The sources and transmission routes of microbial populations throughout a meat processing facility
1.
Buzby, J. C., Wells, H. F. & Hyman, J. The Estimated Amount, Value, and Calories of Postharvest Food Losses at the Retail and Consumer Levels in the United States. (EIB-121, U.S. Department of Agriculture, Economic Research Service, Washington, 2014).
2.
Huis In’t Veld, J. H. J. Microbial and biochemical spoilage of foods: an overview. Int. J. Food Microbiol.33, 1–18 (1996).
Google Scholar
3.
Havelaar, A. H. et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med.12, e1001923 (2015).
PubMed PubMed Central Google Scholar
4.
EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 14(12): 4634, 231, (2016).
5.
Gill, C. O. Meat spoilage and evaluation of the potential storage life of fresh meat. J. Food Prot.46, 444–452 (1983).
CAS PubMed Google Scholar
6.
Giaouris, E. et al. Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci.97, 289–309 (2014).
Google Scholar
7.
Choi, Y. M. et al. Changes in microbial contamination levels of porcine carcasses and fresh pork in slaughterhouses, processing lines, retail outlets, and local markets by commercial distribution. Res. Vet. Sci.94, 413–418 (2013).
CAS PubMed Google Scholar
8.
Sheridan, J. J. Sources of contamination during slaughter and measures of control. J. Food Saf.18, 321–339 (1998).
Google Scholar
9.
International Organization for Standardization. Microbiology of the Food Chain—Carcass Sampling for Microbiological Analysis. (2015). ISO 17604:2015, Retrieved from https://www.iso.org/standard/62769.html
10.
Nocker, A., Burr, M. & Camper, A. K. Genotypic microbial community profiling: a critical technical review. Microb. Ecol.54, 276–289 (2007).
CAS PubMed Google Scholar
11.
Hultman, J., Rahkila, R., Ali, J., Rousu, J. & Björkroth, K. J. Meat processing plant microbiome and contamination patterns of cold-tolerant bacteria causing food safety and spoilage risks in the manufacture of vacuum-packaged cooked sausages. Appl. Environ. Microbiol.81, 7088–7097 (2015).
CAS PubMed PubMed Central Google Scholar
12.
Chaillou, S. et al. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J.9, 1105–1118 (2015).
PubMed Google Scholar
13.
Yang, H. et al. Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness. Sci. Rep.6, 27427 (2016).
CAS PubMed PubMed Central Google Scholar
14.
Bokulich, N. A., Bergsveinson, J., Ziola, B. & Mills, D. A. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance. Elife4, e04634 (2015).
PubMed Central Google Scholar
15.
Mann, E. et al. Psychrophile spoilers dominate the bacterial microbiome in musculature samples of slaughter pigs. Meat Sci.117, 36–40 (2016).
CAS PubMed Google Scholar
16.
Bokulich, N. A., Lewis, Z. T., Boundy-Mills, K. & Mills, D. A. A new perspective on microbial landscapes within food production. Curr. Opin. Biotechnol.37, 182–189 (2016).
CAS PubMed PubMed Central Google Scholar
17.
Bridier, A. et al. Impact of cleaning and disinfection procedures on microbial ecology and Salmonella antimicrobial resistance in a pig slaughterhouse. Sci. Rep.9, 12947 (2019).
PubMed PubMed Central Google Scholar
18.
Kang, S., Ravensdale, J., Coorey, R., Dykes, G. A. & Barlow, R. A comparison of 16S rRNA profiles through slaughter in Australian export beef abattoirs. Front. Microbiol.10, 2747 (2019).
19.
Stellato, G. et al. Overlap of spoilage microbiota between meat and meat processing environment in small-scale 2 vs. large-scale retail distribution. Appl. Environ. Microbiol.82, 4045–4054 (2016).
CAS PubMed PubMed Central Google Scholar
20.
Campos Calero, G. et al. Deciphering resistome and virulome diversity in a porcine slaughterhouse and pork products through its production chain. Front. Microbiol.9, 2099 (2018).
