Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm

  • 1.

    Wikramanayake, E. D. et al. An ecology-based method for defining priorities for large mammal conservation: the tiger as case study. Conserv. Biol. 12, 865–868 (1998).

    Google Scholar 

  • 2.

    Walston, J. et al. Bringing the tiger back from the brink—the six percent solution. PLoS Biol. 8(9), e1000485 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Smith, J. L. D. The role of dispersal in structuring the Chitwan tiger population. Behaviour 124(3–4), 165–195 (1993).

    Google Scholar 

  • 4.

    Dinerstein, E. et al. The fate of wild tigers. Bioscience 57, 508–514 (2007).

    Google Scholar 

  • 5.

    Sanderson, E. et al. Setting priorities for the conservation and recovery of wild tigers: 2005–2015. The technical assessment. In Tigers of the World. A Review of Tigers of the World: The Biology, Biopolitics, Management, and Conservation of an Endangered Species 2nd edn (eds Ronald, L. T. & Ulysses, S. S.) 143–161 (Elsevier, New York, 2006).

    Google Scholar 

  • 6.

    Jhala, Y. V., Qureshi, Q. & Gopal, R. Can the abundance of tigers be assessed from their signs?. J. Appl. Ecol. 48, 14–24 (2011).

    Google Scholar 

  • 7.

    IPCC. Global Warming of 15 °C. 26 (Intergovernmental Panel on Climate Change, Switzerland, 2018).

    Google Scholar 

  • 8.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15(4), 365–377 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Gaston, K. J. The structure and dynamics of geographic ranges (Oxford University Press, London, 2003).

    Google Scholar 

  • 10.

    Cahill, A. E. et al. How does climate change cause extinction?. Proc. R. Soc. B. 280, 20121890. (2012).

    Article  PubMed  Google Scholar 

  • 11.

    Gienapp, P., Teplitsky, C., Alho, J., Mills, J. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17(1), 167–178 (2008).

    CAS  PubMed  Google Scholar 

  • 12.

    Moritz, C. et al. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322(5899), 261–264 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Myers, P., Lundrigan, B. L., Hoffman, S. M., Haraminac, A. P. & Seto, S. H. Climate induced changes in the small mammal communities of the northern Great Lakes region. Glob. Change Biol. 15(6), 1434–1454 (2009).

    ADS  Google Scholar 

  • 14.

    Burns, C. E., Johnston, K. M. & Schmitz, O. J. Global climate change and mammalian species diversity in US national parks. PNAS 100(20), 11474–11477 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J. & Benton, T. G. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods Ecol. Evol. 4, 167–174 (2013).

    Google Scholar 

  • 16.

    Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).

    Google Scholar 

  • 17.

    Cunningham, M. A. & Johnson, D. H. Proximate and landscape factors influence grassland bird distributions. Ecol. Appl. 16, 1062–1075 (2006).

    PubMed  Google Scholar 

  • 18.

    Thogmartin, W. E. & Knutson, M. G. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model. Landsc. Ecol. 22, 61–75 (2007).

    Google Scholar 

  • 19.

    Wasserman, T. N., Cushman, S. A., Wallin, D. O. & Hayden, J. Multi Scale Habitat Relationships of Martes americana in Northern Idaho, USA (US Department of Agriculture and Forest Service Rocky Mountain Research Station, Fort Collins, 2012).

    Google Scholar 

  • 20.

    Mateo Sanchez, M. C., Cushman, S. A. & Saura, S. Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int. J. Geogr. Inf. Sci. 28(8), 1531–1546 (2013).

    Google Scholar 

  • 21.

    Vergara, M., Cushman, S. A., Urra, F. & Ruiz-Gonzalez, A. Shaken but not stirred: multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula. Landsc. Ecol. 31(6), 1241–1260 (2016).

    Google Scholar 

  • 22.

    Elith, J. Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. In Quantitative Methods for Conservation Biology (eds Ferson, S. & Burgman, M.) 39–58 (Springer, New York, 2002).

    Google Scholar 

  • 23.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Google Scholar 

  • 24.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Google Scholar 

  • 25.

    Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Google Scholar 

  • 26.

    Breiman, L. Random forests. Mach. Learn. 45(1), 5–32 (2001).

    MATH  Google Scholar 

  • 27.

    Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Trees (Chapman and Hall/CRC Press, Boca Raton, 1984).

    Google Scholar 

  • 28.

