More stories

  • in

    Amazon windthrow disturbances are likely to increase with storm frequency under global warming

    Identification of windthrow eventsLandsat images from January 1st 2018 to December 31st 2019 were filtered on 20% or less of cloud coverage, and only the least cloudy image at each location was selected to make an image composite covering the entire Amazon region. In total, 395 least cloudy Landsat 8 images within the Amazon boundary during 2018–2019 were selected and displayed in false color (red: shortwave infrared band, green: near-infrared band, blue: red band) on Google Earth Engine for windthrow events identification (Supplementary Fig. 6). Hollow regions on Supplementary Fig. 6 (2.8% of the total area of the Amazon region) indicated that no clear images with 1 year before the identification were displayed in bright green colors (due to reflectance in near-infrared band from the pioneer species). “Old” windthrows account for ~80% of total identified windthrows, and they were verified using historical Landsat images that can go as far as 1984 (when Landsat 5 was launched). “Old” windthrows were validated once they were found with clear shape and more distinguish color on the historical Landsat images (Supplementary Fig. 7c). 10–15% of “old” windthrows without fan-shape were eliminated from this study because it was hard to identify if they were windthrows or other types of forest disturbance. The minimum size of windthrows identified in this study was 25,000 m2. This process generated the location and rough size of 1012 visible (both “old” and “new”) windthrow scars with fan-shaped patch, scattered small disturbance pixels tails, and an area of over 25,000 m2 (Supplementary Fig. 8). Based on a gap-size probability distribution function that simulates the entire disturbance gradient from all sizes of windthrows19, the proportion of total tree mortality represented by large windthrows ( >25,000 m2) identified in this study is 0.5–1.1%.Among 1012 visual identified windthrows, the occurrence year of 125 windthrows were identified using Landsat 5,7,8, MODIS, and TRMM dataset (Supplementary Table 2), and 38 windthrows from these 125 windthrows had clear remote sensing evidence to validate their occurring date (Supplementary Table 3). It is difficult to get the accurate year and date of occurrence of all identified windthrows. Previous studies showed that windthrows in the northwestern Amazon took ~20 years to recover to 90% of “pre-disturbance” biomass from all damage classes while forests in the central Amazon took ~40 years to recover40. The biomass recovery depends on the windthrow severity and time since disturbance33. Based on the recovery time (20–40 years) and the time of windthrow identification (2018–2019), we estimated that these 1012 windthrows most likely occurred within 30 years (between 1990 and 2019), and the estimated occurrence period was validated using the range of the occurrence year (1986–2019) of 125 windthrow cases.Windthrow density dataThe windthrow density shown in Fig. 1b was generated using 1012 windthrow points in QGIS45. We created a 2.5° by 2.5° grid map, and the windthrow density was calculated by counting the number of windthrows in each grid. These values were then converted to a density with units of counts of windthrows per 10,000 km2. We chose 2.5 degrees to aggregate the data to make sure that over 50% of grids have at least 1 windthrow event while still preserving the spatial distribution of mean afternoon CAPE over the Amazon. The contour lines displayed in Fig. 1c were generated using the “Contour” function on the windthrow density map in QGIS.Meteorological dataTo derive the correlation between windthrow density and meteorological variables, we used ERA 5 global reanalysis hourly CAPE on single levels from 1979 to present at 0.25° × 0.25° resolution provided by the European Center for Medium-Range Weather Forecasts. ERA 5 CAPE was computed by considering parcels of air departing at different pressure levels below the 35 kPa level, with maximum–unstable algorithm under a pseudo-adiabatic assumption46. Afternoon mean CAPE map was calculated as the average of hourly CAPE data from 17:00–23:00 UTC (13:00–19:00 local time in Amazon) over all the months between 1990 and 2019. We chose to average CAPE over 30 years because these windthrow events occurred in these 30 years and calculating the average can help capture the overall spatial pattern of CAPE and minimize the influence of interannual climate variability on windthrow events.To project future windthrow density in the Amazon for the end of the 21st century, we analyzed meteorological output from 10 ESMs that participated in CMIP6 (https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6). The models used in this research were listed in Supplementary Table 1. We extracted daily surface temperature (tas), specific humidity (huss), surface pressure (ps), temperature (ta) from these models to calculate daily nondilute, near-surface-based, adiabatic CAPE. CMIP6 CAPE was calculated by considering the buoyancy of a near-surface parcel lifted adiabatically to a series of discrete pressure levels (100 kPa to 10 kPa in increments of 10 kPa). CMIP6 CAPE is calculated as follows:$${CAPE}=mathop{sum }limits_{i=1}^{10}{{{{{rm{d}}}}}}p{{{{{rm{H}}}}}}({b}_{i}){b}_{i}$$
    (1)
    Where ({{{{{rm{d}}}}}}p) = 10 kPa, H is the Heaviside unit step function, and ({b}_{i}=frac{1}{{rho }_{i}}-frac{1}{{rho }_{e,i}}), with ({rho }_{i}) being the parcel density at pressure level i and ({rho }_{e,i}) being the environmental density at pressure level i.The future projections in our analysis were based on SSP585, a high-emission scenario with high radiative forcing by the end of the century. We calculated mean daily CAPE over 1990–2015 as current CMIP6 CAPE and mean daily CAPE over 2070–2099 as future CMIP6 CAPE. Since different approaches were used to calculate ERA 5 CAPE and CMIP6 CAPE47, the absolute CAPE values of the two datasets are not comparable. Therefore, for each ESM model, we scaled future CMIP6 CAPE by multiplying, grid-wise, the delta CAPE generated from an individual model in CMIP6 with the ERA 5 current mean afternoon CAPE (Fig. 1c) as follows:$${delta},{CAPE}=(CAPE_{CMIP6_{,future}},-CAPE_{CMIP6_current})/CAPE_{CMIP6_current}$$
    (2)
    $$CAP{E}_{scaled_CMIP6_,future}=(1+delta,CAPE)times CAP{E}_{ERA5}{_}_{current}$$
    (3)
    The delta CAPE indicated the projected increase in CAPE from 1990–2015 to the end of the 21st century. In this way, a scaled CMIP6 future CAPE map was generated for each model, and an ensemble-mean scaled CMIP6 CAPE map over 10 ESM models can be found in Supplementary Fig. 5b. The scaled CMIP6 future CAPE values were within plausible range compared to the ERA 5 current mean afternoon CAPE values, and both current and future CAPE maps were used to produce the increase in area with high CAPE values ( >1023 J kg−1) in Table 1. However, it is worth noting that the scaling with relative changes in delta CAPE (%) is more sensitive to CMIP historical baseline conditions than absolute changes of CAPE (J kg−1), which will likely introduce a larger scaled spread (min/max CAPE changes).The increase in area with storm-favorable environments was calculated as follows:$$Increase=(are{a}_{future}-area_{current})/are{a}_{current}$$
    (4)
    Where areacurrent is the area of CAPE  > 1023 J kg−1 for current ERA 5 CAPE, and areafuture is the area of CAPE  > 1023 J kg−1 for the scaled CMIP6 future CAPE.A model of windthrow densityWe developed a model based on the relationship between satellite-derived windthrow density and mean afternoon CAPE from the ERA 5 reanalysis over 1990–2019. The non-parametric model provides a look-up table of windthrow density as a function of CAPE within the range of observations. Counts of observed windthrow events and Amazon’s area were separately binned by CAPE using the same bins, producing two histograms of CAPE. The ratio of the former to the latter gives the density of windthrow events (windthrow events per area) as a function of CAPE. To avoid noise at the tails of the histograms, the six CAPE bins were chosen such that each bin would have about the same number of windthrow events (either 168 or 169). The total number of windthrow events is given by the sum over bins of the product of windthrow density and area. The minimum and maximum of current ERA 5 mean afternoon CAPE was 42 and 1549. The minimum CAPE value of the first bin was extended to 0 and the maximum CAPE value of the last bin was extended to infinity under the assumption that the windthrow density is similar for neighboring values. Based on the windthrow density and CAPE relationship used in the model, it is the increase in the area with high CAPE that then leads to an increase in the number of windthrow events.It is worth noting that the future windthrow density produced by models may be underestimated because the windthrow observations within regions with high CAPE were incomplete due to high cloud coverage. Moreover, the non-parametric model makes the conservative assumption that the windthrow density does not increase at higher, as-yet unobserved values of mean afternoon CAPE.Future projections of windthrow densityWe combined the non-parametric relationship (Fig. 2a) with the future CAPE map generated from the ten CMIP6 ESMs (adjusted by ERA 5 mean CAPE values) to estimate the changes in windthrow density at the end of the 21st century. We estimated uncertainties for windthrow density projections by combining information about model-to-model differences. The analysis yielded a set of 10 estimates. The overall windthrow density increase and uncertainty were estimated using the mean increase and one standard deviation from the ensemble of the 10 models. More

