1.
Dyck, A. J. & Sumaila, U. R. Economic impact of ocean fish populations in the global fishery. J. Bioeconomics 12, 227â243 (2010).
Google ScholarÂ
2.
Golden, C. D. et al. Nutrition: fall in fish catch threatens human health. Nature 534, 317â320 (2016).
Google ScholarÂ
3.
Teh, L. C. L. & Pauly, D. Who brings in the fish? The relative contribution of small-scale and industrial fisheries to food security in Southeast Asia. Front. Mar. Sci. 5, 44 (2018).
Google ScholarÂ
4.
Gillett, R. Fisheries in the Economies of Pacific Island Countries and Territories (Pacific Community, 2016).
5.
Kawarazuka, N. & BĂ©nĂ©, C. Linking small-scale fisheries and aquaculture to household nutritional security: an overview. Food Secur. 2, 343â357 (2010).
Google ScholarÂ
6.
Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8â23 (2014).
Google ScholarÂ
7.
Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64â76 (2009).
Google ScholarÂ
8.
Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95â98 (2019).
Google ScholarÂ
9.
Kennedy, G., Nantel, G. & Shetty, P. The scourge of âhidden hungerâ: global dimensions of micronutrient deficiencies. Food Nutr. Agric. 32, 8â16 (2003).
Google ScholarÂ
10.
Teh, L. S. L., Teh, L. C. L. & Sumaila, U. R. Quantifying the overlooked socio-economic contribution of small-scale fisheries in Sabah, Malaysia. Fish. Res. 110, 450â458 (2011).
Google ScholarÂ
11.
Pauly, D. & Zeller, D. Sea Around Us Concepts, Design and Data. Sea Around Us http://www.seaaroundus.org (2015).
12.
Béné, C. Small-scale fisheries: assessing their contribution to rural livelihoods in developing countries. FAO Fish. Circ. 1008, 46 (2006).
Google ScholarÂ
13.
Williams, P. & Reid, C. Overview of tuna fisheries in the western and central Pacific Ocean, including economic conditions-2017. WCPFC Sci. Comm. SC14-2018/GN-WP-01 66pp (2018).
14.
Pacific Islands Forum Fisheries Agency (FFA). Tuna Development Indicators 2016. https://ffa.int/system/files/FFA Tuna Development Indicators Brochure.pdf (Pacific Islands Forum Fisheries Agency, 2017).
15.
Teh, L. C. L. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77â88 (2013).
Google ScholarÂ
16.
Jentoft, S. Life above waterâessays on human experiences of small-scale fisheries. TBTI Global Book Series 1 (2019).
17.
Kurien, J. SSF guidelines: the beauty of the small. Samudra Rep. 72, 30â36 (2016).
Google ScholarÂ
18.
Teh, L. S. L., Teh, L. C. L. & Sumaila, U. R. A global estimate of the number of coral reef fishers. PLoS One 8, e65397 (2013).
Google ScholarÂ
19.
Alberti, M. et al. Research on coupled human and natural systems (CHANS): approach, challenges, and strategies. Bull. Ecol. Soc. Am. 92, 218â228 (2011).
Google ScholarÂ
20.
Liu, J., Hull, V., Luo, J., Yang, W. & Liu, W. Multiple telecouplings and their complex interrelationships. Ecol. Soc. 20, 44 (2015).
Google ScholarÂ
21.
Cinner, J. & McClanahan, T. R. Socioeconomic factors that lead to overfishing in small-scale coral reef fisheries of Papua New Guinea. Environ. Conserv. 33, 73â80 (2006).
Google ScholarÂ
22.
McClanahan, T. R., Hicks, C. C. & Darling, E. S. Malthusian overfishing and efforts to overcome it on Kenyan coral reefs. Ecol. Appl. 18, 1516â1529 (2008).
Google ScholarÂ
23.
Gardner, T. A., CĂŽtĂ©, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958â960 (2003).
Google ScholarÂ
24.
Islam, M. S. & Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar. Pollut. Bull. 48, 624â649 (2004).
Google ScholarÂ
25.
Hodgson, G. & Dixon, J. A. Logging Versus Fisheries and Tourism in Palawan: An Environmental and Economic Analysis (East-West Environment and Policy Institute, 1988).
26.
Hodgson, G. & Dixon, J. A. in Resources & Environment in Asiaâs Marine Sector (ed. Marsh, J. B.) 421â446 (CRC, 1992).
27.
CĂŽtĂ©, I. M., Green, S. J. & Hixon, M. A. Predatory fish invaders: insights from Indo-Pacific lionfish in the western Atlantic and Caribbean. Biol. Conserv. 164, 50â61 (2013).
Google ScholarÂ
28.
Lehodey, P., Senina, I., Calmettes, B., Hampton, J. & Nicol, S. Modelling the impact of climate change on Pacific skipjack tuna population and fisheries. Clim. Change 119, 95â109 (2013).
Google ScholarÂ
29.
