More stories

  • in

    Low genetic diversity and predation threaten a rediscovered marine sponge

    McCauley, D. J., Pinsky, M. L., Palumbi, S. R., Estes, J. A. & Warner, R. R. Marine defaunation: Animal loss in the global ocean. Science 347(6219), 1255641 (2015).Article 

    Google Scholar 
    Webb, T. J. & Mindel, B. L. Global patterns of extinction risk in marine and non-marine systems. Curr. Biol. 25(4), 506–511 (2015).Article 
    CAS 

    Google Scholar 
    Pinsky, M. L. & Fredston, A. A stark future for ocean life. Science 376(6592), 452–453 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Bell, J. J., Bennett, H. M., Rovellini, A. & Webster, N. S. Sponges to be winners under near-future climate scenarios. Bioscience 68(12), 955–968 (2018).Article 

    Google Scholar 
    Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31(21), 4773-4787.e8 (2021).Article 
    CAS 

    Google Scholar 
    Penn, J. L. & Deutsch, C. Avoiding ocean mass extinction from climate warming. Science 376(6592), 524–526 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Hubbard, D. M., Dugan, J. E., Schooler, N. K. & Viola, S. M. Local extirpations and regional declines of endemic upper beach invertebrates in southern California. Estuar. Coast. Shelf Sci. 150(Part A), 67–75 (2014).Article 
    ADS 

    Google Scholar 
    Poquita-Du, R. C. et al. Last species standing: loss of Pocilloporidae corals associated with coastal urbanization in a tropical city state. Mar. Biodivers. 49, 1727–1741 (2019).Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article 

    Google Scholar 
    Bell, et al. Global conservation status of sponges. Conserv. Biol. 29(1), 42–53 (2015).Article 

    Google Scholar 
    Kelmo, F., Bell, J. J. & Attrill, M. J. Tolerance of sponge assemblages to temperature anomalies: Resilience and proliferation of sponges following the 1997–8 El-Niño southern oscillation. PLoS ONE 8(10), e76441 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Micaroni, V. et al. Adaptive strategies of sponges to deoxygenated oceans. Glob. Change Biol. 28(6), 1972–1989 (2022).Article 

    Google Scholar 
    Di Camillo, C. G., Bartolucci, I., Cerrano, C. & Bavestrello, G. Sponge disease in the Adriatic Sea. Mar. Ecol. 34(1), 62–71 (2013).Article 
    ADS 

    Google Scholar 
    Pérez, T. & Vacelet, J. Effect of climatic and anthropogenic disturbances on sponge fisheries. In The Mediterranean Sea (eds Goffredo, S. & Dubinsky, Z.) 577–587 (Springer, 2014).Chapter 

    Google Scholar 
    Ereskovsky, A., Ozerov, D. A., Pantyulin, A. N. & Tzetlin, A. B. Mass mortality event of White Sea sponges as the result of high temperature in summer 2018. Polar Biol. 42, 2313–2318 (2019).Article 

    Google Scholar 
    Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26(6), 3202–3211 (2020).Article 
    ADS 

    Google Scholar 
    Stevenson, A. et al. Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation. Sci. Rep. 10, 8176 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Beepat, S. S., Davy, S. K., Woods, L. & Bell, J. J. Short-term responses of tropical lagoon sponges to elevated temperature and nitrate. Mar. Environ. Res. 157, 104922 (2020).Article 
    CAS 

    Google Scholar 
    Shore, A. et al. On a reef far, far away: Anthropogenic impacts following extreme storms affect sponge health and bacterial communities. Front. Mar. Sci. 8, 608036 (2021).Article 

    Google Scholar 
    de Voogd et al. World Porifera Database https://www.marinespecies.org/porifera/ (2022).Wulff, J. L. Assessing and monitoring coral reef sponges: Why and how?. Bull. Mar. Sci. 69(2), 831–846 (2001).ADS 

    Google Scholar 
    Bell, J. J. The functional roles of marine sponges. Estuar. Coast. Shelf Sci. 79(3), 341–353 (2008).Article 
    ADS 

    Google Scholar 
    Folkers, M. & Rombouts, T. Sponges revealed: a synthesis of their overlooked ecological functions within aquatic ecosystems. In YOUMARES 9—The Oceans: Our Research, Our Future (eds Jungblut, S. et al.) 181–194 (Springer, 2019).
    Google Scholar 
    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann. Rev. Mar. Sci. 12, 315–337 (2020).Article 

    Google Scholar 
    Sawangwong, P. et al. Secondary metabolites from a marine sponge Cliona patera. Biochem. Syst. Ecol. 36(5), 493–496 (2008).Article 
    CAS 

    Google Scholar 
    Zhang, H. et al. Bioactive secondary metabolites from the marine sponge genus Agelas. Mar. Drugs 15(11), 351 (2017).Article 

    Google Scholar 
    He, Q., Miao, S., Ni, N., Man, Y. & Gong, K. A review of the secondary metabolites from the marine sponges of the genus Aaptos. Nat. Prod. Commun. 15(9), 1–12 (2020).CAS 

    Google Scholar 
    Ho, et al. Assessing the diversity and biomedical potential of microbes associated with the Neptune’s Cup sponge, Cliona patera. Front. Microbiol. 12, 631445 (2021).Article 

    Google Scholar 
    Pronzato, R. Mediterranean sponge fauna: A biological, historical and cultural heritage. Biogeographia 24(1), 91–99 (2003).
    Google Scholar 
    DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. 10, 8365 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319(5865), 948–952 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Vosmaer, G. C. J. Poterion a boring sponge. K. Ned. Akad. Wet. Proc. 11, 37–41 (1908).
    Google Scholar 
    Lim, S. C., Tun, K. & Goh, E. Rediscovery of the Neptune’s Cup sponge in Singapore: Cliona or Poterion? Contributions to Marine Science 2012, 49–56 (2012).Low, M. E. Y. The date of publication of Cliona patera (Hardwicke), the ‘sponge plant from the shores of Singapore’ (Porifera: Hadromerida: Clionaidae). Nat. Singap. 5, 223–227 (2012).
    Google Scholar 
    Knight, K. Super-rare giant sponge discovered in seahorse hotspot. Fauna & Floral International https://www.fauna-flora.org/news/super-rare-sponge-discovered-seahorse-hotspot/ (2018).The State of Queensland (Queensland Museum). Cliona patera. Queensland Museum Network https://collections.qm.qld.gov.au/objects/73638/cliona-patera (2012–2022).Heath, D. J. Simultaneous hermaphroditism; Cost and benefit. J. Theor. Biol. 64, 363–373 (1977).Article 
    ADS 
    CAS 

    Google Scholar 
    André, C. & Lindegarth, M. Fertilization efficiency and gamete viability of a sessile, free-spawning bivalve, Cerastoderma edule. Ophelia 43(3), 215–227 (1995).Article 

    Google Scholar 
    Bayer, S. R. et al. Fertilization success in scallop aggregations: Reconciling model predictions and field measurements of density effects. Ecosphere 9(8), e02359 (2018).Article 

    Google Scholar 
    Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15(1), 10–13 (2000).Article 
    CAS 

    Google Scholar 
    Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10(6), 1500–1508 (1996).Article 

    Google Scholar 
    Lim, S. C. Porifera. Singapore Red Data Book. https://www.nparks.gov.sg/biodiversity/wildlife-in-singapore/species-list/sponge (2022).Quek, Z. B. R., Chang, J. J. M., Ip, Y. C. A., Chan, Y. K. S. & Huang, D. Mitogenomes reveal alternative initiation codons and lineage-specific gene order conservation in echinoderms. Mol. Biol. Evol. 38(3), 981–985 (2021).Article 
    CAS 

    Google Scholar 
    Wörheide, G., Nichols, S. A. & Goldberg, J. Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): Implications for phylogenetic studies. Mol. Phylogenet. Evol. 33(3), 816–830 (2004).Article 

    Google Scholar 
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17), i884–i890 (2018).Article 

    Google Scholar 
    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads: A baiting and iterative mapping approach. Nucleic Acids Res. 41(13), e129 (2013).Article 
    CAS 

    Google Scholar 
    Donath, A. et al. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 47(20), 10543–10552 (2019).Article 
    CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013).Article 
    CAS 

    Google Scholar 
    Darriba, D. et al. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37(1), 291–294 (2020).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35(21), 4453–4455 (2019).Article 
    CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).Article 
    CAS 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012).Article 
    CAS 

    Google Scholar 
    Xavier, J. R. et al. Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Mol. Phylogenet. Evol. 56(1), 13–20 (2010).Article 
    CAS 

    Google Scholar 
    de Paula, T. S., Zilberberg, C., Hajdu, E. & Lôbo-Hajdua, G. Morphology and molecules on opposite sides of the diversity gradient: Four cryptic species of the Cliona celata (Porifera, Demospongiae) complex in South America revealed by mitochondrial and nuclear markers. Mol. Phylogenet. Evol. 62(1), 529–541 (2012).Article 

    Google Scholar 
    Plese, B. et al. Mitochondrial evolution in the Demospongiae (Porifera): Phylogeny, divergence time, and genome biology. Mol Phylogenet Evol 155, 107011 (2021).Article 

    Google Scholar 
    Lavrov, D. V., Adamski, M., Chevaldonné, P. & Adamska, M. Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges. Curr. Biol. 26(1), 86–92 (2016).Article 
    CAS 

    Google Scholar 
    Lavrov, D. V. & Pett, W. Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages. Genome Biol. Evol. 8(9), 2896–2913 (2016).Article 
    CAS 

    Google Scholar 
    Haen, K. M., Pett, W. & Lavrov, D. V. Eight new mtDNA sequences of glass sponges reveal an extensive usage of + 1 frameshifting in mitochondrial translation. Gene 535(2), 336–344 (2014).Article 
    CAS 

    Google Scholar 
    Shearer, T. L., van Oppen, M. J. H., Romano, S. L. & Wörheide, G. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol. Ecol. 11(12), 2475–2487 (2002).Article 
    CAS 

    Google Scholar 
    Lavrov, D. V., Forget, L., Kelly, M. & Lang, B. F. Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol. Biol. Evol. 22(5), 1231–1239 (2005).Article 
    CAS 

    Google Scholar 
    Huang, D., Meier, R., Todd, P. A. & Chou, L. M. Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J. Mol. Evol. 66(2), 167–174 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Wörheide, G. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar. Biol. 148, 907–912 (2006).Article 

    Google Scholar 
    León-Pech, M. G., Cruz-Barraza, J. A., Carballo, J. L., Calderon-Aguilera, L. E. & Rocha-Olivares, A. Pervasive genetic structure at different geographic scales in the coral-excavating sponge Cliona vermifera (Hancock, 1867) in the Mexican Pacific. Coral Reefs 34, 887–897 (2015).Article 
    ADS 

    Google Scholar 
    Yang, Q., Franco, C. M. M., Sorokin, S. J. & Zhang, W. Development of a multilocus-based approach for sponge (phylum Porifera) identification: Refinement and limitations. Sci. Rep. 7, 41422 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Wörheide, G., Epp, L. S. & Macis, L. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): Founder effects, vicariance, or both?. BMC Evol. Biol. 8, 24 (2008).Article 

    Google Scholar 
    Lai, S., Loke, L. H. L., Hilton, M. J., Bouma, T. J. & Todd, P. A. The effects of urbanisation on coastal habitats and the potential for ecological engineering: A Singapore case study. Ocean Coast. Manag. 103, 78–85 (2015).Article 

    Google Scholar 
    Kuempel, C. D. et al. Identifying management opportunities to combat climate, land, and marine threats across less climate exposed coral reefs. Conserv. Biol. 36(3), e13856 (2022).Article 

    Google Scholar 
    Neo, M. L. et al. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. In Oceanography and Marine Biology: An Annual Review Vol. 55 (eds Hawkins, S. J. et al.) 87–388 (CRC Press, 2017).Chapter 

    Google Scholar 
    Orlando, L. et al. Ancient DNA analysis. Nat. Rev. Methods Prim. 1, 14 (2021).Article 
    CAS 

    Google Scholar 
    Cárdenas, P. & Moore, J. A. First records of Geodia demosponges from the New England seamounts, an opportunity to test the use of DNA mini-barcodes on museum specimens. Mar. Biodiv. 49, 163–174 (2019).Article 

    Google Scholar 
    Erpenbeck, D. et al. Minimalist barcodes for sponges: A case study classifying African freshwater Spongillida. Genome 62(1), 1–10 (2019).Article 

    Google Scholar 
    Chang, D. & Shapiro, B. Using ancient DNA and coalescent-based methods to infer extinction. Biol. Lett. 12(2), 20150822 (2016).Article 

    Google Scholar 
    Pacioni, C. et al. Genetic diversity loss in a biodiversity hotspot: Ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial. Mol. Ecol. 24(23), 5813–5828 (2015).Article 
    CAS 

    Google Scholar 
    Lombal, A. J. et al. Using ancient DNA to quantify losses of genetic and species diversity in seabirds: A case study of Pterodroma petrels from a Pacific island. Biodivers. Conserv. 29, 2361–2375 (2020).Article 

    Google Scholar 
    Ruzicka, R. & Gleason, D. F. Sponge community structure and anti-predator defenses on temperate reefs of the South Atlantic Bight. J. Exp. Mar. Biol. Ecol. 380(1–2), 36–46 (2009).Article 

    Google Scholar 
    Loh, T. L. & Pawlik, J. R. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc. Natl. Acad. Sci. U.S.A. 111(11), 4151–4156 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Wulff, J. L. Targeted predator defenses of sponges shape community organization and tropical marine ecosystem function. Ecol. Monogr. 91(2), e01438 (2021).Article 

    Google Scholar 
    Coppock, A. G., Kingsford, M. J., Battershill, C. N. & Jones, G. P. Significance of fish–sponge interactions in coral reef ecosystems. Coral Reefs 41, 1285–1308 (2022).Article 

    Google Scholar 
    Baumbach, D. S., Zhang, R., Hayes, C. T., Wright, M. K. & Dunbar, S. G. Strategic foraging: Understanding hawksbill (Eretmochelys imbricata) prey item energy values and distribution within a marine protected area. Mar. Ecol. 00, e12703 (2022).CAS 

    Google Scholar 
    Guida, V. G. Sponge predation in the oyster reef community as demonstrated with Cliona celata Grant. J. Exp. Mar. Biol. Ecol. 25(2), 109–122 (1976).Article 

    Google Scholar 
    Verdín, P. C. J., Carballo, J. L. & Camacho, M. L. A qualitative assessment of sponge-feeding organisms from the Mexican Pacific coast. Open Mar. Biol. J. 4, 39–46 (2010).Article 

    Google Scholar 
    Márquez, J. C. & Zea, S. Parrotfish mediation in coral mortality and bioerosion by the encrusting, excavating sponge Cliona tenuis. Mar. Ecol. 33(4), 417–426 (2012).Article 
    ADS 

    Google Scholar 
    González-Rivero, M., Ferrari, R., Schönberg, C. H. L. & Mumby, P. J. Impacts of macroalgal competition and parrotfish predation on the growth of a common bioeroding sponge. Mar. Ecol. Prog. Ser. 444, 133–142 (2012).Article 
    ADS 

    Google Scholar 
    von Brandis, R. G., Mortimer, J. A., Reilly, B. K., van Soest, R. W. M. & Branch, G. M. Diet composition of hawksbill turtles (Eretmochelys imbricata) in the Republic of Seychelles. Western Indian Ocean J. Mar. Sci. 13(1), 81–91 (2014).
    Google Scholar 
    Mortimer, C., Dunn, M., Haris, A., Jompa, J. & Bell, J. Estimates of sponge consumption rates on an Indo-Pacific reef. Mar. Ecol. Prog. Ser. 672, 123–140 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Hoppe, W. F. Growth, regeneration and predation in three species of large coral reef sponges. Mar. Ecol. Prog. Ser. 50(12), 117–125 (1988).Article 
    ADS 

    Google Scholar 
    Bell, J. J. Regeneration rates of a sublittoral demosponge. J. Mar. Biol. Assoc. U.K. 82(1), 169–170 (2002).Article 