  • in

    Underrated past herbivore densities could lead to misoriented sustainability policies

    Pausas, J. G. & Bond, W. J. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. Evol. 35, 767–775 (2020).
    Google Scholar 
    Manzano, P. & White, S. R. Intensifying pastoralism may not reduce greenhouse gas emissions: wildlife-dominated landscape scenarios as a baseline in life cycle analysis. Clim. Res. 77, 91–97 (2019).
    Google Scholar 
    Röös, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Change 47, 1–12 (2017).
    Google Scholar 
    Harwatt, H., Ripple, W. J., Chaudhary, A., Betts, M. G. & Hayek, M. N. Scientists call for renewed Paris pledges to transform agriculture. Lancet Planet. Health 4, E9–E10 (2020).
    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS 

    Google Scholar 
    Barnosky, A. D. Megafauna biomass trade-off as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008).CAS 

    Google Scholar 
    Smith, F. A. et al. Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget. Proc. Natl Acad. Sci. USA 113, 874–879 (2016).CAS 

    Google Scholar 
    Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, F. S. III Mammoth steppe: a high-productivity phenomenon. Quat. Sci. Rev. 57, 26–45 (2012).
    Google Scholar 
    Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M. & Woodward, F. I. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348, 711–714 (1990).CAS 

    Google Scholar 
    Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).
    Google Scholar 
    Bond, W. J. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge (Oxford Univ. Press, 2019).Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).CAS 

    Google Scholar 
    Carpio Camargo, A. J. et al. Assessing red deer hunting management in the Iberian Peninsula: the importance of longitudinal studies. PeerJ 9, e10872 (2021).
    Google Scholar 
    Gordon, I. J., Manning, A. D., Navarro, L. M. & Rouet-Leduc, J. Domestic livestock and rewilding: are they mutually exclusive? Front. Sustain. Food Syst. 5, 550410 (2021).
    Google Scholar 
    Bond, W. J. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16, 261–266 (2005).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10.3. (Environmental Systems Research Institute, Redlands, CA, 2014).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 
    Fløjgaard, C., Pedersen, P. B. M., Sandom, C. J., Svenning, J.-C. & Ejrnæs, R. Exploring a natural baseline for large-herbivore biomass in ecological restoration. J. Appl. Ecol. 59, 18–24 (2022).
    Google Scholar 
    Haller, T. et al. Conflicts, security and marginalisation: institutional change of the pastoral commons in a ‘glocal’ world. Rev. Sci. Tech. Off. Int. Epiz. 35, 405–416 (2016).CAS 

    Google Scholar 
    Torrents-Ticó, M., Fernández-Llamazares, A., Burgas, D. & Cabeza, M. Convergences and divergences between scientific and Indigenous and Local Knowledge contribute to inform carnivore conservation. Ambio 50, 990–1002 (2021).
    Google Scholar 
    Griffith, E. F., Pius, L., Manzano, P. & Jost, C. C. COVID-19 in pastoral contexts in the greater Horn of Africa: implications and recommendations. Pastoralism 10, 1–12 (2020).
    Google Scholar 
    Schieltz, J. M. & Rubenstein, D. I. Evidence-based review: positive versus negative effects of livestock grazing on wildlife. What do we really know? Environ. Res. Lett. 11, 113003 (2016).
    Google Scholar 
    García Sanz, A. La ganadería española entre 1750–1865: los efectos de la reforma agraria liberal. Agricultura y Sociedad 72, 81–120 (1991).
    Google Scholar 
    San Miguel, A., Roig, S. & Perea, R. The pastures of Spain. Pastos 46, 6–39 (2016).
    Google Scholar 
    Epp, H. & Dyck, I. Early human-bison population interdependence in the Plains ecosystem. Gt. Plains Res. 12, 323–337 (2002).
    Google Scholar 
    Hristov, A. N. Historic, pre-European settlement, and present-day contribution of wild ruminants to enteric methane emissions in the United States. J. Anim. Sci 90, 1371–1375 (2012).CAS 

    Google Scholar 
    Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).CAS 

    Google Scholar 
    Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).
    Google Scholar 
    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).CAS 

    Google Scholar 
    Swette, B. & Lambin, E. F. Institutional changes drive land use transitions on rangelands: the case of grazing on public lands in the American West. Glob. Environ. Change 66, 102220 (2021).
    Google Scholar 
    Hayek, M. N., Harwatt, H., Ripple, W. J. & Mueller, N. D. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain. 4, 21–24 (2021).
    Google Scholar 
    Kristensen, J. A., Svenning, J.-C., Georgiou, K. & Mahli, Y. Can large herbivores enhance ecosystem carbon persistence? Trends Ecol. Evol. 37, 117–128 (2022).CAS 

    Google Scholar 
    Carmona, C. P., Azcárate, F. M., Oteros-Rozas, E., González, J. A. & Peco, B. Assessing the effects of seasonal grazing on holm oak regeneration: Implications for the conservation of Mediterranean dehesas. Biol. Cons. 159, 240–247 (2013).
    Google Scholar 
    García-Fernández, A. et al. Herbivore corridors sustain genetic footprint in plant populations: a case for Spanish drove roads. PeerJ 7, e7311 (2019).
    Google Scholar 
    Scoones, I. Living with Uncertainty: New Directions in Pastoralism Development in Africa, Ch. 1 (ITDG, 1995).Pardo, G., Casas, R., del Prado, A. & Manzano, P. Carbon footprint of transhumant sheep farms: accounting for natural baseline emissions in Mediterranean systems. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-1838904/v1 (2022).Odhiambo, M. & Manzano, P. Making Way. Developing National Legal and Policy Frameworks for Pastoral Mobility (FAO, 2022).del Prado, A., Manzano, P. & Pardo, G. The role of the European small ruminant dairy sector on stabilizing global temperatures: lessons from GWP* warming-equivalent emission metrics. J. Dairy Res. 8, 8–15 (2021).
    Google Scholar 
    Molina-Flores, B., Manzano-Baena, P. & Coulibaly, M. A. The Role of Livestock in Food Security, Poverty Reduction and Wealth Creation in West Africa (FAO, 2020).Lasanta, T., Cortijos-López, M., Errea, M. P., Khorchani, M. & Nadal-Romero, E. An environmental management experience to control wildfires in the mid-mountain Mediterranean area: shrub clearing to generate mosaic landscapes. Land Use Policy 118, 106147 (2022).
    Google Scholar 
    Torres-Miralles, M. et al. Contribution of High Nature Value farming systems to sustainable livestock production: a case from Finland. Sci. Total Environ. 839, 156267 (2022).CAS 

