Genome-wide sequencing identifies a thermal-tolerance related synonymous mutation in the mussel, Mytilisepta virgata
Orr, H. A. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6, 119–127 (2005).Article
CAS
Google Scholar
Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).Article
Google Scholar
Exposito-Alonso, M., Burbano, H. A., Bossdorf, O., Nielsen, R. & Weigel, D. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature 573, 126–129 (2019).Article
CAS
Google Scholar
Han, G., Wang, W. & Dong, Y. Effects of balancing selection and microhabitat temperature variations on heat tolerance of the intertidal black mussel Septifer virgatus. Integr. Zool. 15, 416–427 (2020).Article
Google Scholar
Meester, L. D., Stoks, R. & Brans, K. I. Genetic adaptation as a biological buffer against climate change: Potential and limitations. Integr. Zool. 13, 372–391 (2018).Article
Google Scholar
Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).Article
CAS
Google Scholar
Günter, F. et al. Genotype-environment interactions rule the response of a widespread butterfly to temperature variation. J. Evol. Biol. 33, 920–929 (2020).Article
Google Scholar
Lowry, D. B. et al. QTL × environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proc. Natl Acad. Sci. USA 116, 12933–12941 (2019).Article
CAS
Google Scholar
Bates, A. E. et al. Biologists ignore ocean weather at their peril. Nature 560, 299–301 (2018).Article
CAS
Google Scholar
Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).Article
CAS
Google Scholar
Zhao, F. et al. Genome-wide role of codon usage on transcription and identification of potential regulators. Proc. Natl Acad. Sci. USA 118, e2022590118 (2021).Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Bio. 19, 20–30 (2018).Article
CAS
Google Scholar
Chen, S. et al. Codon-resolution analysis reveals a direct and context-dependent impact of individual synonymous mutations on mRNA level. Mol. Biol. Evol. 34, 2944–2958 (2017).Article
CAS
Google Scholar
Wu, Z. et al. Expression level is a major modifier of the fitness landscape of a protein coding gene. Nat. Ecol. Evol. 6, 103–115 (2022).Article
Google Scholar
Lebeuf-Taylor, E., McCloskey, N., Bailey, S. F., Hinz, A. & Kassen, R. The distribution of fitness effects among synonymous mutations in a gene under directional selection. ELife. 8, e45952 (2019).Bailey, S. F., Hinz, A. & Kassen, R. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population. Nat. Commun. 5, 4076 (2014).Agashe, D. et al. Large-effect beneficial synonymous mutations mediate rapid and parallel adaptation in a bacterium. Mol. Biol. Evol. 33, 1542–1553 (2016).Article
CAS
Google Scholar
Zhao, Y. et al. Synonymous mutation in growth regulating factor 15 of miR396a target sites enhances photosynthetic efficiency and heat tolerance in poplar. J. Exp. Bot. 72, 4502–4519 (2021).Article
CAS
Google Scholar
Somero, G. N. The physiology of global change: linking patterns to mechanisms. Annu. Rev. Mar. Sci. 4, 39–61 (2012).Article
Google Scholar
Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).Article
CAS
Google Scholar
Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev. Ecol. Evol. Syst. 37, 373–404 (2006).Article
Google Scholar
Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Side matters: microhabitat influence on intertidal heat stress over a large geographical scale. J. Exp. Mar. Biol. Ecol. 400, 200–208 (2011).Article
Google Scholar
Schmidt, P. S. & Rand, D. M. Intertidal microhabitat and selection at MPI: interlocus contrasts in the Northern Acorn Barnacle, Semibalanus balanoides. Evolution 53, 135 (1999).