    Google Scholar 
    Wu, Y.-C. et al. Opisthobranch grazing results in mobilisation of spherulous cells and re-allocation of secondary metabolites in the sponge Aplysina aerophoba. Sci. Rep. 10, 21934 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Wu, Y.-C., Franzenburg, S., Ribes, M. & Pita, L. Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer. Sci. Rep. 12, 1307 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    González-Rivero, M. et al. Life-history traits of a common Caribbean coral-excavating sponge, Cliona tenuis (Porifera: Hadromerida). J. Nat. Hist. 47(45–46), 1–20 (2013).
    Google Scholar 
    Chaves-Fonnegra, A., Maldonado, M., Blackwelder, P. & Lopez, J. V. Asynchronous reproduction and multi-spawning in the coral-excavating sponge Cliona delitrix. J. Mar. Biol. Assoc. U.K. 96(2), 515–528 (2015).Article 

    Google Scholar 
    Bautista-Guerrero, E., Carballo, J. L. & Maldonado, M. Abundance and reproductive patterns of the excavating sponge Cliona vermifera: A threat to Pacific coral reefs?. Coral Reefs 33, 259–266 (2014).Article 
    ADS 

    Google Scholar 
    Piscitelli, M., Corriero, G., Gaino, E. & Uriz, M.-J. Reproductive cycles of the sympatric excavating sponges Cliona celata and Cliona viridis in the Mediterranean Sea. Invertebr. Biol. 130(1), 1–10 (2011).Article 

    Google Scholar 
    Chaves-Fonnegra, A., Feldheim, K. A., Secord, J. & Lopez, J. V. Population structure and dispersal of the coral-excavating sponge Cliona delitrix. Mol. Ecol. 24(7), 1447–1466 (2015).Article 

    Google Scholar 
    Zilberberg, C., Maldonado, M. & Solé-Cava, A. Assessment of the relative contribution of asexual propagation in a population of the coral-excavating sponge Cliona delitrix from the Bahamas. Coral Reefs 25, 297–301 (2006).Article 
    ADS 

    Google Scholar 
    Wulff, J. L. Effects of a hurricane on survival and orientation of large erect coral reef sponges. Coral Reefs 14, 55–61 (1995).Article 
    ADS 

    Google Scholar 
    Wilkinson, C. R. & Thompson, J. E. Experimental sponge transplantation provides information on reproduction by fragmentation. Proc. 8th Int. Coral Reef Symp. 2, 1417–1420 (1997).CAS 

    Google Scholar 
    da Silva, R. et al. Assessing the conservation potential of fish and corals in aquariums globally. J. Nat. Conserv. 48, 1–11 (2019).Article 

    Google Scholar 
    Neumann, A. C. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol. Oceanogr. 11(1), 92–108 (1966).Article 
    ADS 

    Google Scholar 
    Rosell, D. & Uriz, M. J. Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (Porifera: Hadromerida)? An experimental approach. Mar. Biol. 114, 503–507 (1992).Article 

    Google Scholar 
    Ramsby, B. D., Hoogenboom, M. O., Smith, H. A., Whalan, S. & Webster, N. S. The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming. Sci. Rep. 8, 8302 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Investigation of anticoagulant rodenticide resistance induced by Vkorc1 mutations in rodents in Lebanon

    Gentry, A. Mammal Species of the World. A Taxonomic and Geographic Reference. 2005. Don E. Wilson & DeeAnn M. Reeder (Eds.). Ed. 3, 2 Vols., 2142 Pp. Johns Hopkins University Press, Baltimore. ISBN 0-8018-8221-4. A Nomenclatural Review. The Bulletin of zoological nomenclature. 2006, 63, 215–219.Dickman, C. R. Rodent-ecosystem relationships: A review. Ecologically-based management of rodent pests. ACIAR Monogr. 59, 113–133 (1999).
    Google Scholar 
    Tobin, M., Fall, M. W. Pest control: Rodents. In Pest Control: Rodents, Encyclopedia of Life Support Systems (EOLSS) (2005).Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 35, 221–270. https://doi.org/10.1080/10408410902989837 (2009).Article 

    Google Scholar 
    Kalfayan, B. H. Leptospira Icterohaemorrhagiae in rats of Beirut. Trans. R. Soc. Trop. Med. Hyg. 40, 895–900. https://doi.org/10.1016/0035-9203(47)90045-X (1947).Article 

    Google Scholar 
    Jackson, W. B. Evaluation of rodent depredations to crops and stored products1. EPPO Bull. 7, 439–458. https://doi.org/10.1111/j.1365-2338.1977.tb02743.x (1977).Article 

    Google Scholar 
    Stejskal, V., Hubert, J., Aulicky, R. & Kucerova, Z. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J. Stored Prod. Res. 64, 122–132. https://doi.org/10.1016/j.jspr.2014.12.006 (2015).Article 

    Google Scholar 
    Jacob, J., Buckle, A. Use of anticoagulant rodenticides in different applications around the world. In Anticoagulant Rodenticides and Wildlife 11–43. https://doi.org/10.1007/978-3-319-64377-9_2Puckett, E. E. et al. Global population divergence and admixture of the brown rat (Rattus Norvegicus). Proc. R. Soc. B Biol. Sci. 283, 20161762. https://doi.org/10.1098/rspb.2016.1762 (2016).Article 

    Google Scholar 
    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215. https://doi.org/10.1007/s13593-015-0327-9 (2015).Article 

    Google Scholar 
    Chellappan, M. Rodents. in Polyphagous Pests of Crops (ed. Omkar) 457–532 (Springer: Singapore, 2021) ISBN 9789811580758.Prakash, I. in Rodent Pest Management (CRC Press, 2018) ISBN 978-1351-08490-1.Hadler, M. R., Buckle, A. P. Forty five years of anticoagulant rodenticides-past, present and future trends. In: Proceedings of the 15th Vertebrate Pest Conference 149–155 (1992).Watt, B. E., Proudfoot, A. T., Bradberry, S. M. & Vale, J. A. Anticoagulant rodenticides. Toxicol. Rev. 24, 259–269. https://doi.org/10.2165/00139709-200524040-00005 (2005).Article 

    Google Scholar 
    Matagrin, B. et al. New insights into the catalytic mechanism of vitamin K epoxide reductase (VKORC1)—The catalytic properties of the major mutations of RVKORC1 explain the biological cost associated to mutations. FEBS Open Bio 3, 144–150. https://doi.org/10.1016/j.fob.2013.02.001 (2013).Article 

    Google Scholar 
    RRAC Rodenticide Resistance Action Group Available online: http://guide.rrac.info/resistancemaps/resistance-maps/. Information correct as off 09. (Accessed on 7 April 2021).McGee, C. F., McGilloway, D. A. & Buckle, A. P. Anticoagulant rodenticides and resistance development in rodent pest species—A comprehensive review. J. Stored Prod. Res. 88, 101688. https://doi.org/10.1016/j.jspr.2020.101688 (2020).Article 

    Google Scholar 
    Tie, J.-K., Nicchitta, C., von Heijne, G. & Stafford, D. W. Membrane topology mapping of vitamin K epoxide reductase by in vitro translation/cotranslocation*. J. Biol. Chem. 280, 16410–16416. https://doi.org/10.1074/jbc.M500765200 (2005).Article 

    Google Scholar 
    Goulois, J., Lambert, V., Legros, L., Benoit, E. & Lattard, V. Adaptative evolution of the Vkorc1 gene in mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides. Ecol. Evol. 7, 2767–2776. https://doi.org/10.1002/ece3.2829 (2017).Article 

    Google Scholar 
    Pelz, H.-J. The genetic basis of resistance to anticoagulants in rodents. Genetics 170, 1839–1847. https://doi.org/10.1534/genetics.104.040360 (2005).Article 

    Google Scholar 
    Rost, S. et al. Novel mutations in the VKORC1 gene of wild rats and mice—A response to 50 years of selection pressure by warfarin?. BMC Genet. 10, 4. https://doi.org/10.1186/1471-2156-10-4 (2009).Article 

    Google Scholar 
    Çetintürk, D., Yiğit, N., Çolak, E., Duman, T., Gül, N., Saygılı Yiğit, F. First Report for Anticoagulant Rodenticide Resistance in Turkish Norway Rat. Jan 5 (2018).Gérard, J., Nehmé, C. Lebanon. A geography of contrasts. Méditerranée. Revue géographique des pays méditerranéens/J. Mediterr. Geogra. (2020).Haktanir, K., Karaca, A., Omar, S. M. The prospects of the impact of desertification on Turkey, Lebanon, Syria and Iraq. In Proceedings of the Environmental Challenges in the Mediterranean 2000–2050 (ed. Marquina, A.) 139–154 (Springer Netherlands, Dordrecht, 2004).Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102. https://doi.org/10.1016/j.tree.2006.11.001 (2007).Article 

    Google Scholar 
    Lewis, R., Lewis, J. & Atallah, S. A review of Lebanese Mammals Lagomorpha and Rodentia*. J. Zool. 153, 45–70. https://doi.org/10.1111/j.1469-7998.1967.tb05030.x (1967).Article 

    Google Scholar 
    Bate, D. M. A. XIV—Note on small Mammals from the Lebanon Mountains, Syria. Ann. Mag. Nat. Hist. 12, 141–158. https://doi.org/10.1080/00222934508527500 (1945).Article 

    Google Scholar 
    Sprenger, A., Lebanon, A. R. Small Mammal Survey Report (Dec 2001–Mar 2002). 5.Boukhdoud, L., Saliba, C., Kahale, R. & Kharrat, M. B. D. Tracking Mammals in a Lebanese protected area using environmental DNA-based approach. Environ. DNA https://doi.org/10.1002/edn3.183 (2021).Article 

    Google Scholar 
    Bou Dagher Kharrat, M., Kahale, R., Saliba, C., Boukhdoud, L. Mammals at first sight: Discover lebanese wild mammals (2019).Khater, C., El-Hajj, R. in Terrestrial Biodiversity in Lebanon 141–169 (2012).Nader, M. R., El Indary, S., Abi Salloum, B. & Abou Dagher, M. Combining non-invasive methods for the rapid assessment of Mammalian richness in a transect-quadrat survey scheme—Case study of the Horsh Ehden nature reserve, North Lebanon. Zookeys 119, 63–71. https://doi.org/10.3897/zookeys.119.1040 (2011).Article 

    Google Scholar 
    Kersten, A. M. P. Rodents and insectivores from the palaeolithic Rock Shelter of Ksar ’Akil (Lebanon) and their palaeoecological implications. Paléorient 18, 27–45. https://doi.org/10.3406/paleo.1992.4561 (1992).Article 

    Google Scholar 
    Amr, Z. S., Abi-Said, M. R. & Shehab, A. H. Diet of the Barn Owl (Tyto Alba ) from Chaddra-Akkar Northern Lebanon. JJBS 7, 109–112. https://doi.org/10.12816/0008223 (2014).Article 

    Google Scholar 
    Abi-Said, Mounir R. in A Baseline Survey of the Mammals in Jabal Moussa Nature Reserve (JMNR) (2009).Kryštufek, B., Abi-Said, M. & Hladnik, M. The Iranian vole microtus Irani occurs in Lebanon (Mammalia: Rodentia). Zool. Middle East 59, 101–106. https://doi.org/10.1080/09397140.2013.810863 (2013).Article 

    Google Scholar 
    Inc, G.I., Berger, D.S. in Leptospirosis: Global Status: 2020 Ed (GIDEON Informatics Inc, 2020) ISBN 978-1-4988-2877-2.Iacucci, A. et al. VKORC1 mutation in European populations of Rattus Norvegicus with first data for italy and the report of a new amino acid substitution. Hystrix It. J. Mamm. 29, 95–99. https://doi.org/10.4404/hystrix-00055-2018 (2018).Article 

    Google Scholar 
    Backhans, A. et al. Occurrence of pathogens in wild rodents caught on Swedish pig and chicken farms. Epidemiol. Infect. 141, 1885–1891. https://doi.org/10.1017/S0950268812002609 (2013).Article 

    Google Scholar 
    Franssen, F., Swart, A., van Knapen, F. & van der Giessen, J. Helminth Parasites in black rats (Rattus Rattus) and brown rats (Rattus Norvegicus) from different environments in the Netherlands. Infect. Ecol. Epidemiol. 6, 31413. https://doi.org/10.3402/iee.v6.31413 (2016).Article 

    Google Scholar 
    Umali, D. V., Lapuz, R. R. S. P., Suzuki, T., Shirota, K. & Katoh, H. Transmission and shedding patterns of salmonella in naturally infected captive wild roof rats (Rattus Rattus) from a salmonella-contaminated layer farm. Avian Dis. 56, 288–294. https://doi.org/10.1637/9911-090411-Reg.1 (2012).Article 

    Google Scholar 
    Heiberg, A.-C. Anticoagulant resistance: A relevant issue in sewer rat (Rattus Norvegicus) control?. Pest Manag. Sci. 65, 444–449. https://doi.org/10.1002/ps.1709 (2009).Article 

    Google Scholar 
    Mohammadi, Z., Darvish, J., Ghorbani, F., Mostafavi, E. First Record of the Caucasus Field Mouse Apodemus Ponticus Sviridenko, 1936 (Rodentia Muridae) from Iran. 7.Albaba, I. The terrestrial mammals of palestine: A preliminary checklist. Int. J. Fauna Biol. Stud. 3(4), 28–35 (2016).
    Google Scholar 
    Brooks, J. E. & Jackson, W. B. A review of commensal rodents and their control. CRC Crit. Rev. Environ. Control 3, 405–453. https://doi.org/10.1080/10643387309381607 (1973).Article 

    Google Scholar 
    Abou Zeid, M. I., Jammoul, A. M., Melki, K. C., Jawdah, Y. A. & Awad, M. K. Suggested policy and legislation reforms to reduce deleterious effect of pesticides in Lebanon. Heliyon 6, e05524. https://doi.org/10.1016/j.heliyon.2020.e05524 (2020).Article 

    Google Scholar 
    Buckle, A., Prescott, C. Anticoagulants and risk mitigation. In Anticoagulant Rodenticides and Wildlife (eds. van den Brink, N. W., Elliott, J. E., Shore, R. F., Rattner, B. A.) 319–355 (Springer International Publishing, Cham, 2018) ISBN 978-3-319-64377-9.Berny, P., Esther, A., Jacob, J., Prescott, C. Development of resistance to anticoagulant rodenticides in rodents. In Anticoagulant Rodenticides and Wildlife (eds. van den Brink, N. W., Elliott, J. E., Shore, R. F., Rattner, B. A.) (Springer International Publishing, Cham, 2018) 259–286 ISBN 978-3-319-64377-9.Abil Khalil, R. et al. Seasonal diet-based resistance to anticoagulant rodenticides in the fossorial water vole (Arvicola Amphibius). Environ. Res. 200, 111422 (2021).Article 

    Google Scholar 
    Ma, X. et al. Low warfarin resistance frequency in Norway rats in Two cities in China after 30 years of usage of anticoagulant rodenticides. Pest Manag. Sci. 74, 2555–2560. https://doi.org/10.1002/ps.5040 (2018).Article 

    Google Scholar 
    Prescott, C., Buckle, A., Gibbings, G., Allan, E. & Stuart, A. Anticoagulant resistance in Norway rats (Rattus Norvegicus Berk.) in Kent—A VKORC1 single nucleotide polymorphism, tyrosine139phenylalanine, New to the UK. Int. J. Pest Manag. 57, 61–65. https://doi.org/10.1080/09670874.2010.523124 (2011).Article 

    Google Scholar 
    Cowan, P. E. et al. Vkorc1 sequencing suggests anticoagulant resistance in rats in New Zealand. Pest Manag. Sci. 73, 262–266. https://doi.org/10.1002/ps.4304 (2017).Article 

    Google Scholar 
    Pelz, H.-J. et al. Distribution and Frequency of VKORC1 sequence variants conferring resistance to anticoagulants in mus musculus. Pest. Manag. Sci. 68, 254–259. https://doi.org/10.1002/ps.2254 (2012).Article 