Asch, R. G., Cheung, W. W. L. & Reygondeau, G. Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Mar. Policy 88, 285â294 (2018).
Google ScholarÂ
30.
Jones, M. C. & Cheung, W. W. L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 72, 741â752 (2015).
Google ScholarÂ
31.
Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).
Google ScholarÂ
32.
Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117â123 (2018).
Google ScholarÂ
33.
Barange, M. et al. Impacts of Climate Change on Fisheries and Aquaculture. Synthesis of Current Knowledge, Adaptation and Mitigation Options (Food and Agriculture Organization of the United Nations, 2018).
34.
Pörtner, H.-O. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Intergovernmental Panel on Climate Change (IPCC), 2019).
35.
Bindoff, N. L. et al. Detection and Attribution of Climate Change: From Global to Regional (Intergovernmental Panel on Climate Change (IPCC), 2013).
36.
Bindoff, N. L., Cheung, W. W. L. & Kairo, J. G. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 5 (eds Pörtner, H.-O. et al.) (Intergovernmental Panel on Climate Change (IPCC), 2019).
37.
Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences 12, 3301â3320 (2015).
Google ScholarÂ
38.
Frölicher, T. L., Rodgers, K. B., Stock, C. A. & Cheung, W. W. L. Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Glob. Biogeochem. Cycles 30, 1224â1243 (2016).
Google ScholarÂ
39.
Pörtner, H.-O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 6 (eds Field, C. B. et al.) 411â484 (Cambridge Univ. Press, 2014).
40.
Abram, N. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 1 (Intergovernmental Panel on Climate Change (IPCC), 2019).
41.
Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137â142 (2020).
Google ScholarÂ
42.
Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911â930 (2015).
Google ScholarÂ
43.
Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming. Science 363, 128â129 (2019).
Google ScholarÂ
44.
Intergovernmental Panel on Climate Change (IPCC). in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (ed. Pörtner, H.-O. et al) (Intergovernmental Panel on Climate Change (IPCC), 2019).
45.
Xie, S.-P. et al. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 23, 966â986 (2010).
Google ScholarÂ
46.
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227â238 (2016).
Google ScholarÂ
47.
Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).
Google ScholarÂ
48.
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306â312 (2019).
Google ScholarÂ
49.
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373â377 (2017).
Google ScholarÂ
50.
Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
Google ScholarÂ
51.
Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-020-0068-4 (2020).
Article Google ScholarÂ
52.
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360â364 (2018).
Google ScholarÂ
53.
Collins, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 6 (eds Pörtner, H.-O. et al.) (Intergovernmental Panel on Climate Change (IPCC), 2019).
54.
Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111â116 (2014).
Google ScholarÂ
55.
Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Oceans 117, C04031 (2012).
Google ScholarÂ
56.
Ganachaud, A. S. et al. in Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change (eds Bell, J. D., Johnson, J. E. & Hobday, A. J.) 101â187 (Secretariat of the Pacific Community, 2011).
57.
Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655â658 (2008).
Google ScholarÂ
58.
Ito, T., Minobe, S., Long, M. C. & Deutsch, C. Upper ocean O2 trends: 1958â2015. Geophys. Res. Lett. 44, 4214â4223 (2017).
Google ScholarÂ
59.
Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335â339 (2017).
Google ScholarÂ
60.
Helm, K. P., Bindoff, N. L. & Church, J. A. Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett. 38, L23602 (2011).
Google ScholarÂ
61.
Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225â6245 (2013).
Google ScholarÂ
62.
Cocco, V. et al. Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences 10, 1849â1868 (2013).
Google ScholarÂ
63.
Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169â192 (2009).
Google ScholarÂ
64.
Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).
Google ScholarÂ
65.
Burger, F. A., Frölicher, T. L. & John, J. G. Increase in ocean acidity variability and extremes under increasing atmospheric CO2. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-22 (2020).
66.
Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 4 (eds Pörtner, H.-O. et al.) (Intergovernmental Panel on Climate Change (IPCC), 2019).
67.
Moon, J. H., Song, Y. T., Bromirski, P. D. & Miller, A. J. Multidecadal regional sea level shifts in the Pacific over 1958â2008. J. Geophys. Res. Oceans 118, 7024â7035 (2013).
Google ScholarÂ
68.
Han, W. et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 43, 1357â1379 (2014).
Google ScholarÂ
69.
Thompson, P. R. & Mitchum, G. T. Coherent sea level variability on the North Atlantic western boundary. J. Geophys. Res. Oceans 119, 5676â5689 (2014).
Google ScholarÂ
70.
England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222â227 (2014).
Google ScholarÂ
71.
Hamlington, B. D. et al. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nat. Clim. Change 4, 782â785 (2014).
Google ScholarÂ
72.
McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888â892 (2014).
Google ScholarÂ
73.
Le Borgne, R. et al. in Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change (eds Bell, J. D., Johnson, J. E. & Hobday, A. J.) 189â249 (Secretariat of the Pacific Community, 2011).