    Google Scholar 
    Manzano, P. et al. Towards a holistic understanding of pastoralism. One Earth 4, 651–665 (2021).
    Google Scholar 
    Karlsson, J. O., Parodi, A., Van Zanten, H. H., Hansson, P. A. & Röös, E. Halting European Union soybean feed imports favours ruminants over pigs and poultry. Nat. Food 2, 38–46 (2021).
    Google Scholar 
    Leroy, F. et al. Transformation of animal agriculture should be evidence-driven and respectful of livestock’s benefits and contextual aspects. Animal 16, 100644 (2022).
    Google Scholar 
    Jackson, R. D. Grazed perennial grasslands can match current beef production while contributing to climate mitigation and adaptation. Agric. Environ. Lett. 7, e20059 (2022).
    Google Scholar 
    Mahli, Y. et al. The role of large wild animals in climate change mitigation and adaptation. Curr. Biol. 32, R181–R196 (2022).
    Google Scholar 
    O’Bryan, C. J. et al. Unrecognized threat to global soil carbon by a widespread invasive species. Glob. Change Biol. 28, 877–882 (2022).
    Google Scholar 
    Karp, A. T., Faith, J. T., Marlon, J. R. & Straver, A. C. Global response of fire activity to late Quaternary grazer extinctions. Science 374, 1145–1148 (2021).CAS 

    Google Scholar 
    Ripple, W. J. et al. World scientists’ warning of a climate emergency 2021. Bioscience 71, 894–898 (2021).
    Google Scholar 
    Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).
    Google Scholar 
    Mann, D. H., Groves, P., Kunz, M. L., Reanier, R. E. & Gaglioti, B. V. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quat. Sci. Rev. 70, 91–108 (2013).
    Google Scholar 
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J. C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. Royal Soc. B 281, 20133254 (2014).
    Google Scholar 
    Fariña, R. A., Czerwonogora, A. & di Giacomo, M. Splendid oddness: revisiting the curious trophic relationships of South American Pleistocene mammals and their abundance. An. Acad. Bras. Ciênc. 86, 311–331 (2014).
    Google Scholar  More

  • in

    Reduced predation pressure as a potential driver of prey diversity and abundance in complex habitats

    Feit, B. et al. Landscape complexity promotes resilience of biological pest control to climate change. Proc. R. Soc. B. 288, 20210547 (2021).Article 

    Google Scholar 
    Hall-Spencer, J. M. & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 3, 197–206 (2019).Article 
    CAS 

    Google Scholar 
    Loke, L. H. L. & Todd, P. A. Structural complexity and component type increase intertidal biodiversity independently of area. Ecology 97, 383–393 (2016).Article 

    Google Scholar 
    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends in Ecol. Evol. 30, 673–684 (2015).Article 

    Google Scholar 
    Bullock, J. M. et al. Future restoration should enhance ecological complexity and emergent properties at multiple scales. Ecography ecog. 4, 05780 (2022).Ortega, J. C. G., Thomaz, S. M. & Bini, L. M. Experiments reveal that environmental heterogeneity increases species richness, but they are rarely designed to detect the underlying mechanisms. Oecologia 188, 11–22 (2018).Article 

    Google Scholar 
    Griffin, J. N., Byrnes, J. E. K. & Cardinale, B. J. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180–2187 (2013).Article 

    Google Scholar 
    Katano, I., Doi, H., Eriksson, B. K. & Hillebrand, H. A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. Oikos 124, 1427–1435 (2015).Article 

    Google Scholar 
    Loke, L. H. L., Ladle, R. J., Bouma, T. J. & Todd, P. A. Creating complex habitats for restoration and reconciliation. Ecol. Eng. 77, 307–313 (2015).Article 

    Google Scholar 
    Torres-Pulliza, D. et al. A geometric basis for surface habitat complexity and biodiversity. Nat. Ecol. Evol. 4, 1495–1501 (2020).Article 

    Google Scholar 
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Chesson, P. & Kuang, J. J. The interaction between predation and competition. Nature 456, 235–238 (2008).Article 
    CAS 

    Google Scholar 
    Terborgh, J. W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. USA 112, 11415–11422 (2015).Article 
    CAS 

    Google Scholar 
    Pringle, R. M. et al. Predator-induced collapse of niche structure and species coexistence. Nature 570, 58–64 (2019).Article 
    CAS 

    Google Scholar 
    Sandom, C. et al. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94, 1112–1122 (2013).Article 

    Google Scholar 
    Grabowski, J. H. Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs. Ecology 85, 995–1004 (2004).Article 

    Google Scholar 
    Crowder, L. B. & Cooper, W. E. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63, 1802 (1982).Article 

    Google Scholar 
    Almany, G. R. Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos 106, 275–284 (2004).Article 

    Google Scholar 
    Anderson, T. L. & Semlitsch, R. D. Top predators and habitat complexity alter an intraguild predation module in pond communities. J. Anim. Ecol. 85, 548–558 (2016).Article 

    Google Scholar 
    Brothers, C. A. & Blakeslee, A. M. H. Alien vs predator play hide and seek: How habitat complexity alters parasite mediated host survival. J. Exp. Mar. Biol. Ecol. 535, 151488 (2021).Article 

    Google Scholar 
    Horinouchi, M. et al. Seagrass habitat complexity does not always decrease foraging efficiencies of piscivorous fishes. Mar. Ecol. Prog. Ser. 377, 43–49 (2009).Article 

    Google Scholar 
    Ryer, C., Stoner, A. & Titgen, R. Behavioral mechanisms underlying the refuge value of benthic habitat structure for two flatfishes with differing anti-predator strategies. Mar. Ecol. Prog. Ser. 268, 231–243 (2004).Article 

    Google Scholar 
    Flynn, A. J. & Ritz, D. A. Effect of habitat complexity and predatory style on the capture success of fish feeding on aggregated prey. J. Mar. Biol. Ass. 79, 487–494 (1999).Article 

    Google Scholar 
    Klecka, J. & Boukal, D. S. The effect of habitat structure on prey mortality depends on predator and prey microhabitat use. Oecologia 176, 183–191 (2014).Article 

    Google Scholar 
    James, P. L. & Heck, K. L. The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitat. J. Exp. Mar. Biol. Ecol. 176, 187–200 (1994).Article 

    Google Scholar 
    Michel, M. J. & Adams, M. M. Differential effects of structural complexity on predator foraging behavior. Behav. Ecol. 20, 313–317 (2009).Article 

    Google Scholar 
    Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).Article 

    Google Scholar 
    Preisser, E. L., Orrock, J. L. & Schmitz, O. J. Predator hunting mode and habitat domain alter nonconsumptive effects in predator-prey interactions. Ecology 88, 2744–2751 (2007).Article 

    Google Scholar 
    Rypstra, A. L., Schmidt, J. M., Reif, B. D., DeVito, J. & Persons, M. H. Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. Oikos 116, 853–863 (2007).Article 

    Google Scholar 
    Janssen, A., Sabelis, M. W., Magalhães, S., Montserrat, M. & van der Hammen, T. Habitat structure affects intraguild predation. Ecology 88, 2713–2719 (2007).Article 

    Google Scholar 
    Grabowski, J. H., Hughes, A. R. & Kimbro, D. L. Habitat complexity influences cascading effects of multiple predators. Ecology 89, 3413–3422 (2008).Article 

    Google Scholar 
    Hughes, A. R. & Grabowski, J. H. Habitat context influences predator interference interactions and the strength of resource partitioning. Oecologia 149, 256–264 (2006).Article 

    Google Scholar 
    Bonett, D. G. Meta-analytic interval estimation for standardized and unstandardized mean differences. Psychol. Methods 14, 225–238 (2009).Article 

    Google Scholar 
    Huey, R. B. & Pianka, E. R. Ecological consequences of foraging mode. Ecology 62, 991–999 (1981).Article 

    Google Scholar 
    Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).Article 
    CAS 

    Google Scholar 
    Ritchie, E. G. & Johnson, C. N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12, 982–998 (2009).Article 

    Google Scholar 
    Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity: pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).Article 

    Google Scholar 
    Paxton, A. B. et al. Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one-size-fits-all. Front. Mar. Sci. 7, 282 (2020).Article 