21.
Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun.10, 5029 (2019).
PubMed PubMed Central Google Scholar
22.
Spescha, C., Stephan, R. & Zweifel, C. Microbiological contamination of pig carcasses at different stages of slaughter in two European Union—approved abattoirs. J. Food Prot.69, 2568–2575 (2006).
CAS PubMed Google Scholar
23.
Warriner, K., Aldsworth, T. G., Kaur, S. & Dodd, C. E. R. Cross-contamination of carcasses and equipment during pork processing. J. Appl. Microbiol.93, 169–177 (2002).
CAS PubMed Google Scholar
24.
Wheatley, P., Giotis, E. S. & McKevitt, A. I. Effects of slaughtering operations on carcass contamination in an Irish pork production plant. Ir. Vet. J.67, 1 (2014).
PubMed PubMed Central Google Scholar
25.
Gill, C. O. in Woodhead Publishing Series in Food Science, Technology and Nutrition (ed. Sofos, J. N. et al.) 630–672 (Woodhead Publishing, Sawston, 2005). https://doi.org/10.1533/9781845691028.2.630
26.
de Filippis, F., La Storia, A., Villani, F. & Ercolini, D. Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. PLoS ONE8, e70222 (2013).
27.
de Smidt, O. The use of PCR-DGGE to determine bacterial fingerprints for poultry and red meat abattoir effluent. Lett. Appl. Microbiol.62, 1–8 (2016).
PubMed Google Scholar
28.
Andrew, D. & Board, R. Microbiology of Meat and Poultry. (Blackie Academic & Professional, Glasgow, 1998).
29.
Khan, I. U. et al. Anoxybacillus sediminis sp. nov., a novel moderately thermophilic bacterium isolated from a hot spring. Antonie Van. Leeuwenhoek111, 2275–2282 (2018).
PubMed Google Scholar
30.
Pikuta, E. et al. Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavitherms comb. nov. Int. J. Syst. Evol. Microbiol.50, 2109–2117 (2000).
CAS PubMed Google Scholar
31.
Burgess, S. A., Lindsay, D. & Flint, S. H. Thermophilic bacilli and their importance in dairy processing. Int. J. Food Microbiol.144, 215–225 (2010).
CAS PubMed Google Scholar
32.
Burgess, S. A., Brooks, J. D., Rakonjac, J., Walker, K. M. & Flint, S. H. The formation of spores in biofilms of Anoxybacillus flavithermus. J. Appl. Microbiol.107, 1012–1018 (2009).
CAS PubMed Google Scholar
33.
Goh, K. M. et al. Recent discoveries and applications of Anoxybacillus. Appl. Microbiol. Biotechnol.97, 1475–1488 (2013).
CAS PubMed Google Scholar
34.
Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods8, 761–763 (2011).
CAS PubMed PubMed Central Google Scholar
35.
Henry, R. et al. Into the deep: evaluation of sourcetracker for assessment of faecal contamination of coastal waters. Water Res.93, 242–253 (2016).
CAS PubMed Google Scholar
36.
Liu, G. et al. Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints. Water Res.138, 86–96 (2018).
CAS PubMed Google Scholar
37.
Bik, H. M. et al. Microbial community patterns associated with automated teller machine keypads in New York City. mSphere1, e00226–16 (2016).
PubMed PubMed Central Google Scholar
38.
Hewitt, K. M. et al. Bacterial diversity in two neonatal intensive care units (NICUs). PLoS ONE8, e54703 (2013).
CAS PubMed PubMed Central Google Scholar
39.
Li, L.-G., Yin, X. & Zhang, T. Tracking antibiotic resistance gene pollution from different sources using machine-learning classification. Microbiome6, 93 (2018).
PubMed PubMed Central Google Scholar
40.
Bolton, D. J. et al. Washing and chilling as critical control points in pork slaughter hazard analysis and critical control point (HACCP) systems. J. Appl. Microbiol.92, 893–902 (2002).
41.