74.
Steinacher, M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7, 979â1005 (2010).
Google ScholarÂ
75.
Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955â6984 (2015).
Google ScholarÂ
76.
Stock, C. A., Dunne, J. P. & John, J. G. Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences 11, 7125â7135 (2014).
Google ScholarÂ
77.
Cheung, W. W. L. & Pauly, D. in Explaining Ocean Warming: Causes, Scale, Effects and Consequences (eds Laffoley D. & Baxter J. M.) 239â253 (IUCN, 2016).
78.
Hoegh-Guldberg, O. et al. The Coral Triangle and Climate Change: Ecosystems, People and Societies at Risk (WWF Australia, 2009).
79.
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80â83 (2018).
Google ScholarÂ
80.
Hoegh-Guldberg, O. et al. in Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (Intergovernmental Panel on Climate Change (IPCC), 2018).
81.
Li, X., Bellerby, R., Craft, C. & Widney, S. E. Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts 1, 1â15 (2018).
Google ScholarÂ
82.
Pörtner, H.-O. et al. Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont. Shelf Res. 21, 1975â1997 (2001).
Google ScholarÂ
83.
Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690â692 (2008).
Google ScholarÂ
84.
Pauly, D. & Cheung, W. W. L. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Change Biol. 24, e15âe26 (2018).
Google ScholarÂ
85.
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239â1242 (2013).
Google ScholarÂ
86.
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919â925 (2013).
Google ScholarÂ
87.
Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008â1018 (2011).
Google ScholarÂ
88.
Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912â1915 (2005).
Google ScholarÂ
89.
Cheung, W. W. L., Lam, V. W. Y. & Pauly, D. in Modelling Present and Climate-shifted Distribution of Marine Fishes and Invertebrates 5â50 (Fisheries Centre, 2008).
90.
Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235â251 (2009).
Google ScholarÂ
91.
Mueter, F. J. & Litzow, M. A. Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol. Appl. 18, 309â320 (2008).
Google ScholarÂ
92.
Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029â1039 (2008).
Google ScholarÂ
93.
Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881â893 (2010).
Google ScholarÂ
94.
Pauly, D. & Kinne, O. Gasping Fish and Panting Squids: Oxygen, Temperature and the Growth of Water-Breathing Animals Vol. 22 (International Ecology Institute, 2010).
95.
Mackenzie, C. L. et al. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. PLoS One 9, e86764 (2014).
Google ScholarÂ
96.
Rosas-Navarro, A., Langer, G. & Ziveri, P. Temperature affects the morphology and calcification of Emiliania huxleyi strains. Biogeosciences 13, 2913â2926 (2016).
Google ScholarÂ
97.
Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685â2696 (2017).
Google ScholarÂ
98.
Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788â12793 (2009).
Google ScholarÂ
99.
Baudron, A. R., Needle, C. L. & Marshall, C. T. Implications of a warming North Sea for the growth of haddock Melanogrammus aeglefinus. J. Fish. Biol. 78, 1874â1889 (2011).
Google ScholarÂ
100.
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401â406 (2011).
Google ScholarÂ
101.
Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 254â258 (2013).
Google ScholarÂ
102.
Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907â12912 (2019).
Google ScholarÂ
103.
Cheung, W. W. L. et al. Structural uncertainty in projecting global fisheries catches under climate change. Ecol. Model. 325, 57â66 (2016).
Google ScholarÂ
104.
Food and Agriculture Organization of the United Nations (FAO) The State of World Fisheries and Aquaculture 2018. Meeting the Sustainable Development Goals (Food and Agriculture Organization of the United Nations (FAO), 2018).
105.
Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7, 10244 (2016).
Google ScholarÂ
106.
Swartz, W., Sumaila, R. & Watson, R. Global ex-vessel fish price database revisited: a new approach for estimating âmissingâ prices. Environ. Resour. Econ. 56, 467â480 (2013).
Google ScholarÂ
107.
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860â863 (1998).
Google ScholarÂ
108.
Worm, B. et al. Rebuilding global fisheries. Science 325, 578â585 (2009).
Google ScholarÂ
109.
Costello, C. et al. Status and solutions for the worldâs unassessed fisheries. Science 338, 517â520 (2012).
Google ScholarÂ
110.
Garcia, S. M. & Rosenberg, A. A. Food security and marine capture fisheries: characteristics, trends, drivers and future perspectives. Philos. Trans. R. Soc. B Biol. Sci. 365, 2869â2880 (2010).
Google ScholarÂ
111.
Anderson, S. C., Branch, T. A., Ricard, D. & Lotze, H. K. Assessing global marine fishery status with a revised dynamic catch-based method and stock-assessment reference points. ICES J. Mar. Sci. 69, 1491â1500 (2012).
Google ScholarÂ
112.
Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125â5129 (2016).
Google ScholarÂ
113.