    Google Scholar 
    Eggleston, D. B., Lipcius, R. N., Miller, D. L. & Coba-Cetina, L. Shelter scaling regulates survival of juvenile Caribbean spiny lobster Panulirus argus. Mar. Ecol. Prog. Ser. 62, 79–88 (1990).Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).Article 

    Google Scholar 
    Gontijo, L. M. Engineering natural enemy shelters to enhance conservation biological control in field crops. Biol. Control 130, 155–163 (2019).Article 

    Google Scholar  More

  • in

    A possible unique ecosystem in the endoglacial hypersaline brines in Antarctica

    Martínez, G. M. & Renno, N. O. Water and brines on Mars: Current evidence and implications for MSL. Sp. Sci. Rev. 175(1), 29–51 (2013).Article 
    ADS 

    Google Scholar 
    Orosei, et al. Radar evidence of subglacial liquid water on Mars. Science 361(6401), 490–493. https://doi.org/10.1126/science.aar7268 (2018).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. et al. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nat. Commun. 6(6831), 1–9 (2015).
    Google Scholar 
    Forte, E., Dalle Fratte, M., Azzaro, M. & Guglielmin, M. Pressurized brines in continental Antarctica as a possible analogue of Mars. Sci. Rep. 6, 33158 (2016).Article 
    ADS 

    Google Scholar 
    Siegert, M. J., Kennicutt, M. C. & Bindschadler, R. A. Antarctic Subglacial Aquatic Environments (Wiley, 2013).
    Google Scholar 
    Boulton, G. S., Caban, P. E. & van Gijssel, K. Groundwater flow beneath ice sheets: Part I—Large-scale patterns. Quatern. Sci. Rev. 14, 545–562 (1995).Article 
    ADS 

    Google Scholar 
    Fricker, H. A., Carter, S. P., Bell, R. E. & Scambos, T. Active lakes of Recovery Ice Stream, East Antarctica: A bedrock-controlled subglacial hydrological system. J. Glaciol. 60(223), 1015–1030. https://doi.org/10.3189/2014JoG14J063 (2014).Article 
    ADS 

    Google Scholar 
    Siegert, M. J. A wide variety of unique environments beneath the Antarctic ice sheet. Geology 44(5), 399–400. https://doi.org/10.1130/focus052016.1 (2016).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Lyons, W. B. et al. The geochemistry of englacial brine from Taylor Glacier, Antarctica. J. Geophys. Res. Biogeosci. 124, 633–648. https://doi.org/10.1029/2018JG004411 (2019).Article 

    Google Scholar 
    Campbell, S., Courville, Z., Sinclair, S. & Wilner, J. Brine, englacial structure and basal properties near the terminus of McMurdo Ice Shelf, Antarctica. Ann. Glaciol. 58, 74. https://doi.org/10.1017/aog.2017.26 (2017).Article 

    Google Scholar 
    Greene, S. et al. Canadian Shield brine from the Con Mine, Yellowknife, NT, Canada: Noble gas evidence for an evaporated Palaeozoic seawater origin mixed with glacial meltwater and Holocene recharge. Geochim. Cosmochim. Acta 72, 4008–4019. https://doi.org/10.1016/j.gca.2008.05.058 (2008).Article 
    ADS 

    Google Scholar 
    Siegfried, M. R., Fricker, H. A., Carter, S. P. & Tulaczyk, S. Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica. Geophys. Res. Lett. 43, 2640–2648. https://doi.org/10.1002/2016GL067758 (2016).Article 
    ADS 

    Google Scholar 
    Stearns, L. A., Smith, B. E. & Hamilton, G. S. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 1(12), 827–831. https://doi.org/10.1038/ngeo356 (2008).Article 
    ADS 

    Google Scholar 
    Kennicutt, M. C. et al. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct. Sci. 27(01), 3–18. https://doi.org/10.1017/S0954102014000674 (2015).Article 
    ADS 

    Google Scholar 
    Welch, K. A. et al. Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. Antarct. Sci. 22(06), 662–672. https://doi.org/10.1017/S0954102010000702 (2010).Article 
    ADS 

    Google Scholar 
    Skidmore, M., Tranter, M., Tulaczyk, S. & Lanoil, B. Hydrochemistry of ice stream beds—evaporitic or microbial effects?. Hydrol. Process. 24(4), 517–523 (2010).
    Google Scholar 
    Lüttge, A. & Conrad, P. G. Direct observation of microbial inhibition of calcite dissolution. Appl. Environ. Microbiol. 20, 1627–1632 (2004).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. & Priscu, J. C. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl. Environ. Microbiol. 73(12), 4029–4039 (2007).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. et al. A contemporary microbially maintained subglacial ferrous “Ocean”. Science 324(5925), 397–400. https://doi.org/10.1126/science.1167350 (2009).Article 
    ADS 

    Google Scholar 
    Chua, M. J. et al. Genomic and physiological characterization and description of Marinobacter gelidimuriae sp. Nov., a psychrophilic, moderate halophile from Blood Falls, an Antarctic subglacial brine. FEMS Microbiol. Ecol. 94, fiy021 (2018).Article 

    Google Scholar 
    Murray, A. E. et al. Microbial life at −13 °C in the brine of an ice-sealed Antarctic lake. PNAS 109, 20626–20631. https://doi.org/10.1073/pnas.1208607109 (2012).Article 
    ADS 

    Google Scholar 
    Borruso, L. et al. A thin ice layer segregates two distinct fungal communities in Antarctic brines from Tarn Flat (Northern Victoria Land). Sci. Rep. 8, 1–9 (2018).Article 

    Google Scholar 
    Papale, M. et al. Microbial assemblages in pressurized Antarctic brine pockets (Tarn Flat, Northern Victoria Land): A hotspot of biodiversity and activity. Microorganisms 7, 333 (2019).Article 

    Google Scholar 
    Azzaro, M. et al. The prokaryotic community in an extreme Antarctic environment: The brines of Boulder Clay lakes (Northern Victoria Land). Hydrobiologia 848, 1837–1857. https://doi.org/10.1007/s10750-021-04557-2 (2021).Article 

    Google Scholar 
    Lo Giudice, A. et al. Prokaryotic diversity and metabolically active communities in brines from two perennially ice-covered Antarctic lakes. Astrobiology 21, 551–565 (2021).Article 
    ADS 

    Google Scholar 
    Sannino, C. et al. Intra-and inter-cores fungal diversity suggests interconnection of different habitats in an Antarctic frozen lake (Boulder Clay, Northern Victoria Land). Environ. Microbiol. 22, 3463–3477 (2020).Article 

    Google Scholar 
    Bratina, B. J., Stevenson, B. S., Green, W. J. & Schmidt, T. M. Manganese reduction by microbes from oxic regions of the lake vanda (Antarctica) water column. Appl. Environ. Microbiol. 64, 3791–3797 (1998).Article 
    ADS 

    Google Scholar 
    Tregoning, G. S. et al. A halophilic bacterium inhabiting the warm, CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 81, 1988–1995 (2015).Article 
    ADS 

    Google Scholar 
    Kwon, M. et al. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environ. Microbiol. 19, 2258–2271 (2017).Article 

    Google Scholar 
    Forte, E., Azzaro, M. & Guglielmin, M. Evidence of an unprecedented water erosion and supraglacial-fluvial sedimentation on an Antarctic glacier in the Holocene. Sci. Total Environ. 20, 20 (2022).
    Google Scholar 
    Doran, P. T. et al. Radiocarbon distribution and the effect of legacy in lakes of the McMurdo Dry Valleys, Antarctica. Limnol. Oceanogr. 59(3), 811–826. https://doi.org/10.4319/lo.2014.59.3.0811 (2014).Article 
    ADS 

    Google Scholar 
    Saccò, M. et al. Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 96, 2828–2850 (2021).Article 

    Google Scholar 
    Ramoneda, J. et al. Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system. FEMS Microbiol. Ecol. 97, fiab044 (2021).Article 