    Google Scholar 
    Mooney, J. et al. VKORC1 sequence variants associated with resistance to anticoagulant rodenticides in irish populations of Rattus Norvegicus and mus musculus domesticus. Sci. Rep. 8, 4535. https://doi.org/10.1038/s41598-018-22815-7 (2018).Article 
    ADS 

    Google Scholar 
    Šćepović, T. et al. VKOR variant and sex are the main influencing factors on bromadiolone tolerance of the house mouse (Mus Musculus L.). Pest Manag. Sci. 72, 574–579. https://doi.org/10.1002/ps.4027 (2016).Article 

    Google Scholar 
    Greaves, J. H., Redfern, R. & Anasuya, B. Inheritance of resistance to warfarin in Rattus Rattus L. J. Stored Prod. Res. 12, 225–228. https://doi.org/10.1016/0022-474X(76)90037-0 (1976).Article 

    Google Scholar 
    Leung, L.K.-P. & Clark, N. M. Bait avoidance and habitat use by the roof rat, Rattus Rattus, in a Piggery. Int. Biodeterior. Biodegrad. 55, 77–84. https://doi.org/10.1016/j.ibiod.2004.07.004 (2005).Article 

    Google Scholar 
    Takeda, K. et al. Novel revelation of warfarin resistant mechanism in roof rats (Rattus Rattus) using pharmacokinetic/pharmacodynamic analysis. Pestic. Biochem. Physiol. 134, 1–7. https://doi.org/10.1016/j.pestbp.2016.04.004 (2016).Article 

    Google Scholar 
    Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice., adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21, 1296–1301. https://doi.org/10.1016/j.cub.2011.06.043 (2011).Article 

    Google Scholar 
    Aplin, K. P., Brown, P. R., Jacob, J., Krebs, C. J. & Singleton, G. R. Field methods for rodent studies in Asia and the Indo-Pacific (No. 435-2016-33720) (2003).Irwin, D. M., Kocher, T. D. & Wilson, A. C. Evolution of the cytochrome b gene of Mammals. J. Mol. Evol. 32, 128–144. https://doi.org/10.1007/BF02515385 (1991).Article 
    ADS 

    Google Scholar 
    Pagès, M. et al. Revisiting the taxonomy of the rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evol. Biol. 10, 184. https://doi.org/10.1186/1471-2148-10-184 (2010).Article 

    Google Scholar 
    Bradley, R. D. & Baker, E. J. A test of the genetic species concept: Cytochrome-b sequences and mammals. J. Mammal. 82, 960–973 (2001).Article 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
    Google Scholar 
    Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 37, D26–D31. https://doi.org/10.1093/nar/gkn723 (2009).Article 

    Google Scholar  More

  • in

    Microbial rewilding in the gut microbiomes of captive ring-tailed lemurs (Lemur catta) in Madagascar

    Peixoto, R. S., Harkins, D. M. & Nelson, K. E. Advances in microbiome research for animal health. Annu. Rev. Anim. Biosci. 9, 289–311 (2021).Article 

    Google Scholar 
    Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344 (2013).Article 

    Google Scholar 
    West, A. G. et al. The microbiome in threatened species conservation. Biol. Conserv. 229, 85–98 (2019).Article 

    Google Scholar 
    Robinson, J. M., Mills, J. G. & Breed, M. F. Walking ecosystems in microbiome-inspired green infrastructure: An ecological perspective on enhancing personal and planetary health. Challenges 9, 40 (2018).Article 

    Google Scholar 
    Mills, J. G. et al. Urban habitat restoration provides a human health benefit through microbiome rewilding: The Microbiome Rewilding Hypothesis. Restor. Ecol. 25, 866–872 (2017).Article 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448 (2019).Article 

    Google Scholar 
    Dallas, J. W. & Warne, R. W. Captivity and animal microbiomes: Potential roles of microbiota for influencing animal conservation. Microb. Ecol. https://doi.org/10.1007/s00248-022-01991-0 (2022).Article 

    Google Scholar 
    Bornbusch, S. L. et al. Gut microbiota of ring-tailed lemurs (Lemur catta) vary across natural and captive populations and correlate with environmental microbiota. Anim. Microbiome 4, 1–19 (2022).Article 

    Google Scholar 
    Greene, L. K. et al. Gut microbiota of frugo-folivorous sifakas across environments. Anim. Microbiome 3, 39 (2021).Article 

    Google Scholar 
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).Article 

    Google Scholar 
    Bornbusch, S. L. & Drea, C. M. Antibiotic resistance genes in lemur gut and soil microbiota along a gradient of anthropogenic disturbance. Front. Ecol. Evol. 9, 514 (2021).Article 

    Google Scholar 
    Hyde, E. R. et al. The oral and skin microbiomes of captive komodo dragons are significantly shared with their habitat. mSystems 1, e00046-e116 (2016).Article 

    Google Scholar 
    LaFleur, M., Clarke, T. A., Reuter, K. E. & Schaefer, M. S. Illegal trade of wild-captured Lemur catta within Madagascar. Folia Primatol. 90, 199–214 (2019).Article 

    Google Scholar 
    Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).Article 

    Google Scholar 
    Choo, J. M., Leong, L. E. & Rogers, G. B. Sample storage conditions significantly influence faecal microbiome profiles. Sci. Rep. 5, 16350 (2015).Article 
    ADS 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).Article 

    Google Scholar 
    Hasan, N. A. et al. Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS ONE 9, e97699 (2014).Article 
    ADS 

    Google Scholar 
    Bornbusch, S. L. et al. Stable and transient structural variation in lemur vaginal, labial and axillary microbiomes: Patterns by species, body site, ovarian hormones and forest access. FEMS Microbiol. Ecol. 96, fiaa090 (2020).Article 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ 37, 852–857 (2018).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).Article 

    Google Scholar 
    Trosvik, P., Rueness, E. K., de Muinck, E. J., Moges, A. & Mekonnen, A. Ecological plasticity in the gastrointestinal microbiomes of Ethiopian Chlorocebus monkeys. Sci. Rep. 8, 1–10 (2018).Article 

    Google Scholar 
    Wills, M. O. et al. Host species and captivity distinguish the microbiome compositions of a diverse zoo-resident non-human primate population. Diversity 14, 715 (2022).Article 

    Google Scholar 
    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).Article 
    ADS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).Article 

    Google Scholar 
    Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635 (2014).Article 

    Google Scholar 
    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 44, 139–160 (1982).MathSciNet 
    MATH 

    Google Scholar 
    Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics 34, 2870–2878 (2018).Article 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).Article 

    Google Scholar 
    Ottesen, A. et al. Enrichment dynamics of Listeria monocytogenes and the associated microbiome from naturally contaminated ice cream linked to a listeriosis outbreak. BMC Microbiol. 16, 1–11 (2016).Article 

    Google Scholar 
    Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).Article 
    ADS 

    Google Scholar 
    Shenhav, L. et al. FEAST: Fast expectation-maximization for microbial source tracking. Nat. Methods 16, 627 (2019).Article 

    Google Scholar 
    Barelli, C. et al. The gut microbiota communities of wild arboreal and ground-feeding tropical primates are affected differently by habitat disturbance. mSystems 5, e00061 (2020).Article 

    Google Scholar 
    Frankel, J. S., Mallott, E. K., Hopper, L. M., Ross, S. R. & Amato, K. R. The effect of captivity on the primate gut microbiome varies with host dietary niche. Am. J. Primatol. 81, e23061 (2019).Article 

    Google Scholar 
    Bornbusch, S. L. et al. Antibiotics and fecal transfaunation differentially affect microbiota recovery, associations, and antibiotic resistance in lemur guts. Anim. Microbiome 3, 65 (2021).Article 

    Google Scholar 
    Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).Article 

    Google Scholar 
    Bornbusch, S. L. et al. A comparative study of gut microbiomes in captive nocturnal strepsirrhines. Am. J. Primatol. 81, e22986 (2019).Article 

    Google Scholar 
    Nishida, A. H. & Ochman, H. A great-ape view of the gut microbiome. Nat. Rev. Genet. 20, 195–206 (2019).Article 

    Google Scholar 
    Nagpal, R. et al. Gut microbiome composition in non-human primates consuming a Western or Mediterranean diet. Front. Nutr. 5, 28 (2018).Article 

    Google Scholar 
    Deng, H. et al. Bacteroides fragilis prevents Clostridium difficile infection in a mouse model by restoring gut barrier and microbiome regulation. Front. Microbiol. 9, 2976 (2018).Article 

    Google Scholar 
    Wang, C. et al. Roles of intestinal bacteroides in human health and diseases. Crit. Rev. Food Sci. Nutr. 61, 3518–3536 (2021).Article 

    Google Scholar 
    Townsend, G. E. et al. Dietary sugar silences a colonization factor in a mammalian gut symbiont. Proc. Natl. Acad. Sci. USA 116, 233–238 (2019).Article 
    ADS 

    Google Scholar 
    LaFleur, M. et al. Drug-resistant tuberculosis in pet ring-tailed lemur, Madagascar. Emerg. Infect. Dis. 27, 977 (2021).Article 

    Google Scholar 
    Gálvez, E. J. C. et al. Distinct polysaccharide utilization determines interspecies competition between intestinal Prevotella spp. Cell Host Microbe 28, 838–852 (2020).Article 

    Google Scholar 
    Costea, P. I. et al. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3, 8–16 (2018).Article 

    Google Scholar 
    Roager, H. M., Licht, T. R., Poulsen, S. K., Larsen, T. M. & Bahl, M. I. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet. Appl. Environ. Microbiol. 80, 1142–1149 (2014).Article 
    ADS 

    Google Scholar 
    Hjorth, M. F. et al. Pretreatment Prevotella-to-Bacteroides ratio and markers of glucose metabolism as prognostic markers for dietary weight loss maintenance. Eur. J. Clin. Nutr. 74, 338–347 (2020).Article 

    Google Scholar 
    Hjorth, M. F. et al. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int. J. Obes. 42, 580–583 (2018).Article 

    Google Scholar 
    DeMartino, P. & Cockburn, D. W. Resistant starch: Impact on the gut microbiome and health. Curr. Opin. Biotechnol. 61, 66–71 (2020).Article 

    Google Scholar 
    Wang, K. et al. Diet with a high proportion of rice alters profiles and potential function of digesta-associated microbiota in the ileum of goats. Animals 10, 1261 (2020).Article 

    Google Scholar 
    Greene, L. K., McKenney, E. A., O’Connell, T. M. & Drea, C. M. The critical role of dietary foliage in maintaining the gut microbiome and metabolome of folivorous sifakas. Sci. Rep. 8, 14482 (2018).Article 
    ADS 

    Google Scholar 
    Allen, H. K. et al. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).Article 

    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 78, 103–116 (2001).Article 

    Google Scholar 
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).Article 

    Google Scholar 
    Sbihi, H. et al. Thinking bigger: How early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy 74, 2103–2115 (2019).Article 

    Google Scholar 
    Bendiks, M. & Kopp, M. V. The relationship between advances in understanding the microbiome and the maturing hygiene hypothesis. Curr. Allergy Asthma Rep. 13, 487–494 (2013).Article 

    Google Scholar 
    Alexandre-Silva, G. M. et al. The hygiene hypothesis at a glance: Early exposures, immune mechanism and novel therapies. Acta Trop. 188, 16–26 (2018).Article 

    Google Scholar 
    Yao, R. et al. The, “wildness” of the giant panda gut microbiome and its relevance to effective translocation. Glob. Ecol. Conserv. 18, e00644 (2019).Article 

    Google Scholar  More

  • in

    Precipitation and potential evapotranspiration determine the distribution patterns of threatened plant species in Sichuan Province, China

    Paudel, P. K., Sipos, J. & Brodie, J. F. Threatened species richness along a Himalayan elevational gradient: Quantifying the influences of human population density, range size, and geometric constraints. BMC Ecol. 18, 6. https://doi.org/10.1186/s12898-018-0162-3 (2018).Article 

    Google Scholar 
    Pan, K. Distribution of Coniferous Plants in Southwest China (Chengdu Cartographic Publishing House, 2021).
    Google Scholar 
    Zhang, Y.-B. & Ma, K.-P. Geographic distribution patterns and status assessment of threatened plants in China. Biol. Conserv. 17, 1783. https://doi.org/10.1007/s10531-008-9384-6 (2008).Article 

    Google Scholar 
    Shrestha, N., Xu, X., Meng, J. & Wang, Z. Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat. Commun. 12, 1632. https://doi.org/10.1038/s41467-021-21914-w (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Pandey, B. et al. Energy–water and seasonal variations in climate underlie the spatial distribution patterns of gymnosperm species richness in China. Ecol. Evol. 10, 9474–9485. https://doi.org/10.1002/ece3.6639 (2020).Article 

    Google Scholar 
    Gao, J. & Liu, Y. Climate stability is more important than water–energy variables in shaping the elevational variation in species richness. Ecol. Evol. 8, 6872–6879. https://doi.org/10.1002/ece3.4202 (2018).Article 

    Google Scholar 
    Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x (2001).Article 

    Google Scholar 
    Dakhil, M. A. et al. Richness patterns of endemic and threatened conifers in south-west China: Topographic-soil fertility explanation. Environ. Res. Lett. 16, 034017. https://doi.org/10.1088/1748-9326/abda6e (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Dakhil, M. A. et al. Potential risks to endemic conifer montane forests under climate change: Integrative approach for conservation prioritization in southwestern China. Landsc. Ecol. 36, 3137–3151. https://doi.org/10.1007/s10980-021-01309-4 (2021).Article 

    Google Scholar 
    Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993. https://doi.org/10.1038/s41467-020-14771-6 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Bhattarai, K. R. & Vetaas, O. R. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob. Ecol. Biogeogr. 12, 327–340. https://doi.org/10.1046/j.1466-822X.2003.00044.x (2003).Article 

    Google Scholar 
    Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x (2004).Article 

    Google Scholar 
    Vetaas, O. R., Paudel, K. P. & Christensen, M. Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. J. Biogeogr. 46, 1652–1663. https://doi.org/10.1111/jbi.13564 (2019).Article 

    Google Scholar 
    Pandey, B. et al. Distribution pattern of gymnosperms’ richness in Nepal: Effect of environmental constrains along elevational gradients. Plants 9, 625. https://doi.org/10.3390/plants9050625 (2020).Article 

    Google Scholar 
    Kluge, J. et al. Elevational seed plants richness patterns in Bhutan, Eastern Himalaya. J. Biogeogr. 44, 1711–1722. https://doi.org/10.1111/jbi.12955 (2017).Article 

    Google Scholar 
    Currie, D. J. Energy and large-scale patterns of animal- and plant- species richness. Am. Nat. 137, 27–49. https://doi.org/10.1086/285144 (1991).Article 

    Google Scholar 
    MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598. https://doi.org/10.2307/1932254 (1961).Article 

    Google Scholar 
    Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252. https://doi.org/10.1038/385252a0 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. P. Natl. Acad. Sci. USA 104, 5925–5930. https://doi.org/10.1073/pnas.0608361104 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Pausas, J. G. & Austin, M. P. Patterns of plant species richness in relation to different environments: An appraisal. J. Veg. Sci. 12, 153–166. https://doi.org/10.2307/3236601 (2001).Article 

    Google Scholar 
    Colwell, R. K. & Lees, D. C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76. https://doi.org/10.1016/S0169-5347(99)01767-X (2000).Article 
    CAS 

    Google Scholar 
    McCain, C. M. The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. J. Biogeogr. 31, 19–31. https://doi.org/10.1046/j.0305-0270.2003.00992.x (2004).Article 

    Google Scholar 
    Gao, D. et al. The mid-domain effect and habitat complexity applied to elevational gradients: Moss species richness in a temperate semihumid monsoon climate mountain of China. Ecol. Evol. 11, 7448–7460. https://doi.org/10.1002/ece3.7576 (2021).Article 

    Google Scholar 
    Wang, J.-H., Cai, Y.-F., Zhang, L., Xu, C.-K. & Zhang, S.-B. Species richness of the family Ericaceae along an elevational gradient in Yunnan, China. Forests 9, 511. https://doi.org/10.3390/f9090511 (2018).Article 