Thorson, J. T., Branch, T. A. & Jensen, O. P. Using model-based inference to evaluate global fisheries status from landings, location, and life history data. Can. J. Fish. Aquat. Sci. 69, 645â655 (2012).
Google ScholarÂ
114.
McOwen, C. J., Cheung, W. W. L., Rykaczewski, R. R., Watson, R. A. & Wood, L. J. Is fisheries production within large marine ecosystems determined by bottom-up or top-down forcing? Fish Fish. 16, 623â632 (2015).
Google ScholarÂ
115.
Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl Acad. Sci. USA 114, E1441âE1449 (2017).
Google ScholarÂ
116.
Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979â983 (2019).
Google ScholarÂ
117.
Cheung, W. W. L., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365â368 (2013).
Google ScholarÂ
118.
Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5 C global warming target. Science 354, 1591â1594 (2016).
Google ScholarÂ
119.
Cheung, W. W. L., Jones, M. C., Reygondeau, G. & Frölicher, T. L. Opportunities for climate-risk reduction through effective fisheries management. Glob. Change Biol. 24, 5149â5163 (2018).
Google ScholarÂ
120.
Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D. & Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449â456 (2011).
Google ScholarÂ
121.
Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173â196 (2009).
Google ScholarÂ
122.
Bell, J. D. et al. Adaptations to maintain the contributions of small-scale fisheries to food security in the Pacific Islands. Mar. Policy 88, 303â314 (2018).
Google ScholarÂ
123.
The Pacific Community (SPC) Implications of Climate-driven Redistribution of Tuna for Pacific Island Economies (The Pacific Community (SPC), 2019).
124.
Blasiak, R. et al. Climate change and marine fisheries: least developed countries top global index of vulnerability. PLoS One 12, e0179632 (2017).
Google ScholarÂ
125.
Srinivasan, U., Cheung, W., Watson, R. & Sumaila, U. Food security implications of global marine catch losses due to overfishing. J. Bioeconomics 12, 183â200 (2010).
Google ScholarÂ
126.
Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C. & Cheung, W. W. L. Projecting global mariculture diversity under climate change. Glob. Change Biol. 26, 2134â2148 (2020).
Google ScholarÂ
127.
Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745â1750 (2018).
Google ScholarÂ
128.
Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 7 (eds Field, C. B. et al.) 485â533 (Cambridge Univ. Press, 2014).
129.
Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).
Google ScholarÂ
130.
Smith, M. D. et al. Sustainability and global seafood. Science 327, 784â786 (2010).
Google ScholarÂ
131.
Asche, F., Bellemare, M. F., Roheim, C., Smith, M. D. & Tveteras, S. Fair enough? Food security and the international trade of seafood. World Dev. 67, 151â160 (2015).
Google ScholarÂ
132.
Kurien, J. Responsible Fish Trade and Food Security (Food and Agriculture Organization of the United Nations (FAO), 2005).
133.
Watson, R. A., Nichols, R., Lam, V. W. Y. & Sumaila, U. R. Global seafood trade flows and developing economies: Insights from linking trade and production. Mar. Policy 82, 41â49 (2017).
Google ScholarÂ
134.
Food and Agriculture Organization of the United Nations (FAO) FAO Yearbook of Fishery and Aquaculture Statistics (Food and Agriculture Organization of the United Nations (FAO), 2017).
135.
Gorez, B. West Africa: fishmeal, mealy deal. Samudra Rep. 78, 33â35 (2018).
Google ScholarÂ
136.
Corten, A., Braham, C.-B. & Sadegh, A. S. The development of a fishmeal industry in Mauritania and its impact on the regional stocks of sardinella and other small pelagics in Northwest Africa. Fish. Res. 186, 328â336 (2017).
Google ScholarÂ
137.
Merino, G., Barange, M., Mullon, C. & Rodwell, L. Impacts of global environmental change and aquaculture expansion on marine ecosystems. Glob. Environ. Change 20, 586â596 (2010).
Google ScholarÂ
138.
Naylor, R. L. et al. Feeding aquaculture in an era of finite resources. Proc. Natl Acad. Sci. USA 106, 15103â15110 (2009).
Google ScholarÂ
139.
Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837â844 (2017).
Google ScholarÂ
140.
New, M. B. & Wijkström, U. N. Use of fishmeal and fish oil in aquafeeds: further thoughts on the fishmeal trap. FAO Fisheries Circular No. 975 (2002).
141.
Jackson, A. & Shepherd, J. in Advancing the Aquaculture Agenda: Workshop Proceedings 331â343 (OECD, 2010).
142.
Kristofersson, D. & Anderson, J. L. Is there a relationship between fisheries and farming? Interdependence of fisheries, animal production and aquaculture. Mar. Policy 30, 721â725 (2006).
Google ScholarÂ
143.
Deutsch, L. et al. Feeding aquaculture growth through globalization: Exploitation of marine ecosystems for fishmeal. Glob. Environ. Change 17, 238â249 (2007).
Google ScholarÂ
144.
