More stories

  • in

    Study on adsorption of hexavalent chromium by composite material prepared from iron-based solid wastes

    Material characterization resultsTo investigate the structural composition of NMC-2, XRD analysis plots were performed. Figure 1a shows the XRD pattern of the NMC-2 composite before adsorption. The XRD pattern shows the corresponding strong and narrow peaks, from which it can be seen that the peaks of broad diffraction NMC-2 can correspond to the standard cards of Fe, C, Fe7C3, Fe2C, and FeC, indicating that the synthesized adsorbent is an iron-carbon composite. It can be indicated that mesoporous nitrogen-doped composites were formed during the carbonization process. During the experiments, it was found that the materials are magnetic, probably because of the presence of Fe, FeC, Fe7C3, Fe2C. Due to the magnetic properties of this type of material, rapid separation and recovery can be obtained under the conditions of an applied magnetic field, which allows easy separation of the adsorbent and metal ions from the wastewater15.Figure 1XRD and nitrogen adsorption and desorption tests on materials: (a) XRD pattern of NMC-2 adsorbent before adsorption, (b) pore size distribution of NMC-2, (c) nitrogen adsorption–desorption curve of NMC-2 adsorbent.Full size imageFrom the adsorption–desorption curves of adsorbent N2 in Fig. 1b, it can be seen that the NMC-2 isotherm belongs to the class IV curve, and the appearance of H3-type hysteresis loops is observed at the medium pressure end, and H3 is commonly found in aggregates with laminar structure, producing slit mesoporous or macroporous materials, which indicates that N2 condenses and accumulates in the pore channels, and these phenomena prove that NMC-2 is a porous material16. Figure 1c shows the pore size distribution of the adsorbent NMC-2 obtained according to the BJH calculation method, from which it can be seen that the pore size distribution is not uniform in the range, and most of them are concentrated below 20 nm, while according to Table 1, the specific surface area of the original sample of Fenton sludge and fly ash is 124.08 m2/g and 3.79 m2/g, respectively, and the specific surface area of NMC-2 is 228.65 m2/g. The Fenton The pore volume of the original samples of Fenton sludge and fly ash were 0.18 cm3/g and 0.006 cm3/g respectively, while the pore volume of NMC-2 was 0.24 cm3/g. The pore diameters of the original sample of Fenton sludge and fly ash were 5.72 nm and 6.70 nm respectively, while the pore diameter of NMC-2 was 4.22 nm. The above data indicated that the synthetic materials have increased the specific surface area and pore volume compared with the original samples, indicating that the doping of nitrogen can increase the specific surface area of the material. Since the pore size of mesoporous materials is 2–50 nm, NMC-2 is a porous material with main mesopores. Thanks to the large specific surface area provided by the mesopores, the material has a large number of active sites, and in addition, the mesopores can store more Cr(VI)16, which contributes to efficient removal.Table 1 Total pore-specific surface area, pore volume, and pore size of BJH adsorption and accumulation of Fenton sludge, fly ash and NMC-2.Full size tableThe morphological analysis of the material surface using SEM can see the surface structure and the pore structure of NMC-2. And Fig. 2a–d shows the swept electron microscope image of NMC-2. Figure 2a shows that the surface of the material is not smooth, and there are more lint-like fiber structures. The fibers in Fig. 2b are loosely and irregularly arranged, which may be due to the irregular morphology caused by the small particles of the NMC-2 sample. As shown in Fig. 2c and Fig. 2a there are more pores generated on the surface of NMC-2, which may be due to the addition of K2CO3 to urea and, Fenton sludge solution to generate CO217.Figure 2SEM, TEM and EDS testing of materials: (a–d) SEM image of NMC-2 adsorbent, (e) TEM image of NMC-2; (g–i) TEM-EDS spectrum of NMC-2, (j) TEM-EDS spectra of NMC-2 obtained from.Full size imageThese pores can provide many active sites, which is consistent with the results derived in Fig. 1, where NMC-2 is a mesoporous-dominated porous material, and also demonstrates that the addition of urea can provide a nitrogen source for the material, providing abundant active sites. Figure 2j depicts the TEM of NMC-2. the TEM images show that the synthesized NMC-2 has a folded structure with a surface covered by a carbon film, and the HRTEM (Fig. 2e) also confirms this result with a lattice spacing of 0.13, 0.15, 0.20, 0.23, 0.24, and 0.25 nm, corresponding to the (4 5 2) and (1 0 2) of C, the (2 0 1) of FeC) surface, the (2 1 0) surface of Fe7C3, the (5 3 1) surface of Fe2C, and the (2 0 1) surface of FeC, which also confirms the synthesis of the above substances. The corresponding EDS spectra of the dark field diagram NMC-2 were obtained from Fig. 2j, and the EDS spectra proved the presence of various elements: carbon (C) (Fig. 2f) from fly ash, iron (Fe) (Fig. 2g) from Fenton sludge, nitrogen (N) (Fig. 2h) from urea, and the presence of (O) (Fig. 2i), further confirming the successful preparation of NMC-2.The type of functional groups and chemical bonding on the surface of the material can be analyzed by IR spectrogram analysis. Figure 3b shows the FTIR image of NMC-2 adsorbent 3440 cm−1 wide and strong absorption peak is due to the stretching vibration of –OH, there is a large amount of –OH present on the surface of the material; the peak appearing at 1640 cm−1 is –COOH. Characterization reveals that the –OH absorption peak is wider18,19. In addition, the absorptions at 1390 cm−1 and 1000 cm−1 were attributed to the bending of –OH vibrations of alcohols and phenol and the stretching vibration of C–O20. The above results indicate that the surface of NMC-2 contains a large number of oxygen-containing functional groups, and these functional groups can provide many active sites for the removal of Cr(VI). It was also found that the weak peaks corresponding to 573 cm−1 and 550 cm−1 were attributed to Fe–O groups21. The stretching of Fe–O may be due to the oxidation of loaded Fe0 and Fe2+ to Fe3+22. Figure 3a shows the Fenton sludge and fly ash FTIR images. It can be seen from the figure that the surfaces of Fenton sludge and fly ash contain a large number of oxygen-containing functional groups, the surface functional groups of the two raw materials are more abundant, and the functional groups of NMC-2 around 3441 cm−1, 1632 cm−1, and 1400 cm−1 are not significantly different from those of the raw materials, and the C–H stretching vibration peaks of NMC-2 around 873 cm−1 and 698 cm−1 is not obvious, which may be because the material the C–H bond on the surface of the raw material was oxidized to C–O in the process of synthesis.Figure 3FTIR testing of materials: (a) FTIR image of Fenton sludge, fly ash, (b) Ftir image of NMC-2 adsorbent.Full size imageCr(VI) adsorption experimentSelection of adsorbentTo select the best adsorbent, Cr(VI) adsorption tests were performed on four adsorbents. Figure 4a shows the effect of Fenton sludge and the urea addition on the adsorption efficiency. The Cr(VI) removal rates of the four adsorbents were ranked from low to high: MC-1  More

  • in

    Myzomyia and Pyretophorus series of Anopheles mosquitoes acting as probable vectors of the goat malaria parasite Plasmodium caprae in Thailand

    Asada, M. et al. Close relationship of Plasmodium sequences detected from South American pampas deer (Ozotoceros bezoarticus) to Plasmodium spp. in North American white-tailed deer. Int. J. Parasitol. 7, 44–47. https://doi.org/10.1016/j.ijppaw.2018.01.001 (2018).Article 

    Google Scholar 
    Boundenga, L. et al. Haemosporidian parasites of antelopes and other vertebrates from Gabon, Central Africa. PLoS ONE 11, e0148958. https://doi.org/10.1371/journal.pone.0148958 (2016).Article 
    CAS 

    Google Scholar 
    Martinsen, E. S., Perkins, S. L. & Schall, J. J. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol. Phylogen. Evol. 47, 261–273. https://doi.org/10.1016/j.ympev.2007.11.012 (2008).Article 
    CAS 

    Google Scholar 
    Templeton, T. J. et al. Ungulate malaria parasites. Sci. Rep. 6, 23230. https://doi.org/10.1038/srep23230 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Templeton, T. J., Martinsen, E., Kaewthamasorn, M. & Kaneko, O. The rediscovery of malaria parasites of ungulates. Parasitology 143, 1501–1508. https://doi.org/10.1017/s0031182016001141 (2016).Article 

    Google Scholar 
    Bruce, D., Harvey, D., Hamerton, A. E. & Bruce, L. Plasmodium cephalophi, sp. nov. Proc. R. Soc. B. 87, 45–47 (1913).ADS 

    Google Scholar 
    Sheather, A. L. A malarial parasite in the blood of a buffalo. J. Comp. Pathol. 32, 223–229 (1919).Article 

    Google Scholar 
    Kandel, R. C. et al. First report of malaria parasites in water buffalo in Nepal. Vet. Parasitol. Reg. Stud. Rep. 18, 100348. https://doi.org/10.1016/j.vprsr.2019.100348 (2019).Article 

    Google Scholar 
    de Mello, F. & Paes, S. Sur une plasmodiae du sang des chèvres. C. R. Séanc. Soc. Biol 88, 829–830 (1923).
    Google Scholar 
    Kaewthamasorn, M. et al. Genetic homogeneity of goat malaria parasites in Asia and Africa suggests their expansion with domestic goat host. Sci. Rep. 8, 5827. https://doi.org/10.1038/s41598-018-24048-0 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Garnham, P. C. & Edeson, J. F. Two new malaria parasites of the Malayan mousedeer. Riv. Malariol. 41, 1–8 (1962).CAS 

    Google Scholar 
    Garnham, P. C. & Kuttler, K. L. A malaria parasite of the white-tailed deer (Odocoileus virginianus) and its relation with known species of Plasmodium in other ungulates. Proc. R. Soc. Lond. B 206, 395–402. https://doi.org/10.1098/rspb.1980.0003 (1980).Article 
    ADS 
    CAS 

    Google Scholar 
    Martinsen, E. et al. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus). Sci. Adv. 2, e1501486. https://doi.org/10.1126/sciadv.1501486 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Rattanarithikul, R. et al. Illustrated keys to the mosquitoes of Thailand. IV. Anopheles. Southeast Asian. Trop. Med. Public Health 37, 1–128 (2006).
    Google Scholar 
    Walter Reed Biosystematics Unit. Systematic catalogue of Culicidae. http://mosquitocatalog.org (2021).Manguin, S., Garros, C., Dusfour, I., Harbach, R. E. & Coosemans, M. Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: An updated review. Infect. Genet. Evol. 8, 489–503. https://doi.org/10.1016/j.meegid.2007.11.004 (2008).Article 
    CAS 