    Google Scholar 
    Xu, M. et al. The mid-domain effect of mountainous plants is determined by community life form and family flora on the Loess Plateau of China. Sci. Rep. 11, 10974. https://doi.org/10.1038/s41598-021-90561-4 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Sichuan Vegetation Cooperation Group. Vegetation in Sichuan (Sichuan People’s Publishing House, 1980).
    Google Scholar 
    Pan, K., Wu, N., Pan, K. & Chen, Q. A discussion on the issues of the re-construction of ecological shelter zone on the upper reaches of the Yangtze River. Acta Ecol. Sin. 24, 617–629. https://doi.org/10.3321/j.issn:1000-0933.2004.03.032 (2004).Article 

    Google Scholar 
    Jpl, N. A. S. A. NASA shuttle radar topography mission global 1 arc second. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (2013).Liu, Y. et al. Determinants of richness patterns differ between rare and common species: Implications for Gesneriaceae conservation in China. Divers. Distrib. 23, 235–246. https://doi.org/10.1111/ddi.12523 (2017).Article 

    Google Scholar 
    Liao, Z. et al. Climate change jointly with migration ability affect future range shifts of dominant fir species in Southwest China. Divers. Distrib. 26, 352–367. https://doi.org/10.1111/ddi.13018 (2020).Article 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digit. Repos. https://doi.org/10.5061/dryad.kd1d4 (2018).Running, S. W., Mu, Q. & Zhao, M. MODIS/terra net evapotranspiration 8-day L4 global 500m SIN grid V061. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD16A2.061 (2021).Mu H. et al. An Annual Global Terrestrial Human Footprint Dataset from 2000 to 2018https://doi.org/10.6084/m9.figshare.16571064.v5(2021).Zhang, D., Zhang, Y., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan Mountains, southwestern China. Biol. Conserv. 18, 699–716. https://doi.org/10.1007/s10531-008-9534-x (2009).Article 

    Google Scholar 
    Sun, L., Luo, J., Qian, L., Deng, T. & Sun, H. The relationship between elevation and seed-plant species richness in the Mt. Namjagbarwa region (Eastern Himalayas) and its underlying determinants. Glob. Ecol. Conserv. 23, e01053. https://doi.org/10.1016/j.gecco.2020.e01053 (2020).Article 

    Google Scholar 
    Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503. https://doi.org/10.1002/ece3.5027 (2019).Article 

    Google Scholar 
    Krömer, T., Acebey, A., Kluge, J. & Kessler, M. Effects of altitude and climate in determining elevational plant species richness patterns: A case study from Los Tuxtlas, Mexico. Flora 208, 197–210. https://doi.org/10.1016/j.flora.2013.03.003 (2013).Article 

    Google Scholar 
    Pandey, B. et al. Contrasting gymnosperm diversity across an elevation gradient in the ecoregion of China: The role of temperature and productivity. Front. Ecol. Evol. 9, 1–7. https://doi.org/10.3389/fevo.2021.679439 (2021).Article 
    CAS 

    Google Scholar 
    Geng, S. et al. Diversity of vegetation composition enhances ecosystem stability along elevational gradients in the Taihang Mountains, China. Ecol. Indic. 104, 594–603. https://doi.org/10.1016/j.ecolind.2019.05.038 (2019).Article 

    Google Scholar 
    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, 1995).Book 

    Google Scholar 
    Zhang, S., Chen, W., Huang, J., Bi, Y. & Yang, X. Orchid species richness along elevational and environmental gradients in Yunnan, China. PLoS ONE https://doi.org/10.1371/journal.pone.0142621 (2015).Article 

    Google Scholar 
    Bertuzzo, E. et al. Geomorphic controls on elevational gradients of species richness. Proc. Natl. Acad. Sci. USA 113, 1737–1742. https://doi.org/10.1073/pnas.1518922113 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301. https://doi.org/10.1046/j.1466-822X.2002.00297.x (2002).Article 

    Google Scholar 
    Antonio, T. & Robert, Z. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).Panda, R. M., Behera, M. D., Roy, P. S. & Biradar, C. Energy determines broad pattern of plant distribution in Western Himalaya. Ecol. Evol. 7, 10850–10860. https://doi.org/10.1002/ece3.3569 (2017).Article 

    Google Scholar 
    Vetaas, O. R. & Ferrer-Castán, D. Patterns of woody plant species richness in the Iberian Peninsula: Environmental range and spatial scale. J. Biogeogr. 35, 1863–1878. https://doi.org/10.1111/j.1365-2699.2008.01931.x (2008).Article 

    Google Scholar 
    McCain, C. M. & Grytnes, J.-A. Encyclopedia of Life Sciences (ELS) (Wiley, 2010).
    Google Scholar 
    Tukiainen, H., Bailey, J. J., Field, R., Kangas, K. & Hjort, J. Combining geodiversity with climate and topography to account for threatened species richness. Conserv. Biol. 31, 364–375. https://doi.org/10.1111/cobi.12799 (2017).Article 

    Google Scholar 
    Zhang, Z., He, J.-S., Li, J. & Tang, Z. Distribution and conservation of threatened plants in China. Biol. Conserv. 192, 454–460. https://doi.org/10.1016/j.biocon.2015.10.019 (2015).Article 

    Google Scholar 
    Shrestha, N., Su, X., Xu, X. & Wang, Z. The drivers of high Rhododendron diversity in south-west China: Does seasonality matter?. J. Biogeogr. 45, 438–447. https://doi.org/10.1111/jbi.13136 (2017).Article 

    Google Scholar 
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117. https://doi.org/10.1890/03-8006 (2003).Article 

    Google Scholar 
    Bijlsma, R. & Loeschcke, V. Environmental stress, adaptation and evolution: An overview. J. Evol. Biol. 18, 744–749. https://doi.org/10.1111/j.1420-9101.2005.00962.x (2005).Article 
    CAS 

    Google Scholar 
    Feng, G., Mao, L., Sandel, B., Swenson, N. G. & Svenning, J. C. High plant endemism in China is partially linked to reduced glacial-interglacial climate change. J. Biogeogr. 43, 145–154. https://doi.org/10.1111/jbi.12613 (2016).Article 

    Google Scholar 
    Zhang, X., Wang, H., Wang, R., Wang, Y. & Liu, J. Relationships between plant species richness and environmental factors in nature reserves at different spatial scales. Pol. J. Environ. Stud. 26, 2375–2384. https://doi.org/10.15244/pjoes/69032 (2017).Article 

    Google Scholar 
    Mu, H. et al. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 9, 176. https://doi.org/10.1038/s41597-022-01284-8 (2022).Article 

    Google Scholar 
    Kadmon, R. & Benjamini, Y. Effects of productivity and disturbance on species richness: A neutral model. Am. Nat. 167, 939–946. https://doi.org/10.1086/504602 (2006).Article 

    Google Scholar 
    Olson, D. M. & Dinerstein, E. The global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224. https://doi.org/10.2307/3298564 (2002).Article 

    Google Scholar 
    Chéng, X. Y. Atlas of National Wildlife Conservation and Rare and Endangered Plants of Sichuan Province (Science Press, 2018).
    Google Scholar 
    Wu, Z. & Raven, P. Flora of China. Vol. 4 (Cycadaceae Through Fagaceae) (Science Press and Missouri Botanical Garden Press, 1999).
    Google Scholar 
    Sanders, N. J. Elevational gradients in ant species richness: Area, geometry, and Rapoport’s rule. Ecography 25, 25–32. https://doi.org/10.1034/j.1600-0587.2002.250104.x (2002).Article 

    Google Scholar 
    RangeModel: A Monte Carlo simulation tool for assessing geometric constraints on species richness. Version 5. User’s Guide and application (2006).Colwell, R. K. RangeModel: Tools for exploring and assessing geometric constraints on species richness (the mid-domain effect) along transects. Ecography 31, 4–7. https://doi.org/10.1111/j.2008.0906-7590.05347.x (2008).Article 

    Google Scholar 
    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 (2002).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122–170122. https://doi.org/10.1038/sdata.2017.122 (2017).Article 

    Google Scholar 
    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800. https://doi.org/10.1016/j.rse.2011.02.019 (2011).Article 
    ADS 

    Google Scholar 
    Zhang, Z. et al. Distribution and conservation of orchid species richness in China. Biol. Conserv. 181, 64–72. https://doi.org/10.1016/j.biocon.2014.10.026 (2015).Article 

    Google Scholar 
    D’Agostino, R. Goodness-of-Fit-Techniques (Routledge, 2017).Book 
    MATH 

    Google Scholar 
    Hilbe, J. M. Negative Binomial Regression (Cambridge University Press, 2011).Book 
    MATH 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar 
    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).Book 

    Google Scholar 
    Grace, J. B. & Pugesek, B. H. A structural equation model of plant species richness and its application to a coastal wetland. Am. Nat. 149, 436–460. https://doi.org/10.1086/285999 (1997).Article 

    Google Scholar 
    R Development Core Team. (R Foundation for Statistical Computing, 2019).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).Book 
    MATH 

    Google Scholar 
    Fox, J. et al. R Foundation for Statistical Computing Vol. 16 (2012).Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36. https://doi.org/10.18637/jss.v048.i02 (2012).Article 

    Google Scholar  More

  • in

    Carbon sinks and carbon emissions balance of land use transition in Xinjiang, China: differences and compensation

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of earth’s ecosystems. Science 277, 494–499. https://doi.org/10.1126/science.277.5325.494 (1997).Article 
    CAS 

    Google Scholar 
    Yue, T. X., Fan, Z. M. & Liu, J. Y. Scenarios of land cover in China. Glob. Planet. Change 55, 317–342. https://doi.org/10.1016/j.gloplacha.2006.10.002 (2007).Article 
    ADS 

    Google Scholar 
    Ii, B. L. T., Lambin, E. F. & Reen Be Rg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 104, 20666–20671. https://doi.org/10.1073/pnas.0704119104 (2007).Article 

    Google Scholar 
    IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories—IPCC. https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (2006).Gallant, K., Withey, P., Risk, D., van Kooten, G. C. & Spafford, L. Measurement and economic valuation of carbon sequestration in Nova Scotian wetlands. Ecol. Econ. 171, 106619. https://doi.org/10.1016/j.ecolecon.2020.10661 (2020).Article 

    Google Scholar 
    Deng, C. et al. Spatiotemporal dislocation of urbanization and ecological construction increased the ecosystem service supply and demand imbalance. J. Environ. Manag. 288, 112478. https://doi.org/10.1016/j.jenvman.2021.112478 (2021).Article 

    Google Scholar 
    Wang, J., Zhai, T., Lin, Y., Kong, X. & He, T. Spatial imbalance and changes in supply and demand of ecosystem services in China. Sci. Total Environ. 657, 781–791. https://doi.org/10.1016/j.scitotenv.2018.12.080 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Long, R., Li, J., Chen, H., Zhang, L. & Li, Q. Embodied carbon dioxide flow in international trade: A comparative analysis based on China and Japan. J. Environ. Manag. 209, 371–381. https://doi.org/10.1016/j.jenvman.2017.12.067 (2018).Article 

    Google Scholar 
    Lv, Y., Liu, J., Cheng, J. & Andreoni, V. The persistent and transient total factor carbon emission performance and its economic determinants: Evidence from China’s province-level panel data. J. Clean. Prod. 316, 128198. https://doi.org/10.1016/j.jclepro.2021.128198 (2021).Article 
    CAS 

    Google Scholar 
    Wang, Y., Shataer, R., Zhang, Z., Zhen, H. & Xia, T. Evaluation and analysis of influencing factors of ecosystem service value change in Xinjiang under different land use types. Water 14, 1424. https://doi.org/10.3390/w14091424 (2022).Article 

    Google Scholar 
    Zhang, Y. et al. How can an ecological compensation threshold be determined? A discriminant model integrating the minimum data approach and the most appropriate land use scenarios. Sci. Total Environ. 852, 158377. https://doi.org/10.1016/j.scitotenv.2022.158377 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Shi, M. et al. Cropland expansion mitigates the supply and demand deficit for carbon sequestration service under different scenarios in the future—the case of Xinjiang. Agriculture 12, 1182. https://doi.org/10.3390/agriculture12081182 (2022).Article 
    CAS 

    Google Scholar 
    Yuan, K., Li, F., Yang, H. & Wang, Y. The influence of land use change on ecosystem service value in Shangzhou district. Int. J. Environ. Res. Public. Health 16, 1321. https://doi.org/10.3390/ijerph16081321 (2019).Article 

    Google Scholar 
    Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Multiscale Assessments. https://www.millenniu-massessment.org/en/Multiscale.html (Island Press, 2005).Liu, J. Y., Liu, M. L., Zhuang, D. F., Zhang, Z. X. & Deng, X. Z. Study on spatial pattern of land-use change in China during 1995–2000. Sci. China Ser. Earth Sci. 46, 373–384. https://doi.org/10.1360/03yd9033 (2003).Article 

    Google Scholar 
    Lambin, E. F. & Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 27, 108–118. https://doi.org/10.1016/j.landusepol.2009.09.003 (2010).Article 

    Google Scholar 
    Long, H., Qu, Y., Tu, S., Zhang, Y. & Jiang, Y. Development of land use transitions research in China. J. Geogr. Sci. 30, 1195–1214. https://doi.org/10.1007/s11442-020-1777-9 (2020).Article 

    Google Scholar 
    Portela, R. & Rademacher, I. A dynamic model of patterns of deforestation and their effect on the ability of the Brazilian Amazonia to provide ecosystem services. Ecol. Model. 143, 115–146. https://doi.org/10.1016/S0304-3800(01)00359-3 (2001).Article 

    Google Scholar 
    Yin, D., Li, X., Li, G., Zhang, J. & Yu, H. Spatio-temporal evolution of land use transition and its eco-environmental effects: A case study of the Yellow River Basin, China. Land 9, 514. https://doi.org/10.3390/land9120514 (2020).Article 

    Google Scholar 
    Alkimim, A. & Clarke, K. C. Land use change and the carbon debt for sugarcane ethanol production in Brazil. Land Use Policy 72, 65–73. https://doi.org/10.1016/j.landusepol.2017.12.039 (2018).Article 

    Google Scholar 
    Wang, J. & Zhou, W. Ecosystem service flows: Recent progress and future perspectives. Acta Ecol. Sin. 39, 4213–4222. https://doi.org/10.5846/stxb201807271605 (2019).Article 

    Google Scholar 
    Krozer, Y., Coenen, F., Hanganu, J., Lordkipanidze, M. & Sbarcea, M. Towards innovative governance of nature areas. Sustainability 12, 10624. https://doi.org/10.3390/su122410624 (2020).Article 

    Google Scholar 
    Pan, X., Xu, L., Yang, Z. & Yu, B. Payments for ecosystem services in China: Policy, practice, and progress. J. Clean. Prod. 158, 200–208. https://doi.org/10.1016/j.jclepro.2017.04.127 (2017).Article 

    Google Scholar 
    Su, K. et al. The establishment of a cross-regional differentiated ecological compensation scheme based on the benefit areas and benefit levels of sand-stabilization ecosystem service. J. Clean. Prod. 270, 122490. https://doi.org/10.1016/j.jclepro.2020.122490 (2020).Article 

    Google Scholar 
    Zhai, T., Zhang, D. & Zhao, C. How to optimize ecological compensation to alleviate environmental injustice in different cities in the Yellow River Basin? A case of integrating ecosystem service supply, demand and flow. Sustain. Cities Soc. 75, 103341. https://doi.org/10.1016/j.scs.2021.103341 (2021).Article 

    Google Scholar 
    Zhai, T. et al. Did improvements of ecosystem services supply-demand imbalance change environmental spatial injustices?. Ecol. Indic. 111, 106068. https://doi.org/10.1016/j.ecolind.2020.106068 (2020).Article 