Mullon, C. et al. Modeling the global fishmeal and fish oil markets. Nat. Resour. Model. 22, 564â609 (2009).
Google ScholarÂ
145.
Merino, G. et al. Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Glob. Environ. Change 22, 795â806 (2012).
Google ScholarÂ
146.
Liu, Y. & Sumaila, U. R. Can farmed salmon production keep growing? Mar. Policy 32, 497â501 (2008).
Google ScholarÂ
147.
Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189â1191 (2018).
Google ScholarÂ
148.
Jacobs, A. Chinaâs appetite pushes fisheries to the brink. New York Times (30 Apr 2017).
149.
Tickler, D., Meeuwig, J. J., Palomares, M.-L., Pauly, D. & Zeller, D. Far from home: Distance patterns of global fishing fleets. Sci. Adv. 4, eaar3279 (2018).
Google ScholarÂ
150.
Campling, L. Trade politics and the global production of canned tuna. Mar. Policy 69, 220â228 (2016).
Google ScholarÂ
151.
Eurofish. Overview of the Spanish fisheries and aquaculture sector. https://www.eurofish.dk/spain (2019).
152.
Arrizabalaga, H. et al. Global habitat preferences of commercially valuable tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 113, 102â112 (2015).
Google ScholarÂ
153.
Erauskin-Extramiana, M. et al. Large-scale distribution of tuna species in a warming ocean. Glob. Change Biol. 25, 2043â2060 (2019).
Google ScholarÂ
154.
FFA and SPC. Future of Fisheries: A Regional Roadmap for Sustainable Pacific Fisheries (FFA and SPC, 2015).
155.
Heltberg, R., Siegel, P. B. & Jorgensen, S. L. Addressing human vulnerability to climate change: toward a âno-regretsâ approach. Glob. Environ. Change 19, 89â99 (2009).
Google ScholarÂ
156.
Brouwer, S. et al. The Western and Central Pacific Tuna Fishery: 2018 Overview and Status of Stocks (Pacific Community, 2019).
157.
Bell, J. D. et al. Diversifying the use of tuna to improve food security and public health in Pacific Island countries and territories. Mar. Policy 51, 584â591 (2015).
Google ScholarÂ
158.
Senina, I. et al. Predicting skipjack tuna dynamics and effects of climate change using SEAPODYM with fishing and tagging data. Scientific Committee Twelfth Regular Session, Western and Central Pacific Fisheries Commission 1â70 (2016).
159.
Robinson, M. Climate Justice: Hope, Resilience, and the Fight for a Sustainable Future (Bloomsbury Publishing, 2018).
160.
United Nations. Transforming Our World: the 2030 agenda for sustainable development https://doi.org/10.1891/9780826190123.ap02 (2015).
161.
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Google ScholarÂ
162.
Singh, G. G. et al. Climate impacts on the ocean are making the Sustainable Development Goals a moving target travelling away from us. People Nat. 1, 317â330 (2019).
Google ScholarÂ
163.
Guillaumont, P. Assessing the economic vulnerability of small island developing states and the least developed countries. J. Dev. Stud. 46, 828â854 (2010).
Google ScholarÂ
164.
Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS One 11, e0154735 (2016).
Google ScholarÂ
165.
Moosavi, S. Ecological coastal protection: pathways to living shorelines. Procedia Eng. 196, 930â938 (2017).
Google ScholarÂ
166.
Mutombo, K. & Ălçer, A. A three-tier framework for port infrastructure adaptation to climate change: balancing breadth and depth of knowledge. Ocean Yearb. Online 30, 564â577 (2016).
Google ScholarÂ
167.
Forzieri, G. et al. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Change 48, 97â107 (2018).
Google ScholarÂ
168.
Beiler, M. O., Marroquin, L. & McNeil, S. State-of-the-practice assessment of climate change adaptation practices across metropolitan planning organizations pre-and post-Hurricane Sandy. Transp. Res. Part A Policy Pract. 88, 163â174 (2016).
Google ScholarÂ
169.
Thorne, J. H. et al. The impact of climate change uncertainty on Californiaâs vegetation and adaptation management. Ecosphere 8, e02021 (2017).
Google ScholarÂ
170.
Ziervogel, G. & Ericksen, P. J. Adapting to climate change to sustain food security. Wiley Interdiscip. Rev. Clim. Change 1, 525â540 (2010).
Google ScholarÂ
171.
Heenan, A. et al. A climate-informed, ecosystem approach to fisheries management. Mar. Policy 57, 182â192 (2015).
Google ScholarÂ
172.
Poulain, F., Himes-Cornell, A. & Shelton, C. in Impacts of Climate Change on Fisheries and Aquaculture. Synthesis of Current Knowledge, Adaptation and Mitigation Options FAO Fisheries and Aquaculture Technical Paper 627 Ch. 25 535â566 (Food and Agriculture Organization of the United Nations (FAO), 2018).
173.