    Google Scholar 
    Brosseau, L. et al. A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasit. Vectors 12, 223. https://doi.org/10.1186/s13071-019-3494-8 (2019).Article 

    Google Scholar 
    Paredes-Esquivel, C., Donnelly, M. J., Harbach, R. E. & Townson, H. A molecular phylogeny of mosquitoes in the Anopheles barbirostris Subgroup reveals cryptic species: implications for identification of disease vectors. Mol. Phylogen. Evol. 50, 141–151. https://doi.org/10.1016/j.ympev.2008.10.011 (2009).Article 
    CAS 

    Google Scholar 
    Taai, K. & Harbach, R. E. Systematics of the Anopheles barbirostris species complex (Diptera: Culicidae: Anophelinae) in Thailand. Zool. J. Linn. Soc. 174, 244–264. https://doi.org/10.1111/zoj.12236 (2015).Article 

    Google Scholar 
    Garros, C., Van Bortel, W., Trung, H. D., Coosemans, M. & Manguin, S. Review of the Minimus Complex of Anopheles, main malaria vector in Southeast Asia: From taxonomic issues to vector control strategies. Trop. Med. Int. Health 11, 102–114. https://doi.org/10.1111/j.1365-3156.2005.01536.x (2006).Article 
    CAS 

    Google Scholar 
    Dahan-Moss, Y. et al. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar. J. 19, 89. https://doi.org/10.1186/s12936-020-03168-x (2020).Article 
    CAS 

    Google Scholar 
    Van Bortel, W. et al. Confirmation of Anopheles varuna in Vietnam, previously misidentified and mistargeted as the malaria vector Anopheles minimus. Am. J. Trop. Med. Hyg. 65, 729–732. https://doi.org/10.4269/ajtmh.2001.65.729 (2001).Article 

    Google Scholar 
    Wharton, R. H., Eyles, D. E., Warren, M., Moorhouse, D. E. & Sandosham, A. A. Investigations leading to the identification of members of the Anopheles umbrosus group as the probable vectors of mouse deer malaria. Bull. 29, 357–374 (1963).CAS 

    Google Scholar 
    Nugraheni, Y. R. et al. Myzorhynchus series of Anopheles mosquitoes as potential vectors of Plasmodium bubalis in Thailand. Sci. Rep. 12, 5747. https://doi.org/10.1038/s41598-022-09686-9 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Tu, H. L. C. et al. Development of a novel multiplex PCR assay for the detection and differentiation of Plasmodium caprae from Theileria luwenshuni and Babesia spp. in goats. Acta Trop. 220, 105957. https://doi.org/10.1016/j.actatropica.2021.105957 (2021).Article 
    CAS 

    Google Scholar 
    Cywinska, A., Hunter, F. F. & Hebert, P. D. Identifying Canadian mosquito species through DNA barcodes. Med. Vet. Entomol. 20, 413–424. https://doi.org/10.1111/j.1365-2915.2006.00653.x (2006).Article 
    CAS 

    Google Scholar 
    Hebert, P. D., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).Article 
    CAS 

    Google Scholar 
    Ogola, E. O., Chepkorir, E., Sang, R. & Tchouassi, D. P. A previously unreported potential malaria vector in a dry ecology of Kenya. Parasit. Vectors 12, 80. https://doi.org/10.1186/s13071-019-3332-z (2019).Article 

    Google Scholar 
    Maquart, P. O., Fontenille, D., Rahola, N., Yean, S. & Boyer, S. Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia. Parasite 28, 60. https://doi.org/10.1051/parasite/2021056 (2021).Article 

    Google Scholar 
    Tainchum, K. et al. Diversity of Anopheles species and trophic behavior of putative malaria vectors in two malaria endemic areas of northwestern Thailand. J. Vector. Ecol. 39, 424–436. https://doi.org/10.1111/jvec.12118 (2014).Article 

    Google Scholar 
    Vantaux, A. et al. Anopheles ecology, genetics and malaria transmission in northern Cambodia. Sci. Rep. 11, 6458. https://doi.org/10.1038/s41598-021-85628-1 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Chookaew, S. et al. Anopheles species composition in malaria high-risk areas in Ranong Province. Dis. Control J. 46, 483–493. https://doi.org/10.14456/dcj.2020.45 (2020).Article 

    Google Scholar 
    Makanga, B. et al. Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc. Natl. Acad. Sci. USA. 113, 5329–5334. https://doi.org/10.1073/pnas.1603008113 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Ariey, F., Gay, F. & Ménard, R. Malaria Control and Elimination Vol. 254 (Springer, 2020).
    Google Scholar 
    Williams, J. & Pinto, J. Training Manual on Malaria Entomology (Springer, 2012).
    Google Scholar 
    Rigg, C. A., Hurtado, L. A., Calzada, J. E. & Chaves, L. F. Malaria infection rates in Anopheles albimanus (Diptera: Culicidae) at Ipetí-Guna, a village within a region targeted for malaria elimination in Panamá. Infect. Genet. Evol. 69, 216–223. https://doi.org/10.1016/j.meegid.2019.02.003 (2019).Article 

    Google Scholar 
    Torres-Cosme, R. et al. Natural malaria infection in anophelines vectors and their incrimination in local malaria transmission in Darién Panama. PLoS ONE 16, e0250059. https://doi.org/10.1371/journal.pone.0250059 (2021).Article 
    CAS 

    Google Scholar 
    Beebe, N. W. & Saul, A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am. J. Trop. Med. Hyg. 53, 478–481. https://doi.org/10.4269/ajtmh.1995.53.478 (1995).Article 
    CAS 

    Google Scholar 
    Perkins, S. L. & Schall, J. J. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J. Parasitol. 88, 972–978. https://doi.org/10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2 (2002).Article 
    CAS 

    Google Scholar 
    Snounou, G. et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol. 61, 315–320. https://doi.org/10.1016/0166-6851(93)90077-B (1993).Article 
    CAS 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).Article 
    CAS 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).Article 
    CAS 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300 (2015).Article 
    CAS 

    Google Scholar 
    Ventim, R. et al. Avian malaria infections in western European mosquitoes. Parasitol. Res. 111, 637–645. https://doi.org/10.1007/s00436-012-2880-3 (2012).Article 

    Google Scholar  More

  • in

    Spatio-temporal patterns of Synechococcus oligotypes in Moroccan lagoonal environments