    Google Scholar 
    Chen, W. et al. Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 701, 134690. https://doi.org/10.1016/j.scitotenv.2019.134690 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Zheng, W., Ke, X., Xiao, B. & Zhou, T. Optimising land use allocation to balance ecosystem services and economic benefits—A case study in Wuhan, China. J. Environ. Manag. 248, 109306. https://doi.org/10.1016/j.jenvman.2019.109306 (2019).Article 

    Google Scholar 
    Li, Z., Deng, X., Jin, G., Mohmmed, A. & Arowolo, A. O. Tradeoffs between agricultural production and ecosystem services: A case study in Zhangye, Northwest China. Sci. Total Environ. 707, 136032. https://doi.org/10.1016/j.scitotenv.2019.136032 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA. 107, 5242–5247. https://doi.org/10.1073/pnas.0907284107 (2010).Article 
    ADS 

    Google Scholar 
    Yuan, B. et al. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 302, 126995. https://doi.org/10.1016/j.jclepro.2021.126995 (2021).Article 

    Google Scholar 
    An, M. et al. Spatiotemporal change of ecologic environment quality and human interaction factors in three gorges ecologic economic corridor, based on RSEI. Ecol. Indic. 141, 109090. https://doi.org/10.1016/j.ecolind.2022.109090 (2022).Article 

    Google Scholar 
    Liu, W., Yan, Y., Wang, D. & Ma, W. Integrate carbon dynamics models for assessing the impact of land use intervention on carbon sequestration ecosystem service. Ecol. Indic. 91, 268–277. https://doi.org/10.1016/j.ecolind.2018.03.087 (2018).Article 
    CAS 

    Google Scholar 
    Adelisardou, F. et al. Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). Int. J. Environ. Sci. Technol. 19, 5929–5944. https://doi.org/10.1007/s13762-021-03676-6 (2021).Article 

    Google Scholar 
    Yang, F. et al. Taklimakan desert carbon-sink decreases under climate change. Sci. Bull. 65, 431–433. https://doi.org/10.1016/j.scib.2019.12.022 (2020).Article 
    CAS 

    Google Scholar 
    Huang, L., Liu, J., Shao, Q. & Xu, X. Carbon sequestration by forestation across China: Past, present, and future. Renew. Sustain. Energy Rev. 16, 1291–1299. https://doi.org/10.1016/j.rser.2011.10.004 (2012).Article 

    Google Scholar 
    Hong, C. et al. Land-use emissions embodied in international trade. Science 376, 597–603. https://doi.org/10.1126/science.abj1572 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhu, E. et al. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 646, 930–939. https://doi.org/10.1016/j.scitotenv.2018.07.317 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Xiao, D., Niu, H., Guo, J., Zhao, S. & Fan, L. Carbon storage change analysis and emission reduction suggestions under land use transition: A case study of Henan province, China. Int. J. Environ. Res. Public. Health 18, 1844. https://doi.org/10.3390/ijerph18041844 (2021).Article 

    Google Scholar 
    Boisvenue, C., Bergeron, Y., Bernier, P. & Peng, C. Simulations show potential for reduced emissions and carbon stocks increase in boreal forests under ecosystem management. Carbon Manag. 3, 553–568. https://doi.org/10.4155/CMT.12.57 (2012).Article 
    CAS 

    Google Scholar 
    Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292. https://doi.org/10.1038/nature06591 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, T., Li, J. & Wang, Y. Carbon sequestration service flow in the Guanzhong-Tianshui economic region of China: How it flows, what drives it, and where could be optimized?. Ecol. Indic. 96, 548–558. https://doi.org/10.1016/j.ecolind.2018.09.040 (2019).Article 

    Google Scholar 
    Yan, X. et al. An overview of distribution characteristics and formation mechanisms in global arid areas. Adv. Earth Sci. 34, 826–841. https://doi.org/10.11867/j.issn.1001-8166.2019.08.0826 (2019).Article 

    Google Scholar 
    Abulizi, A. et al. Land-use change and its effects in Charchan Oasis, Xinjiang, China. Land Degrad. Dev. 28, 106–115. https://doi.org/10.1002/ldr.2530 (2017).Article 

    Google Scholar 
    Zhang, Z. et al. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 110, 105826. https://doi.org/10.1016/j.ecolind.2019.105826 (2020).Article 

    Google Scholar 
    Xie, L., Wang, H. & Liu, S. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 138, 108828. https://doi.org/10.1016/j.ecolind.2022.108828 (2022).Article 
    CAS 

    Google Scholar 
    Wang, Z. et al. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 134, 108499. https://doi.org/10.1016/j.ecolind.2021.108499 (2022).Article 
    CAS 

    Google Scholar 
    Shi, M. et al. Trade-offs and synergies of multiple ecosystem services for different land use scenarios in the Yili River Valley, China. Sustainability 13, 1577. https://doi.org/10.3390/su13031577 (2021).Article 
    CAS 

    Google Scholar 
    Wang, C., Zhen, L., Bingzhen, D. U. & Sun, C. Assessment of the impact of Grain for Green project on farmers’ livelihood in the Loess Plateau. Chin. J. Eco-Agric. 22, 850–858. https://doi.org/10.3724/SP.J.1011.2014.30944 (2014).Article 

    Google Scholar 
    Yang, H., Mu, S. & Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. CATENA 115, 85–95. https://doi.org/10.1016/j.catena.2013.11.020 (2014).Article 

    Google Scholar 
    Bahtebay, J., Zhang, F., Ariken, M., Chan, N. W. & Tan, M. L. Evaluation of the coordinated development of urbanization-resources-environment from the incremental perspective of Xinjiang. China. J. Clean. Prod. 325, 129309. https://doi.org/10.1016/j.jclepro.2021.129309 (2021).Article 

    Google Scholar 
    Chen, J. et al. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 7, 391. https://doi.org/10.1038/s41597-020-00736-3 (2020).Article 
    CAS 

    Google Scholar 
    Zhu, H. & Li, X. Discussion on the index method of regional land use change. Acta Geogr. Sin. 58, 643–650. https://doi.org/10.3321/j.issn:0375-5444.2003.05.001 (2003).Article 

    Google Scholar 
    Li, Y., Cao, Z., Long, H., Liu, Y. & Li, W. Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban–rural development: The case of Mu Us Sandy Land, China. J. Clean. Prod. 142, 697–715. https://doi.org/10.1016/j.jclepro.2016.09.011 (2017).Article 

    Google Scholar 
    Zhou, Q., Li, B. & Kurban, A. Trajectory analysis of land cover change in arid environment of China. Int. J. Remote Sens. 29, 1093–1107. https://doi.org/10.1080/01431160701355256 (2008).Article 
    CAS 

    Google Scholar 
    Zhang, F. & Rusuli, Y. Spatio-temporal variation of ecosystem service value based on LUCC trajectories: A case study of Bosten Lake Watershed. J. Beijing For. Univ. 43, 88–99. https://doi.org/10.12171/j.1000-1522.20210017 (2021).Article 

    Google Scholar 
    Keller, A. A., Fournier, E. & Fox, J. Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis. J. Environ. Manag. 156, 23–30. https://doi.org/10.1016/j.jenvman.2015.03.017 (2015).Article 

    Google Scholar 
    Li, K. et al. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China. Environ. Dev. 39, 100641. https://doi.org/10.1016/j.envdev.2021.100641 (2021).Article 

    Google Scholar 
    Tang, X. et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA. 115, 4021–4026. https://doi.org/10.1073/pnas.1700291115 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, F. et al. Impact of differences in soil temperature on the desert carbon sink. Geoderma 379, 114636. https://doi.org/10.1016/j.geoderma.2020.114636 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Xiang, M. et al. Spatio-temporal evolution and driving factors of carbon storage in the Western Sichuan Plateau. Sci. Rep. 12, 8114. https://doi.org/10.1038/s41598-022-12175-8 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    de Groot, R. S., Wilson, M. A. & Boumans, R. M. J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 41, 393–408. https://doi.org/10.1016/S0921-8009(02)00089-7 (2002).Article 

    Google Scholar 
    Chen, J., Xue, M., Su, X. & Gao, J. Spatial transfer of regional ecosystem service in Nanjing City. Acta Ecol. Sin. 34, 5087–5095. https://doi.org/10.5846/stxb201308162095 (2014).Article 

    Google Scholar 
    Hu, X. et al. Carbon sequestration benefits of the grain for Green Program in the hilly red soil region of southern China. Int. Soil Water Conserv. Res. 9, 271–278. https://doi.org/10.1016/j.iswcr.2020.11.005 (2021).Article 

    Google Scholar 
    Yao, J. et al. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev. 226, 103957. https://doi.org/10.1016/j.earscirev.2022.103957 (2022).Article 

    Google Scholar 
    Li, J., Zuo, Q. & Ma, J. Analysis of spatial and temporal evolution characteristics of water-socioeconomic-ecosystem in Xinjiang. J. Beijing Norm. Univ. Sci. 56, 591–599. https://doi.org/10.12202/j.0476-0301.2020170 (2020).Article 

    Google Scholar 
    Chen, X., Chang, C., Bao, A., Wu, S. & Luo, G. Spatial pattern and characteristics of land cover change in Xinjiang since past 40 years of the economic reform and opening up. ARID LAND Geogr. 43, 1–11. https://doi.org/10.12118/j.issn.1000-6060.2020.01.01 (2020).Article 

    Google Scholar 
    Han, B. et al. Research progress and key issues of territory consolidation under the target of rural revitalization. J. Nat. Resour. 36, 3007–3030. https://doi.org/10.31497/zrzyxb.20211202 (2021).Article 

    Google Scholar 
    Ziyuan, C. et al. Carbon emissions index decomposition and carbon emissions prediction in Xinjiang from the perspective of population-related factors, based on the combination of STIRPAT model and neural network. Environ. Sci. Pollut. Res. 29, 31781–31796. https://doi.org/10.1007/s11356-021-17976-4 (2022).Article 
    CAS 

    Google Scholar 
    Wang, C. et al. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renew. Sustain. Energy Rev. 67, 51–61. https://doi.org/10.1016/j.rser.2016.09.006 (2017).Article 

    Google Scholar 
    Ma, C., Chen, Q., Hu, F., Li, S. & Cong, J. Research characteristic of carbon emissions calculation in Xinjiang. Resour. Dev. Mark. 36, 233–240+267. https://doi.org/10.3969/j.issn.1005-8141.2020.03.002 (2020).Article 

    Google Scholar 
    Qin, Z. et al. Natural climate solutions for China: The last mile to carbon neutrality. Adv. Atmos. Sci. 38, 889–895. https://doi.org/10.1007/s00376-021-1031-0 (2021).Article 

    Google Scholar 
    Kong, R. et al. Increasing carbon storage in subtropical forests over the Yangtze River basin and its relations to the major ecological projects. Sci. Total Environ. 709, 136163. https://doi.org/10.1016/j.scitotenv.2019.136163 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Chang, J. et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 12, 118. https://doi.org/10.1038/s41467-020-20406-7 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, X. & Nuppenau, E.-A. Modelling payments for ecosystem services for solving future water conflicts at spatial scales: The Okavango River Basin example. Ecol. Econ. 184, 106982. https://doi.org/10.1016/j.ecolecon.2021.106982 (2021).Article 

    Google Scholar  More

  • in

    Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini)

    Charlesworth, B., Charlesworth, D. & Barton, N. H. The effects of genetic and geographic structure on neutral variation. Annu. Rev. Ecol. Evol. Syst. 34(1), 99–125 (2003).Article 

    Google Scholar 
    Bradburd, G. S., Ralph, P. L. & Coop, G. M. Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution 67(11), 3258–3273 (2013).Article 

    Google Scholar 
    Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & De Meester, L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22(24), 5983–5999 (2013).Article 

    Google Scholar 
    Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).Article 

    Google Scholar 
    Broquet, T. & Petit, E. J. Molecular estimation of dispersal for ecology and population genetics. Annu. Rev. Ecol. Evol. Syst. 40, 193–216 (2009).Article 

    Google Scholar 
    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article 

    Google Scholar 
    Qiao, H., Saupe, E. E., Soberón, J., Peterson, A. T. & Myers, C. E. Impacts of niche breadth and dispersal ability on macroevolutionary patterns. Am. Nat. 188(2), 149–162 (2016).Article 

    Google Scholar 
    Mayr, E. Ecological factors in speciation. Evolution 1(4), 263–288 (1947).
    Google Scholar 
    Hua, X. & Wiens, J. J. How does climate influence speciation?. Am. Nat. 182(1), 1–12 (2013).Article 

    Google Scholar 
    Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8(3), 336–352 (2005).Article 

    Google Scholar 
    Schluter, D. Evidence for ecological speciation and its alternative. Science 323(5915), 737–741 (2009).Article 
    ADS 

    Google Scholar 
    Wielstra, B. et al. Corresponding mitochondrial DNA and niche divergence for crested newt candidate species. PLoS ONE 7(9), e46671 (2012).Article 
    ADS 

    Google Scholar 
    Wiens, J. J. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58(1), 193–197 (2004).
    Google Scholar 
    Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18(4), 189–197 (2003).Article 

    Google Scholar 
    Alvarado-Serrano, D. F. & Hickerson, M. J. Spatially explicit summary statistics for historical population genetic inference. Methods Ecol. Evol. 7(4), 418–427 (2016).Article 

    Google Scholar 
    Rissler, L. J. Union of phylogeography and landscape genetics. PNAS 113(29), 8079–8086 (2016).Article 
    ADS 

    Google Scholar 
    Pinho, C. & Hey, J. Divergence with gene flow: Models and data. Annu. Rev. Ecol. Evol. Syst. 41, 215–230 (2010).Article 

    Google Scholar 
    Sobel, J. M., Chen, G. F., Watt, L. R. & Schemske, D. W. The biology of speciation. Evolution 64(2), 295–315 (2010).Article 

    Google Scholar 
    Richards, C. L., Carstens, B. C. & Knowles, L. L. Distribution modelling and statistical phylogeography: An integrative framework for generating and testing alternative biogeographical hypotheses. J. Biogeogr. 34(11), 1833–1845 (2007).Article 

    Google Scholar 
    Alvarado-Serrano, D. F. & Knowles, L. L. Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol. Ecol. 14(2), 233–248 (2014).Article 

    Google Scholar 
    Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67(12), 3403–3411 (2013).Article 

    Google Scholar 
    Wright, S. Isolation by distance. Genetics 28(2), 114–138 (1943).Article 

    Google Scholar 
    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68(1), 1–15 (2014).Article 

    Google Scholar 
    Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23(23), 5649–5662 (2014).Article 

    Google Scholar 
    Lee, C. R. & Mitchell-Olds, T. Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Mol. Ecol. 20(22), 4631–4642 (2011).Article 

    Google Scholar 
    Moreira-Muñoz, A. Plant Geography of Chile Vol. 10, 978–990 (Springer, 2011).Book 

    Google Scholar 
    Orme, A. R. Tectonism, climate, and landscape change. Phys. Geogr. South Am. 1, 23–44 (2007).
    Google Scholar 
    Morando, M. et al. Diversification and evolutionary histories of Patagonian steppe lizards. in Lizards of Patagonia (pp. 217–254). (Springer, 2020).Rull, V. Neotropical diversification: historical overview and conceptual insights. In Neotropical Diversification: Patterns and Processes (eds Rull, V. & Carnaval, A. C.) (Springer, 2020).Chapter 

    Google Scholar 
    Lessa, E. P., D’Elía, G. & Pardiñas, U. F. J. Mammalian biogeography of Patagonia and Tierra del Fuego. In Bones, Clones and Biomes: The History and Recent Geography of Neotropical Animals (eds Patterson, B. D. & Costa, L. P.) 379–398 (University of Chicago Press, 2012).Chapter 

    Google Scholar 
    Pardiñas, U. F., D’Elía, G. & Lessa, E. P. The evolutionary history of sigmodontine rodents in Patagonia and Tierra del Fuego. Biol. J. Linn. Soc. 2(103), 495–513 (2011).Article 