    Google Scholar 
    Saxton, M. A. et al. Sulfate reduction and methanogenesis in the hypersaline deep waters and sediments of a perennially ice-covered lake. Limnol. Oceanogr. 66, 1804–1818 (2021).Article 
    ADS 

    Google Scholar 
    Frey, B. et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 92, fiw018. https://doi.org/10.1093/femsec/fiw018 (2016).Article 

    Google Scholar 
    Hu, W. et al. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau. Extremophiles 20, 337–349 (2016).Article 

    Google Scholar 
    Alekseev, I., Zverev, A. & Abakumov, E. Microbial communities in permafrost soils of Larsemann Hills, Eastern Antarctica: Environmental controls and effect of human impact. Microorganisms 8(8), 1202 (2020).Article 

    Google Scholar 
    Tian, R. et al. Small and mighty: Adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020).Article 

    Google Scholar 
    Bowman, J. P., McCammon, S. A., Rea, S. M. & McMeekin, T. A. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol. Lett. 183, 81–88 (2000).Article 

    Google Scholar 
    Aislabie, J. & Bowman J. P. “Archaeal Diversity in Antarctic Ecosystems.” Polar Microbiology: The Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments 31–59 (CRC Press, 2010).
    Google Scholar 
    Zhang, C. J. et al. Spatial and seasonal variation of methanogenic community in a river-bay system in South China. Appl. Microbiol. Biotechnol. 104, 4593–4603. https://doi.org/10.1007/s00253-020-10613-z (2020).Article 

    Google Scholar 
    Bapteste, E., Brochier, C. & Boucher, Y. Higher-level classification of the archaea: Evolution of methanogenesis and methanogens. Archaea 1, 353–363 (2005).Article 

    Google Scholar 
    Bowman, J. P. et al. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov.. Microbiology 144, 1601–1609 (1998).Article 

    Google Scholar 
    Donachie, S. P., Bowman, J. P. & Alam, M. Psychroflexus tropicus sp. Nov., an obligately halophilic Cytophaga-Flavobacterium-Bacteroides group bacterium from an Hawaiian hypersaline lake. Int. J. Syst. Evol. Microbiol. 54, 935–940 (2004).Article 

    Google Scholar 
    Zhong, Z. P. et al. Psychroflexus salis sp. Nov. and Psychroflexus planctonicus sp. Nov., isolated from a salt lake. Int. J. Syst. Evol. Microbiol. 66, 125–131 (2016).Article 

    Google Scholar 
    Chun, J., Kang, J. Y. & Jahng, K. Y. Psychroflexus salarius sp. Nov., isolated from Gomso salt pan. Int. J. Syst. Evol. Microbiol. 64, 3467–3472 (2014).Article 

    Google Scholar 
    Yoon, J. H., Kang, S. J., Jung, Y. T. & Oh, T. K. Psychroflexus salinarum sp. Nov., isolated from a marine solar saltern. Int. J. Syst. Evol. Microbiol. 59, 2404–2407 (2009).Article 

    Google Scholar 
    Buzzini, P., Turchetti, B. & Yurkov, A. Extremophilic yeasts: The toughest yeasts around?. Yeast 35, 487–497 (2018).Article 

    Google Scholar 
    Coleine, C., Stajich, J. E. & Selbmann, L. Fungi are key players in extreme ecosystems. Trends Ecol. Evol. S0169–5347(22), 00025–00028 (2022).
    Google Scholar 
    Gonçalves, V. N. et al. Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles 21, 1005–1015 (2017).Article 

    Google Scholar 
    Ogaki, M. B. et al. Cultivable fungi present in deep-sea sediments of Antarctica: Taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 24, 227–238 (2020).Article 

    Google Scholar 
    Wedin, M., Döring, H. & Gilenstam, G. Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol. 164, 459–465 (2004).Article 

    Google Scholar 
    Sterflinger, K. Black yeasts and meristematic fungi: Ecology, diversity and identification. In Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook (eds Péter, G. & Rosa, C.) 501–514 (Springer, 2006).Chapter 

    Google Scholar 
    Canini, F. et al. Growth forms and functional guilds distribution of soil Fungi in coastal versus inland sites of Victoria Land, Antarctica. Biology (Basel) 10, 320 (2021).
    Google Scholar 
    Vaniman, D. T. et al. Magnesium sulfate salts and the history of water on Mars. Nature 431, 663–665 (2004).Article 
    ADS 

    Google Scholar 
    Gendrin, A. et al. Sulfates in martian layered terrains: The OMEGA/Mars Express view. Science 307, 1587–1591 (2005).Article 
    ADS 

    Google Scholar 
    Carr, M. H. & Head, J. W. I. I. I. Geologic history of Mars. Earth Planet Sci. Lett. 294, 185–203 (2010).Article 
    ADS 

    Google Scholar 
    Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015).Article 
    ADS 

    Google Scholar 
    Cragin, J. H., Gow, A. J. & Kovacs, A. Chemical fractionation of brine in the McMurdo Ice Shelf, Antarctica. CRREL Rep. 20, 83–86 (1983).
    Google Scholar 
    Frank, T. D. & Gui, Z. Cryogenic origin for brine in the subsurface of southern McMurdo Sound, Antarctica. Geology 38(7), 587–590. https://doi.org/10.1130/G30849.1 (2010).Article 
    ADS 

    Google Scholar 
    Gardner, C. B. & Lyons, W. B. Modeled geochemical composition of cryogenically produced subglacial Brines, Antarctica. Antarct. Sci. 31(3), 165–166 (2019).Article 
    ADS 

    Google Scholar 
    Lyons, W. B. et al. Halogen geochemistry of the McMurdo Dry Valleys lakes, Antarctica: Clues to the origin of solutes and lake evolution. Geochim. Cosmochim. Acta 69, 305–323 (2005).Article 
    ADS 

    Google Scholar 
    Armienti, P. & Baroni, C. Cenozoic climatic change in Antarctica recorded by volcanic activity and landscape evolution. Geology 27(7), 617–620 (1999).Article 
    ADS 

    Google Scholar 
    Di Nicola, L. et al. Multiple cosmogenic nuclides document complex Pleistocene exposure history of glacial drifts in Terra Nova Bay (northern Victoria Land, Antarctica). Quatern. Res. 71(1), 83–92 (2009).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Levy, R. et al. Late Neogene climate and glacial history of the Southern Victoria Land coast from integrated drill core, seismic and outcrop data. Glob. Planet. Change 80–81, 61–84 (2012).Article 
    ADS 

    Google Scholar 
    Prebble, J. G., Raine, J. I., Barrett, P. J. & Hannah, M. J. Vegetation and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 41–57 (2006).Article 

    Google Scholar 
    Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. Myco Keys 10, 1–43 (2015).Article 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. (2010).Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).Article 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47, D259–D264. https://doi.org/10.1093/nar/gky1022 (2019).Article 

    Google Scholar  More

  • in

    Terrestrial invasive species alter marine vertebrate behaviour

    Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Evol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Burpee, B. T. & Saros, J. E. Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes. Environ. Sci. 22, 1166–1189 (2020).CAS 

    Google Scholar 
    Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).Article 

    Google Scholar 
    Justino, D. G., Maruyama, P. K. & Oliveira, P. E. Floral resource availability and hummingbird territorial behaviour on a Neotropical savanna shrub. J. Ornithol. 153, 189–197 (2012).Article 

    Google Scholar 
    Van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155 (2018).Gunn, R. L., Hartley, I. R., Algar, A. C., Nadiarti, N. & Keith, S. A. Variation in the behaviour of an obligate corallivore is influenced by resource availability. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-022-03132-6 (2022).Keith, S. A. et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat. Clim. Change 8, 986–991 (2018).Article 

    Google Scholar 
    Davies, N. B. & Hartley, I. R. Food patchiness, territory overlap and social systems: an experiment with dunnocks Prunella modularis. J. Anim. Ecol. 65, 837–846 (1996).Article 

