Low genetic diversity and predation threaten a rediscovered marine sponge
McCauley, D. J., Pinsky, M. L., Palumbi, S. R., Estes, J. A. & Warner, R. R. Marine defaunation: Animal loss in the global ocean. Science 347(6219), 1255641 (2015).Article
Google Scholar
Webb, T. J. & Mindel, B. L. Global patterns of extinction risk in marine and non-marine systems. Curr. Biol. 25(4), 506–511 (2015).Article
CAS
Google Scholar
Pinsky, M. L. & Fredston, A. A stark future for ocean life. Science 376(6592), 452–453 (2022).Article
ADS
CAS
Google Scholar
Bell, J. J., Bennett, H. M., Rovellini, A. & Webster, N. S. Sponges to be winners under near-future climate scenarios. Bioscience 68(12), 955–968 (2018).Article
Google Scholar
Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31(21), 4773-4787.e8 (2021).Article
CAS
Google Scholar
Penn, J. L. & Deutsch, C. Avoiding ocean mass extinction from climate warming. Science 376(6592), 524–526 (2022).Article
ADS
CAS
Google Scholar
Hubbard, D. M., Dugan, J. E., Schooler, N. K. & Viola, S. M. Local extirpations and regional declines of endemic upper beach invertebrates in southern California. Estuar. Coast. Shelf Sci. 150(Part A), 67–75 (2014).Article
ADS
Google Scholar
Poquita-Du, R. C. et al. Last species standing: loss of Pocilloporidae corals associated with coastal urbanization in a tropical city state. Mar. Biodivers. 49, 1727–1741 (2019).Article
Google Scholar
Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).Article
ADS
CAS
Google Scholar
Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article
Google Scholar
Bell, et al. Global conservation status of sponges. Conserv. Biol. 29(1), 42–53 (2015).Article
Google Scholar
Kelmo, F., Bell, J. J. & Attrill, M. J. Tolerance of sponge assemblages to temperature anomalies: Resilience and proliferation of sponges following the 1997–8 El-Niño southern oscillation. PLoS ONE 8(10), e76441 (2013).Article
ADS
CAS
Google Scholar
Micaroni, V. et al. Adaptive strategies of sponges to deoxygenated oceans. Glob. Change Biol. 28(6), 1972–1989 (2022).Article
Google Scholar
Di Camillo, C. G., Bartolucci, I., Cerrano, C. & Bavestrello, G. Sponge disease in the Adriatic Sea. Mar. Ecol. 34(1), 62–71 (2013).Article
ADS
Google Scholar
Pérez, T. & Vacelet, J. Effect of climatic and anthropogenic disturbances on sponge fisheries. In The Mediterranean Sea (eds Goffredo, S. & Dubinsky, Z.) 577–587 (Springer, 2014).Chapter
Google Scholar
Ereskovsky, A., Ozerov, D. A., Pantyulin, A. N. & Tzetlin, A. B. Mass mortality event of White Sea sponges as the result of high temperature in summer 2018. Polar Biol. 42, 2313–2318 (2019).Article
Google Scholar
Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26(6), 3202–3211 (2020).Article
ADS
Google Scholar
Stevenson, A. et al. Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation. Sci. Rep. 10, 8176 (2020).Article
ADS
CAS
Google Scholar
Beepat, S. S., Davy, S. K., Woods, L. & Bell, J. J. Short-term responses of tropical lagoon sponges to elevated temperature and nitrate. Mar. Environ. Res. 157, 104922 (2020).Article
CAS
Google Scholar
Shore, A. et al. On a reef far, far away: Anthropogenic impacts following extreme storms affect sponge health and bacterial communities. Front. Mar. Sci. 8, 608036 (2021).Article
Google Scholar
de Voogd et al. World Porifera Database https://www.marinespecies.org/porifera/ (2022).Wulff, J. L. Assessing and monitoring coral reef sponges: Why and how?. Bull. Mar. Sci. 69(2), 831–846 (2001).ADS
Google Scholar
Bell, J. J. The functional roles of marine sponges. Estuar. Coast. Shelf Sci. 79(3), 341–353 (2008).Article
ADS
Google Scholar
Folkers, M. & Rombouts, T. Sponges revealed: a synthesis of their overlooked ecological functions within aquatic ecosystems. In YOUMARES 9—The Oceans: Our Research, Our Future (eds Jungblut, S. et al.) 181–194 (Springer, 2019).