    In a previous study18, we used bioinformatics tools to analyze the metagenome and the amplicon 16S sequences to gain an insight into microbial diversity in Moroccan lagoons, namely Marchica and Oualidia. 16S rRNA gene classification revealed a high percentage of bacteria in both lagoons. On average, bacteria accounted for 90% of the total prokaryotes in Marchica and ~ 70% in Oualidia. The five phyla that were the most abundant in both lagoons, Marchica and Oualidia, respectively, were Proteobacteria (53.62%, 29.18%), Bacteroidetes (16.46%, 43.49%), Cyanobacteria (0.53%, 34.35%), Verrucomicrobia (1.75%, 15.82%), and Actinobacteria (7.42%, 13.98%). At the genus level, we found that the highest assigned hits were attributed to Synechococcus, which was highly abundant in Marchica (32%) compared to Oualidia (0.07%) in 2014. This amount dropped to 22% in Marchica and 0.04% in Oualidia in 2015. Hence, in this study we performed the analysis of the Synechococcus genus community using oligotyping to investigate their dynamics and understand their co-occurrence and covariation in space and time within fragile ecosystems such as lagoons.We may divide our results into two emerging Synechococcus communities: one dominated in 2014 and the other was less present in 2015, each composed of different cooccurring Synechococcus oligotypes. The abundant Synechococcus community in Marchica in 2014 consisted of clades I, 5.3, III, IV, and VII. These clades are typically found in either warmer or more oligotrophic environments19,20. This result is in accordance with Marchica’s environmental characteristics; it is an oligotrophic ecosystem with high primary production and warmer water in summer21. The community included clades CB5 and WPC1 in Marchica 2014 and 2015 when the number of Synechococcus reads was lower. Strains belonging to the CB5 clade lack phycourobilin (PUB), contain one motile strain22,23, are present in temperate coastal waters and are prevalent in polar/subpolar waters24,25,26. WPC1 strains are observed in open-ocean and near-shore waters1,24,27. Clades IV and I usually co-occur and are more prevalent in cold coastal waters19,28,29,30. Interestingly, Clade III was prominent in Marchica. This clade is known to be motile and restricted to warm, oligotrophic water19,20,30. Although at a smaller read number, clade III was also observed in Oualidia, where the temperature is cooler compared to Marchica. Furthermore, we found that clade III growth has been shown to be severely affected at low temperatures30. Moreover, representatives of both clades I and IV were present in Oualidia in both the summers of 2014 and 2015. Some Synechococcus strains, which are known to prefer cooler water temperatures and salinities, were in higher relative abundance in the waters of Marchica. This result agrees with a previous study showing that Synechococcus isolates of clades I and IV exhibited temperature preferences31. Their growth rates were marginally lower at low temperatures in strains from clades I and IV, which were dominant in temperate regions.Nitrate levels are typically low or undetectable in these lagoons, which allows the persistence of clades that would not typically thrive in coastal waters at other times of the year. In 2014, the nitrate concentration was higher than the average of 10 mg/l, which could be due to increased agricultural activities and wastewater treatment plant effluent21. The decreasing nitrate concentration in Marchica in 2015 could be explained by the newly installed inlet in 2010, which was designed to improve water exchange with the open sea and reduce the amount of suspended matter21. Temperature and salinity have a large effect on nitrate in marine ecosystems32; the highest nitrate degradation rates were observed at 35 °C and at increasing salinity rates. Therefore, we expected to see correlations between salinity, temperature and nitrate concentrations. Interestingly, clades CB5 in Marchica and IV in Oualidia increased in relative abundance in summer 2015 compared to 2014, when the nitrate concentration decreased. Moreover, the Synechococcus microbial community diversity and density are variables depending on the variations in the physical and chemical parameters. These parameters are strongly influenced by the marine waters passing through the artificial inlets, which have an impact on the internal hydrodynamics of both lagoons and hence the distribution and co-occurrence of Synechococcus strains. In addition, anthropogenic activities also have a great influence on Synechococcales population growth and interactions with their viruses33,34.This study revealed some differences between Marchica and Oualidia in identified Synechococcus clades. The Marchica lagoon showed more heterogeneity (clades I, II, III, IV, VII, VIII, 5.3, WPC1, CB5, and IX) than the Oualidia lagoon, where fewer clades were identified (I, III, IV, and VII). There was a clear variation in the pattern of correlation between oligotypes of the same or different clades for both the 2014 and 2015 samplings. Furthermore, we observed complex patterns of co-occurrence among oligotypes; in 2014 (clades I, III, IV, 5.3, VII), and in 2015, we found clades CB5 and WPC1. In Oualidia, values decreased in comparison to Marchica in both 2014 and 2015 summer samplings, following a pattern of co-occurrence, especially for both clades I and IV in both sampling years. Many studies have shown that the relative proportions of cooccurring Synechococcus populations to each other at the clade and subclade levels vary in space and time based on environmental factors such as seasonal temperature fluctuations, nutrient availability and upwelling, circulation patterns, and abundance of other phytoplankton8.We presume that the greater variability in oligotype co-occurrence behavior observed in Marchica Lagoon, especially in the summer of 2014, could be due to the higher abundance and diversity of Synechococcus oligotypes, physico-chemical parameter fluctuations or rehabilitation of the lagoon.Less abundant oligotypes could also be considered potential bioindicators of Synechococcus genetic diversity. Their seasonal occurrence might contribute to changing ecological and biogeochemical characteristics of the marine environment35. The Synechococcus relative abundance count revealed that the Marchica Synechococcus community included the least abundant oligotypes in 2015. For instance, O7 and O8 were detected in 2014 and were absent in 2015 (Table 1). It is unclear which factors served to constrain the relative abundances of these least present oligotypes, but temperature and salinity could have an impact on their distribution in Marchica (Fig. 4) and the opposite for Oualidia, which are cooler-temperature adapted ones. We noticed that the relative abundance of cooccurring Synechococcus was not constant. For instance, oligotype 4 belonging to Clade IV showed higher values in summer 2014 (974 reads) in Marchica compared to summer 2015 (319 reads), and the opposite was observed in Oualidia, with a lower abundance compared to Marchica. Increased values of cooccurring clade I oligotypes (14, 26, and 6) were detected in the summer of 2014 in both lagoons.Figure 4Principle component analysis of Synechococcus oligotype relative abundance. The plot is generated using the relative abundance of each oligotype, T temperature, S Salinity, and NO3− Nitrate. Each point represents an oligotype. Colors represent the year of sampling; red for 2014 and blue for 2015. The shape of point indicates the sampling site; rounded points refer to Marchica lagoon, and triangles refer to Oualidia. Circles represent the normal distribution of oligotypes; the red circle refers to 2014, and the blue one refers to 2015.Full size imageIn comparing our results with a study from Little Sippewissett Marsh (LSM)8 that used oligotyping to investigate the distribution of the genus Synechococcus in space and time sequencing the V4-V6 hypervariable region of the 16S rRNA gene, we found 31 oligotypes, while they identified 12. In both studies, the proportion of Synechococcus oligotypes increased in summer and in coastal waters compared to estuaries. In addition, Clades I and IV were more abundant in saline conditions, such as Marchica Lagoon. However, these clades were found in greater relative abundances at cold temperatures, in contrast to our study, where they were identified in Marchica’s warm waters. Moreover, clade CB5 tended to be prominent at relatively warm temperatures (17–20 °C)6. In our work, it was not prevalent either in cooler or warmer water. Notably, the relative abundance of rare oligotypes was higher in warm hypersaline estuary waters8,18, while in our case study, they occurred in cooler moderately saline Oualidia waters.The dominance of a certain clade could have many different ecological ramifications, especially as the clades can be incredibly diverse in their growth, loss, nutrient utilization and other attributes. The dominant clade’s growth and loss patterns will set the stage for the population dynamics. For instance, if the dominant clade only blooms in a given environmental factor such as temperature, light, or salinity, it will then affect the timing of blooms, and follow-on the effects of subsequent grazing, lysis or even biogeochemical cycling. Even if the population is diverse, the dynamics as a whole will be a composite response of each individual clade’s ecophysiology, making it important to understand their composition and how it changes over space and time.While the rpoC1 gene is a higher resolution diversity marker36, 16S amplicon data can be used for exploring the entire bacterial assemblage including Synechococcus clade designations via oligotyping35. The latter has a great advantage in answering unexplained diversity contained in taxa using 16S rRNA gene sequences. Nevertheless, it has some limitations, as it acts optimally only when performed on taxa that are closely related. Regarding distantly related taxa, the high number of increased-entropy locations makes the supervision steps difficult. In addition, although oligotyping does not rely on clustering conditions or availability of existing reads within reference databases, it demands preliminary operational taxonomic unit clustering to find closely related species appropriate for the analysis. This method is under continuous improvement to better exploit the information within subtle variations in 16S rRNA gene sequences5.In conclusion, we explored the patterns of Synechococcus diversity in space and time using an oligotyping approach to examine these populations in lagoon waters of Mediterranean Marchica and Atlantic Oualidia, in Morocco. Patterns that have been observed at the clade and subclade levels, such as Synechococcus, relative abundance and the co-occurrence of groups from different clades, were shown to occur among oligotypes. The Marchica Lagoon showed a heterogeneous Synechococcus diversity compared to Oualidia in summer 2014. Thirty-one Synechococcus oligotypes were identified. Two distinct communities emerged in the 2014 and 2015 summer samplings, abundant and rare Synechococcus species, each comprising cooccurring Synechococcus oligotypes from different clades. Network analysis showed that six oligotypes were exclusive to Marchica Lagoon. The identified clades I, III, IV, VII, and 5.3 in Marchica were in accordance with its environmental characteristics. In addition, the relative abundance of some cooccurring Synechococcus strains was not constant over time and space (e.g., clades I and IV). Using gene oligotyping, we illustrated some of the challenges associated with the identification of novel Synechococcus strains or studied their co-occurrence in space and time. Oligotyping has been instrumental in discriminating closely related Synechococcus strains. However, this study leaves open questions about how samples differ by location and whether locations differ from year to year. Do cooccurring oligotypes interact with each other and to what extent do they correlate with physicochemical parameters? What triggers the coexistence of clades I and IV with clade III in warm water or 5.3 with VII, which do not know much about. Finally, how do relative abundances change over seasons. Hence, future work needs to consider additional stations and seasons to provide better statistical support for our findings and to better understand their correlation with physical and chemical environmental parameters. Other factors were not considered in this study, such as nutrient availability, chlorophyll, irradiance, viral lysis, and greater sequencing depth, which could also influence the observed seasonal dynamics. More

  • in

    Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 1–13 (2019).
    Google Scholar 
    Lovelock, C. E. & Duarte, C. M. Dimensions of Blue Carbon and emerging perspectives. Biol. Lett. 15, 20180781 (2019).Article 

    Google Scholar 
    Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat Rev Earth Environ 2, 826–839 (2021).Al‐Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Chang. Biol. 26, 2988–3005 (2020).Article 
    ADS 

    Google Scholar 
    Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. https://doi.org/10.1038/s41561-021-00715-2 (2021).Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science (80-) 331, 50–50 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 4, eaao4985 (2018).Article 
    ADS 

    Google Scholar 
    Rosentreter, J. A., Al‐Haj, A. N., Fulweiler, R. W. & Williamson, P. Methane and nitrous oxide emissions complicate coastal blue carbon assessments. Glob. Biogeochem. Cycles 35, e2020GB006858 (2021).Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Snelgrove, P. V. R. et al. Global carbon cycling on a heterogeneous seafloor. Trends Ecol. Evol. 33, 96–105 (2018).Article 

    Google Scholar 
    Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Barnes, R. O. & Goldberg, E. D. Methane production and consumption in anoxic marine sediments. Geology 4, 297 (1976).Article 
    ADS 
    CAS 

    Google Scholar 
    Reeburgh, W. S. Rates of biogeochemical processes in anoxic sediments. Annu. Rev. Earth Planet. Sci. 11, 269–298 (1983).Article 
    ADS 
    CAS 

    Google Scholar 
    Wallenius, A. J., Dalcin Martins, P., Slomp, C. P. & Jetten, M. S. M. Anthropogenic and environmental constraints on the microbial methane cycle in coastal sediments. Front. Microbiol. 12, 631621 (2021).Tokoro, T. et al. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation. Glob. Chang. Biol. 20, 1873–1884 (2014).Article 
    ADS 

    Google Scholar 
    Gallagher, J. B., Shelamoff, V. & Layton, C. Seaweed ecosystems may not mitigate CO2 emissions. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsac011 (2022).Oremland, R. S. & Taylor, B. F. Sulfate reduction and methanogenesis in marine sediments. Geochim. Cosmochim. Acta 42, 209–214 (1978).Article 
    ADS 
    CAS 

    Google Scholar 
    Egger, M., Riedinger, N., Mogollón, J. M. & Jørgensen, B. B. Global diffusive fluxes of methane in marine sediments. Nat. Geosci. 11, 421–425 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Weber, T., Wiseman, N. A. & Kock, A. Global ocean methane emissions dominated by shallow coastal waters. Nat. Commun. 10, 1–10 (2019).Article 

    Google Scholar 
    Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).Article 

    Google Scholar 
    Neubauer, S. C. Global warming potential is not an ecosystem property. Ecosystems https://doi.org/10.1007/s10021-021-00631-x (2021).Howard, J., Hoyt, S., Isensee, K., Telszewski, M. & Pidgeon, E. Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. 1–181 (2014). https://unesdoc.unesco.org/ark:/48223/pf0000372868.Berg, P., Huettel, M., Glud, R. N., Reimers, C. E. & Attard, K. M. Aquatic eddy covariance: the method and its contributions to defining oxygen and carbon fluxes in marine environments. Ann. Rev. Mar. Sci. 14, 431–455 (2022).Article 