    Google Scholar 
    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delarue, P. E. M., Kerr, S. E. & Rymer, T. L. Habitat complexity, environmental change and personality: a tropical perspective. Behav. Process. 120, 101–110 (2015).Stimson, J. The role of the territory in the ecology of the intertidal limpet Lottia gigantea (Gray). Ecology 54, 1020–1030 (1973).Article 

    Google Scholar 
    Sells, S. N. & Mitchell, M. S. The economics of territory selection. Ecol. Modell. 438, 109329 (2020).Article 

    Google Scholar 
    Graf, P. M., Mayer, M., Zedrosser, A., Hackländer, K. & Rosell, F. Territory size and age explain movement patterns in the Eurasian beaver. Mamm. Biol. 81, 587–594 (2016).Article 

    Google Scholar 
    Simon, C. The influence of food abundance on territory size in the Iguanid lizard Sceloporus jarrovi. Ecology 56, 993–998 (1975).Article 

    Google Scholar 
    Ippi, S., Cerón, G., Alvarez, L. M., Aráoz, R. & Blendinger, P. G. Relationships among territory size, body size, and food availability in a specialist river duck. Emu 118, 293–303 (2018).Article 

    Google Scholar 
    Berumen, M. L. & Pratchett, M. S. Effects of resource availability on the competitive behaviour of butterflyfishes (Chaetodontidae). In Proc. 10th International Coral Reef Symposium 644–650 (ReefBase, 2006); http://reefbase.org/resource_center/publication/icrs.aspx?icrs=ICRS10Brown, J. L. The evolution of diversity in avian territorial systems. Wilson Bull. 76, 160–169 (1964).
    Google Scholar 
    Peiman, K. S. & Robinson, B. W. Ecology and evolution of resource-related heterospecific aggression. Q. Rev. Biol. 85, 133–158 (2010).Article 
    PubMed 

    Google Scholar 
    Grant, J. W. A., Girard, I. L., Breau, C. & Weir, L. K. Influence of food abundance on competitive aggression in juvenile convict cichlids. Anim. Behav. 63, 323–330 (2002).Article 

    Google Scholar 
    Duda, M. P. et al. Long-term changes in terrestrial vegetation linked to shifts in a colonial seabird population. Ecosystems 23, 1643–1656 (2020).Article 
    CAS 

    Google Scholar 
    Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22, 16–26 (2008).Article 
    PubMed 

    Google Scholar 
    Honig, S. E. & Mahoney, B. Evidence of seabird guano enrichment on a coral reef in Oahu, Hawaii. Mar. Biol. 163, 22 (2016).Benkwitt, C. E., Gunn, R. L., Le Corre, M., Carr, P. & Graham, N. A. J. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr. Biol. 31, 2704–2711.e4 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Savage, C. Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci. Rep. 9, 4284 (2019).Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).Article 

    Google Scholar 
    Benkwitt, C. E., Taylor, B. M., Meekan, M. G. & Graham, N. A. J. Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish. Sci. Rep. 11, 12575 (2021).Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat. Ecol. Evol. 4, 919–926 (2020).Article 
    PubMed 

    Google Scholar 
    Robles, H. & Martin, K. Resource quantity and quality determine the inter-specific associations between ecosystem engineers and resource users in a cavity-nest web. PLoS ONE 8, e74694 (2013).Catano, L. B., Gunn, B. K., Kelley, M. C. & Burkepile, D. E. Predation risk, resource quality, and reef structural complexity shape territoriality in a coral reef herbivore. PLoS ONE 10, e0118764 (2015).Wilcox, K. A., Wagner, M. A. & Reynolds, J. D. Salmon subsidies predict territory size and habitat selection of an avian insectivore. PLoS ONE 16, e0254314 (2021).Frost, S. K. & Frost, P. G. H. Territoriality and changes in resource use by sunbirds at Leonotis leonurus (Labiatae). Oecologia 45, 109–116 (1980).Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, 1982).Book 

    Google Scholar 
    Dochtermann, N. A., Schwab, T., Anderson Berdal, M., Dalos, J. & Royauté, R. The heritability of behavior: a meta-analysis. J. Hered. 110, 403–410 (2019).Article 
    PubMed 

    Google Scholar 
    Sheppard, C. R. C. et al. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. Aquat. Conserv. 22, 232–261 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soeparno, Y. N., Shibuno, T. & Yamaoka, K. Relationship between pelagic larval duration and abundance of tropical fishes on temperate coasts of Japan. J. Fish. Biol. 80, 346–357 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).Article 
    PubMed 

    Google Scholar 
    Dall, S. R. X., Houston, A. I. & McNamara, J. M. The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol. Lett. 7, 734–739 (2004).Article 

    Google Scholar 
    Klumpp, D., McKinnon, D. & Daniel, P. Damselfish territories: zones of high productivity on coral reefs. Mar. Ecol. Prog. Ser. 40, 41–51 (1987).Article 

    Google Scholar 
    Carr, P. et al. Status and phenology of breeding seabirds and a review of important bird and biodiversity areas in the British Indian Ocean Territory. Bird Conserv. Int. 31, 14–34 (2020).Article 

    Google Scholar 
    Hoey, A. S. & Bellwood, D. R. Damselfish territories as a refuge for macroalgae on coral reefs. Coral Reefs 29, 107–118 (2010).Article 

    Google Scholar 
    Samways, M. J. Breakdown of butterflyfish (Chaetodontidae) territories associated with the onset of a mass coral bleaching event. Aquat. Conserv. 15, 101–107 (2005).Article 

    Google Scholar 
    Morgan, I. E. & Kramer, D. L. Determinants of social organization in a coral reef fish, the blue tang, Acanthurus coeruleus. Environ. Biol. Fishes 72, 443–453 (2005).Article 

    Google Scholar 
    Ceccarelli, D. M. Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26, 853–866 (2007).Article 

    Google Scholar 
    Gochfeld, D. J. Territorial damselfishes facilitate survival of corals by providing an associational defense against predators. Mar. Ecol. Prog. Ser. 398, 137–148 (2010).Article 

    Google Scholar 
    Gordon, T. A. C., Cowburn, B. & Sluka, R. D. Defended territories of an aggressive damselfish contain lower juvenile coral density than adjacent non-defended areas on Kenyan lagoon patch reefs. Coral Reefs 34, 13–16 (2015).Article 

    Google Scholar 
    Hays, G. C. et al. A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges. Mar. Biol. 167, 159–167 (2020).Article 

    Google Scholar 
    Nanninga, G. B., Côté, I. M., Beldade, R. & Mills, S. C. Behavioural acclimation to cameras and observers in coral reef fishes. Ethology 123, 705–711 (2017).Article 

    Google Scholar 
    Polunin, N. V. C. & Klumpp, D. W. Ecological correlates of foraging periodicity in herbivorous reef fishes of the Coral Sea. J. Exp. Mar. Biol. Ecol. 126, 1–20 (1989).Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Paola, V. D., Vullioud, P., Demarta, L., Alwany, M. A. & Ros, A. F. H. Factors affecting interspecific aggression in a year-round territorial species, the jewel damselfish. Ethology 118, 721–732 (2012).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Bürkner, P. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Soft. 80, 1–28 (2017).Article 

    Google Scholar 
    RStan: the R interface to Stan. R package version 2.21.5 (Stan Development Team, 2022).Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Soft. 33, 1–22 (2010).Article 

    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).Article 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Burkner, P. C. Rank-normalization, folding, and localization: an improved (formula presented) for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar  More

  • in

    Bald eagle mortality and nest failure due to clade 2.3.4.4 highly pathogenic H5N1 influenza a virus