Bell, J. et al. Impacts and effects of ocean warming on the contributions of fisheries and aquaculture to food security (IUCN, 2016).
174.
Cochrane, K. L., Andrew, N. L. & Parma, A. M. Primary fisheries management: a minimum requirement for provision of sustainable human benefits in small-scale fisheries. Fish Fish. 12, 275â288 (2011).
Google ScholarÂ
175.
Free, C. M. et al. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS One 15, e0224347 (2020).
Google ScholarÂ
176.
Armitage, D. Adaptive capacity and community-based natural resource management. Environ. Manage. 35, 703â715 (2005).
Google ScholarÂ
177.
MECM/MFMR. Solomon Islands National Plan of Action. Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security (Solomon Islands Government, 2010).
178.
Bell, J. D. et al. Optimising the use of nearshore fish aggregating devices for food security in the Pacific Islands. Mar. Policy 56, 98â105 (2015).
Google ScholarÂ
179.
Tilley, A. et al. Nearshore fish aggregating devices show positive outcomes for sustainable fisheries development in Timor-Leste. Front. Mar. Sci. 6, 487 (2019).
Google ScholarÂ
180.
Mills, D. J. et al. Developing Timor-Lesteâs Coastal Economy: Assessing Potential Climate Change Impacts and Adaptation Options. Final Report to the Australian Government Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security National Initiative (WorldFish, 2013).
181.
Pomeroy, R. S. Community-based and co-management institutions for sustainable coastal fisheries management in Southeast Asia. Ocean Coast. Manag. 27, 143â162 (1995).
Google ScholarÂ
182.
Foale, S., Cohen, P., Januchowski-Hartley, S., Wenger, A. & Macintyre, M. Tenure and taboos: origins and implications for fisheries in the Pacific. Fish Fish. 12, 357â369 (2011).
Google ScholarÂ
183.
Tompkins, E. L. & Adger, W. N. Does adaptive management of natural resources enhance resilience to climate change? Ecol. Soc. 9, 10 (2004).
Google ScholarÂ
184.
Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421â448 (2012).
Google ScholarÂ
185.
Cohen, P. J. & Foale, S. J. Sustaining small-scale fisheries with periodically harvested marine reserves. Mar. Policy 37, 278â287 (2013).
Google ScholarÂ
186.
Carvalho, P. G. et al. Optimized fishing through periodically harvested closures. J. Appl. Ecol. 56, 1927â1936 (2019).
Google ScholarÂ
187.
Cinner, J. E. et al. Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PLoS One 8, e74321 (2013).
Google ScholarÂ
188.
Ford, J. D. et al. Including indigenous knowledge and experience in IPCC assessment reports. Nat. Clim. Change 6, 349â353 (2016).
Google ScholarÂ
189.
McNamara, K. E. & Westoby, R. Local knowledge and climate change adaptation on Erub Island, Torres Strait. Local Environ. 16, 887â901 (2011).
Google ScholarÂ
190.
Miller, D. D., Ota, Y., Sumaila, U. R., Cisneros-Montemayor, A. M. & Cheung, W. W. L. Adaptation strategies to climate change in marine systems. Glob. Change Biol. 24, e1âe14 (2018).
Google ScholarÂ
191.
Weeks, R. & Jupiter, S. D. Adaptive comanagement of a marine protected area network in Fiji. Conserv. Biol. 27, 1234â1244 (2013).
Google ScholarÂ
192.
Ogier, E. M. et al. Fisheries management approaches as platforms for climate change adaptation: comparing theory and practice in Australian fisheries. Mar. Policy 71, 82â93 (2016).
Google ScholarÂ
193.
Bruno, J. F., CĂŽtĂ©, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why donât marine protected areas improve reef resilience? Annu. Rev. Mar. Sci. 11, 307â334 (2019).
Google ScholarÂ
194.
Oremus, K. L. et al. Governance challenges for tropical nations losing fish species due to climate change. Nat. Sustain. 3, 277â280 (2020).
Google ScholarÂ
195.
Mendenhall, E. et al. Climate change increases the risk of fisheries conflict. Mar. Policy 117, 103954 (2020).
Google ScholarÂ
196.
Moore, B. R. et al. Defining the stock structures of key commercial tunas in the Pacific Ocean I: current knowledge and main uncertainties. Fish. Res. https://doi.org/10.1016/j.fishres.2020.105525 (2020).
197.
Moore, B. R. et al. Defining the stock structures of key commercial tunas in the Pacific Ocean II: Sampling considerations and future directions. Fish. Res. https://doi.org/10.1016/j.fishres.2020.105524 (2020).
198.
Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).
Google ScholarÂ
199.
Sumaila, U. R. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, eaau3855 (2019).
Google ScholarÂ
200.
Gallo, N. D., Victor, D. G. & Levin, L. A. Ocean commitments under the Paris Agreement. Nat. Clim. Change 7, 833â838 (2017).
Google ScholarÂ
201.
Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552â560 (2011).
