    Droghini, A. & Boutin, S. Snow conditions influence grey wolf (Canis lupus) travel paths: The effect of human-created linear features. Can. J. Zool. 96, 39–47 (2017).
    Google Scholar 

    69.
    García-Marmolejo, G., Chapa-Vargas, L., Weber, M. & Huber-Sannwald, E. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico. Glob. Ecol. Conserv. 3, 744–755 (2015).
    Google Scholar 

    70.
    DeCesare, N. J. Separating spatial search and efficiency rates as components of predation risk. Proc. R. Soc. B 279, 4626–4633 (2012).
    PubMed  Google Scholar  More

  • in

    Gainers and losers of surface and terrestrial water resources in China during 1989–2016

    Surface water frequency maps and surface water areas during 1989–2016
    Surface water frequencies (FW) of individual pixels in 2016 varied substantially across China (Fig. 1a). There were 1444 million pixels with annual surface water frequency of FW  > 0 in 2016, amounting to ~1.3 × 106 km2 maximum SWA in 2016. Based on the surface water frequency in a year, a water pixel was defined as year-long surface water (FW ≥ 0.75), seasonal surface water (0.05 ≤ FW  More

  • in

    A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth

    1.
    Greening C, Constant P, Hards K, Morales SE, Oakeshott JG, Russell RJ, et al. Atmospheric hydrogen scavenging: from enzymes to ecosystems. Appl Environ Microbiol. 2015;81:1190–9.
    PubMed  PubMed Central  Google Scholar 
    2.
    Ehhalt DH, Rohrer F. The tropospheric cycle of H2: a critical review. Tellus B. 2009;61:500–35.
    Google Scholar 

    3.
    Constant P, Poissant L, Villemur R. Tropospheric H2 budget and the response of its soil uptake under the changing environment. Sci Total Environ. 2009;407:1809–23.
    CAS  PubMed  Google Scholar 

    4.
    Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.
    CAS  PubMed  Google Scholar 

    5.
    Kanno M, Constant P, Tamaki H, Kamagata Y. Detection and isolation of plant-associated bacteria scavenging atmospheric molecular hydrogen. Environ Microbiol. 2015;18:2495–506.
    Google Scholar 

    6.
    Kessler AJ, Chen Y-J, Waite DW, Hutchinson T, Koh S, Popa ME, et al. Bacterial fermentation and respiration processes are uncoupled in permeable sediments. Nat Microbiol. 2019;4:1014–23.
    CAS  PubMed  Google Scholar 

    7.
    Khdhiri M, Hesse L, Popa ME, Quiza L, Lalonde I, Meredith LK, et al. Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition. Soil Biol Biochem. 2015;85:1–9.
    CAS  Google Scholar 

    8.
    Lynch RC, Darcy JL, Kane NC, Nemergut DR, Schmidt SK. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert actinobacteria. Front Microbiol. 2014;5:698.
    PubMed  PubMed Central  Google Scholar 

    9.
    Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.
    CAS  PubMed  Google Scholar 

    10.
    Constant P, Chowdhury SP, Pratscher J, Conrad R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ Microbiol. 2010;12:821–9.
    CAS  PubMed  Google Scholar 

    11.
    Constant P, Chowdhury SP, Hesse L, Pratscher J, Conrad R. Genome data mining and soil survey for the novel Group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria. Appl Environ Microbiol. 2011;77:6027–35.
    CAS  PubMed  PubMed Central  Google Scholar 

    12.
    Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci USA. 2014;111:4257–61.
    CAS  PubMed  Google Scholar 

    13.
    Schäfer C, Friedrich B, Lenz O. Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase in Ralstonia eutropha. Appl Environ Microbiol. 2013;79:5137–45.
    PubMed  PubMed Central  Google Scholar 

    14.
    Constant P, Poissant L, Villemur R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. ISME J. 2008;2:1066–76.
    CAS  PubMed  Google Scholar 

    15.
    Meredith LK, Rao D, Bosak T, Klepac-Ceraj V, Tada KR, Hansel CM, et al. Consumption of atmospheric hydrogen during the life cycle of soil-dwelling actinobacteria. Environ Microbiol Rep. 2014;6:226–38.
    CAS  PubMed  Google Scholar 

    16.
    Greening C, Carere CR, Rushton-Green R, Harold LK, Hards K, Taylor MC, et al. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci USA. 2015;112:10497–502.
    CAS  PubMed  Google Scholar 