    Google Scholar 
    Tokoro, T., Watanabe, K., Tada, K. & Kuwae, T. Air–water CO2 flux in shallow coastal waters: theory, methods, and empirical studies. in Blue Carbon in Shallow Coastal Ecosystems 153–184 (Springer Singapore, 2019).Saintilan, N., Rogers, K., Mazumder, D. & Woodroffe, C. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuar. Coast. Shelf Sci. 128, 84–92 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Ollivier, Q. R., Maher, D. T., Pitfield, C. & Macreadie, P. I. Net drawdown of greenhouse gases (CO2, CH4 and N2O) by a temperate australian seagrass meadow. Estuaries Coasts https://doi.org/10.1007/s12237-022-01068-8 (2022).Maher, D. T. et al. Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales. Environ. Sci. Technol. 47, 12938–12945 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring–neap–spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Maher, D. T., Cowley, K., Santos, I. R., Macklin, P. & Eyre, B. D. Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: Insights from automated in situ radioactive and stable isotope measurements. Mar. Chem. 168, 69–79 (2015).Article 
    CAS 

    Google Scholar 
    Attard, K. M. et al. Seasonal metabolism and carbon export potential of a key coastal habitat: The perennial canopy-forming macroalga Fucus vesiculosus. Limnol. Oceanogr. 64, 149–164 (2019).Article 
    ADS 

    Google Scholar 
    Attard, K. M. et al. Seasonal ecosystem metabolism across shallow benthic habitats measured by aquatic eddy covariance. Limnol. Oceanogr. Lett. 4, 79–86 (2019).Article 

    Google Scholar 
    Trevathan-Tackett, S. M. et al. Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 96, 3043–3057 (2015).Article 

    Google Scholar 
    Pessarrodona, A. et al. Global seaweed productivity. Sci. Adv. 8, eabn2465 (2022).Machado, L., Magnusson, M., Paul, N. A., de Nys, R. & Tomkins, N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 9, e85289 (2014).Article 
    ADS 

    Google Scholar 
    Hansson, G. Methane production from marine, green macro-algae. Resour. Conserv. 8, 185–194 (1983).Article 
    CAS 

    Google Scholar 
    Björk, M., Rosenqvist, G., Gröndahl, F. & Bonaglia, S. Methane emissions from macrophyte beach wrack on Baltic seashores. Ambio 52, 171–181 (2023).Article 

    Google Scholar 
    Lundevall-Zara, M., Lundevall-Zara, E. & Brüchert, V. Sea-air exchange of methane in shallow inshore areas of the Baltic sea. Front. Mar. Sci. 8, 1–20 (2021).Article 

    Google Scholar 
    Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Roth, F. et al. High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems. Glob. Chang. Biol. https://doi.org/10.1111/gcb.16177 (2022).Koweek, D. A. et al. A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability. Biogeosciences 14, 31–44 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Watanabe, K. et al. Macroalgal metabolism and lateral carbon flows can create significant carbon sinks. Biogeosciences 17, 2425–2440 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Möller, P., Pihl, L. & Rosenberg, R. Benthic faunal energy flow and biological interaction in some shallow marine soft bottom habitats. Mar. Ecol. Prog. Ser. 27, 109–121 (1985).Article 
    ADS 

    Google Scholar 
    Frigstad, H. et al. Blue Carbon – Climate Adaptation, CO2 Uptake And Sequestration Of Carbon In Nordic Blue Forests – Results From The Nordic Blue Carbon Project. (Nordic Council of Ministers, 2021).Ikawa, H. & Oechel, W. C. Temporal variations in air-sea CO 2 exchange near large kelp beds near San Diego, California. J. Geophys. Res. Ocean. 120, 50–63 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).Article 
    CAS 

    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Oreska, M. P. J. et al. The greenhouse gas offset potential from seagrass restoration. Sci. Rep. 10, 1–15 (2020).Article 

    Google Scholar 
    Asplund, M. E. et al. Methane emissions from nordic seagrass meadow sediments. Front. Mar. Sci. 8, 811533 (2022).Article 

    Google Scholar 
    Schorn, S., Ahmerkamp, S., Bullock, E., Weber, M. & Lott, C. Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proc. Natl Acad. Sci. USA. https://doi.org/10.1073/pnas.2106628119/-/DCSupplemental.Published (2022).Koebsch, F., Glatzel, S. & Jurasinski, G. Vegetation controls methane emissions in a coastal brackish fen. Wetl. Ecol. Manag. 21, 323–337 (2013).Article 
    CAS 

    Google Scholar 
    Sansone, F. J. & Martens, C. S. Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science (80-). 211, 707–709 (1981).Article 
    ADS 
    CAS 

    Google Scholar 
    Egger, M. et al. Rapid sediment accumulation results in high methane effluxes from coastal sediments. PLoS ONE 11, e0161609 (2016).Article 

    Google Scholar 
    Hamdan, L. J. & Wickland, K. P. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate. Limnol. Oceanogr. 61, S3–S12 (2016).Article 
    ADS 

    Google Scholar 
    Cai, M. et al. Metatranscriptomics reveals different features of methanogenic archaea among global vegetated coastal ecosystems. Sci. Total Environ. 802, 149848 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science (80-). 350, 434–438 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, C.-J., Pan, J., Liu, Y., Duan, C.-H. & Li, M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome 8, 94 (2020).Article 
    CAS 

    Google Scholar 
    Hilt, S., Grossart, H., McGinnis, D. F. & Keppler, F. Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems. Limnol. Oceanogr. https://doi.org/10.1002/lno.12095 (2022).Söllinger, A. & Urich, T. Methylotrophic methanogens everywhere — physiology and ecology of novel players in global methane cycling. Biochem. Soc. Trans. 47, 1895–1907 (2019).Article 

    Google Scholar 
    Karl, D. M. et al. Aerobic production of methane in the sea. Nat. Geosci. 1, 473–478 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    McGenity, T. J. & Sorokin, D. Y. Handbook of Hydrocarbon and Lipid Microbiology. p. 665–680 (Springer, 2010).Murray, B. C., Pendleton, L., Jenkins, W. A. & Sifleet, S. Green Payments for Blue Carbon Economic Incentives for Protecting Threatened Coastal Habitats (Nicholas Institute for Environmental Policy Solutions, 2011).Kuwae, T., Watanabe, A., Yoshihara, S., Suehiro, F. & Sugimura, Y. Implementation of blue carbon offset crediting for seagrass meadows, macroalgal beds, and macroalgae farming in Japan. Mar. Policy 138, 104996 (2022).Article 

    Google Scholar 
    Medvedev, I. P., Rabinovich, A. B. & Kulikov, E. A. Tides in three enclosed basins: the Baltic, Black, and Caspian Seas. Front. Mar. Sci. 3, 46 (2016).Article 

    Google Scholar 
    Haugen, D. A. Workshop on Micrometeorology (American Meteorological Society, 1973).Weiss, R. F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203–215 (1974).Article 
    CAS 

    Google Scholar 
    Wiesenburg, D. A. & Guinasso, N. L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J. Chem. Eng. Data 24, 356–360 (1979).Article 
    CAS 

    Google Scholar 
    Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014).Article 

    Google Scholar 
    Gülzow, W. et al. One year of continuous measurements constraining methane emissions from the Baltic Sea to the atmosphere using a ship of opportunity. Biogeosciences 10, 81–99 (2013).Article 
    ADS 

    Google Scholar 
    Jähne, B. et al. On the parameters influencing air-water gas exchange. J. Geophys. Res. 92, 1937 (1987).Article 
    ADS 

    Google Scholar 
    Bonaglia, S. et al. Meiofauna improve oxygenation and accelerate sulfide removal in the seasonally hypoxic seabed. Mar. Environ. Res. 159, 104968 (2020).Article 
    CAS 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).Article 
    CAS 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).Article 

    Google Scholar 
    St John, J. SeqPrep. https://github.com/jstjohn/SeqPrep (2011).Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2021).Andrews, S. FastQC: A Quality Control Tool For High Throughput Sequence Data (2010).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596 (2012).Article 

    Google Scholar 
    Robertson, C. E. et al. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29, 3100–3101 (2013).Article 
    CAS 

    Google Scholar 
    Coolen, M. J. L. et al. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org. Geochem. 35, 1151–1167 (2004).Article 
    CAS 

    Google Scholar 
    Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only anova procedures. in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 143–146 (ACM, 2011).Hammer, Ø., Harper, D. & Ryan, P. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001). More

  • in

    Genome-wide sequencing identifies a thermal-tolerance related synonymous mutation in the mussel, Mytilisepta virgata

    Orr, H. A. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6, 119–127 (2005).Article 
    CAS 

    Google Scholar 
    Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).Article 

    Google Scholar 
    Exposito-Alonso, M., Burbano, H. A., Bossdorf, O., Nielsen, R. & Weigel, D. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature 573, 126–129 (2019).Article 
    CAS 

    Google Scholar 
    Han, G., Wang, W. & Dong, Y. Effects of balancing selection and microhabitat temperature variations on heat tolerance of the intertidal black mussel Septifer virgatus. Integr. Zool. 15, 416–427 (2020).Article 

    Google Scholar 
    Meester, L. D., Stoks, R. & Brans, K. I. Genetic adaptation as a biological buffer against climate change: Potential and limitations. Integr. Zool. 13, 372–391 (2018).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).Article 
    CAS 

    Google Scholar 
    Günter, F. et al. Genotype-environment interactions rule the response of a widespread butterfly to temperature variation. J. Evol. Biol. 33, 920–929 (2020).Article 

    Google Scholar 
    Lowry, D. B. et al. QTL × environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proc. Natl Acad. Sci. USA 116, 12933–12941 (2019).Article 
    CAS 

    Google Scholar 
    Bates, A. E. et al. Biologists ignore ocean weather at their peril. Nature 560, 299–301 (2018).Article 
    CAS 

    Google Scholar 
    Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).Article 
    CAS 

    Google Scholar 
    Zhao, F. et al. Genome-wide role of codon usage on transcription and identification of potential regulators. Proc. Natl Acad. Sci. USA 118, e2022590118 (2021).Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Bio. 19, 20–30 (2018).Article 
    CAS 

    Google Scholar 
    Chen, S. et al. Codon-resolution analysis reveals a direct and context-dependent impact of individual synonymous mutations on mRNA level. Mol. Biol. Evol. 34, 2944–2958 (2017).Article 
    CAS 

    Google Scholar 
    Wu, Z. et al. Expression level is a major modifier of the fitness landscape of a protein coding gene. Nat. Ecol. Evol. 6, 103–115 (2022).Article 