Google Scholar
Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann. Rev. Mar. Sci. 12, 315–337 (2020).Article
Google Scholar
Sawangwong, P. et al. Secondary metabolites from a marine sponge Cliona patera. Biochem. Syst. Ecol. 36(5), 493–496 (2008).Article
CAS
Google Scholar
Zhang, H. et al. Bioactive secondary metabolites from the marine sponge genus Agelas. Mar. Drugs 15(11), 351 (2017).Article
Google Scholar
He, Q., Miao, S., Ni, N., Man, Y. & Gong, K. A review of the secondary metabolites from the marine sponges of the genus Aaptos. Nat. Prod. Commun. 15(9), 1–12 (2020).CAS
Google Scholar
Ho, et al. Assessing the diversity and biomedical potential of microbes associated with the Neptune’s Cup sponge, Cliona patera. Front. Microbiol. 12, 631445 (2021).Article
Google Scholar
Pronzato, R. Mediterranean sponge fauna: A biological, historical and cultural heritage. Biogeographia 24(1), 91–99 (2003).
Google Scholar
DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. 10, 8365 (2020).Article
ADS
CAS
Google Scholar
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319(5865), 948–952 (2008).Article
ADS
CAS
Google Scholar
Vosmaer, G. C. J. Poterion a boring sponge. K. Ned. Akad. Wet. Proc. 11, 37–41 (1908).
Google Scholar
Lim, S. C., Tun, K. & Goh, E. Rediscovery of the Neptune’s Cup sponge in Singapore: Cliona or Poterion? Contributions to Marine Science 2012, 49–56 (2012).Low, M. E. Y. The date of publication of Cliona patera (Hardwicke), the ‘sponge plant from the shores of Singapore’ (Porifera: Hadromerida: Clionaidae). Nat. Singap. 5, 223–227 (2012).
Google Scholar
Knight, K. Super-rare giant sponge discovered in seahorse hotspot. Fauna & Floral International https://www.fauna-flora.org/news/super-rare-sponge-discovered-seahorse-hotspot/ (2018).The State of Queensland (Queensland Museum). Cliona patera. Queensland Museum Network https://collections.qm.qld.gov.au/objects/73638/cliona-patera (2012–2022).Heath, D. J. Simultaneous hermaphroditism; Cost and benefit. J. Theor. Biol. 64, 363–373 (1977).Article
ADS
CAS
Google Scholar
André, C. & Lindegarth, M. Fertilization efficiency and gamete viability of a sessile, free-spawning bivalve, Cerastoderma edule. Ophelia 43(3), 215–227 (1995).Article
Google Scholar
Bayer, S. R. et al. Fertilization success in scallop aggregations: Reconciling model predictions and field measurements of density effects. Ecosphere 9(8), e02359 (2018).Article
Google Scholar
Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15(1), 10–13 (2000).Article
CAS
Google Scholar
Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10(6), 1500–1508 (1996).Article
Google Scholar
Lim, S. C. Porifera. Singapore Red Data Book. https://www.nparks.gov.sg/biodiversity/wildlife-in-singapore/species-list/sponge (2022).Quek, Z. B. R., Chang, J. J. M., Ip, Y. C. A., Chan, Y. K. S. & Huang, D. Mitogenomes reveal alternative initiation codons and lineage-specific gene order conservation in echinoderms. Mol. Biol. Evol. 38(3), 981–985 (2021).Article
CAS
Google Scholar
Wörheide, G., Nichols, S. A. & Goldberg, J. Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): Implications for phylogenetic studies. Mol. Phylogenet. Evol. 33(3), 816–830 (2004).Article
Google Scholar
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17), i884–i890 (2018).Article
Google Scholar
Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012).Article
MathSciNet
CAS
Google Scholar
Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads: A baiting and iterative mapping approach. Nucleic Acids Res. 41(13), e129 (2013).Article
CAS
Google Scholar
Donath, A. et al. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 47(20), 10543–10552 (2019).Article
CAS
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013).Article
CAS
Google Scholar
Darriba, D. et al. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37(1), 291–294 (2020).Article
MathSciNet
CAS
Google Scholar
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35(21), 4453–4455 (2019).Article
CAS
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).Article
CAS
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012).Article
CAS
Google Scholar
Xavier, J. R. et al. Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Mol. Phylogenet. Evol. 56(1), 13–20 (2010).Article
CAS
Google Scholar
de Paula, T. S., Zilberberg, C., Hajdu, E. & Lôbo-Hajdua, G. Morphology and molecules on opposite sides of the diversity gradient: Four cryptic species of the Cliona celata (Porifera, Demospongiae) complex in South America revealed by mitochondrial and nuclear markers. Mol. Phylogenet. Evol. 62(1), 529–541 (2012).Article
Google Scholar
Plese, B. et al. Mitochondrial evolution in the Demospongiae (Porifera): Phylogeny, divergence time, and genome biology. Mol Phylogenet Evol 155, 107011 (2021).Article
Google Scholar
Lavrov, D. V., Adamski, M., Chevaldonné, P. & Adamska, M. Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges. Curr. Biol. 26(1), 86–92 (2016).Article
CAS
Google Scholar
Lavrov, D. V. & Pett, W. Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages. Genome Biol. Evol. 8(9), 2896–2913 (2016).Article
CAS
Google Scholar
Haen, K. M., Pett, W. & Lavrov, D. V. Eight new mtDNA sequences of glass sponges reveal an extensive usage of + 1 frameshifting in mitochondrial translation. Gene 535(2), 336–344 (2014).Article
CAS
Google Scholar
Shearer, T. L., van Oppen, M. J. H., Romano, S. L. & Wörheide, G. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol. Ecol. 11(12), 2475–2487 (2002).Article
CAS
Google Scholar
Lavrov, D. V., Forget, L., Kelly, M. & Lang, B. F. Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol. Biol. Evol. 22(5), 1231–1239 (2005).Article
CAS
Google Scholar
Huang, D., Meier, R., Todd, P. A. & Chou, L. M. Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J. Mol. Evol. 66(2), 167–174 (2008).Article
ADS
CAS
Google Scholar
Wörheide, G. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar. Biol. 148, 907–912 (2006).Article
Google Scholar
León-Pech, M. G., Cruz-Barraza, J. A., Carballo, J. L., Calderon-Aguilera, L. E. & Rocha-Olivares, A. Pervasive genetic structure at different geographic scales in the coral-excavating sponge Cliona vermifera (Hancock, 1867) in the Mexican Pacific. Coral Reefs 34, 887–897 (2015).Article
ADS
Google Scholar
Yang, Q., Franco, C. M. M., Sorokin, S. J. & Zhang, W. Development of a multilocus-based approach for sponge (phylum Porifera) identification: Refinement and limitations. Sci. Rep. 7, 41422 (2017).Article
ADS
CAS
Google Scholar
Wörheide, G., Epp, L. S. & Macis, L. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): Founder effects, vicariance, or both?. BMC Evol. Biol. 8, 24 (2008).Article
Google Scholar
Lai, S., Loke, L. H. L., Hilton, M. J., Bouma, T. J. & Todd, P. A. The effects of urbanisation on coastal habitats and the potential for ecological engineering: A Singapore case study. Ocean Coast. Manag. 103, 78–85 (2015).Article
Google Scholar