Google Scholar
Li, X., Tan, Y., Sun, Y., Wang, J. & Dong, Y. Microhabitat temperature variation combines with physiological variation to enhance thermal resilience of the intertidal mussel Mytilisepta virgata. Funct. Ecol. 35, 2497–2507 (2021).Article
CAS
Google Scholar
Dong, Y. et al. Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proc. Royal. Soc. B. 284, (2017).Li, X. & Dong, Y. Living on the upper intertidal mudflat: different behavioral and physiological responses to high temperature between two sympatric Cerithidea snails with divergent habitat-use strategies. Mar. Environ. Res. 159, 105015 (2020).Article
CAS
Google Scholar
Wang, J., Peng, X. & Dong, Y. High abundance and reproductive output of an intertidal limpet (Siphonaria japonica) in environments with high thermal predictability. Mar. Life. Sci. Tech. 2, 324–333 (2020).Article
Google Scholar
Dong, Y., Liao, M., Han, G. & Somero, G. N. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol. Rev. 97, 554–581 (2022).Article
Google Scholar
Georges, A., Gros, P. & Fodil, N. USP15: a review of its implication in immune and inflammatory processes and tumor progression. Genes Immun. 22, 12–23 (2021).Article
CAS
Google Scholar
Vlasschaert, C., Xia, X., Coulombe, J. & Gray, D. A. Evolution of the highly networked deubiquitinating enzymes USP4, USP15, and USP11. BMC Evol. Biol. 15, 230 (2015).Mallard, F., Nolte, V., Tobler, R., Kapun, M. & Schlötterer, C. A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biol. 19, 119 (2018).Cornelissen, T. et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23, 5227–5242 (2014).Article
CAS
Google Scholar
Morton, B. The biology and functional morphology of Septifer bilocularis and Mytilisepta virgata (Bivalvia: Mytiloidea) from corals and the exposed rocky shores, respectively, of Hong Kong. Reg. Stud. Mar. Sci. 235, 485–500 (1995).
Google Scholar
Boroda, A. V., Kipryushina, Y. O. & Odintsova, N. A. The effects of cold stress on Mytilus species in the natural environment. Cell Stress Chaperones 25, 821–832 (2020).Article
CAS
Google Scholar
Thayer, C. W. Brachiopods versus mussels: competition, predation, and palatability. Science 228, 1527–1528 (1985).Article
CAS
Google Scholar
Iorio, R., Celenza, G. & Petricca, S. Mitophagy: molecular mechanisms, new concepts on Parkin activation and the emerging role of AMPK/ULK1 Axis. Cells 11, 30 (2022).Article
CAS
Google Scholar
Feidantsis, K. et al. Correlation between intermediary metabolism, Hsp gene expression, and oxidative stress-related proteins in long-term thermal-stressed Mytilus galloprovincialis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319, R264–R281 (2020).Article
CAS
Google Scholar
Heise, K., Puntarulo, S., Portner, H. O. & Abele, D. Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 134, 79–90 (2003).Article
CAS
Google Scholar
Abele, D., Heise, K., Portner, H. O. & Puntarulo, S. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 205, 1831–1841 (2002).Article
CAS
Google Scholar
Xiao, Q. et al. Transcriptome analysis reveals the molecular mechanisms of heterosis on thermal resistance in hybrid abalone. BMC Genom. 22, 650 (2021).Li, L. et al. Heat stress induces apoptosis through a Ca2+-mediated mitochondrial apoptotic pathway in human umbilical vein endothelial cells. PLoS ONE 9, e111083 (2014).Article
Google Scholar
Gu, Z. T. et al. Heat stress induced apoptosis is triggered by transcription-independent p53, Ca2+ dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci. Rep. 5, 11497 (2015).Article
CAS
Google Scholar
Gerdol, M., De Moro, G., Venier, P. & Pallavicini, A. Analysis of synonymous codon usage patterns in sixty-four different bivalve species. Peer J. 3, e1520 (2015).Article
Google Scholar
Zhou, M. et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495, 111–115 (2013).Article
CAS
Google Scholar
Yu, C. et al. Codon usage influences the local rate of translation elongation to tegulate co-translational protein folding. Mol. Cell 59, 744–754 (2015).Article
CAS
Google Scholar
Spencer, P. S., Siller, E., Anderson, J. F. & Barral, J. M. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 422, 328–335 (2012).Article
CAS
Google Scholar
Pechmann, S., Chartron, J. W. & Frydman, J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat. Struct. Mol. Biol. 21, 1100–1105 (2014).Article
CAS
Google Scholar
Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).Article
CAS
Google Scholar
Zhou, Z. et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl Acad. Sci. USA 113, E6117–E6125 (2016).Article
CAS
Google Scholar