    Google Scholar 
    Lebeuf-Taylor, E., McCloskey, N., Bailey, S. F., Hinz, A. & Kassen, R. The distribution of fitness effects among synonymous mutations in a gene under directional selection. ELife. 8, e45952 (2019).Bailey, S. F., Hinz, A. & Kassen, R. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population. Nat. Commun. 5, 4076 (2014).Agashe, D. et al. Large-effect beneficial synonymous mutations mediate rapid and parallel adaptation in a bacterium. Mol. Biol. Evol. 33, 1542–1553 (2016).Article 
    CAS 

    Google Scholar 
    Zhao, Y. et al. Synonymous mutation in growth regulating factor 15 of miR396a target sites enhances photosynthetic efficiency and heat tolerance in poplar. J. Exp. Bot. 72, 4502–4519 (2021).Article 
    CAS 

    Google Scholar 
    Somero, G. N. The physiology of global change: linking patterns to mechanisms. Annu. Rev. Mar. Sci. 4, 39–61 (2012).Article 

    Google Scholar 
    Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).Article 
    CAS 

    Google Scholar 
    Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev. Ecol. Evol. Syst. 37, 373–404 (2006).Article 

    Google Scholar 
    Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Side matters: microhabitat influence on intertidal heat stress over a large geographical scale. J. Exp. Mar. Biol. Ecol. 400, 200–208 (2011).Article 

    Google Scholar 
    Schmidt, P. S. & Rand, D. M. Intertidal microhabitat and selection at MPI: interlocus contrasts in the Northern Acorn Barnacle, Semibalanus balanoides. Evolution 53, 135 (1999).
    Google Scholar 
    Li, X., Tan, Y., Sun, Y., Wang, J. & Dong, Y. Microhabitat temperature variation combines with physiological variation to enhance thermal resilience of the intertidal mussel Mytilisepta virgata. Funct. Ecol. 35, 2497–2507 (2021).Article 
    CAS 

    Google Scholar 
    Dong, Y. et al. Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proc. Royal. Soc. B. 284, (2017).Li, X. & Dong, Y. Living on the upper intertidal mudflat: different behavioral and physiological responses to high temperature between two sympatric Cerithidea snails with divergent habitat-use strategies. Mar. Environ. Res. 159, 105015 (2020).Article 
    CAS 

    Google Scholar 
    Wang, J., Peng, X. & Dong, Y. High abundance and reproductive output of an intertidal limpet (Siphonaria japonica) in environments with high thermal predictability. Mar. Life. Sci. Tech. 2, 324–333 (2020).Article 

    Google Scholar 
    Dong, Y., Liao, M., Han, G. & Somero, G. N. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol. Rev. 97, 554–581 (2022).Article 

    Google Scholar 
    Georges, A., Gros, P. & Fodil, N. USP15: a review of its implication in immune and inflammatory processes and tumor progression. Genes Immun. 22, 12–23 (2021).Article 
    CAS 

    Google Scholar 
    Vlasschaert, C., Xia, X., Coulombe, J. & Gray, D. A. Evolution of the highly networked deubiquitinating enzymes USP4, USP15, and USP11. BMC Evol. Biol. 15, 230 (2015).Mallard, F., Nolte, V., Tobler, R., Kapun, M. & Schlötterer, C. A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biol. 19, 119 (2018).Cornelissen, T. et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23, 5227–5242 (2014).Article 
    CAS 

    Google Scholar 
    Morton, B. The biology and functional morphology of Septifer bilocularis and Mytilisepta virgata (Bivalvia: Mytiloidea) from corals and the exposed rocky shores, respectively, of Hong Kong. Reg. Stud. Mar. Sci. 235, 485–500 (1995).
    Google Scholar 
    Boroda, A. V., Kipryushina, Y. O. & Odintsova, N. A. The effects of cold stress on Mytilus species in the natural environment. Cell Stress Chaperones 25, 821–832 (2020).Article 
    CAS 

    Google Scholar 
    Thayer, C. W. Brachiopods versus mussels: competition, predation, and palatability. Science 228, 1527–1528 (1985).Article 
    CAS 

    Google Scholar 
    Iorio, R., Celenza, G. & Petricca, S. Mitophagy: molecular mechanisms, new concepts on Parkin activation and the emerging role of AMPK/ULK1 Axis. Cells 11, 30 (2022).Article 
    CAS 

    Google Scholar 
    Feidantsis, K. et al. Correlation between intermediary metabolism, Hsp gene expression, and oxidative stress-related proteins in long-term thermal-stressed Mytilus galloprovincialis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319, R264–R281 (2020).Article 
    CAS 

    Google Scholar 
    Heise, K., Puntarulo, S., Portner, H. O. & Abele, D. Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 134, 79–90 (2003).Article 
    CAS 

    Google Scholar 
    Abele, D., Heise, K., Portner, H. O. & Puntarulo, S. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 205, 1831–1841 (2002).Article 
    CAS 

    Google Scholar 
    Xiao, Q. et al. Transcriptome analysis reveals the molecular mechanisms of heterosis on thermal resistance in hybrid abalone. BMC Genom. 22, 650 (2021).Li, L. et al. Heat stress induces apoptosis through a Ca2+-mediated mitochondrial apoptotic pathway in human umbilical vein endothelial cells. PLoS ONE 9, e111083 (2014).Article 

    Google Scholar 
    Gu, Z. T. et al. Heat stress induced apoptosis is triggered by transcription-independent p53, Ca2+ dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci. Rep. 5, 11497 (2015).Article 
    CAS 

    Google Scholar 
    Gerdol, M., De Moro, G., Venier, P. & Pallavicini, A. Analysis of synonymous codon usage patterns in sixty-four different bivalve species. Peer J. 3, e1520 (2015).Article 

    Google Scholar 
    Zhou, M. et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495, 111–115 (2013).Article 
    CAS 

    Google Scholar 
    Yu, C. et al. Codon usage influences the local rate of translation elongation to tegulate co-translational protein folding. Mol. Cell 59, 744–754 (2015).Article 
    CAS 

    Google Scholar 
    Spencer, P. S., Siller, E., Anderson, J. F. & Barral, J. M. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 422, 328–335 (2012).Article 
    CAS 

    Google Scholar 
    Pechmann, S., Chartron, J. W. & Frydman, J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat. Struct. Mol. Biol. 21, 1100–1105 (2014).Article 
    CAS 

    Google Scholar 
    Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).Article 
    CAS 

    Google Scholar 
    Zhou, Z. et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl Acad. Sci. USA 113, E6117–E6125 (2016).Article 
    CAS 

    Google Scholar 
    Shabalina, S. A., Spiridonov, N. A. & Kashina, A. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res. 41, 2073–2094 (2013).Article 
    CAS 

    Google Scholar 
    Liao, M., Dong, Y. & Somero, G. N. Thermal adaptation of mRNA secondary structure: stability versus lability. Proc. Natl Acad. Sci. USA 118, e2113324118 (2021).Article 
    CAS 

    Google Scholar 
    Wan, Y. et al. Genome-wide measurement of RNA folding energies. Mol. Cell. 48, 169–181 (2012).Article 

    Google Scholar 
    Seffens, W. & Digby, D. mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27, 1578–1584 (1999).Article 
    CAS 

    Google Scholar 
    Faure, G., Ogurtsov, A. Y., Shabalina, S. A. & Koonin, E. V. Role of mRNA structure in the control of protein folding. Nucleic Acids Res. 44, 10898–10911 (2016).Article 
    CAS 

    Google Scholar 
    Victor, M. P., Acharya, D., Begum, T. & Ghosh, T. C. The optimization of mRNA expression level by its intrinsic properties-Insights from codon usage pattern and structural stability of mRNA. Genomics 111, 1292–1297 (2019).Article 
    CAS 

    Google Scholar 
    Backlund, M. & Kulozik, A. E. Differential analysis of the nuclear and the cytoplasmic RNA interactomes in living cells. Methods Mol. Biol. 2428, 291–304 (2022).Article 

    Google Scholar 
    Zaghlool, A. et al. Characterization of the nuclear and cytosolic transcriptomes in human brain tissue reveals new insights into the subcellular distribution of RNA transcripts. Sci. Rep. 11, 4076 (2021).Clark, M. S. et al. Life in the intertidal: cellular responses, methylation and epigenetics. Funct. Ecol. 32, 1982–1994 (2018).Article 

    Google Scholar 
    Jeremias, G. et al. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol. Ecol. 27, 2790–2806 (2018).Article 

    Google Scholar 
    Li, L. et al. Divergence and plasticity shape adaptive potential of the Pacific oyster. Nat. Ecol. Evol. 2, 1751–1760 (2018).Article 

    Google Scholar 
    Chu, D. & Wei, L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer. 19, 359 (2019).Lima, F. P. & Wethey, D. S. Robolimpets: measuring intertidal body temperatures using biomimetic loggers. Limol. Oceanogr. Methods 7, 347–353 (2009).Article 

    Google Scholar 
    Dong, Y. & Williams, G. A. Variations in cardiac performance and heat shock protein expression to thermal stress in two differently zoned limpets on a tropical rocky shore. Mar. Biol. 158, 1223–1231 (2011).Article 

    Google Scholar 
    Vito, M. Segmented: An R Package to fit regression models with broken-line relationships. R. N. 8, 20–25 (2008).
    Google Scholar 
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2021).Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).Article 

    Google Scholar 
    Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience. 10, giab008 (2021).Rochette, N. C., Rivera Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).Article 
    CAS 

    Google Scholar 
    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).Article 
    CAS 

    Google Scholar 
    Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).Article 

    Google Scholar 
    Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).Article 
    CAS 

    Google Scholar 
    Hao, Z. et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput. Sci. 6, e251 (2020).Article 

    Google Scholar 
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).Article 
    CAS 

    Google Scholar 
    Letunic, I., Khedkar, S. & Bork, P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 49, D458–D460 (2021).Article 
    CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).Article 
    CAS 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic Acids Res. 43, W39–W49 (2015).Article 
    CAS 

    Google Scholar 
    Mathews, D. H. et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl Acad. Sci. USA 101, 7287–7292 (2004).Article 
    CAS 

    Google Scholar 
    Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).Article 
    CAS 

    Google Scholar 
    Moyen, N. E., Somero, G. N. & Denny, M. W. Mussels’ acclimatization to high, variable temperatures is lost slowly upon transfer to benign conditions. J. Exp. Biol. 223, Pt 13 (2020).
    Google Scholar 
    Havird, J. C. et al. Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to Q10 effects: why methodology matters. Funct. Ecol. 34, 1015–1028 (2020).Article 