Yu, S. L. et al. Effect of dehairing operations on microbiological quality of swine carcasses. J. Food Prot.62, 1478–1481 (1999).
CAS PubMed Google Scholar
42.
Jagadeesan, B. et al. The use of next generation sequencing for improving food safety: translation into practice. Food Microbiol.79, 96–115 (2019).
CAS PubMed Google Scholar
43.
Bergholz, T. M., Moreno Switt, A. I. & Wiedmann, M. Omics approaches in food safety: fulfilling the promise? Trends Microbiol.22, 275–281 (2014).
CAS PubMed PubMed Central Google Scholar
44.
Leonard, S. R., Mammel, M. K., Lacher, D. W. & Elkins, C. A. Application of metagenomic sequencing to food safety: detection of shiga toxin-producing Escherichia coli on fresh bagged spinach. Appl. Environ. Microbiol.81, 8183–8191 (2015).
CAS PubMed PubMed Central Google Scholar
45.
Moura, A. et al. Real-time whole-genome sequencing for surveillance of listeria monocytogenes, France. Emerg. Infect. Dis.23, 1462–1470 (2017).
CAS PubMed PubMed Central Google Scholar
46.
Wang, S. et al. Food safety trends: from globalization of whole genome sequencing to application of new tools to prevent foodborne diseases. Trends Food Sci. Technol.57, 188–198 (2016).
CAS Google Scholar
47.
Nastasijevic, I. et al. Tracking of listeria monocytogenes in meat establishment using whole genome sequencing as a food safety management tool: a proof of concept. Int. J. Food Microbiol.257, 157–164 (2017).
PubMed Google Scholar
48.
Weimer, B. C. et al. Defining the food microbiome for authentication, safety, and process management. IBM J. Res. Dev.60, 1:1–1:13 (2016).
Google Scholar
49.
Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics28, 2520–2522 (2012).
PubMed Google Scholar
50.
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol.37, 852–857 (2019).
CAS PubMed PubMed Central Google Scholar
51.
Martijn, J. et al. Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon. Environ. Microbiol.21, 2485–2498 (2019).
CAS PubMed PubMed Central Google Scholar
52.
Pearce, R. A. & Bolton, D. J. Excision vs sponge swabbing—a comparison of methods for the microbiological sampling of beef, pork and lamb carcasses. J. Appl. Microbiol.98, 896–900 (2005).
CAS PubMed Google Scholar
53.
Zwirzitz, B. et al. Culture-independent evaluation of bacterial contamination patterns on pig carcasses at a commercial slaughter facility. J. Food Prot.82, 1677–1682 (2019).
CAS PubMed Google Scholar
54.
Muyzer, G., De Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol.59, 695–700 (1993).
CAS PubMed PubMed Central Google Scholar
55.
Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res.43, D593–D598 (2015).
CAS PubMed Google Scholar
56.
Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE8, 1–10 (2013).
Google Scholar
57.
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res.41, 1–11 (2013).
Google Scholar
58.
Pacific Biosciences SMRT® Tools Reference Guide. (2018).
59.
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods13, 581–583 (2016).
CAS PubMed PubMed Central Google Scholar
60.
Callahan, B. J. et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res.47, e103–e103 (2019).
CAS PubMed PubMed Central Google Scholar
61.
Alishum, A. et al. DADA2 formatted 16S rRNA gene sequences for both bacteria & archaea. https://doi.org/10.5281/zenodo.2541239 (2019).
62.
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol.36, 996–1004 (2018).
CAS PubMed Google Scholar
63.
Davis, N. M., Proctor, D., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. bioRxiv221499, (2017).
64.
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One8, e61217 (2013).
CAS PubMed PubMed Central Google Scholar
65.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, New York, 2016).
66.
Lindstrom, J. C. Tsnemicrobiota: T-distributed stochastic neighbor embedding for microbiota data. (2017). Github Repository, https://github.com/opisthokonta/tsnemicrobiota
67.
Cardoso, P., Rigal, F. & Carvalho, J. C. BAT—biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol.6, 232–236 (2015).
Google Scholar More