Google ScholarÂ
202.
Herr, D. & Landis, E. Coastal Blue Carbon Ecosystems. Opportunities for Nationally Determined Contributions. Policy Brief (IUCN, 2016).
203.
Goldstein, A. et al. Protecting irrecoverable carbon in Earthâs ecosystems. Nat. Clim. Change 10, 287â295 (2020).
Google ScholarÂ
204.
Pendleton, L. et al. Estimating global âblue carbonâ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7, e43542 (2012).
Google ScholarÂ
205.
Zarate-Barrera, T. G. & Maldonado, J. H. Valuing blue carbon: carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS One 10, e0126627 (2015).
Google ScholarÂ
206.
Wylie, L., Sutton-Grier, A. E. & Moore, A. Keys to successful blue carbon projects: lessons learned from global case studies. Mar. Policy 65, 76â84 (2016).
Google ScholarÂ
207.
Locatelli, T. et al. Turning the tide: how blue carbon and payments for ecosystem services (PES) might help save mangrove forests. Ambio 43, 981â995 (2014).
Google ScholarÂ
208.
Barbesgaard, M. C. Blue carbon: ocean grabbing in disguise? Transnational Institute https://www.tni.org/en/publication/blue-carbon-ocean-grabbing-in-disguise (2016).
209.
Sharp, M. The benefits of fish aggregating devices in the Pacific. SPC Fish. Newsl. 135, 28â36 (2011).
Google ScholarÂ
210.
Grafton, R. Q. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606â615 (2010).
Google ScholarÂ
211.
Kurien, J. Voluntary guidelines for securing sustainable small-scale fisheries in the context of food security and poverty eradication: summary (Food and Agriculture Organization of the United Nations (FAO), 2015).
212.
Castree, N. et al. Changing the intellectual climate. Nat. Clim. Change 4, 763â768 (2014).
Google ScholarÂ
213.
Allison, E. H. & Bassett, H. R. Climate change in the oceans: Human impacts and responses. Science 350, 778â782 (2015).
Google ScholarÂ
214.
Bobrowsky, P., Cronin, V. S., Di Capua, G., Kieffer, S. W. & Peppoloni, S. 11. The emerging field of geoethics. Sci. Integr. Ethics Geosci. 73, 175 (2017).
Google ScholarÂ
215.
Bohle, M. One realm: thinking geoethically and guiding small-scale fisheries? Eur. J. Dev. Res. 31, 253â270 (2019).
Google ScholarÂ
216.
UNEP-WCMC, WorldFish Centre, WRI & TNC. Global distribution of warm-water coral reefs, compiled from multiple sources including the Millennium Coral Reef Mapping Project. Version 4.0. Includes contributions from IMaRS-USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. (2001) (UN Environment World Conservation Monitoring Centre, 2018).
217.
UNEP-WCMC & Short, F. T. Global distribution of seagrasses (version 5.0). Fourth update to the data layer used in Green and Short (2003) (UNEP World Conservation Monitoring Centre, 2017).
218.
Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data (version 1.3, updated by UNEP-WCMC). Glob. Ecol. Biogeogr. 20, 154â159 (2011).
Google ScholarÂ
219.
Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).
Google ScholarÂ
220.
Lehodey, P. et al. in Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change (eds Bell, J. D., Johnson, J. E. & Hobday, A. J.) 433â492 (Secretariat of the Pacific Community, 2011).
221.
Lehodey, P. et al. Modelling the impact of climate change including ocean acidification on Pacific yellowfin tuna. Scientific Committee Thirteenth Regular Session, Western and Central Pacific Fisheries Commission 1â25 (2017).
222.
Senina, I. et al. Impact of climate change on tropical Pacific tuna and their fisheries in Pacific Islands waters and high seas areas. Scientific Committee Fourteenth Regular Session, Western and Central Pacific Fisheries Commission 1â43 (2018).
223.
Bell, J. D. et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. Clim. Change 3, 591â599 (2013).
Google ScholarÂ
224.
Bell, J. D. et al. in Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change (eds Bell, J. D., Johnson, J. E. & Hobday, A. J.) 733â801 (Secretariat of the Pacific Community, 2011).
225.
Bell, J. D. et al. in Impacts of Climate Change on Fisheries and Aquaculture. Synthesis of Current Knowledge, Adaptation and Mitigation Options FAO Fisheries and Aquaculture Technical Paper 627 Ch. 14 305â324 (Food and Agriculture Organization of the United Nations (FAO), 2018).
226.
Scott, F., Scott, R., Yao, N., Pilling, G. M. & Hampton, J. Considering uncertainty when testing and monitoring WCPFC harvest strategies. Scientific Committee Fifteenth Regular Session, Western Central Pacific Fisheries Commission 1â23 (2019).
227.
Pratchett, M. S. et al. Vulnerabilty of coastal fisheries in the tropical Pacific to climate change (eds Bell, J. D., Johnson, J. E. & Hobday, A. J.) in Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change 493â576 (Secretariat of the Pacific Community, 2011).