    Google Scholar 
    Panova, M. et al. DNA extraction protocols for whole-genome sequencing in marine organisms. Methods Mol. Biol. 1452, 13–44 (2016).Article 
    CAS 

    Google Scholar 
    Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).Article 
    CAS 

    Google Scholar 
    Gerdol, M. et al. The purplish bifurcate mussel Mytilisepta virgata gene expression atlas reveals a remarkable tissue functional specialization. BMC Genomics. 18, 590 (2017).Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001).Article 
    CAS 

    Google Scholar  More

  • in

    Genetic diversity and structure in wild Robusta coffee (Coffea canephora A. Froehner) populations in Yangambi (DR Congo) and their relation to forest disturbance

    Aguilar R, Cristóbal-Pérez ED, Balvino-Olvera FJ, Aguilar-Aguilar MDJ, Aguirre-Acosta N, Ashworth L et al. (2019) Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecol Lett 22:1163–1173Article 

    Google Scholar 
    Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqcBarlow J, Lennow GD, Ferreira J, Berenguer E, Lees AC, Nally RM et al. (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535:144–147Article 
    CAS 

    Google Scholar 
    Barret SC, Eckert CG (1990) Current issues in plant reproductive ecology. Isr J Plant Sci 39:5–12
    Google Scholar 
    Bawa KS, Bullock SH, Perry DR, Coville RE, Grayum MH (1985) Reproductive biology of tropical lowland rain forest trees II. Pollination systems. Am J Bot 72:346–356Article 

    Google Scholar 
    Bello C, Galetti M, Pizo MA, Magnago LFS, Roch MF, Lima RA, et al. (2015) Defaunation affects carbon storage in tropical forests. Sci Adv 1:e1501105. https://doi.org/10.1126/sciadv.1501105Blouin MS (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol 18:503–511Article 

    Google Scholar 
    Born C, Kjellberg F, Chevallier M-H, Vignes H, Dikangadissi J-T, Sanguié J et al. (2008) Colonization processes and the maintenance of genetic diversity: insight from a pioneer rainforest tree, Aucoumea Klaineana. Proc R Soc B 275:2171–2179Article 

    Google Scholar 
    Braun M, Dantas L, Esposito T, Pedrosa-Harand A (2020) Strong genetic differentiation on a small geographic scale in the Neotropical rainforest understory tree Paypayrola blanchetiana (Violaceae). Tree Genet Genomes. https://doi.org/10.1007/s11295-020-01477-5Campbell AJ, Carvalheiro LG, Maués MM, Jaffé R, Giannini TC, Freitas MAB et al. (2018) Anthropogenic disturbance of tropical forests threatens pollination services to açai palm in the Amazon river delta. J Appl Ecol 55:1725–1736Article 

    Google Scholar 
    Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience https://doi.org/10.1186/s13742-015-0047-8Chiriboga-Arroyo F, Jansen M, Bardales-Lozano R, Ismail SA, Thomas E, Garcia M et al. (2021) Genetic threats to the Forest Giants of the Amazon: Habitat degradation effects on the socio-economically important Brazil nut tree (Bertholletia excelsa). Plants People Planet 3:194–210Article 

    Google Scholar 
    Cramer PJS, Wellman FL (1957) Review of literature of coffee research in Indonesia. SIC Editorial, Inter-American Institute of Agricultural SciencesCraparo ACW, Van Asten PJ, Läderach P, Jassogne LT, Grab SW (2015) Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agric Meteorol 207:1–10Article 

    Google Scholar 
    Cubry P, De Bellis F, Pot D, Musoli P, Leroy P (2013) Global analysis of Coffea canephora Pierre ex Froehner (Rubiaceae) from the Guineo-Congolese region reveals impacts from climatic refuges and migration effects. Genet Resour Crop Evol 60:483–501Article 

    Google Scholar 
    Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018) Classifying drivers of global forest loss. Science 361:1108–1111Article 
    CAS 

    Google Scholar 
    Da Silva JMC, Tabarelli M (2000) Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature 404:72–74Article 

    Google Scholar 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158Article 
    CAS 

    Google Scholar 
    Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS One. https://doi.org/10.1371/journal.pone.0047981Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M et al. (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184Article 
    CAS 

    Google Scholar 
    Depecker J, Asimonyio JA, Miteho R, Hatangi Y, Kambale J-L, Verleysen L, et al. (2022) The association between rainforest disturbance and recovery, tree community composition, and community traits in the Yangambi area in the Democratic Republic of the Congo. J Trop Ecol. https://doi.org/10.1017/S0266467422000347Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764Article 

    Google Scholar 
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bull 19:11–15
    Google Scholar 
    Edwards DP, Socolar JB, Mills SC, Burivalova Z, Koh LP, Wilcove DS (2019) Conservation of tropical forests in the Anthropocene. Curr Biol 29:R1008–R1020Article 
    CAS 

    Google Scholar 
    El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839Article 
    CAS 

    Google Scholar 
    Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. https://doi.org/10.1371/journal.pone.0019379Ernst C, Mayaux P, Verhegghen A, Bodart C, Christophe M, Defourny P (2013) National forest cover change in Congo Basin: deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 2005. Glob Chang Biol 19:1173–1187Article 

    Google Scholar 
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620Article 
    CAS 

    Google Scholar 
    FAO, UNEP (2020) The State of the World’s Forests 2020. In Forests, bio-diversity and people. FAO and UNEPFerrão RG, da Fonseca AFA, Ferrão MAG, De Mune LH (2019) Conilon Coffee: the Coffea canephora produced in Brazil. Incaper, Vitória-ES, Brasil
    Google Scholar 
    Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA et al. (2009) Prospects for tropical forest biodiversity in a human‐modified world. Ecol Lett 12:561–582Article 

    Google Scholar 
    García-Fernández C, Sánchez JA, Blanco G (2018) SNP-haplotypes: An accurate approach for parentage and relatedness inference in gilthead sea bream (Sparus aurata). Aquaculture 495:582–591Article 

    Google Scholar 
    Gomez C, Dussert S, Hamon P, Hamon S, De Kochko A, Poncert V (2009) Current genetic differentiation of Coffea canephora pierre ex a. Froehn in the guineo-Congolian african zone: Cumulative impact of ancient climatic changes and recent human activities. BMC Evol Biol 9:167Article 

    Google Scholar 
    Goudet J (2013) hierfstat: estimation and tests of hierarchical F-statistics. R Package version 0:04–10. http://CRAN.R-project.org/package=hierfstatHubbell SP, Foster RB (1986) Biology, chance and history and the structure of tropical rain forest tree communities. In: Diamond JM, Case TJ (eds) Community ecology. Harper and Row, New York, NY, p 314–329
    Google Scholar 
    ICO (2022) Coffee Market Report: August 2022. Donwloaded from International Coffee Organization https://www.ico.org/documents/cy2021-22/cmr-0822-e.pdfIsmail SA, Ghazoul J, Ravikanth G, Kushalappa CG, Uma Shaanker R, Kettle CJ (2017) Evaluating realized seed dispersal across fragmented tropical landscapes: A two‐fold approach using parentage analysis and the neighbourhood model. N Phytol 214:1307–1316Article 
    CAS 

    Google Scholar 
    Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405Article 
    CAS 

    Google Scholar 
    Jombart T, Collins C (2015) Analysing genome-wide SNP data using adegenet 2.0.0. https://adegenet.r-forge.r-project.org/files/tutorial-genomics.pdfJones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30Article 

    Google Scholar 
    Jones OR, Wang J (2012) A comparison of four methods for detecting weak genetic structures from maker data. Ecol Evol 2:1048–1055Article 

    Google Scholar 
    Kalinowski ST, Wagner AP, Taper ML (2006) ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579Article 
    CAS 

    Google Scholar 
    Kearsley E, Verbeeck H, Hufkens K, Van, de Perre F, doetterl S, Baert G et al. (2017) Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering. Ecol Evol 7:295–304Article 

    Google Scholar 
    Kier G, Mutke J, Dinerstein E, Ricketss TH, Küper W, Kreft H et al. (2005) Global patterns of plant diversity and floristic knowledge. J Biogeogr 32:1107–1116Article 

    Google Scholar 
    Kiwuka C, Goudsmit E, Tournebize R, Oliveir de Aquino S, Douma JC, Bellanger L et al. (2021) Genetic diversity of native and cultivated Ugandan Robusta coffee (Coffea canephora Pierre ex A. Froehner): Climate influences, breeding potential and diversity conservation. PLoS One 16:e0245965Article 
    CAS 

    Google Scholar 
    Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104:5925–5930Article 
    CAS 

    Google Scholar 
    Lachenaud P, Zhang D (2008) Genetic diversity and population structure in wild stands of cacao trees (Theobroma cacao L.) in French Guiana. Ann For Sci. https://doi.org/10.1051/forest:2008011Lashermes P, Combes MC, Ribas A, Cenci A, Mahé L, Etienne H (2010) Genetic and physical mapping of the SH3 region that confers resistance to leaf rust in coffee tree (Coffea arabica L.). Tree Genet Genomes 6:973–980Article 

    Google Scholar 
    Leroy T, Marraccini P, Dufour M, Montagnon C, Lashermes P, Sabau X et al. (2005) Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theor Appl Genet 111:1031–1041Article 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 14:2078–2079Article 

    Google Scholar 
    Li YL, Liu JX (2018) StructureSelector: A web‐based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Resour 18:176–177Article 

    Google Scholar 
    Makelele IA, Verheyen K, Boeckx P, Ntaboba LC, Bazirake BM, Ewango C et al. (2021) Afrotropical secondary forests exhibit fast diversity and functional recovery, but slow compositional and carbon recovery after shifting cultivation. J Veg Sci 32:1–13Article 

    Google Scholar 
    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12Article 

    Google Scholar 
    Mateu-Andrés I, De Paco L (2006) Genetic diversity and the reproductive system in related species of Antirrhinum. Ann Bot 98:1053–1060Article 

    Google Scholar 
    Mayr E (1954) Change of genetic environment and evolution. In: Huxley A, Hardy AC, Ford EB (eds) Evolution as a process. Allen and Unwin, London, p 157–180
    Google Scholar 
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. (2010) The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303Article 
    CAS 