    Cushman, S. A. & Wasserman, T. N. Landscape applications of machine learning: comparing random forests and logistic regression in multi-scale optimized predictive modeling of American marten occurrence in northern Idaho, USA. In Machine Learning for Ecology and Sustainable Natural Resource Management (eds Humpshires, G., Magness, D. et al.) 185–203 (Springer, New York, 2018).

    Google Scholar 

  • 29.

    Cushman, S. A., Gutzwiller, K., Evans, J. S. & McGarigal, K. The gradient paradigm: a conceptual and analytical framework for landscape ecology. In Spatial Complexity, Informatics, and Wildlife Conservation (eds Cushman, S. A. & Huettman, F.) 83–108 (Springer, Tokyo, 2010).

    Google Scholar 

  • 30.

    Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. Modeling species distribution and change using random forest. In Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications (eds Drew, C. A. et al.) 139–159 (Springer, New York, 2011).

    Google Scholar 

  • 31.

    Drew, C. A., Wiersma, Y. F. & Huettmann, F. Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications (Springer, New York, 2010).

    Google Scholar 

  • 32.

    Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. 67, 93–104 (2012).

    Google Scholar 

  • 33.

    Schneider, A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sens. Environ. 124, 689–704 (2012).

    ADS  Google Scholar 

  • 34.

    Cushman, S. A., Macdonald, E. A., Landguth, E. L., Halhi, Y. & Macdonald, D. W. Multiple-scale prediction of forest-loss risk across Borneo. Landsc. Ecol. 32, 1581–1598 (2017).

    Google Scholar 

  • 35.

    Buermann, W. et al. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J. Biogeogr. 35, 1160–1176 (2008).

    Google Scholar 

  • 36.

    Lentz, D. L., Bye, R. & Sánchez-Cordero, V. Ecological niche modeling and distribution of wild sunflower (Helianthus annuus L.) in Mexico. Int. J. Plant Sci. 169(4), 541–549 (2008).

    Google Scholar 

  • 37.

    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–3288 (2008).

    PubMed  Google Scholar 

  • 38.

    Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).

    CAS  PubMed  Google Scholar 

  • 39.

    Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J. & Moritz, C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58, 1781–1793 (2004).

    PubMed  Google Scholar 

  • 40.

    Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).

    PubMed  Google Scholar 

  • 41.

    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).

    Google Scholar 

  • 42.

    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    Google Scholar 

  • 43.

    Cola, Di. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).

    Google Scholar 

  • 44.

    Brown, J. L. & Carnaval, A. C. A tale of two niches: methods, concepts and evolution. Front. Biogeogr. 11, 44158. (2019).

    Article  Google Scholar 

  • 45.

    Qiao, H., Escobar, L. E. & Peterson, A. T. Accessible areas in ecological niche comparisons of invasive species: recognized but still overlooked. Sci. Rep. 7, 1213 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Wan, J. Z., Wang, C. J., Tan, J. F. & Yu, F. H. Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change. Ecol. Evol. 7(5), 1541–1552 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Khosravi, R., Hemani, M. R. & Cushman, S. A. Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran. Landsc. Ecol. 34, 2451–2467 (2019).

    Google Scholar 

  • 48.

    Hayward, M. W., Jędrzejewski, W. & Jêdrzejewska, B. Prey preferences of the tiger. J. Zool. (London) 286, 221–231 (2012).

    Google Scholar 

  • 49.

    Wilson, D. E. M. & Russell, A. Handbook of the Mammals of the World Vol. 2 (Lynx Edicions, Barcelona, 2009).

    Google Scholar 

  • 50.

    Myers, N. Conservation of Africa’s cats: problems and opportunities. In Cats of the World (eds Miller, S. D. & Everett, D. D.) 437–457 (National Wildlife Federation, Washington, DC, 1986).

    Google Scholar 

  • 51.

    Hamilton, P.H. The movements of leopards in Tsavo National Park, Kenya, as determined by radio-tracking. M.Sc. Thesis (University of Nairobi, Kenya 1976).

  • 52.

    Odden, M., Wegge, P. & Fredriksen, T. Do tigers displace leopards? If so, why?. Ecol. Res. 25, 875–881 (2010).

    Google Scholar 

  • 53.

    Bagchi, S., Goyal, S. P. & Sankar, K. Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forests in western India. J. Zool. (London) 260(3), 285–290 (2003).

    Google Scholar 

  • 54.

    Johnsingh, A. J. T. Large mammalian predators in Bandipur. J. Bombay Nat. Hist. Soc. 80, 1–57 (1983).

    Google Scholar 

  • 55.