228.
Gasalla, M. A., Abdallah, P. R. & Lemos, D. in Climate Change Impacts on Fisheries and Aquaculture. A Global Analysis. Vol. 1 (eds Philips, B. F. & PĂ©rez-RamĂrez, M.) 455â477 (Wiley, 2017).
229.
Popova, E. et al. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots. Glob. Change Biol. 22, 2038â2053 (2016).
Google ScholarÂ
230.
Schulz, C. et al. Physical, ecological and human dimensions of environmental change in Brazilâs Pantanal wetland: synthesis and research agenda. Sci. Total Environ. 687, 1011â1027 (2019).
Google ScholarÂ
231.
Barros, D. F. & Albernaz, A. L. M. Possible impacts of climate change on wetlands and its biota in the Brazilian Amazon. Braz. J. Biol. 74, 810â820 (2014).
Google ScholarÂ
232.
Johnson, J. E. et al. Climate change adaptation: vulnerability and challenges facing small-scale fisheries on small islands. FAO Fish. Aquacult. Proc. 61, 65â80 (2019).
Google ScholarÂ
233.
Martins, I. M. & Gasalla, M. A. Perceptions of climate and ocean change impacting the resources and livelihood of small-scale fishers in the South Brazil Bight. Clim. Change 147, 441â456 (2018).
Google ScholarÂ
234.
Martins, I. M., Gammage, L. C., Jarre, A. & Gasalla, M. A. Different but similar? Exploring vulnerability to climate change in Brazilian and South African small-scale fishing communities. Hum. Ecol. 47, 515â526 (2019).
Google ScholarÂ
235.
Gasalla, M. A. Six decades of change in the South Brazil Bight Ecosystem in Proc. 3rd GLOBEC Open Science Meeting: From Ecosystem Function to Ecosystem Prediction (2008).
236.
Dahlet, L. I., Downey-Breedt, N., Arce, G., Sauer, W. H. H. & Gasalla, M. A. Comparative study of skipjack tuna Katsuwonus pelamis (Scombridae) fishery stocks from the South Atlantic and western Indian oceans. Sci. Mar. 83, 19â30 (2019).
Google ScholarÂ
237.
AraĂșjo, F. G., Teixeira, T. P., Guedes, A. P. P., de Azevedo, M. C. C. & Pessanha, A. L. M. Shifts in the abundance and distribution of shallow water fish fauna on the southeastern Brazilian coast: a response to climate change. Hydrobiologia 814, 205â218 (2018).
Google ScholarÂ
238.
Gasalla, M. A. An overview of climate change effects in South Brazil Bight fisheries in Proc. 6th World Fisheries Congress (2012).
239.
Santos, L. C. M., Gasalla, M. A., Dahdouh-Guebas, F. & Bitencourt, M. D. Socio-ecological assessment for environmental planning in coastal fishery areas: a case study in Brazilian mangroves. Ocean Coast. Manag. 138, 60â69 (2017).
Google ScholarÂ
240.
Zou, D. & Gao, K. in Seaweeds and Their Role in Globally Changing Environments (eds Seckbach, J., Einav, R. & Israel, A.) 115â126 (Springer, 2010).
241.
Ramaglia, A. C., de Castro, L. M. & Augusto, A. Effects of ocean acidification and salinity variations on the physiology of osmoregulating and osmoconforming crustaceans. J. Comp. Physiol. B 188, 729â738 (2018).
Google ScholarÂ
242.
Freduah, G., Fidelman, P. & Smith, T. F. The impacts of environmental and socio-economic stressors on small scale fisheries and livelihoods of fishers in Ghana. Appl. Geogr. 89, 1â11 (2017).
Google ScholarÂ
243.
Bunce, M., Rosendo, S. & Brown, K. Perceptions of climate change, multiple stressors and livelihoods on marginal African coasts. Environ. Dev. Sustain. 12, 407â440 (2010).
Google ScholarÂ
244.
Burke, L.M., Reytar, K., Spalding, M. & Perry, A. Reefs at risk revisited: World Resources Institute. (2017).
245.
Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280â1284 (2002).
Google ScholarÂ
246.
Lam, V. W. Y., Cheung, W. W. L., Swartz, W. & Sumaila, U. R. Climate change impacts on fisheries in West Africa: implications for economic, food and nutritional security. Afr. J. Mar. Sci. 34, 103â117 (2012).
Google ScholarÂ
247.
Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211â216 (2014).
Google ScholarÂ
248.
Blanchard, J. L. et al. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 367, 2979â2989 (2012).
Google ScholarÂ
249.
Belhabib, D., Lam, V. W. Y. & Cheung, W. W. L. Overview of West African fisheries under climate change: impacts, vulnerabilities and adaptive responses of the artisanal and industrial sectors. Mar. Policy 71, 15â28 (2016).
Google Scholar More