    Sample collection and postmortem evaluationBald eagle carcasses, and/or oropharyngeal and cloacal swabs were collected in the field and submitted to the Southeastern Cooperative Wildlife Disease Study Research and Diagnostic Service. In some cases, live bald eagles were found moribund and transported to wildlife rehabilitation clinics and either died in transit or soon after arrival. Carcasses underwent postmortem evaluation, including gross and histopathology. Tissue samples [heart, brain, kidney, spleen, lung, adrenal gland, pancreas, liver, small and large intestine, and cloacal bursa (if present)] were fixed in 10% neutral buffered formalin and routinely processed for histopathology23 at the Athens Veterinary Diagnostic Laboratory. Histopathology was assessed by a board-certified veterinary pathologist.Additional bald eagle and waterfowl species mortality dataData on wild bird deaths attributed to highly pathogenic influenza A viruses were retrieved from the U.S. Department of Agriculture, Animal and Plant Health Inspection Service website, at: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/avian/avian-influenza/hpai-2022/2022-hpai-wild-birds. These data are publicly available and include state, county, date detected, and species of individual birds that tested positive for HP IAV.ImmunohistochemistryImmunohistochemistry (IHC) for avian influenza virus was performed in select cases on brain, pancreas, spleen, liver, and/or adrenal gland at the Athens Veterinary Diagnostic Laboratory. IHC was performed on an automated stainer (Nemesis 3600, Biocare Medical). Polyclonal antiserum against influenza A virus was used as the primary antibody (ab155877, Abcam), diluted 1:3000, and incubated for 60 min at 37 °C with agent-positive control. Antigen retrieval was with Target Retrieval Solution (S2367, Dako) pH (10x) at 110 °C for 15 min. Enzyme blockage was via 3% H2O2 for 20 min (H324-500, Fisher Scientific); protein blockage was with Universal Blocking Reagent (10x) Power Block diluted at 1:10 for 5 min (HK085-5 K, BioGenex); link was by biotinylated rabbit anti-goat (BA-5000, Vector) at a 1:100 dilution for 10 min with 4 + streptavidin alkaline phosphatase label for 10 min (AP605H, BioCare Medical). Staining was with warp red chromogen kit for 5 min (WR8065, BioCare Medical). Known influenza A-virus positive control tissues were tested alongside each case.Polymerase chain reactionOropharyngeal and cloacal swabs from bald eagle carcasses were pooled for each individual eagle and tested by real-time reverse transcription polymerase chain reaction (rRT-PCR). Briefly, swabs samples were extracted with the KingFisher magnetic particle processer using the MagMAX-96 AI/ND Viral RNA isolation Kit (Ambion/Applied Biosystems, Foster City, CA) following a modified MagMAX-S protocol24. Resultant nucleic acids were screened against primers specific for H5 IAV in rRT-PCR; samples that yielded a cycle threshold value  More

  • in

    Reply to: Measuring the world’s cropland area

    FAO. Handbook on crop statistics: improving methods for measuring crop area, production and yield. (FAO, Rome, Italy, 2018).FAO. Land use statistics and indicators: global, regional and county trends 1990-2019. FAOSTAT Anal. Brief Ser. No 28 (2021).Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 1–10 (2021) https://doi.org/10.1038/s43016-021-00429-zFAO. A system of integrated agricultural censuses and surveys. (FAO, 2005).FAO. Land use statistics and indicators. Global, regional and country trends, 2000–2020. (FAO, Rome, Italy, 2022).Loveland, T. R. et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21, 1303–1330 (2000).Article 

    Google Scholar 
    Zanaga, D. et al. ESA WorldCover 10 m 2020 v100. (2021) https://doi.org/10.5281/zenodo.5571936Cochran, W. G. Sampling techniques. (Wiley, 1977).Stehman, S. V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 35, 4923–4939 (2014).Article 

    Google Scholar 
    Tsujino, R., Kaijisa, T. & Yumoto, T. Causes and history of forest loss in Cambodia. Int. For. Rev. 21, 372–384 (2019).
    Google Scholar 
    Hu, Q. et al. Global cropland intensification surpassed expansion between 2000 and 2010: A spatio-temporal analysis based on GlobeLand30. Sci. Total Environ. 746, 141035 (2020).Grainger, A. Difficulties in tracking the long-term global trend in tropical forest area. Proc. Natl Acad. Sci. 105, 818–823 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    FAO. FAOSTAT. https://www.fao.org/faostat/en/#home (2021). More

  • in

    Functional group analyses of herpetofauna in South Korea using a large dataset

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    Pey, B. et al. Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl Ecol 15, 194–206 (2014).Article 

    Google Scholar 
    Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19, 2921–2947 (2010).Article 

    Google Scholar 
    Kim, J. H. et al. Structural implications of traditional agricultural landscapes on the functional diversity of birds near the Korean Demilitarized Zone. Ecol Evol 10, 12973–12982 (2020).Article 

    Google Scholar 
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol Evol 21, 178–185 (2006).Article 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol Evol 28, 167–177 (2013).Article 

    Google Scholar 
    Hevia, V. et al. Trait-based approaches to analyze links between the drivers of change and ecosystem services: Synthesizing existing evidence and future challenges. Ecol Evol 7, 831–844 (2017).Article 

    Google Scholar 
    Hood, R. R. et al. Pelagic functional group modeling: Progress, challenges and prospects. Deep Sea Res II: Top Stud Oceanogr 53, 459–512 (2006).Article 
    ADS 

    Google Scholar 
    Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J Ecol 89, 118–125 (2001).Article 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).Article 

    Google Scholar 
    Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118 (2005).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).Article 

    Google Scholar 
    Mouillot, D., Mason, N. W. H. & Wilson, J. B. Is the abundance of species determined by their functional traits? A new method with a test using plant communities. Oecologia 152, 729–737 (2007).Article 
    ADS 

    Google Scholar 
    Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24, 867–876 (2010).Article 

    Google Scholar 
    Hocking, D. J. & Babbitt, K. J. Amphibian contributions to ecosystem services. Herpetol Conserv Biol 9, 1–17 (2014).
    Google Scholar 
    Valencia-Aguilar, A., Cortés-Gómez, A. M. & Ruiz-Agudelo, C. A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int J Biodivers Sci Ecosyst Serv Manag 9, 257–272 (2013).Article 

    Google Scholar 
    Cortéz-Gómez, A. M. M., Ruiz-Agudelo, C. A., Valencia-Aguilar, A. & Ladle, R. J. Ecological functions of neotropical amphibians and reptiles: a review. Univ Sci (Bogota) 20, 229–245 (2015).
    Google Scholar 
    Jeon, J. Y., Jung, J., Suk, H. Y., Lee, H. & Min, M.-S. The Asian plethodontid salamander preserves historical genetic imprints of recent northern expansion. Sci Rep 11, 9193 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, H., Yan, J., Zhang, G. & Zhou, K. Phylogeography and demographic history of Chinese black-spotted frog populations (Pelophylax nigromaculata): Evidence for independent refugia expansion and secondary contact. BMC Evol Biol 8, 1–16 (2008).Article 
    CAS 

    Google Scholar 
    Lee, S.-J. et al. Phylogeography of the Asian lesser white-toothed shrew, Crocidura shantungensis, in East Asia: role of the Korean Peninsula as refugium for small mammals. Genetica 2018 146:2 146, 211–226 (2018).CAS 

    Google Scholar 
    Min, M.-S. et al. Discovery of the first Asian plethodontid salamander. Nature 435, 87–90 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Baek, H.-J., Lee, M.-Y., Lee, H. & Min, M.-S. Mitochondrial DNA data unveil highly divergent populations within the Genus Hynobius (Caudata: Hynobiidae) in South Korea. Mol Cells 31, 105–112 (2011).Article 
    CAS 

    Google Scholar 
    Borzée, A. et al. Yellow sea mediated segregation between North East Asian Dryophytes species. PLoS One 15, e0234299 (2020).Article 

    Google Scholar 
    Borzée, A. & Min, M.-S. Disentangling the impacts of speciation, sympatry and the island effect on the morphology of seven Hynobius sp. salamanders. Animals 11, 187 (2021).Article 