    Khan, J. A., Chellam, R., Rodgers, W. A. & Johnsingh, A. J. T. Ungulate densities and biomass in the tropical dry deciduous forests of Gir, Gujarat, India. J. Trop. Ecol. 12(01), 149–162 (1996).

    Google Scholar 

  • 56.

    Wilson, D. E. & Russell, A. Handbook of the Mammals of the World. Carnivores Vol. 1 (Lynx Edicions, Barcelona, 2009).

    Google Scholar 

  • 57.

    Singh, H. S. Status of the leopard Panthera pardus in India. Cat News 42, 15–17 (2005).

    Google Scholar 

  • 58.

    Athreya, V. Is relocation a viable management option for unwanted animals? The case of the leopard in India. Conserv. Soc. 4, 419–423. (2006).

  • 59.

    Karanth, K. U. & Stith, B. M. Prey depletion as a critical determinant of tiger population viability. In Riding the Tiger: Tiger Conservation in Human Dominated Landscapes (eds Seidensticker, J., Christie, S. et al.) 100–113 (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  • 60.

    Rowe, K. C. et al. Spatially heterogeneous impact of climate change on small mammals of montane California. Proc. R. Soc. 282, 20141857. (2015).

    Article  Google Scholar 

  • 61.

    Pandey, R. & Papeş, M. Changes in future potential distributions of apex predator and mesopredator mammals in North America. Reg. Environ. Change 18, 1223–1233 (2018).

    Google Scholar 

  • 62.

    Tian, Y., Wu, J., Wang, T. & Ge, J. Climate change and landscape fragmentation jeopardize the population viability of Siberian tiger (Panthera tigris altaica). Landsc. Ecol. 29, 621–637 (2014).

    CAS  Google Scholar 

  • 63.

    Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M. & Igor, K. Modeling the response of an endangered flagship predator to climate in Iran. Mamm. Res. 64(1), 39–51 (2019).

    Google Scholar 

  • 64.

    Karanth, K. U., Nichols, J. D., Kumar, N. S., Link, W. A. & Hines, J. E. Tigers and their prey: predicting carnivore densities from prey abundance. PNAS 101(14), 4854–4858 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 65.

    Seidensticker, J. On the ecological separation between tigers and leopards. Biotropica 8(4), 225–234 (1976).

    Google Scholar 

  • 66.

    McDougal, C. Leopard and tiger interactions at Royal Chitwan National Park, Nepal. J. Bombay Nat. Hist. Soc. 85, 609–610 (1988).

    Google Scholar 

  • 67.

    Seidensticker, J., Sunquist, M. E. & McDougal, C. Leopards living at the edge of the Royal Chitwan National Park, Nepal. In Conservation in Developing Countries: Problems and Prospects (eds Daniel, J. C. & Serrao, J. S.) 415–423 (Bombay Natural History Society and Oxford University Press, Bombay, 1990).

    Google Scholar 

  • 68.

    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).

    ADS  CAS  PubMed  Google Scholar 

  • 69.

    Schoener, T. W. Field experiments on interspecific competition. Am. Nat. 122, 240–285 (1983).

    Google Scholar 

  • 70.

    Fedriani, J. M. et al. Niche relations among three sympatric Mediterranean carnivores. Oecologia 121, 138–148 (1999).

    ADS  PubMed  Google Scholar 

  • 71.

    Loveridge, A. J. & Macdonald, D. W. Niche separation in sympatric jackals (Canis mesomelas and Canis adustus). J. Zool. 259, 143–153 (2003).

    Google Scholar 

  • 72.

    Vieira, E. M. & Port, D. Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. J. Zool. 272, 57–63 (2007).

    Google Scholar 

  • 73.

    Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Government of India Press, New Delhi, 1968).

    Google Scholar 

  • 74.

    Johnsingh, A. J. T. Prey selection in three sympatric carnivores in Bandipur. Mammalia 56, 517–526 (1992).

    Google Scholar 

  • 75.

    Karanth, K. U. & Sunquist, M. E. Prey selection by tiger, leopard and dhole in tropical forests. J. Appl. Ecol. 64, 439–450 (1995).

    Google Scholar 

  • 76.

    Andheria, A., Karanth, K. U. & Kumar, N. Diet and prey profiles of three sympatric large carnivores in Bandipur Tiger Reserve, India. J. Zool. 273, 169–175 (2007).

    Google Scholar 

  • 77.

    Brown, J. L. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).

    Google Scholar 

  • 78.