    Google Scholar 
    Merot-L’anthoene V, Tournebize R, Darracq O, Rattina V, Lepelley M, Bellanger L et al. (2019) Development and evaluation of a genome-wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L. Plant Biotechnol J 17:1418–1430Article 

    Google Scholar 
    Musoli P, Cubry P, Aluka P, Billot C, Dufour M, De Bellis F et al. (2009) Genetic differentiation of wild and cultivated populations: diversity of Coffea canephora Pierre in Uganda. Genome 52:634–646Article 
    CAS 

    Google Scholar 
    Neushulz EL, Mueller T, Schleuning M, Böhning-Gaese K (2016) Pollination and seed dispersal are the most threatened processes of plant regeneration. Sci Rep 6:1–6
    Google Scholar 
    Norden N, Chazdon RL, Chao A, Jiang YH, Vilchez-Alvarado B (2009) Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecol Lett 12:385–394Article 

    Google Scholar 
    Nowak MD, Davis AP, Anthony F, Yoder AD (2011) Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae). PLoS One. https://doi.org/10.1371/journal.pone.0021019Nyakaana S (2007) Microgeographical genetic structure of forest robusta coffee (Coffea canephora, Pierre), in Kibale National Park, Uganda. Afr J Ecol 45:71–75Article 

    Google Scholar 
    Oberleitner F, Egger C, Oberdorfer S, Dullinger S, Wanek W, Hietz P (2021) Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica. Ecol Manag 479:118580Article 

    Google Scholar 
    Olsson O, Nuñez-Iturri G, Smith HG, Ottosson U, Effium EO (2019) Competition, seed dispersal and hunting: what drives germination and seedling survival in an Afrotropical forest? AoB Plants https://doi.org/10.1093/aobpla/plz018Oryem-Origa H (1999) Fruit and seed ecology of wild Robusta coffee (Coffea canephora Froehner) in Kibale National Park. Uganda Afr J Ecol 37:439–448Article 

    Google Scholar 
    Peakall R, Smouse RPP (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539Article 
    CAS 

    Google Scholar 
    Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys Publishers, Kerkwere
    Google Scholar 
    Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. https://doi.org/10.3835/plantgenome2012.05.0005Poorter L, Craven D, Jakovac CC, van der Sande MT, Amissah L, Bongers F et al. (2021) Multidimensional tropical forest recovery. Science 374:1370–1376Article 
    CAS 

    Google Scholar 
    Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589Article 

    Google Scholar 
    RStudio Team (2016) RStudio: Integrated Development for RSasaki N, Putz FE (2009) Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv Lett 2:226–232Article 

    Google Scholar 
    Sezen UU, Chazdon RL, Holsinger KE (2007) Multigenerational genetic analysis of tropical secondary regeneration in a canopy palm. Ecology 88:3065–3075Article 

    Google Scholar 
    Schaumont D, Veeckman E, Van der Jeugt F, Haegeman A, van Glabeke S, Bawin Y et al. (2022) Stack Mapping Anchor Points (SMAP): a versatile suite of tools for read-backed haplotyping. Preprint at bioRxiv https://doi.org/10.1101/2022.03.10.483555Shapiro AC, Grantham HS, Aguilar-Amuchastegui N, Murray NJ, Gond V, Bonfils D, et al. (2021) Forest condition in the Congo Basin for the assessment of ecosystem conservation status. Ecol Indic. https://doi.org/10.1016/j.ecolind.2020.107268Silva MDC, Várzea V, Guerra-Guimarães L, Azinheira HG, Fernandez D, Petitot AS et al. (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18:119–147Article 
    CAS 

    Google Scholar 
    Theim TJ, Shirk RY, Givnish TJ (2014) Spatial genetic structure in four understorey Psychotria species (Rubiaceae) and implications for tropical forest diversity. Am J Bot 101:1189–1199Article 

    Google Scholar 
    Torti SD, Coley PD, Kursar TA (2001) Causes and consequences of monodominance in tropical lowland forests. Am Nat 157:141–153Article 
    CAS 

    Google Scholar 
    Tyukavina A, Hansen MC, Potapov P, Parker D, Okpa C, Stehman SV, et al. (2018) Congo Basin forest loss dominated by increasing smallholder clearing. Sci Adv. https://doi.org/10.1126/sciadv.aat2993Vanden Abeele S, Janssens SB, Asimonyio Anio J, Bawin Y, Depecker J, Kambale B et al. (2021) Genetic diversity of wild and cultivated Coffea canephora in northeastern DR Congo and the implications for conservation. Am J Bot 108:2425–2434Article 

    Google Scholar 
    Vandepitte K, Gristina AS, De Hert K, Meekers T, Roldán-Ruiz I, Honnay O (2012) Recolonization after habitat restoration leads to decreased genetic variation in populations of a terrestrial orchid. Mol Ecol 21:4206–4215Article 
    CAS 

    Google Scholar 
    Van Vliet N, Muhindo J, Kbale Nyumu J, Mushagalusa O, Nasi R (2018) Mammal depletion processes as evidenced from spatially explicit and temporal local ecological knowledge. Trop Conserv Sci 11:1–16
    Google Scholar 
    Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935Article 
    CAS 

    Google Scholar 
    Vranckx G, Jacquemyn H, Muys B, Honnay O (2012) Meta‐analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol 26:228–237Article 

    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CAS 

    Google Scholar 
    Wellman FL (1961) Coffee. Botany, cultivation, and utilization. Leonard Hill, London
    Google Scholar 
    Widmer A, Lexer C (2001) Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol Evol 16:267–269Article 
    CAS 

    Google Scholar 
    Wright S (1932) The role of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the sixth international congress of genetics. pp 356–366.Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End read merger. Bioinformatics 30:614–620Article 
    CAS 

    Google Scholar  More

  • in

    Image dataset for benchmarking automated fish detection and classification algorithms

    Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Chang. 3, 254–258, https://doi.org/10.1038/nclimate1691 (2013).Article 
    ADS 

    Google Scholar 
    Cheung, W. W. L., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368, https://doi.org/10.1038/nature12156 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Hilborn, R. et al. Global status of groundfish stocks. Fish Fish. 00, 1–18, https://doi.org/10.1111/faf.12560 (2021).Article 

    Google Scholar 
    Aguzzi, J. et al. Challenges to the assessment of benthic populations and biodiversity as a result of rhythmic behaviour: video solutions from cabled observatories. Oceanography and Marine Biology: An Annual Review 50, 233–284 (2012).
    Google Scholar 
    Aguzzi, J. et al. Coastal observatories for monitoring of fish behaviour and their responses to environmental changes. Reviews in fish biology and fisheries 25, 463–483, https://doi.org/10.1007/s11160-015-9387-9 (2015).Article 

    Google Scholar 
    Doya, C. et al. Diel behavioral rhythms in sablefish (Anoplopoma fimbria) and other benthic species, as recorded by the Deep-sea cabled observatories in Barkley canyon (NEPTUNE-Canada). Journal of Marine Systems 130, 69–78, https://doi.org/10.1016/j.jmarsys.2013.04.003 (2014).Article 
    ADS 

    Google Scholar 
    Aguzzi, J. et al. Ecological video monitoring of Marine Protected Areas by underwater cabled surveillance cameras. Marine Policy 119, 104052, https://doi.org/10.1016/j.marpol.2020.104052 (2020).Article 

    Google Scholar 
    Milligan, R. J. et al. Evidence for seasonal cycles in deep‐sea fish abundances: A great migration in the deep SE Atlantic? Journal of Animal Ecology 89, 1593–1603, https://doi.org/10.1111/1365-2656.13215 (2020).Article 

    Google Scholar 
    Hutchingson, G. E. Concluding remarks. Cold Spring Harbor Symp. 22, 415–427, https://doi.org/10.1101/SQB.1957.022.01.039 (1957).Article 

    Google Scholar 
    Hut, R. A., Kronfeld-Schor, N., Van Der Vinne, V. & De la Iglesia, H. In search of a temporal niche: environmental factors. Progress in brain research 199, 281–304, https://doi.org/10.1016/B978-0-444-59427-3.00017-4 (2012).Article 

    Google Scholar 
    Aguzzi, J. et al. The hierarchic treatment of marine ecological information from spatial networks of benthic platforms. Sensors 20, 1751, https://doi.org/10.3390/s20061751 (2020).Article 
    ADS 

    Google Scholar 
    Danovaro, R. et al. A new international ecosystem-based strategy for the global deep ocean. Science 355, 452–454, https://doi.org/10.1126/science.aah7178 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Aguzzi, J. et al. The potential of video imagery from worldwide cabled observatory networks to provide information supporting fish-stock and biodiversity assessment. ICES Journal of Marine Science 77, 2396–2410, https://doi.org/10.1093/icesjms/fsaa169 (2020).Article 

    Google Scholar 
    Aguzzi, J. et al. New high-tech flexible networks for the monitoring of deep-sea ecosystems. Environmental science and technology 53, 6616–6631, https://doi.org/10.1021/acs.est.9b00409 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Rountree, R. A. et al. Towards an optimal design for ecosystem-level ocean observatories. In Oceanography and Marine Biology. Taylor and Francis, pp. 79–106 (2020).Aguzzi, J. et al. Developing technological synergies between deep-sea and space research. Elementa: Science of the Anthropocene 10, 00064, https://doi.org/10.1525/elementa.2021.00064 (2022).Article 

    Google Scholar 
    Aguzzi, J. et al. Multiparametric monitoring of fish activity rhythms in an Atlantic coastal cabled observatory. Journal of Marine Systems 212, 103424, https://doi.org/10.1016/j.jmarsys.2020.103424 (2020).Article 

    Google Scholar 
    Matabos et al. Expert, Crowd, Students or Algorithm: who holds the key to deep-sea imagery ‘big data’ processing? Methods in Ecology and Evolution 8, 996–1004, https://doi.org/10.1111/2041-210X.12746 (2017).Article 

    Google Scholar 
    Zuazo, A. et al. An automated pipeline for image processing and data treatment to track activity rhythms of Paragorgia arborea in relation to hydrographic conditions. Sensors 20, 6281, https://doi.org/10.3390/s20216281 (2020).Article 
    ADS 

    Google Scholar 
    Dibattista, J. D. et al. Community-based citizen science projects can support the distributional monitoring of fishes. Aquatic Conservation: Marine and Freshwater Ecosystems 31, 3580–3593, https://doi.org/10.1002/aqc.3726 (2021).Article 