Shabalina, S. A., Spiridonov, N. A. & Kashina, A. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res. 41, 2073–2094 (2013).Article
CAS
Google Scholar
Liao, M., Dong, Y. & Somero, G. N. Thermal adaptation of mRNA secondary structure: stability versus lability. Proc. Natl Acad. Sci. USA 118, e2113324118 (2021).Article
CAS
Google Scholar
Wan, Y. et al. Genome-wide measurement of RNA folding energies. Mol. Cell. 48, 169–181 (2012).Article
Google Scholar
Seffens, W. & Digby, D. mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27, 1578–1584 (1999).Article
CAS
Google Scholar
Faure, G., Ogurtsov, A. Y., Shabalina, S. A. & Koonin, E. V. Role of mRNA structure in the control of protein folding. Nucleic Acids Res. 44, 10898–10911 (2016).Article
CAS
Google Scholar
Victor, M. P., Acharya, D., Begum, T. & Ghosh, T. C. The optimization of mRNA expression level by its intrinsic properties-Insights from codon usage pattern and structural stability of mRNA. Genomics 111, 1292–1297 (2019).Article
CAS
Google Scholar
Backlund, M. & Kulozik, A. E. Differential analysis of the nuclear and the cytoplasmic RNA interactomes in living cells. Methods Mol. Biol. 2428, 291–304 (2022).Article
Google Scholar
Zaghlool, A. et al. Characterization of the nuclear and cytosolic transcriptomes in human brain tissue reveals new insights into the subcellular distribution of RNA transcripts. Sci. Rep. 11, 4076 (2021).Clark, M. S. et al. Life in the intertidal: cellular responses, methylation and epigenetics. Funct. Ecol. 32, 1982–1994 (2018).Article
Google Scholar
Jeremias, G. et al. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol. Ecol. 27, 2790–2806 (2018).Article
Google Scholar
Li, L. et al. Divergence and plasticity shape adaptive potential of the Pacific oyster. Nat. Ecol. Evol. 2, 1751–1760 (2018).Article
Google Scholar
Chu, D. & Wei, L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer. 19, 359 (2019).Lima, F. P. & Wethey, D. S. Robolimpets: measuring intertidal body temperatures using biomimetic loggers. Limol. Oceanogr. Methods 7, 347–353 (2009).Article
Google Scholar
Dong, Y. & Williams, G. A. Variations in cardiac performance and heat shock protein expression to thermal stress in two differently zoned limpets on a tropical rocky shore. Mar. Biol. 158, 1223–1231 (2011).Article
Google Scholar
Vito, M. Segmented: An R Package to fit regression models with broken-line relationships. R. N. 8, 20–25 (2008).
Google Scholar
R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2021).Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article
Google Scholar
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).Article
Google Scholar
Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience. 10, giab008 (2021).Rochette, N. C., Rivera Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).Article
CAS
Google Scholar
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).Article
CAS
Google Scholar
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).Article
Google Scholar
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).Article
CAS
Google Scholar
Hao, Z. et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput. Sci. 6, e251 (2020).Article
Google Scholar
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).Article
CAS
Google Scholar
Letunic, I., Khedkar, S. & Bork, P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 49, D458–D460 (2021).Article
CAS
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).Article
CAS
Google Scholar
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic Acids Res. 43, W39–W49 (2015).Article
CAS
Google Scholar
Mathews, D. H. et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl Acad. Sci. USA 101, 7287–7292 (2004).Article
CAS
Google Scholar
Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).Article
CAS
Google Scholar
Moyen, N. E., Somero, G. N. & Denny, M. W. Mussels’ acclimatization to high, variable temperatures is lost slowly upon transfer to benign conditions. J. Exp. Biol. 223, Pt 13 (2020).
Google Scholar
Havird, J. C. et al. Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to Q10 effects: why methodology matters. Funct. Ecol. 34, 1015–1028 (2020).Article
Google Scholar
Panova, M. et al. DNA extraction protocols for whole-genome sequencing in marine organisms. Methods Mol. Biol. 1452, 13–44 (2016).Article
CAS
Google Scholar
Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).Article
CAS
Google Scholar
Gerdol, M. et al. The purplish bifurcate mussel Mytilisepta virgata gene expression atlas reveals a remarkable tissue functional specialization. BMC Genomics. 18, 590 (2017).Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001).Article
CAS
Google Scholar More