    Titeux, N. Modelling species distribution when habitat occupancy depart from suitability. Application to birds in a landscape context. Ph.D. thesis (Universite´ Catholique de Louvain, Louvain-la-Neuve, 2006).

  • 79.

    Mateo, R. G., Croat, T. B., Felicisimo, A. M. & Munoz, J. Profile or group discriminative techniques? Generating reliable pseudo-absences and target-group absences from natural history collections. Divers. Distrib. 16, 84–94 (2010).

    Google Scholar 

  • 80.

    Graham, C. H. & Hijmans, R. J. A comparison of methods for mapping species richness. Glob. Ecol. Biogeogr. 15, 578–587 (2006).

    Google Scholar 

  • 81.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 3, 18–22 (2002)

  • 82.

    R core Team. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna (2019).

  • 83.

    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1), 27–46 (2013).

    Google Scholar 

  • 84.

    Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 30(6), 751–777 (2006).

    Google Scholar 

  • 85.

    Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004. (2007).

    ADS  Article  Google Scholar 

  • 86.

    Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. 57(4), 241–262 (2003).

    Google Scholar 

  • 87.

    Beaumont, L. J., Hughes, L. & Pitman, A. J. Why is the choice of future climate scenarios for species distribution modelling important?. Ecol. Lett. 11(11), 1135–1146 (2008).

    PubMed  Google Scholar 

  • 88.

    Perkins, S., Pitman, A., Holbrook, N. & McAveney, J. Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature and precipitation over Australia using probability density functions. J. Clim. 20, 4356–4376 (2007).

    ADS  Google Scholar 

  • 89.

    Watanabe, M. et al. Improved Climate Simulation by MIROC5: mean states, variability, and climate sensitivity. J. Clim. 23(23), 6312–6335 (2010).

    ADS  Google Scholar 

  • 90.

    Calvente, M. E. et al. Can gypsophytes distinguish different types of gypsum habitats?. Acta. Bot. Gallica. 156(1), 63–78 (2009).

    Google Scholar 

  • 91.

    van Vurren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5. (2011).

    ADS  Article  Google Scholar 

  • 92.

    Wayne, G.P. The beginner’s guide to representative concentration pathways. Skeptical Science 25 (2013)

  • 93.

    Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).

    ADS  Google Scholar 

  • 94.

    Steffan-Dewenter, I., Munzenberg, U., Burger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).

    Google Scholar 

  • 95.

    Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Bioscience 54, 227–233 (2004).

    Google Scholar 

  • 96.

    McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C. & Cushman, S. A. Multi-scale habitat modeling: a review and outlook. Landsc. Ecol. 31, 1161–1175 (2016).

    Google Scholar 

  • 97.

    Sandri, M. & Zuccolotto, P. Variable selection using random forests. In Data Analysis, Classification and the Forward Search (eds Zani, S. & Cerioli, A.) 263–270 (Springer, Berlin, 2005).

    Google Scholar 

  • 98.

    Diaz-Uriarte, R. & Alvarez de Andres, S. Gene selection and classification of microarray data using randomForest. BMC Bioinform. 7, 3 (2006).

    Google Scholar 

  • 99.

    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 31, 2225–2236 (2010).

    Google Scholar 

  • 100.

    Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for randomforests. BMC Bioinform. 9, 307 (2008).

    Google Scholar 

  • 101.

    Evans, J. S. & Cushman, S. A. Gradient modeling of conifer species using random forests. Landsc. Ecol. 24(5), 673–683 (2009).

    Google Scholar 

  • 102.

    Pontius, R. G. Jr. & Milones, M. Death to Kappa: Birth of quality disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 32, 4407–4429 (2011).

    ADS  Google Scholar 

  • 103.

    Pontius, R. G. Jr. & Si, K. The total operating characteristic to measure diagnostic ability for multiple thresholds. Int. J. Geogr. Inf. Sci. 28, 570–583 (2014).

    Google Scholar 

  • 104.

    Hof, C., Rahbek, C. & Araújo, M. B. Phylogenetic signals in the climatic niches of the world’s amphibians. Ecography 33, 242–250 (2010).

    Google Scholar 

  • 105.

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Google Scholar 

  • 106.

    Saupe, E. E. et al. Reconstructing ecological niche evolution when niches are incompletely characterized. Syst. Biol. 67, 428–438 (2017).

    Google Scholar 

  • Source: Ecology -

    MIT research on seawater surface tension becomes international guideline

    Echolocation at high intensity imposes metabolic costs on flying bats