    Google Scholar 
    Alarcón, O., D’Elía, G., Lessa, E. P. & Pardiñas, U. Phylogeographic structure of the Fossorial Long-Clawed Mouse Chelemys macronyx (Cricetidae: Sigmodontinae). Zool. Stud. 50(5), 682–688 (2011).
    Google Scholar 
    Lessa, E. P., D’Elía, G. & Pardiñas, U. F. J. Genetic footprints of late Quaternary climate change in the diversity of Patagonian-Fueguian rodents. Mol. Ecol. 19(15), 3031–3037 (2010).Article 

    Google Scholar 
    Valdez, L. & D’Elía, G. Genetic diversity and demographic history of the Shaggy Soft-Haired Mouse Abrothrix hirta (Cricetidae; Abrotrichini). Front. Genet. 12, 184 (2021).Article 

    Google Scholar 
    Valdez, L., Quiroga-Carmona, M. & D’Elía, G. Genetic variation of the Chilean endemic long-haired mouse Abrothrix longipilis (Rodentia, Supramyomorpha, Cricetidae) in a geographical and environmental context. PeerJ 8, e9517 (2020).Article 

    Google Scholar 
    Valdez, L. & D’Elía, G. Local persistence of Mann’s soft-haired mouse Abrothrix manni (Rodentia, Sigmodontinae) during Quaternary glaciations in southern Chile. PeerJ 6, e6130 (2018).Article 

    Google Scholar 
    Quiroga-Carmona, M., Abud, C., Lessa, E. P. & D’Elía, G. The mitochondrial genetic diversity of the olive field mouse Abrothrix olivacea (Cricetidae; Abrotrichini) is latitudinally structured across its geographic distribution. J. Mamm. Evol. 29, 431–433 (2022).Article 

    Google Scholar 
    Cañón, C., D’Elía, G., Pardiñas, U. F. & Lessa, E. P. Phylogeography of Loxodontomys micropus with comments on the alpha taxonomy of Loxodontomys (Cricetidae: Sigmodontinae). J. Mamm. 91(6), 1449–1458 (2010).Article 

    Google Scholar 
    Palma, R. E., Boric-Bargetto, D., Torres-Perez, F., Hernández, C. E. & Yates, T. L. Glaciation effects on the phylogeographic structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes. PLoS ONE 7(3), e32206 (2012).Article 
    ADS 

    Google Scholar 
    Rodríguez-Serrano, E., Cancino, R. & Palma, R. E. Molecular phylogeography of Abrothrix olivaceus (Rodentia: Sigmodontinae) in Chile. J. Mamm. 87(5), 971–980 (2006).Article 

    Google Scholar 
    Rodríguez-Serrano, E., Hernandez, C. & Palma, R. E. A new record and an evaluation of the phylogenetic relationships of Abrothrix olivaceus markhami (Rodentia: Sigmodontinae). Mamm. Biol. 73(4), 309–317 (2008).Article 

    Google Scholar 
    Sánchez, J., Poljak, S., Teta, P., Lanusse, L. & Lizarralde, M. S. A contribution to the knowledge of the taxonomy of the subgenus Abrothrix (Angelomys) (Rodentia, Cricetidae) in southernmost South America. Polar Biol. 45(4), 601–614 (2022).Article 

    Google Scholar 
    Patton, J., Pardiñas, U. F. & D’Elía, G. Mammals of South America Vol. 2 (The University of Chicago Press, 2015).Book 

    Google Scholar 
    Patterson, B. D., Smith, M. F. & Teta, P. Genus Abrothrix Waterhouse, 1837. In Mammals of South America Vol. 2 (eds Patton, J. L. et al.) 109–127 (The University of Chicago Press, 2015).
    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965–1978 (2005).Article 

    Google Scholar 
    Quantum GIS Development Team (2021) Quantum GIS Geographic Information System. Version 3.18.2-ZürichHijmans, R. J. et al. Package ‘raster’. R package. (2015).Kuhn, M. caret: Classification and Regression Training. (2019) https://CRAN.R-project.org/package=caret.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7. (2020). https://CRAN.R-project.org/package=vegan.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).Article 

    Google Scholar 
    Wang, C. et al. Comparing spatial maps of human population-genetic variation using Procrustes analysis. Stat. Appl. Genet. Mol. Biol. 9(1), 13 (2010).Article 
    MathSciNet 

    Google Scholar 
    Wang, C., Zöllner, S. & Rosenberg, N. A. A quantitative comparison of the similarity between genes and geography in worldwide human populations. PLoS Genet. 8(8), e1002886 (2012).Article 

    Google Scholar 
    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.5–28. (2021). https://CRAN.R-project.org/package=rgdal.Kierepka, M. E. & Latch, K. E. Performance of partial statistics in individual-based landscape genetics. Mol. Ecol. 15(3), 512–525 (2015).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar 
    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Soft. 25(1), 1–8 (2008).Article 

    Google Scholar 
    Barria, A. M. et al. The importance of intraspecific variation for niche differentiation and species distribution models: the ecologically diverse frog Pleurodema thaul as study case. Evol. Biol. 47(3), 206–219 (2020).Article 

    Google Scholar 
    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biol. 23(5), 595–609 (2014).Article 

    Google Scholar 
    Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38(5), 541–545 (2015).Article 

    Google Scholar 
    Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).Book 

    Google Scholar 
    Viale, M. et al. Contrasting climates at both sides of the Andes in Argentina and Chile. Front. Environ. Sci. 7, 69 (2019).Article 

    Google Scholar 
    Pacifici, M. et al. Global correlates of range contractions and expansions in terrestrial mammals. Nat. Commun. 11(1), 1–9 (2020).Article 

    Google Scholar 
    Di Marco, M., Pacifici, M., Maiorano, L. & Rondinini, C. Drivers of change in the realised climatic niche of terrestrial mammals. Ecography 44(8), 1180–1190 (2021).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40(7), 887–893 (2017).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent Software for Modeling Species Niches and Distributions. (American Museum of Natural History, 2018) http://biodiversityinformatics.amnh.org/opensource/maxent/.Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5(11), 1198–1205 (2014).Article 

    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41(4), 629–643 (2014).Article 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21(2), 335–342 (2011).Article 

    Google Scholar 
    Warren, D. L., Wright, A. N., Seifert, S. N. & Shaffer, H. B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diver. Dist. 20(3), 334–343 (2014).Article 

    Google Scholar 
    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, 2010).Book 

    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36(10), 1058–1069 (2013).Article 

    Google Scholar 
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1(4), 330–342 (2010).Article 

    Google Scholar 
    Osorio-Olvera, L. et al. ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 11(10), 1199–1206 (2020).Article 

    Google Scholar 
    Guevara, L., Gerstner, B. E., Kass, J. M. & Anderson, R. P. Toward ecologically realistic predictions of species distributions: A cross-time example from tropical montane cloud forests. Glob. Change Biol. 24, 1511–1522 (2018).Article 
    ADS 

    Google Scholar 
    Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311(5768), 1751–1753 (2008).Article 
    ADS 

    Google Scholar 
    Watanabe, S. et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4(4), 845 (2011).Article 
    ADS 

    Google Scholar 
    Knowles, L. L., Massatti, R., He, Q., Olson, L. E. & Lanier, H. C. Quantifying the similarity between genes and geography across Alaska’s alpine small mammals. J. Biogeogr. 43(7), 1464–1476 (2016).Article 

    Google Scholar 
    McGaughran, A., Morgan, K. & Sommer, R. J. Environmental variables explain genetic structure in a beetle-associated nematode. PLoS ONE 9(1), e87317 (2014).Article 
    ADS 

    Google Scholar 
    Wang, I. J. Choosing appropriate genetic markers and analytical methods for testing landscape genetic hypotheses. Mol. Ecol. 20(12), 2480–2482 (2011).Article 

    Google Scholar 
    Bohonak, A. J. & Vandergast, A. G. The value of DNA sequence data for studying landscape genetics. Mol. Ecol. 20(12), 2477–2479 (2011).Article 

    Google Scholar 
    Vandergast, A. G., Bohonak, A. J., Weissman, D. B. & Fisher, R. N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: Phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16(5), 977–992 (2007).Article 

    Google Scholar 
    Pearson, O. P. & Smith, M. F. Genetic similarity between Akodon olivaceus and Akodon xanthorhinus (Rodentia: Muridae) in Argentina. J. Zool. 247(1), 43–52 (1999).Article 

    Google Scholar 
    Smith, M. F., Kelt, D. A. & Patton, J. L. Testing models of diversification in mice in the Abrothrix olivaceus/xanthorhinus complex in Chile and Argentina. Mol. Ecol. 10(2), 397–405 (2001).Article 

    Google Scholar 
    Palma, R. E., Marquet, P. A. & Boric-Bargetto, D. Inter- and intraspecific phylogeography of small mammals in the Atacama Desert and adjacent areas of northern Chile. J. Biogeogr. 32(11), 1931–1941 (2005).Article 

    Google Scholar 
    Arroyo, M. T. K., Squeo, F. A., Armesto, J. J. & Villagran, C. Effects of aridity on plant diversity in the northern Chilean Andes: Results of a natural experiment. Ann. Mol. Bot. Gard. 1, 55–78 (1988).Article 

    Google Scholar 
    Del Pozo, A. H., Fuentes, E. R., Hajek, E. R. & Molina, J. D. Zonación microclimática por efecto de los manchones de arbustos en el matorral de Chile central. Rev. Chil. Hist. Nat. 62, 85–94 (1989).
    Google Scholar 
    Armesto, J. J., Vidiella, P. E. & Gutiérrez, J. R. Plant communities of the fog-free coastal desert of Chile: Plant strategies in a fluctuating environment. Rev. Chil. Hist. Nat. 66, 271–282 (1993).
    Google Scholar 
    Veblen, T. T., Young, K. R. & Orme, A. R. The Physical Geography of South America (Oxford University Press, 2015).
    Google Scholar 
    Kelt, D. A. et al. Community structure of desert small mammals: Comparisons across four continents. Ecology 77(3), 746–761 (1996).Article 

    Google Scholar 
    Shenbrot, G. B., Krasnov, B. R. & Rogovin, K. A. Spatial Ecology of Desert Rodent Communities (Springer, 1999).Book 

    Google Scholar 
    Van Strien, M. J., Holderegger, R. & Van Heck, H. J. Isolation-by-distance in landscapes: considerations for landscape genetics. Heredity 114(1), 27–37 (2015).Article 

    Google Scholar 
    Diniz-Filho, J. A. F. et al. Mantel test in population genetics. Genet. Mol. Biol. 36(4), 475–485 (2013).Article 

    Google Scholar 
    Blier, P. U., Dufresne, F. & Burton, R. S. Natural selection and the evolution of mtDNA-encoded peptides: Evidence for intergenomic co-adaptation. Trends Genet. 17(7), 400–406 (2001).Article 

    Google Scholar 
    Meiklejohn, C. D., Montooth, K. L. & Rand, D. M. Positive and negative selection on the mitochondrial genome. Trends Genet. 23(6), 259–263 (2007).Article 

    Google Scholar 
    Giorello, F. M. et al. An association between differential expression and genetic divergence in the Patagonian olive mouse (Abrothrix olivacea). Mol. Ecol. 27(16), 3274–3286 (2018).Article 

    Google Scholar 
    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115–1123 (2007).Article 

    Google Scholar 
    Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. PNAS 106(Supplement 2), 19659–19665 (2009).Article 
    ADS 

    Google Scholar 
    Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. PNAS 106(Supplement 2), 19644–19650 (2009).Article 
    ADS 

    Google Scholar 
    Kearney, M. & Porter, W. P. Mapping the fundamental niche: Physiology, climate, and the distribution of a nocturnal lizard. Ecology 85(11), 3119–3131 (2004).Article 

    Google Scholar 
    Kearney, M. & Porter, W. P. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12(4), 334–350 (2009).Article 

    Google Scholar 
    Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: A phylogenetic analysis in amphibians. Proc. R. Soc. B. 281(1795), 20133229 (2014).Article 

    Google Scholar 
    Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).Article 

    Google Scholar 
    Holt, R. D. On the evolutionary ecology of species’ ranges. Evol. Ecol. Res. 5(2), 159–178 (2003).
    Google Scholar 
    Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: The problem and the evidence. Evol. Appl. 7(1), 1–14 (2014).Article 

    Google Scholar 
    Schmid, M. & Guillaume, F. The role of phenotypic plasticity on population differentiation. Heredity 119(4), 214–225 (2017).Article 

    Google Scholar 
    Novoa, F., Rivera, A., Rosenmann, M. & Sabat, P. Intraspecific differences in metabolic rate of Chroeomys olivaceus (Rodentia: Muridae): The effect of thermal acclimation in arid and mesic habitats. Rev. Chil. Hist. Nat. 78, 207–214 (2005).Article 

    Google Scholar 
    Bozinovic, F., Rojas, J. M., Maldonado, K., Sabat, P. & Naya, D. E. Between-population differences in digestive flexibility in the olivaceous field mouse. Zool 113(6), 373–377 (2010).Article 

    Google Scholar 
    Bozinovic, F., Rojas, J. M., Gallardo, P. A., Palma, R. E. & Gianoli, E. Body mass and water economy in the South American olivaceous field mouse along a latitudinal gradient: Implications for climate change. J. Arid. Environ. 75(5), 411–415 (2011).Article 
    ADS 

    Google Scholar 
    Naya, D. E. et al. Digestive morphology of two species of Abrothrix (Rodentia, Cricetidae): Comparison of populations from contrasting environments. J. Mammal. 95(6), 1222–1229 (2014).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62(11), 2868–2883 (2008).Article 

    Google Scholar 
    Goudarzi, F. et al. Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser’s spotted newt (Neurergus kaiseri). Sci. Rep. 9(1), 1–12 (2019).Article 

    Google Scholar 
    Pyron, R. A., Costa, G. C., Patten, M. A. & Burbrink, F. T. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol. Rev. 90(4), 1248–1262 (2015).Article 

    Google Scholar 
    Latorre, C. et al. Late Quaternary environments and paleoclimate. In The Geology of Chile (eds Moreno, T. & Gibbons, W.) 309–328 (Geological Society, 2007).Chapter 

    Google Scholar 
    Kaplan, M. R., Moreno, P. I. & Rojas, M. Glacial dynamics in southernmost South America during Marine Isotope Stage 5e to the Younger Dryas chron: A brief review with a focus on cosmogenic nuclide measurements. J. Quat. Sci. 23(6–7), 649–658 (2008).Article 

    Google Scholar 
    McCulloch, R. D. et al. Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J. Quat. Sci. 15(4), 409–417 (2000).Article 

    Google Scholar 
    Giorello, F. M., D’Elía, G. & Lessa, E. P. Genomic footprints of Quaternary colonization and population expansion in the Patagonian-Fuegian region rules out a separate southern refugium in Tierra del Fuego. J. Biogeogr. 48(10), 2656–2670 (2021).Article 

    Google Scholar 
    Knowles, L. L., Carstens, B. C. & Keat, M. L. Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Curr. Biol. 17(11), 940–946 (2007).Article 

    Google Scholar 
    Diniz-Filho, J. A. F. et al. Correlation between genetic diversity and environmental suitability: Taking uncertainty from ecological niche models into account. Mol. Ecol. 15(5), 1059–1066 (2015).Article 

    Google Scholar 
    Guevara, L., León-Paniagua, L., Rios, J. & Anderson, R. P. Variación entre modelos de circulación global para reconstrucciones de distribuciones geográficas del Último Máximo Glacial: Relevancia en la filogeografía. Ecosistemas 27(1), 62–76 (2018).Article 

    Google Scholar 
    Guevara, L., Morrone, J. J. & León-Paniagua, L. Spatial variability in species’potential distributions during the Last Glacial Maximum under different Global Circulation Models: Relevance in evolutionary biology. J. Zool. Syst. Evol. Res. 57(1), 113–126 (2019).Article 

    Google Scholar 
    Cab-Sulub, L. & Álvarez-Castañeda, S. T. Genetic isolation between conspecific populations and their relationship to climate heterogeneity. Acta Oecol. 116, 103847 (2022).Article 