    Google Scholar 
    Malde, K., Handegard, N. O., Eikvil, L. & Salberg, A. B. Machine intelligence and the data-driven future of marine science. ICES Journal of Marine Science 77, 1274–1285, https://doi.org/10.1093/icesjms/fsz057 (2020).Article 

    Google Scholar 
    European Marine Board. Big Data in Marine Science. European Marine Broad Advencing Seas & Ocean Science. https://www.marineboard.eu/publications/big-data-marine-science (2020).Aguzzi, J. et al. The new SEAfloor OBservatory (OBSEA) for remote and long-term coastal ecosystem monitoring. Sensors-Basel 11, 5850–5872, https://doi.org/10.3390/s110605850 (2011).Article 
    ADS 

    Google Scholar 
    Del Rio, J. et al. Obsea: a decadal balance for a cabled observatory deployment. IEEE Access 8, 33163–33177, https://doi.org/10.1109/ACCESS.2020.2973771 (2020).Article 

    Google Scholar 
    Condal, F. et al. Seasonal rhythm in a Mediterranean coastal fish community as monitored by a cabled observatory. Marine Biology 159, 2809–2817, https://doi.org/10.1007/s00227-012-2041-3 (2012).Article 

    Google Scholar 
    Naylor, E. Chronobiology of marine organisms (Cambridge University Press, 2010).Weis, J. S., Smith, G., Zhou, T., Santiago-Bass, C. & Weis, P. Effects of contaminants on behavior: biochemical mechanisms and ecological consequences: killifish from a contaminated site are slow to capture prey and escape predators; altered neurotransmitters and thyroid may be responsible for this behavior, which may produce population changes in the fish and their major prey, the grass shrimp. Bioscience 51, 209–217 https://doi.org/10.1641/0006-3568(2001)051[0209:EOCOBB]2.0.CO;2 (2001).Bellido, J. M. et al. Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. In Essential Fish Habitat Mapping in the Mediterranean. Springer Netherlands, 171–184 https://doi.org/10.1007/978-1-4020-9141-4_13 (2008).Brander, K. Impacts of climate change on fisheries. Journal of Marine Systems 79, 389–402, https://doi.org/10.1016/j.jmarsys.2008.12.015 (2010).Article 
    ADS 

    Google Scholar 
    Viehman, H. A. & Zydlewski, G. B. Multi-scale temporal patterns in fish presence in a high-velocity tidal channel. PLoS One 12, e0176405, https://doi.org/10.1371/journal.pone.0176405 (2017).Article 
    CAS 

    Google Scholar 
    Van Der Walt, K. A., Porri, F., Potts, W. M., Duncan, M. I. & James, N. C. Thermal tolerance, safety margins and vulnerability of coastal species: Projected impact of climate change induced cold water variability in a temperate African region. Marine Environmental Research 169, 105346, https://doi.org/10.1016/j.marenvres.2021.105346 (2021).Article 
    CAS 

    Google Scholar 
    Marini, S. et al. Tracking fish abundance by underwater image recognition. Scientific reports 8, 1–12, https://doi.org/10.1038/s41598-018-32089-8 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Sbragaglia, V. et al. Annual rhythms of temporal niche partitioning in the Sparidae family are correlated to different environmental variables. Scientific reports 9, 1–11, https://doi.org/10.1038/s41598-018-37954-0 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Francescangeli, M. et al. Long-Term Monitoring of Diel and Seasonal Rhythm of Dentex dentex at an Artificial Reef. Frontier in Marine Science 9, 1–17, https://doi.org/10.3389/fmars.2022.801033 (2022).Article 

    Google Scholar 
    Knausgård, K. M. et al. Temperate fish detection and classification: a deep learning based approach. Applied Intelligence 52, 6988–7001, https://doi.org/10.1007/s10489-020-02154-9 (2022).Article 

    Google Scholar 
    Wu, J. et al. Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise. ACM Computing Surveys (CSUR) 53, 1–35, https://doi.org/10.1145/3379504 (2020).Article 

    Google Scholar 
    He J., Mao R., Shao Z. & Zhu F. Incremental Learning in Online Scenario. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 13923–13932 https://doi.org/10.1109/CVPR42600.2020.01394 (2020).Zhou, D. W., Yang, Y., & Zhan, D. C. Learning to Classify with Incremental New Class. In IEEE Transactions on Neural Networks and Learning Systems https://doi.org/10.1109/TNNLS.2021.3104882 (2021).Hashmani, M. A., Jameel, S. M., Alhussain, H., Rehman, M. & Budiman, A. Accuracy performance degradation in image classification models due to concept drift. International Journal of Advanced Computer Science and Applications 10, 422–425, https://doi.org/10.14569/ijacsa.2019.0100552 (2019).Article 

    Google Scholar 
    Langenkämper, D., van Kevelaer, R., Purser, A. & Nattkemper, T. W. Gear-Induced Concept Drift in Marine Images and Its Effect on Deep Learning Classification. Front. Mar. Sci. 7, 506, https://doi.org/10.3389/fmars.2020.00506 (2020).Article 

    Google Scholar 
    Kloster, M., Langenkämper, D., Zurowietz, M., Beszteri, B. & Nattkemper, T. W. Deep learning-based diatom taxonomy on virtual slides. Scientific Reports 10, 1–13, https://doi.org/10.1038/s41598-020-71165-w (2020).Article 
    CAS 

    Google Scholar 
    Ottaviani, E. et al. Assessing the image concept drift at the OBSEA coastal underwater cabled observatory. Frontiers in Marine Science 9, 1–13, https://doi.org/10.3389/fmars.2022.840088 (2022).Article 

    Google Scholar 
    Katija, K. et al. FathomNet: A global image database for enabling artificial intelligence in the ocean. Scientific reports 12, 1–14, https://doi.org/10.1038/s41598-022-19939-2 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence 14, 1137–1145 (1995).
    Google Scholar 
    Tharwat, A. Classification assessment methods. Applied Computing and Informatics 17, 168–192, https://doi.org/10.1016/j.aci.2018.08.003 (2018).Article 

    Google Scholar 
    Qi, C., Diao, J. & Qiu, L. On estimating model in feature selection with cross-validation. IEEE Access 7, 33454–33463, https://doi.org/10.1109/ACCESS.2019.2892062 (2019).Article 

    Google Scholar 
    Lopez-Vazquez, V. et al. Video image enhancement and machine learning pipeline for underwater animal detection and classification at cabled observatories. Sensors 20, 726, https://doi.org/10.3390/s20030726 (2020).Article 
    ADS 

    Google Scholar 
    Francescangeli, M. et al. Underwater camera photos with manual tagging of fish species at OBSEA seafloor observatory from 2013 to 2014. PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.946149 (2022).Marini, S. Source code for: simoneMarinIsmar/Image-Tagging-tool: Image Tagging (v1.0). Zenodo https://doi.org/10.5281/zenodo.6566282 (2022).Froese, R. & Pauly, D. FishBase. www.fishbase.org (2019).Martinez Padro, E. et al. CTD data acquired at the OBSEA seafloor observatory from 2013 to 2014. PANGAEA https://doi.org/10.1594/PANGAEA.946015 (2022).Martinez Padro, E. et al. Meteorological data from a weather station at Vilanova i la Geltrú (Catalonia, Spain) from 2013 to 2014. PANGAEA https://doi.org/10.1594/PANGAEA.945911 (2022).Martinez Padro, E. et al. Meteorological data from a weather station at Sant Pere de Ribes (Catalonia, Spain) from 2013 to 2014. PANGAEA https://doi.org/10.1594/PANGAEA.945906 (2022).Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788 https://doi.org/10.1109/CVPR.2016.91 (2016).Marrable, D. et al. Accelerating species recognition and labelling of fish from underwater video with machine-assisted deep learning. Frontiers in Marine Science 9, 944582, https://doi.org/10.3389/fmars.2022.944582 (2022).Article 

    Google Scholar 
    Zabala, M., García-Rubies, A., & Corbera, J. Els peixos de les illes Medes i del litoral català: guia per observar-los al seu ambient (Centre d’Estudis Marins de Badalona, 1992).Corbera, J., Sabatés, A., & García-Rubies, A. Peces de mar de la península ibérica (Ed. Planeta, 1996).Mercader, L., Lloris, D., & Rucabado, J. Tots els peixos del mar Català: Diagnosis i claus d’identificació (Institut d’Estudis Catalans, 2001).Aguzzi, J. et al. Daily activity rhythms in temperate coastal fishes: insights from cabled observatory video monitoring. Marine Ecology Progress Series 486, 223–236, https://doi.org/10.3354/meps10399 (2013).Article 
    ADS 

    Google Scholar 
    Campos‐Candela, A. et al. A camera‐based method for estimating absolute density in animals displaying home range behaviour. Journal of Animal Ecology 87, 825–837, https://doi.org/10.1111/1365-2656.12787 (2018).Article 

    Google Scholar 
    Jang, J. & Yoon, S. Feature concentration for supervised and semisupervised learning with unbalanced datasets in visual inspection. IEEE Transactions on Industrial Electronics 68, 7620–7630, https://doi.org/10.1109/TIE.2020.3003622 (2020).Article 

    Google Scholar 
    Zhang, J. et al. Adaptive Vertical Federated Learning on Unbalanced Features. IEEE Transactions on Parallel and Distributed Systems 33, 4006–4018, https://doi.org/10.1109/TPDS.2022.3178443 (2022).Article 

    Google Scholar 
    Lin, C. H., Lin, C. S., Chou, P. Y. & Hsu, C. C. An Efficient Data Augmentation Network for Out-of-Distribution Image Detection. IEEE Access 9, 35313–35323, https://doi.org/10.1109/ACCESS.2021.3062187 (2021).Article 

    Google Scholar 
    Lu, Y., Chen, D., Olaniyi, E. & Huang, Y. Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review. Computers and Electronics in Agriculture 200, 107208, https://doi.org/10.1016/j.compag.2022.107208 (2022).Article 

    Google Scholar 
    Waqas, N., Safie, S. I., Kadir, K. A., Khan, S. & Khel, M. H. K. DEEPFAKE Image Synthesis for Data Augmentation. IEEE Access 10, 80847–80857, https://doi.org/10.1109/ACCESS.2022.3193668 (2022).Article 

    Google Scholar  More