    Google Scholar 
    Borzée, A. et al. Dwindling in the mountains: Description of a critically endangered and microendemic Onychodactylus species (Amphibia, Hynobiidae) from the Korean Peninsula. Zool Res 43, 750–755 (2022).Article 

    Google Scholar 
    Suk, H. Y. et al. Phylogenetic structure and ancestry of Korean clawed salamander, Onychodactylus koreanus (Caudata: Hynobiidae). Mitochondrial DNA A DNA Mapp Seq Anal 29, 650–658 (2018).CAS 

    Google Scholar 
    Kim, C., Kang, J. & Kim, M. Status and development of national ecosystem survey in Korea. J Environ Impact Assess 22, 725–738 (2013).Article 

    Google Scholar 
    Kim, D.-I. et al. Prediction of present and future distribution of the Schlegel’s Japanese gecko (Gekko japonicus) using MaxEnt modeling. J Ecol Environ 44, 1–8 (2020).
    Google Scholar 
    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation. (PRIMER-E: Plymouth, 2014).Borzée, A. & Jang, Y. Policy Recommendation for the conservation of the Suweon Treefrog (Dryophytes suweonensis) in the Republic of Korea. Front Environ Sci 0, 39 (2019).Article 

    Google Scholar 
    Chung, M. Y. et al. The Korean Baekdudaegan Mountains: A glacial refugium and a biodiversity hotspot that needs to be conserved. Front Genet 9, 489 (2018).Article 

    Google Scholar 
    Lee, J., Jang, H.-J. & Suh, J.-H. Ecological Guide Book of Herpetofauna in Korea. (National Institutite of Environmental Research, 2011).Lee, J. & Park, D. The Encyclopedia of Korean Amphibians. (Econature, 2016).Kim, J.-B. & Song, J. Y. Korean Herpetofauna. (worldscience, 2010).Strauß, A., Reeve, E., Randrianiaina, R.-D., Vences, M. & Glos, J. The world’s richest tadpole communities show functional redundancy and low functional diversity: ecological data on Madagascar’s stream-dwelling amphibian larvae. BMC Ecol 10, 1–10 (2010).Article 

    Google Scholar 
    Shim, Y.-J. et al. Site selection of narrow-mouth frog (Kaloula borealis) habitat restoration using habitat suitability index. Journal of the Korean Society of Environmental Restoration. Technology 18, 33–44 (2015).
    Google Scholar 
    Jeong, S., Seo, C., Yoon, J., Lee, D. K. & Park, J. A study on riparian habitats for amphibians using habitat suitability mode. J Environ Impact Assess 24, 175–189 (2015).Article 

    Google Scholar 
    Jang, H.-J., Kim, D.-I. & Chang, M.-H. Distribution of reptiles in South Korea – Based on the 3rd National Ecosystem Survey -. Korean Journal of Herpetology 7, 30–35 (2016).
    Google Scholar 
    Tsianou, M. A. & Kallimanis, A. S. Geographical patterns and environmental drivers of functional diversity and trait space of amphibians of Europe. Ecol Res 35, 123–138 (2020).Article 

    Google Scholar 
    Chergui, B., Pleguezuelos, J. M., Fahd, S. & Santos, X. Modelling functional response of reptiles to fire in two Mediterranean forest types. Sci Total Environ 732, 139205 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Nelson, N. & Piovia-Scott, J. Using environmental niche models to elucidate drivers of the American bullfrog invasion in California. Biol Invasions 24, 1767–1783 (2022).Article 

    Google Scholar 
    Liu, X. et al. Diet and prey selection of the Invasive American bullfrog (Lithobates catesbeianus) in southwestern China. Asian Herpetol Res 6, 34–44 (2015).
    Google Scholar 
    Borzée, A., Kwon, S., Koo, K. S. & Jang, Y. Policy recommendation on the restriction on amphibian trade toward the Republic of Korea. Front Environ Sci 8, 129 (2020).Article 

    Google Scholar 
    Kim, H. W., Adhikari, P., Chang, M. H. & Seo, C. Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals 11, 2185 (2021).Article 

    Google Scholar 
    Borzée, A. et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci Rep 9, 1–9 (2019).Article 

    Google Scholar 
    Shin, Y., Min, M. & Borzée, A. Driven to the edge: Species distribution modeling of a Clawed Salamander (Hynobiidae: Onychodactylus koreanus) predicts range shifts and drastic decrease of suitable habitats in response to climate change. Ecol Evol 11, 14669–14688 (2021).Article 

    Google Scholar 
    Park, I. et al. Past, present, and future predictions on the suitable habitat of the Slender racer (Orientocoluber spinalis) using species distribution models. Ecol Evol 12, e9169 (2022).Article 

    Google Scholar 
    Berriozabal-Islas, C., Badillo-Saldaña, L. M., Ramírez-Bautista, A. & Moreno, C. E. Effects of habitat disturbance on lizard functional diversity in a tropical dry forest of the Pacific Coast of Mexico. Trop Conserv Sci 10, 1940082917704972 (2017).
    Google Scholar 
    Petchey, O. L., O’Gorman, E. J. & Flynn, D. F. B. A functional guide to functional diversity measures. in Biodiversity, Ecosystem Functioning, & Human Wellbeing (eds. Naeem, S., Bunker, D., Hector, A., Loreau, M. & Perrings, C.) 49–59 (Oxford University Press, 2009).Tsianou, M. A. & Kallimanis, A. S. Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodivers Conserv 25, 117–132 (2016).Article 

    Google Scholar 
    Tsianou, M. A. & Kallimanis, A. S. Trait selection matters! A study on European amphibian functional diversity patterns. Ecol Res 34, 225–234 (2019).Article 

    Google Scholar 
    Campos, F. S. et al. Ecological trait evolution in amphibian phylogenetic relationships. Ethol Ecol Evol 31, 526–543 (2019).Article 

    Google Scholar 
    Lourenço-de-Moraes, R. et al. Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. J Biogeogr 47, 275–287 (2020).Article 

    Google Scholar 
    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci Data 4, 1–7 (2017).Article 

    Google Scholar 
    Jeon, J. Y. et al. Resolving the taxonomic equivocacy and the population genetic structure of Rana uenoi – insights into dispersal and demographic history. Salamandra 57, 529–540 (2021).
    Google Scholar 
    Othman, S. N. et al. From Gondwana to the Yellow Sea, evolutionary diversifications of true toads Bufo sp. in the Eastern Palearctic and a revisit of species boundaries for Asian lineages. Elife 11, e70494 (2022).Article 

    Google Scholar 
    Chang, M.-H., Song, J.-Y. & Koo, K.-S. The status of distribution for native freshwater turtles in Korea, with remarks on taxonomic position. Korean J Environ Biol 30, 151–155 (2012).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.r-project.org/ (2013).Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust: An R package for determining the relevant number of clusters in a data set. J Stat Softw 61, 1–36 (2014).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7. https://cran.r-project.org/package=vegan (2020).Zizka, A., Antonelli, A. & Silvestro, D. Sampbias, a method for quantifying geographic sampling biases in species distribution data. Ecography 44, 25–32 (2021).Article 

    Google Scholar 
    Magurran, A. E. Measuring biological diversity. (John Wiley & Sons, Ltd, 2013).Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12.1 (2014).Crego, R. D., Stabach, J. A. & Connette, G. Implementation of species distribution models in Google Earth Engine. Divers Distrib 28, 904–916 (2022).Article 

    Google Scholar 
    Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. in Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications (eds. Drew, C. A., Wiersma, Y. F. & Huettmann, F.) Modeling Species Distribution and Change Using Random Forest (Springer New York, 2011).Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25, 1965–1978 (2005).Article 

    Google Scholar 
    Jeon, J., Kim, J. H. & Lee, D. K. Data for: Functional group analyses of herpetofauna in South Korea using a large dataset. Figshare https://doi.org/10.6084/m9.figshare.21755345.v1 (2022). More