    Google Scholar 
    Teta, P., de la Sancha, N. U., D’Elía, G. & Patterson, B. D. Andean rain shadow effect drives phenotypic variation in a widely distributed Austral rodent. J. Biogeogr. 00, 1–12 (2022).
    Google Scholar 
    León-Tapia, M. A. DNA barcoding and demographic history of Peromyscus yucatanicus (Rodentia: Cricetidae) endemic to the Yucatan Peninsula, Mexico. J. Mammal. Evol. 28(2), 481–495 (2021).Article 

    Google Scholar 
    Lin, X. et al. Climatic-niche evolution with key morphological innovations across clades within Scutiger boulengeri (Anura: Megophryidae). Ecol. Evol. 11, 10353–10368 (2021).Article 

    Google Scholar  More

  • in

    Permafrost in the Cretaceous supergreenhouse

    Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).Article 
    ADS 

    Google Scholar 
    Murton, J. B. What and where are periglacial landscapes? Permaf. Periglac. Process. 32, 186–212 (2021).Article 

    Google Scholar 
    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Reyes, F. & Lougheed, V. L. Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arct. Antarct. Alp. Res. 47, 35–48 (2015).Article 

    Google Scholar 
    Fouché, J., Christiansen, C. T., Lafrenière, M. J., Grogan, P. & Lamoureux, S. F. Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nat. Commun. 11, 4500 (2020).Article 
    ADS 

    Google Scholar 
    Alley, N. F., Hore, S. B. & Frakes, L. A. Glaciations at high-latitude Southern Australia during the Early Cretaceous. Aust. J. Earth Sci. 67, 1045–1095 (2020).Article 
    ADS 

    Google Scholar 
    Hore, S. B., Hill, S. M. & Alley, N. F. Early Cretaceous glacial environment and paleosurface evolution within the Mount Painter Inlier, northern Flinders Ranges, South Australia. Aust. J. Earth Sci. 67, 1117–1160 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodríguez-López, J. P. et al. Glacial dropstones in the western Tethys during the late Aptian–early Albian cold snap: Palaeoclimate and palaeogeographic implications for the mid-Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 452, 11–27 (2016).Article 

    Google Scholar 
    Schneider, S. et al. Macrofauna and biostratigraphy of the Rollrock Section, northern Ellesmere Island, Canadian Arctic Islands e a comprehensive high latitude archive of the Jurassic–Cretaceous transition. Cret. Res. 114, 104508 (2020).Article 

    Google Scholar 
    Jeans, C. V. & Platten, I. M. The erratic rocks of the Upper Cretaceous Chalk of England: how did they get there, ice transport or other means? Acta Geol. Pol. 71, 287–304 (2021).
    Google Scholar 
    Wu, C. & Rodríguez-López, J. P. Cryospheric processes in Quaternary and Cretaceous hyper-arid oases. Sedimentology 68, 755–770 (2021).Article 

    Google Scholar 
    Grasby, S. E., McCune, G. E., Beauchamp, B. & Galloway, J. M. Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic. GSA Bull. 129, 771–787 (2017).Article 
    CAS 

    Google Scholar 
    Galloway, J. M. et al. Finding the VOICE: organic carbon isotope chemostratigraphy of the Late Jurassic–Early Cretaceous of Arctic Canada. Geol. Mag. 1–15 https://doi.org/10.1017/S0016756819001316 (2019).Rogov, M. et al. Database of global glendonite and ikaite records throughout the Phanerozoic. Earth Syst. Sci. Data 13, 343–356 (2021).Article 
    ADS 

    Google Scholar 
    Price, G. D. The evidence and implications of polar ice during the Mesozoic. Earth–Sci. Rev. 48, 183–210 (1999).Article 
    ADS 

    Google Scholar 
    Savidge, R. A. Evidence of early glaciation of southeastern Beringia. Can. J. Earth Sci. 57, 199–226 (2020).Article 
    ADS 

    Google Scholar 
    Wang, Y. et al. Relict sand wedges suggest a high altitude and cold temperature during the Early Cretaceous in the Ordos Basin, North China. Int. Geol. Rev. https://doi.org/10.1080/00206814.2022.2081938 (2022).Nelson, D. A., Cottle, J. M., Bindeman, I. N. & Camacho, A. Ultra-depleted hydrogen isotopes in hydrated glass record Late Cretaceous glaciation in Antarctica. Nat. Commun. 13, 5209 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, W.-B. et al. Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous. Sci. Rep. 3, 2732 (2013).Article 

    Google Scholar 
    Gao, T. et al. Accelerating permafrost collapse on the eastern Tibetan Plateau. Environ. Res. Lett. 16, 054023 (2021).Article 
    ADS 

    Google Scholar 
    Huang, Y. B. The origin and evolution of the desert in southern Ordos in early Cretaceous: Constraint from Magnetostratigraphy of Zhidan Group and magnetic susceptibility of its sediment. Doctoral Dissertation. Lanzhou University (2010).Ma, J. Sedimentary Basin Analysis of the Cretaceous Ancient Desert in the Ordos Basin. Master’s thesis, China University of Geosciences (2020).Wu, C. H., Rodríguez-López, J. P. & Santosh, M. Plateau archives of lithosphere dynamics, cryosphere and paleoclimate: the formation of Cretaceous desert basins in east Asia. Geosci. Front. 13, 101454 (2022).Article 
    CAS 

    Google Scholar 
    Zhu, R. X., Chen, L., Wu, F. Y. & Liu, J. L. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci. 54, 789–797 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodríguez-López, J. P., Clemmensen, L. B., Lancaster, N., Mountney, N. P. & Veiga, G. D. Archean to Recent aeolian sand systems and their preserved successions: current understanding and way forward. Sedimentology 61, 1487–1534 (2014).Article 

    Google Scholar 
    Murton, J. B. in Encyclopedia of Quaternary Science Vol. 3 (eds Elias, S. A. & Mock, C. J.) 436–451 (Elsevier, Amsterdam, 2013).Rodríguez-López, J. P., Van Vliet-Lanöe, B., López-Martínez, J. & Martín-García, R. Scouring by rafted ice and cryogenic pattern ground preserved in a Palaeoproterozoic equatorial proglacial lagoon succession, eastern India, Nuna supercontinent. Mar. Pet. Geol. 123, 104766 (2021).Article 

    Google Scholar 
    Murton, J. B., Worsley, P. & Gozdzik, J. Sand veins and wedges in cold aeolian environments. Quat. Sci. Rev. 19, 899–922 (2000).Article 
    ADS 

    Google Scholar 
    Kovács, J., Fábián, S. A., Schweitzer, F. & Varga, G. A relict sand-wedge polygon site in north-central Hungary. Permafr. Periglac. Process. 18, 379–384 (2007).Article 

    Google Scholar 
    Fábián, S. Á. et al. Distribution of relict permafrost features in the Pannonian Basin, Hungary. Boreas 43, 722–732 (2014).Article 

    Google Scholar 
    Williams, G. E. Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: principles and tests. Earth–Sci. Rev. 87, 61–93 (2008).Article 
    ADS 

    Google Scholar 
    Williams, G. E., Schmidt, P. W. & Young, G. M. Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: radically different climate system on the pre-Ediacaran Earth. Geosci. Front. 7, 555–571 (2016).Article 

    Google Scholar 
    Van Vliet-Lanoë, B. Deformations in the active layer related with ice/soil wedge growth and decay in present day Arctic. Paleoclimate implications. Ann. Soc. Géol. Nord. 13, 81–95 (2005).
    Google Scholar 
    Remillard, A. M. et al. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite wedge casts on the Magdalen Islands (eastern Canada). Boreas 44, 658–675 (2015).Article 

    Google Scholar 
    Murton, J. B. Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western Arctic Canada. Glob. Planet. Change 28, 175–192 (2001).Article 
    ADS 

    Google Scholar 
    Harris, C., Murton, J. B. & Davies, M. C. R. An analysis of mechanisms of ice-wedge casting based on geotechnical centrifuge modelling. Geomorphology 71, 328–343 (2005).Article 
    ADS 

    Google Scholar 
    Houmark-Nielsen, M. et al. Early and Middle Valdaian glaciations, ice-dammed lakes and periglacial interstadials in northwest Russia: new evidence from the Pyoza River area. Glob. Planet. Change 31, 215–237 (2001).Article 
    ADS 

    Google Scholar 
    Murton, J. B. & Kolstrup, E. Ice-wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking? Prog. Phys. Geogr. 27, 155–170 (2003).Article 

    Google Scholar 
    Harry, D. G. & Gozdzik, J. S. Ice wedges: growth, thaw transformation, and palaeoenvironmental significance. J. Quat. Sci. 3, 39–55 (1988).Article 

    Google Scholar 
    Wolfe, S. A., Morse, P. D., Neudorf, C. M., Kokelj, S. V., Lian, O. B. & O’Neill, H. B. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications. Geomorphology 308, 215–229 (2018).Article 
    ADS 

    Google Scholar 
    Murton, J. B. & Bateman, M. D. Syngenetic sand veins and anti-syngenetic sand wedges, Tuktoyaktuk Coastlands, western Arctic Canada. Permafr. Periglac. Process. 18, 33–47 (2007).Article 

    Google Scholar 
    Obu, J., Westermann, S., Kääb, A., & Bartsch, A. Ground Temperature Map, 2000–2016, Northern Hemisphere Permafrost (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, 2018)Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth–Sci. Rev. 193, 299–316 (2019).Article 
    ADS 

    Google Scholar 
    Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 131–202 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019).Mackay, J. R. The origin of hummocks, western arctic coast, Canada. Can. J. Earth Sci. 17, 996–1006 (1980).Article 
    ADS 

    Google Scholar 
    Kokelj, S. V., Burn, C. R. & Tarnocai, C. The structure and dynamics of earth hummocks in the subarctic forest near Inuvik, Northwest Territories, Canada. Arct. Antarct. Alp. Res. 39, 99–109 (2007).Article 

    Google Scholar 
    Rodríguez-López, J. P., Meléndez, N., de Boer, P. L., Soria, A. R. & Liesa, C. L. Spatial variability of multicontrolled aeolian supersurfaces in central-erg and marine erg-margin systems. Aeolian Res. 11, 141–154 (2013).Article 
    ADS 

    Google Scholar 
    Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12, 1181–1198 (2016).Article 

    Google Scholar 
    Cheng, G., Bai, Y. & Sun, Y. Paleomagnetic study on the tectonic evolution of the Ordos Block, North China. Seismol. Geol. 10, 81–87 (1988).
    Google Scholar 
    Zheng, Z. et al. The apparent polar wander path for the North China Block since the Jurassic. Geophys. J. Int. 104, 29–40 (1991).Article 
    ADS 

    Google Scholar 
    Malinverno, A., Hildebrandt, J., Tominaga, M. & Channell, J. E. T. M-sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints. J. Geophys. Res. 117, B06104 (2012).ADS 

    Google Scholar 
    Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P. Climate response to orbital forcing across the Oligocene–Miocene boundary. Science 292, 274–278 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M. et al. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany. Earth Planet. Sci. Lett. 441, 10–25 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Westall, F. The nature of fossil bacteria: a guide to the search for extraterrestial live. J. Geophys. Res. 104, 437–16,451 (1999).
    Google Scholar 
    Yang, H., Chen, Z.-Q. & Papineau, D. Cyanobacterial spheroids and other biosignatures from microdigitate stromatolites of Mesoproterozoic Wumishan Formation in Jixian, North China. Precambrian Res. 368, 106496 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Kremer, B., Kazmierczak, J., Łukomska-Kowalczyk, M. & Kempe, S. Calcification and silicification: fossilization potential of cyanobacteria from stromatolites of Niuafo’ou’s caldera lakes (Tonga) and implications for the early fossil record. Astrobiology 12, 535–548 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Astafieva M. M. et al. Fossil Bacteria and Other Microorganisms in Terrestrial Rocks and Astromaterials (Paleontological Institute Russian Academy of Science, Moscow, 2011).Rozanov, A. Y. & Zavarzin, G. A. Bacterial paleontology. Vestn. Akad. Med. Nauk 67, 241–245 (1997).
    Google Scholar 
    Perez-Mon, C., Stierli, B., Plötze, M. & Frey, B. Fast and persistent responses of alpine permafrost microbial communities to in situ warming. Sci. Total Environ. 807, 150–720 (2022).Article 

    Google Scholar 
    Rivkina, E. et al. Earth’s perennially frozen environments as a model of cryogenic planet ecosystems. Permafr. Periglac. Process. 29, 246–256 (2018).Article 

    Google Scholar 
    Vishnivetskaya, T. A. et al. Insights into community of photosynthetic microorganisms from permafrost. FEMS Microbiol. Ecol. 96, fiaa229 (2020).Article 
    CAS 

    Google Scholar 
    Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Choe, Y. H. et al. Comparing rock-inhabiting microbial communities in different rock types from a high arctic polar desert. FEMS Microbiol. Ecol. 94, fiy070 (2018).ADS 

    Google Scholar 
    Wu, X. et al. Comparative metagenomics of the active layer and permafrost from low-carbon soil in the Canadian High Arctic. Environ. Sci. Technol. 55, 12683–12693 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Vickers, M. L. et al. The duration and magnitude of Cretaceous cold events: evidence from the northern high latitudes. Geol. Soc. Am. Bull. 131, 1979–1994 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Lehmann, J. in Ammonoid Palaeobiology: From Macroevolution to Palaeogeography (eds Klug, C. De Baets, K., Kruta I. & Mapes, R. H.) 403–429 (Springer, Amsterdam, 2015).Keller, M. A. & Macquaker, J. H. S. in Studies by the U.S. Geological Survey in Alaska: US Geological Survey Professional Paper 1814-B Vol. 15 (ed Dumoulin, J. A.) 1–35 (US Geological Survey, US Department of The Interior, Reston, 2015).Cavalheiro, L. et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event. Nat. Commun. 12, 5411 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    McArthur, J. M. et al. Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, d18O, d13C, 87Sr/86Sr): the Early Cretaceous (Berriasian, Valanginian, Hauterivian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 391–430 (2007).Article 

    Google Scholar 
    Lini, A., Weissert, H. & Erba, E. The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova 4, 374–384 (1992).Article 
    ADS 

    Google Scholar 
    Li, X. et al. Carbon isotope signatures of pedogenic carbonates from SE China: rapid atmospheric pCO2 changes during middle–late Early Cretaceous time. Geol. Mag. 151, 830–849 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    O’Brien, Ch. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth–Sci. Rev. 172, 224–247 (2017).Article 
    ADS 

    Google Scholar 
    Price, G. D. et al. A high-resolution Belemnite geochemical analysis of early Cretaceous (Valanginian–Hauterivian) environmental and climatic perturbations. Geochem. Geophys. Geosyst. 19, 3832–3843 (2018).Article 
    CAS 

    Google Scholar 
    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Van der Kolk, D. A., Whalen, M. T., Wartes, M. A., Newberry, R. J. & McCarthy, P. in Arctic to the Cordillera: Unlocking the Potential. American Association of Petroleum Geologists Pacific Section Meeting, May 8–11, Anchorage, AK, USA, Search and Discovery Article 90125 (American Association of Petroleum Geologists, 2011).Walter Anthony, K. M. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).Article 
    ADS 

    Google Scholar 
    Cheng, F. et al. Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene palaeoclimate analogue. Nat. Commun. 13, 1329 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Brouillette, M. How microbes in permafrost could trigger a massive carbon bomb. Nature 591, 360–362 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Murton, J. B. in Climate Change, Observed Impacts on Planet Earth, 3rd edn (ed Letcher, T.) 281–326 (Elsevier, Amsterdam, 2021).Schnyder, J., Ruffell, A., Deconinck, J. F. & Baudin, F. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, UK). Palaeogeogr. Palaeoclimatol. Palaeoecol. 229, 303–320 (2006).Article 

    Google Scholar 
    Li, M. et al. Astrochronology of the Anisian stage (Middle Triassic) at the guandao reference section, south china. Earth Planet. Sci. Lett. 482, 591–606 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M. et al. Palaeoclimate proxies for cyclostratigraphy: comparative analysis using a Lower Triassic marine section in South China. Earth–Sci. Rev. 189, 125–146 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M., Hinnov, L. & Kump, L. Acycle: time–series analysis software for palaeoclimate research and education. Comput. Geosci. 127, 12–22 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Laskar, J. et al. A long–term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).Article 
    ADS 