Kuempel, C. D. et al. Identifying management opportunities to combat climate, land, and marine threats across less climate exposed coral reefs. Conserv. Biol. 36(3), e13856 (2022).Article
Google Scholar
Neo, M. L. et al. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. In Oceanography and Marine Biology: An Annual Review Vol. 55 (eds Hawkins, S. J. et al.) 87–388 (CRC Press, 2017).Chapter
Google Scholar
Orlando, L. et al. Ancient DNA analysis. Nat. Rev. Methods Prim. 1, 14 (2021).Article
CAS
Google Scholar
Cárdenas, P. & Moore, J. A. First records of Geodia demosponges from the New England seamounts, an opportunity to test the use of DNA mini-barcodes on museum specimens. Mar. Biodiv. 49, 163–174 (2019).Article
Google Scholar
Erpenbeck, D. et al. Minimalist barcodes for sponges: A case study classifying African freshwater Spongillida. Genome 62(1), 1–10 (2019).Article
Google Scholar
Chang, D. & Shapiro, B. Using ancient DNA and coalescent-based methods to infer extinction. Biol. Lett. 12(2), 20150822 (2016).Article
Google Scholar
Pacioni, C. et al. Genetic diversity loss in a biodiversity hotspot: Ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial. Mol. Ecol. 24(23), 5813–5828 (2015).Article
CAS
Google Scholar
Lombal, A. J. et al. Using ancient DNA to quantify losses of genetic and species diversity in seabirds: A case study of Pterodroma petrels from a Pacific island. Biodivers. Conserv. 29, 2361–2375 (2020).Article
Google Scholar
Ruzicka, R. & Gleason, D. F. Sponge community structure and anti-predator defenses on temperate reefs of the South Atlantic Bight. J. Exp. Mar. Biol. Ecol. 380(1–2), 36–46 (2009).Article
Google Scholar
Loh, T. L. & Pawlik, J. R. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc. Natl. Acad. Sci. U.S.A. 111(11), 4151–4156 (2014).Article
ADS
CAS
Google Scholar
Wulff, J. L. Targeted predator defenses of sponges shape community organization and tropical marine ecosystem function. Ecol. Monogr. 91(2), e01438 (2021).Article
Google Scholar
Coppock, A. G., Kingsford, M. J., Battershill, C. N. & Jones, G. P. Significance of fish–sponge interactions in coral reef ecosystems. Coral Reefs 41, 1285–1308 (2022).Article
Google Scholar
Baumbach, D. S., Zhang, R., Hayes, C. T., Wright, M. K. & Dunbar, S. G. Strategic foraging: Understanding hawksbill (Eretmochelys imbricata) prey item energy values and distribution within a marine protected area. Mar. Ecol. 00, e12703 (2022).CAS
Google Scholar
Guida, V. G. Sponge predation in the oyster reef community as demonstrated with Cliona celata Grant. J. Exp. Mar. Biol. Ecol. 25(2), 109–122 (1976).Article
Google Scholar
Verdín, P. C. J., Carballo, J. L. & Camacho, M. L. A qualitative assessment of sponge-feeding organisms from the Mexican Pacific coast. Open Mar. Biol. J. 4, 39–46 (2010).Article
Google Scholar
Márquez, J. C. & Zea, S. Parrotfish mediation in coral mortality and bioerosion by the encrusting, excavating sponge Cliona tenuis. Mar. Ecol. 33(4), 417–426 (2012).Article
ADS
Google Scholar
González-Rivero, M., Ferrari, R., Schönberg, C. H. L. & Mumby, P. J. Impacts of macroalgal competition and parrotfish predation on the growth of a common bioeroding sponge. Mar. Ecol. Prog. Ser. 444, 133–142 (2012).Article
ADS
Google Scholar
von Brandis, R. G., Mortimer, J. A., Reilly, B. K., van Soest, R. W. M. & Branch, G. M. Diet composition of hawksbill turtles (Eretmochelys imbricata) in the Republic of Seychelles. Western Indian Ocean J. Mar. Sci. 13(1), 81–91 (2014).