    17.
    Myers MR, King GM. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.
    CAS  PubMed  Google Scholar 

    18.
    Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay S, Gleadow RM, et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019;13:1801–13.
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Schmitz RA, Pol A, Mohammadi SS, Hogendoorn C, van Gelder AH, Jetten MSM, et al. The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H2 with a high-affinity, membrane-associated [NiFe] hydrogenase. ISME J 2020;14:1223–32.
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Berney M, Cook GM. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One. 2010;5:e8614.
    PubMed  PubMed Central  Google Scholar 

    21.
    Berney M, Greening C, Conrad R, Jacobs WR, Cook GM. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc Natl Acad Sci USA. 2014;111:11479–84.
    CAS  PubMed  Google Scholar 

    22.
    Cordero PRF, Grinter R, Hards K, Cryle MJ, Warr CG, Cook GM, et al. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. J Biol Chem. 2019;294:18980–91.
    CAS  PubMed  Google Scholar 

    23.
    Greening C, Villas-Bôas SG, Robson JR, Berney M, Cook GM. The growth and survival of Mycobacterium smegmatis is enhanced by co-metabolism of atmospheric H2. PLoS One. 2014;9:e103034.
    PubMed  PubMed Central  Google Scholar 

    24.
    Liot Q, Constant P. Breathing air to save energy – new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis. Microbiologyopen. 2016;5:47–59.
    CAS  PubMed  Google Scholar 

    25.
    Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212.
    PubMed  PubMed Central  Google Scholar 

    26.
    Papen H, Kentemich T, Schmülling T, Bothe H. Hydrogenase activities in cyanobacteria. Biochimie. 1986;68:121–32.
    CAS  PubMed  Google Scholar 

    27.
    Houchins JP, Burris RH. Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp. Strain 7120. J Bacteriol. 1981;146:209–14.
    CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev. 2002;66:1–20.
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Bothe H, Schmitz O, Yates MG, Newton WE. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev. 2010;74:529–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lucker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052–4.
    CAS  PubMed  Google Scholar 

    31.
    Drobner E, Huber H, Stetter KO. Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl Environ Microbiol. 1990;56:2922–3.
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Berney M, Greening C, Hards K, Collins D, Cook GM. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environ Microbiol. 2014;16:318–30.
    CAS  PubMed  Google Scholar 

    33.
    Islam ZF, Cordero PRF, Greening C. Putative iron-sulfur proteins are required for hydrogen consumption and enhance survival of mycobacteria. Front Microbiol. 2019;10:2749.
    PubMed  PubMed Central  Google Scholar 

    34.
    Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, et al. Characterization of the human heart mitochondrial proteome. Nat Biotechnol. 2003;21:281–6.
    CAS  PubMed  Google Scholar 

    35.
    Park D, Kim H, Yoon S. Nitrous oxide reduction by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27. Appl Environ Microbiol. 2017;83:e00502–17.
    PubMed  PubMed Central  Google Scholar 

    36.
    Razzell WE, Trussell PC. Isolation and properties of an iron-oxidizing Thiobacillus. J Bacteriol. 1963;85:595–603.
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, et al. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics. 2008;9:597.
    PubMed  PubMed Central  Google Scholar 

    38.
    Hanada S, Hiraishi A, Shimada K, Matsuura K. Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Evol Microbiol. 1995;45:676–81.
    CAS  Google Scholar 

    39.
    Otaki H, Everroad RC, Matsuura K, Haruta S. Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium. Microbes Environ. 2009;27:293–9.
    Google Scholar 

    40.
    Kawai S, Nishihara A, Matsuura K, Haruta S. Hydrogen-dependent autotrophic growth in phototrophic and chemolithotrophic cultures of thermophilic bacteria, Chloroflexus aggregans and Chloroflexus aurantiacus, isolated from Nakabusa hot springs. FEMS Microbiol Lett. 2019;366:fnz122.
    CAS  PubMed  Google Scholar 

    41.
    Heinhorst S, Baker SH, Johnson DR, Davies PS, Cannon GC, Shively JM. Two copies of form I RuBisCO genes in Acidithiobacillus ferrooxidans ATCC 23270. Curr Microbiol. 2002;45:115–17.
    CAS  PubMed  Google Scholar 