    Google Scholar  More

  • in

    Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique

    IPCC. Summary for Policymakers. In (Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press (2018).Malhi, Y. et al. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B Biol. Sci. 375(1794), 20190104. https://doi.org/10.1098/rstb.2019.0104 (2020).Article 
    CAS 

    Google Scholar 
    McElwee, P. Climate change and biodiversity loss. Curr. Hist. 120(829), 295–300. https://doi.org/10.1525/curh.2021.120.829.295 (2021).Article 

    Google Scholar 
    Dickinson, M. G., Orme, C. D. L., Suttle, K. B. & Mace, G. M. Separating sensitivity from exposure in assessing extinction risk from climate change. Sci. Rep. 4(1), 6898. https://doi.org/10.1038/srep06898 (2015).Article 
    CAS 

    Google Scholar 
    UNFCCC (United Nations Framework Convention on Climate Change). Global Warming Potentials http://unfccc.int/ghg_data/items/3825.php (2014).BelhadjSlimen, I., Chniter, M., Najar, T. & Ghram, A. Meta-analysis of some physiologic, metabolic and oxidative responses of sheep exposed to environmental heat stress. Livestock Sci. 229, 179–187. https://doi.org/10.1016/j.livsci.2019.09.026 (2019).Article 

    Google Scholar 
    Wojtas, K., Cwynar, P. & Kołacz, R. Effect of thermal stress on physiological and blood parameters in merino sheep. Bull. Vet. Inst. Pulawy 58(2), 283–288. https://doi.org/10.2478/bvip-2014-0043 (2014).Article 

    Google Scholar 
    Gavojdian, D., Cziszter, L. T., Budai, C. & Kusza, S. Effects of behavioral reactivity on production and reproduction traits in Dorper sheep breed. J. Vet. Behav. 10(4), 365–368. https://doi.org/10.1016/j.jveb.2015.03.012 (2015).Article 

    Google Scholar 
    Mehaba, N., Coloma-Garcia, W., Such, X., Caja, G. & Salama, A. A. K. Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes. J. Dairy Sci. 104(1), 1099–1110. https://doi.org/10.3168/jds.2020-18943 (2021).Article 
    CAS 

    Google Scholar 
    Ramón, M., Díaz, C., Pérez-Guzman, M. D. & Carabaño, M. J. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep. J. Dairy Sci. 99(7), 5764–6577. https://doi.org/10.3168/jds.2016-10909 (2016).Article 
    CAS 

    Google Scholar 
    Mahjoubi, E. et al. The effect of cyclical and severe heat stress on growth performance and metabolism in Afshari lambs1. J. Anim. Sci. 93(4), 1632–1640. https://doi.org/10.2527/jas.2014-8641 (2015).Article 
    CAS 

    Google Scholar 
    dos Hamilton, T. R. S. et al. Evaluation of lasting effects of heat stress on sperm profile and oxidative status of ram semen and epididymal sperm. Oxid. Med. Cell. Longev. 1–12, 2016. https://doi.org/10.1155/2016/1687657 (2016).Article 
    CAS 

    Google Scholar 
    Romo-Barron, C. B. et al. Impact of heat stress on the reproductive performance and physiology of ewes: A systematic review and meta-analyses. Int. J. Biometeorol. 63(7), 949–962. https://doi.org/10.1007/s00484-019-01707-z (2019).Article 
    ADS 

    Google Scholar 
    Caroprese, M. et al. Glucocorticoid effects on sheep peripheral blood mononuclear cell proliferation and cytokine production under in vitro hyperthermia. J. Dairy Sci. 101(9), 8544–8551. https://doi.org/10.3168/jds.2018-14471 (2018).Article 
    CAS 

    Google Scholar 
    Marcone, G., Kaart, T., Piirsalu, P. & Arney, D. R. Panting scores as a measure of heat stress evaluation in sheep with access and with no access to shade. Appl. Anim. Behav. Sci. 240, 105350. https://doi.org/10.1016/j.applanim.2021.105350 (2021).Article 

    Google Scholar 
    Van Wettere, W. H. E. J. et al. Review of the impact of heat stress on reproductive performance of sheep. J. Anim. Sci. Biotechnol. 12(1), 26. https://doi.org/10.1186/s40104-020-00537-z (2021).Article 

    Google Scholar 
    Belhadj Slimen, I., Najar, T., Ghram, A. & Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 100(3), 401–412. https://doi.org/10.1111/jpn.12379 (2016).Article 
    CAS 

    Google Scholar 
    Guo, Z., Gao, S., Ouyang, J., Ma, L. & Bu, D. Impacts of heat stress-induced oxidative stress on the milk protein biosynthesis of dairy cows. Animals 11(3), 726. https://doi.org/10.3390/ani11030726 (2021).Article 

    Google Scholar 
    Liu, Z. et al. Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep. 7(1), 961. https://doi.org/10.1038/s41598-017-01120-9 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Krishnan, G. et al. Mitigation of the heat stress impact in Livestock reproduction. In Theriogenology (InTech, 2017).
    Google Scholar 
    Robertson, S. & Friend, M. Strategies to ameliorate heat stress effects on sheep reproduction. In Climate Change and Livestock Production: Recent Advances and Future Perspectives 175–183 (Springer, 2021). https://doi.org/10.1007/978-981-16-9836-1_15.Chapter 

    Google Scholar 
    Sawyer, G. & Narayan, E. J. A review on the influence of climate change on sheep reproduction. In Comparative Endocrinology of Animals (Intech Open, 2019). https://doi.org/10.5772/intechopen.86799.Chapter 

    Google Scholar 
    Maurya, V. P., Sejian, V., Kumar, D. & Naqvi, S. M. K. Biological ability of Malpura rams to counter heat stress challenges and its consequences on production performance in a semi-arid tropical environment. Biol. Rhythm. Res. 49(3), 479–493. https://doi.org/10.1080/09291016.2017.1381451 (2018).Article 

    Google Scholar 
    Shahat, A. M., Rizzoto, G. & Kastelic, J. P. Amelioration of heat stress-induced damage to testes and sperm quality. Theriogenology 158, 84–96. https://doi.org/10.1016/j.theriogenology.2020.08.034 (2020).Article 
    CAS 

    Google Scholar 
    Singh, K. M. et al. Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell Stress Chaperones 22(5), 675–684. https://doi.org/10.1007/s12192-017-0770-4 (2017).Article 
    CAS 

    Google Scholar 
    Kim, E.-S. et al. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116(3), 255–264. https://doi.org/10.1038/hdy.2015.94 (2016).Article 
    CAS 

    Google Scholar 
    do Paim, T. P., Alves dos Santos, C., de Faria, D. A., Paiva, S. R. & McManus, C. Genomic selection signatures in Brazilian sheep breeds reared in a tropical environment. Livestock Sci. 258, 104865. https://doi.org/10.1016/j.livsci.2022.104865 (2022).Article 

    Google Scholar 
    Kusza, S. et al. Kompetitive Allele Specific PCR (KASPTM) genotyping of 48 polymorphisms at different caprine loci in French Alpine and Saanen goat breeds and their association with milk composition. PeerJ 6, e4416. https://doi.org/10.7717/peerj.4416 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Technical note: Development and application of KASP assays for rapid screening of 8 genetic defects in Holstein cattle. J. Dairy Sci. 103(1), 619–624. https://doi.org/10.3168/jds.2019-16345 (2020).Article 
    CAS 

    Google Scholar 
    Chaari, A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int. J. Biol. Macromol. 131, 396–411. https://doi.org/10.1016/j.ijbiomac.2019.02.148 (2019).Article 
    CAS 

    Google Scholar 
    Tripathy, K., Sodhi, M., Kataria, R. S., Chopra, M. & Mukesh, M. In silico analysis of HSP70 gene family in bovine genome. Biochem. Genet. 59(1), 134–158. https://doi.org/10.1007/s10528-020-09994-7 (2021).Article 
    CAS 

    Google Scholar 
    Rehman, S. et al. Genomic identification, evolution and sequence analysis of the heat-shock protein gene family in buffalo. Genes 11(11), 1388. https://doi.org/10.3390/genes11111388 (2020).Article 
    CAS 

    Google Scholar 
    Huo, C. et al. Chronic heat stress negatively affects the immune functions of both spleens and intestinal mucosal system in pigs through the inhibition of apoptosis. Microbial Pathog. 136, 103672. https://doi.org/10.1016/j.micpath.2019.103672 (2019).Article 
    CAS 

    Google Scholar 
    Morange, M. HSFs in development. In Molecular Chaperones in Health and Disease 153–169 (Springer, 2006). https://doi.org/10.1007/3-540-29717-0_7.Chapter 

    Google Scholar 
    Hoter, A., El-Sabban, M. & Naim, H. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci. 19(9), 2560. https://doi.org/10.3390/ijms19092560 (2018).Article 
    CAS 

    Google Scholar 
    Vanselow, J., Vernunft, A., Koczan, D., Spitschak, M. & Kuhla, B. Exposure of lactating dairy cows to acute pre-ovulatory heat stress affects granulosa cell-specific gene expression profiles in dominant follicles. PLoS One 11(8), e0160600. https://doi.org/10.1371/journal.pone.0160600 (2016).Article 
    CAS 

    Google Scholar 
    Joy, A. et al. Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals 10(5), 86. https://doi.org/10.3390/ani10050867 (2020).Article 

    Google Scholar 
    Saravanan, K. A. et al. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics 113(3), 955–963. https://doi.org/10.1016/j.ygeno.2021.02.009 (2021).Article 
    CAS 

    Google Scholar 
    Singh, A. K., Upadhyay, R. C., Malakar, D., Kumar, S. & Singh, S. V. Effect of thermal stress on HSP70 expression in dermal fibroblast of zebu (Tharparkar) and crossbred (Karan-Fries) cattle. J. Therm. Biol 43, 46–53. https://doi.org/10.1016/j.jtherbio.2014.04.006 (2014).Article 
    CAS 

    Google Scholar 
    Verma, N., Gupta, I. D., Verma, A., Kumar, R. & Das, R. Novel SNPs in HSPB8 gene and their association with heat tolerance traits in Sahiwal indigenous cattle. Trop. Anim. Health Prod. 48(1), 175–180. https://doi.org/10.1007/s11250-015-0938-9 (2016).Article 

    Google Scholar 
    Al-Thuwaini, T. M., Al-Shuhaib, M. B. S. & Hussein, Z. M. A novel T177P missense variant in the HSPA8 gene associated with the low tolerance of Awassi sheep to heat stress. Trop. Anim. Health Prod. 52(5), 2405–2416. https://doi.org/10.1007/s11250-020-02267-w (2020).Article 

    Google Scholar 
    Onasanya, G. O. et al. Heterozygous single-nucleotide polymorphism genotypes at heat shock protein 70 gene potentially influence thermo-tolerance among four Zebu breeds of Nigeria. Front. Genet. https://doi.org/10.3389/fgene.2021.642213 (2021).Article 

    Google Scholar 
    Pascal, C. Researches regarding quality of sheep skins obtained from Karakul from Botosani sheep. Biotechnol. Anim. Husband. 27(3), 1123–1130. https://doi.org/10.2298/BAH1103123P (2011).Article 

    Google Scholar 
    Kevorkian, S. E. M., Zǎuleţ, M., Manea, M. A., Georgescu, S. E. & Costache, M. Analysis of the ORF region of the prion protein gene in the Botosani Karakul sheep breed from Romania. Turk. J. Vet. Anim. Sci. 35(2), 105–109. https://doi.org/10.3906/vet-0909-124 (2011).Article 
    CAS 

    Google Scholar 
    Kusza, S. et al. Mitochondrial DNA variability in Gyimesi Racka and Turcana sheep breeds. Acta Biochim. Pol. 62(2), 273–280. https://doi.org/10.18388/abp.2015_978 (2015).Article 
    CAS 

    Google Scholar 
    Gavojdian, D. et al. Effects of using indigenous heritage sheep breeds in organic and low-input production systems on production efficiency and animal welfare in Romania. Landbauforschung Volkenrode 66(4), 290–297. https://doi.org/10.3220/LBF1483607712000 (2016).Article 

    Google Scholar 
    Gavojdian, D. et al. Reproduction efficiency and health traits in Dorper, White Dorper, and Tsigai sheep breeds under temperate European conditions. Asian Australas. J. Anim. Sci. 28(4), 599–603. https://doi.org/10.5713/ajas.14.0659 (2015).Article 
    CAS 

    Google Scholar 
    Kusza, S. et al. The genetic variability of Hungarian Tsigai sheep. Archiv Tierzuch 53(3), 309–317 (2010).
    Google Scholar 
    Kusza, S. et al. Study of genetic differences among Slovak Tsigai populations using microsatellite markers. Czeh J. Anim. Sci. 54(10), 468–474. https://doi.org/10.17221/1670-CJAS (2009).Article 
    CAS 

    Google Scholar 
    Marcos-Carcavilla, A. et al. Polymorphisms in the HSP90AA1 5′ flanking region are associated with scrapie incubation period in sheep. Cell Stress Chaperones 15(4), 343–349. https://doi.org/10.1007/s12192-009-0149-2 (2010).Article 
    CAS 

    Google Scholar 
    Salces-Ortiz, J. et al. Looking for adaptive footprints in the HSP90AA1 ovine gene. BMC Evol. Biol. 15(1), 7. https://doi.org/10.1186/s12862-015-0280-x (2015).Article 
    CAS 

    Google Scholar 
    Toscano, J. H. B. et al. Innate immune responses associated with resistance against Haemonchus contortus in Morada Nova Sheep. J. Immunol. Res. 2019, 1–10. https://doi.org/10.1155/2019/3562672 (2019).Article 
    CAS 

    Google Scholar 
    Estrada-Reyes, Z. M. et al. Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genom. 20(1), 735. https://doi.org/10.1186/s12864-019-6150-y (2019).Article 
    CAS 

    Google Scholar 
    Caroprese, M., Bradford, B. J. & Rhoads, R. P. Editorial: Impact of climate change on immune responses in agricultural animals. Front. Vet. Sci. https://doi.org/10.3389/fvets.2021.732203 (2021).Article 

    Google Scholar 
    FAO/IAEA. Agriculture biotechnology laboratory—handbook of laboratory exercises. Seibersdorf: IAEA Laboratories, 18 (2004).Zsolnai, A. & Orbán, L. Accelerated separation of random complex DNA patterns in gels: Comparing the performance of discontinuous and continuous buffers. Electrophoresis 20(7), 1462–1468. https://doi.org/10.1002/(SICI)1522-2683(19990601)20:7%3c1462::AID-ELPS1462%3e3.0.CO;2-0 (1999).Article 
    CAS 

    Google Scholar 
    Cavalcanti, L. C. G. et al. Genetic characterization of coat color genes in Brazilian Crioula sheep from a conservation nucleus. Pesq. Agrop. Brasil. 52(8), 615–622. https://doi.org/10.1590/s0100-204×2017000800007 (2017).Article 

    Google Scholar 
    Li, Y. et al. Heat stress-responsive transcriptome analysis in the liver tissue of Hu sheep. Genes 10(5), 395. https://doi.org/10.3390/genes10050395 (2019).Article 
    CAS 

    Google Scholar 
    Younis, F. Expression pattern of heat shock protein genes in sheep. Mansoura Vet. Med. J. 21(1), 1–5. https://doi.org/10.35943/mvmj.2020.21.001 (2020).Article 

    Google Scholar 
    Yeh F. C., Boyle R., Yang R. C., Ye Z., Mao J. X. & Yeh D. POPGENE version 1.32. Computer program and documentation distributed by the author. http://www.ualberta.ca/∼fyeh/popgene.html (1999).Lê, S., Josse, J. & Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01 (2008).Article 

    Google Scholar 
    Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer. https://ggplot2.tidyverse.org (2016) (ISBN 978-3-319-24277-4).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020). More