Google Scholar
Mortimer, C., Dunn, M., Haris, A., Jompa, J. & Bell, J. Estimates of sponge consumption rates on an Indo-Pacific reef. Mar. Ecol. Prog. Ser. 672, 123–140 (2021).Article
ADS
CAS
Google Scholar
Hoppe, W. F. Growth, regeneration and predation in three species of large coral reef sponges. Mar. Ecol. Prog. Ser. 50(12), 117–125 (1988).Article
ADS
Google Scholar
Bell, J. J. Regeneration rates of a sublittoral demosponge. J. Mar. Biol. Assoc. U.K. 82(1), 169–170 (2002).Article
Google Scholar
Wu, Y.-C. et al. Opisthobranch grazing results in mobilisation of spherulous cells and re-allocation of secondary metabolites in the sponge Aplysina aerophoba. Sci. Rep. 10, 21934 (2020).Article
ADS
CAS
Google Scholar
Wu, Y.-C., Franzenburg, S., Ribes, M. & Pita, L. Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer. Sci. Rep. 12, 1307 (2022).Article
ADS
CAS
Google Scholar
González-Rivero, M. et al. Life-history traits of a common Caribbean coral-excavating sponge, Cliona tenuis (Porifera: Hadromerida). J. Nat. Hist. 47(45–46), 1–20 (2013).
Google Scholar
Chaves-Fonnegra, A., Maldonado, M., Blackwelder, P. & Lopez, J. V. Asynchronous reproduction and multi-spawning in the coral-excavating sponge Cliona delitrix. J. Mar. Biol. Assoc. U.K. 96(2), 515–528 (2015).Article
Google Scholar
Bautista-Guerrero, E., Carballo, J. L. & Maldonado, M. Abundance and reproductive patterns of the excavating sponge Cliona vermifera: A threat to Pacific coral reefs?. Coral Reefs 33, 259–266 (2014).Article
ADS
Google Scholar
Piscitelli, M., Corriero, G., Gaino, E. & Uriz, M.-J. Reproductive cycles of the sympatric excavating sponges Cliona celata and Cliona viridis in the Mediterranean Sea. Invertebr. Biol. 130(1), 1–10 (2011).Article
Google Scholar
Chaves-Fonnegra, A., Feldheim, K. A., Secord, J. & Lopez, J. V. Population structure and dispersal of the coral-excavating sponge Cliona delitrix. Mol. Ecol. 24(7), 1447–1466 (2015).Article
Google Scholar
Zilberberg, C., Maldonado, M. & Solé-Cava, A. Assessment of the relative contribution of asexual propagation in a population of the coral-excavating sponge Cliona delitrix from the Bahamas. Coral Reefs 25, 297–301 (2006).Article
ADS
Google Scholar
Wulff, J. L. Effects of a hurricane on survival and orientation of large erect coral reef sponges. Coral Reefs 14, 55–61 (1995).Article
ADS
Google Scholar
Wilkinson, C. R. & Thompson, J. E. Experimental sponge transplantation provides information on reproduction by fragmentation. Proc. 8th Int. Coral Reef Symp. 2, 1417–1420 (1997).CAS
Google Scholar
da Silva, R. et al. Assessing the conservation potential of fish and corals in aquariums globally. J. Nat. Conserv. 48, 1–11 (2019).Article
Google Scholar
Neumann, A. C. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol. Oceanogr. 11(1), 92–108 (1966).Article
ADS
Google Scholar
Rosell, D. & Uriz, M. J. Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (Porifera: Hadromerida)? An experimental approach. Mar. Biol. 114, 503–507 (1992).Article
Google Scholar
Ramsby, B. D., Hoogenboom, M. O., Smith, H. A., Whalan, S. & Webster, N. S. The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming. Sci. Rep. 8, 8302 (2018).Article
ADS
Google Scholar More