    42.
    Klatt CG, Bryant DA, Ward DM. Comparative genomics provides evidence for the 3-hydroxypropionate autotrophic pathway in filamentous anoxygenic phototrophic bacteria and in hot spring microbial mats. Environ Microbiol. 2007;9:2067–78.
    CAS  PubMed  Google Scholar 

    43.
    Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, et al. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol. 2003;53:1155–63.
    CAS  PubMed  Google Scholar 

    44.
    Zammit CM, Mutch LA, Watling HR, Watkin ELJ. The recovery of nucleic acid from biomining and acid mine drainage microorganisms. Hydrometallurgy. 2011;108:87–92.
    CAS  Google Scholar 

    45.
    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;6:1925–7.
    Google Scholar 

    49.
    Kawasumi T, Igarashi Y, Kodama T, Minoda Y. Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Evol Microbiol. 1984;34:5–10.
    CAS  Google Scholar 

    50.
    Klenk H-P, Lapidus A, Chertkov O, Copeland A, Del Rio TG, Nolan M, et al. Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2 T) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacilla. Stand Genom Sci. 2011;5:121.
    CAS  Google Scholar 

    51.
    Hogendoorn C, Pol A, Picone N, Cremers G, van Alen TA, Gagliano AL, et al. Hydrogen and carbon monoxide-utilizing Kyrpidia spormannii species from Pantelleria Island, Italy. Front Microbiol. 2020;11:951.
    PubMed  PubMed Central  Google Scholar 

    52.
    Hedrich S, Johnson DB. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria. FEMS Microbiol Lett. 2013;349:40–45.
    CAS  PubMed  Google Scholar 

    53.
    Grostern A, Alvarez-Cohen L. RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol. 2013;15:3040–53.
    CAS  PubMed  Google Scholar 

    54.
    Auernik KS, Kelly RM. Physiological versatility of the extremely thermoacidophilic archaeon Metallosphaera sedula supported by transcriptomic analysis of heterotrophic, autotrophic, and mixotrophic growth. Appl Environ Microbiol. 2010;76:931–5.
    CAS  PubMed  Google Scholar 

    55.
    Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 2017;11:945–58.
    CAS  PubMed  Google Scholar 

    56.
    Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad Sci USA. 2019;116:8515–24.
    CAS  PubMed  Google Scholar 

    57.
    Conrad R. Soil microorganisms oxidizing atmospheric trace gases (CH4, CO, H2, NO). Indian J Microbiol. 1999;39:193–203.
    Google Scholar 

    58.
    Spear JR, Walker JJ, McCollom TM, Pace NR. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci USA. 2005;102:2555–60.
    CAS  PubMed  Google Scholar 

    59.
    Ferrera I, Sanchez O. Insights into microbial diversity in wastewater treatment systems: How far have we come? Biotechnol Adv. 2016;34:790–802.
    CAS  PubMed  Google Scholar 

    60.
    Mielke RE, Pace DL, Porter T, Southam G. A critical stage in the formation of acid mine drainage: Colonization of pyrite by Acidithiobacillus ferrooxidans under pH‐neutral conditions. Geobiology. 2003;1:81–90.
    CAS  Google Scholar 

    61.
    Constant P, Chowdhury SP, Hesse L, Conrad R. Co-localization of atmospheric H2 oxidation activity and high affinity H2-oxidizing bacteria in non-axenic soil and sterile soil amended with Streptomyces sp. PCB7. Soil Biol Biochem. 2011;43:1888–93.
    CAS  Google Scholar 

    62.
    Cordero PRF, Bayly K, Leung PM, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Eichner MJ, Basu S, Gledhill M, de Beer D, Shaked Y. Hydrogen dynamics in Trichodesmium colonies and their potential role in mineral iron acquisition. Front Microbiol. 2019;10:1565.
    PubMed  PubMed Central  Google Scholar 

    64.
    Houchins JP, Burris RH. Comparative characterization of two distinct hydrogenases from Anabaena sp. strain 7120. J Bacteriol. 1981;146:215–21.
    CAS  PubMed  PubMed Central  Google Scholar 

    65.
    Greening C, Grinter R, Chiri E. Uncovering the metabolic strategies of the dormant microbial majority: towards integrative approaches. mSystems. 2019;4:e00107–19.
    CAS  PubMed  PubMed Central  Google Scholar  More