Mechanism and consequences for avoidance of superparasitism in the solitary parasitoid Cotesia vestalis

  • 1.

    Vinson, S. B. Host selection by insect parasitoids. Annual Review of Entomology 21, 109–133 (1976).

    Google Scholar 

  • 2.

    Tormos, J. et al. Superparasitism in laboratory rearing of Spalangia cameroni (Hymenoptera: Pteromalidae), a parasitoid of medfly (Diptera: Tephritidae). Bulletin of Entomological Research 102, 51–61 (2012).

    CAS  PubMed  Google Scholar 

  • 3.

    Reynolds, K. T. & Hardy, I. C. W. Superparasitism: a non-adaptive strategy? Trends in Ecology & Evolution 19, 347–348 (2004).

    Google Scholar 

  • 4.

    Parker, G. A. & Courtney, S. P. Models of clutch size in insect oviposition. Theoretical Population Biology 26, 27–48 (1984).

    MATH  Google Scholar 

  • 5.

    Potting, R. P. J., Snellen, H. M. & Vet, L. E. M. Fitness consequences of superparasitism and mechanism of host discrimination in the stemborer parasitoid Cotesia flavipes. Entomologia Experimentalis et Applicata 82, 341–348 (1997).

    Google Scholar 

  • 6.

    Van Alphen, J. J. & Visser, M. E. Superparasitism as an adaptive strategy for insect parasitoids. Annual Review of Entomology 35, 59–79 (1990).

    PubMed  Google Scholar 

  • 7.

    Hubbard, S. F., Harvey, I. F. & Fletcher, J. P. Avoidance of superparasitism: a matter of learning? Animal Behaviour 57, 1193–1197 (1999).

    CAS  PubMed  Google Scholar 

  • 8.

    Khafagi, W. E. & Hegazi, E. M. Does superparasitism improve host suitability for parasitoid development? A case study in the Microplitis rufiventrisSpodoptera littoralis system. Biocontrol 53, 427–438 (2008).

    Google Scholar 

  • 9.

    Böckmann, E. A., Tormos, J., Beitia, F. & Fischer, K. Offspring production and self-superparasitism in the solitary ectoparasitoid Spalangia cameroni (Hymenoptera: Pteromalidae) in relation to host abundance. Bulletin of Entomological Research 102, 131–137 (2012).

    PubMed  Google Scholar 

  • 10.

    Luna, M. G., Desneux, N. & Schneider, M. I. Encapsulation and self-superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Plos One 11 (2016).

  • 11.

    Varaldi, J., Fouillet, P., Bouletreau, M. & Fleury, F. Superparasitism acceptance and patch-leaving mechanisms in parasitoids: a comparison between two sympatric wasps. Animal Behaviour 69, 1227–1234 (2005).

    Google Scholar 

  • 12.

    Van Lenteren, J. C. The development of host discrimination and the prevention of superparasitism in the parasite Pseudeucoila bochei Weld (Hym.: Cynipidae). Netherlands Journal of Zoology 26, 1–83 (1975).

    Google Scholar 

  • 13.

    Agboka, K. et al. Self-, intra-, and interspecific host discrimination in Telenomus busseolae Gahan and Tisis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). Journal of Insect Behavior 15, 1–12 (2002).

    Google Scholar 

  • 14.

    Gauthier, N. & Bénédet, F. Y., T., Monge, J. P. & Huignard, J. Marking behavior and discrimination of concealed hosts by the ectoparasitoid, Dinarmus basalis Rond. (Hym. Pteromalidae). Journal of Insect Behavior 15, 589–606 (2002).

    Google Scholar 

  • 15.

    Jaloux, B., Errard, C., Mondy, N., Vannier, F. & Monge, J. P. Sources of chemical signals which enhance multiparasitism preference by a cleptoparasitoid. Journal of Chemical Ecology 31, 1325–1337 (2005).

    CAS  PubMed  Google Scholar 

  • 16.

    Stelinski, L. L., Oakleaf, R. & Rodriguez, C. Oviposition-deterring pheromone deposited on blueberry fruit by the parasitic wasp, Diachasma alloeum. Behaviour 144, 429–445 (2007).

    Google Scholar 

  • 17.

    Wu, Z. X. & Nordlund, D. A. Superparasitism of Lygus hesperus Knight eggs by Anaphes iole Girault in the Laboratory. Biological Control 23, 121–126 (2002).

    Google Scholar 

  • 18.

    Ganesalingam, V. K. Mechanism of discrimination between parasitized and unparasitized hosts by Venturia canescens (Hymenoptera: Ichneumonidae). Entomologia Experimentalis et Applicata 17, 36–44 (1974).

    Google Scholar 

  • 19.

    Micha, S. G., Stammel, J. & Höller, C. 6-methyl-5-heptene-2-one, a putative sex and spacing pheromone of the aphid hyperparasitoid, Alloxysta victrix (Hymenoptera: Alloxystidae). European Journal of Entomology 90, 439–442 (1993).

    CAS  Google Scholar 

  • 20.

    Sheehan, W., Wäckers, F. L. & Lewis, W. J. Discrimination of previously searched, host-free sites by Microplitis croceipes (Hymenoptera: Braconidae). Journal of Insect Behavior 6, 323–331 (1993).

    Google Scholar 

  • 21.

    Syvertsen, T. C., Jackson, L. L., Blomquist, G. J. & Vinson, S. B. Alkadienes mediating courtship in the parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). Journal of Chemical Ecology 21, 1971–1989 (1995).

    CAS  PubMed  Google Scholar 

  • 22.

    Van Baaren, J. & Boivin, G. Learning affects host discrimination behavior in a parasitoid wasp. Behavioral Ecology & Sociobiology 42, 9–16 (1998).

    Google Scholar 

  • 23.

    Ruschioni, S., van Loon, J. J. A., Smid, H. M. & van Lenteren, J. C. Insects can count: Sensory basis of host discrimination in parasitoid wasps revealed. Plos One 10 (2015).

  • 24.

    Nufio, C. R. & Papaj, D. R. Host marking behavior in phytophagous insects and parasitoids. Entomologia Experimentalis et Applicata 99, 273–293 (2001).

    Google Scholar 

  • 25.

    Velasco, L. R. I. The life history of Apanteles plutellae Kurdj. (Braconidae), a parasitoids of the diamondback moth. Philippines Entomology 5, 385–399 (1982).

    Google Scholar 

  • 26.

    Talekar, N. S. & Yang, J. C. Characteristic of parasitism of diamondback moth by two larval parasites. Entomophaga 36, 95–104 (1991).

    Google Scholar 

  • 27.

    Shi, Z. H., Liu, S. S. & Li, Y. X. Cotesia plutellae parasitizing Plutella xylostella: Host-age dependent parasitism and its effect on host development and food consumption. Biocontrol 47, 499–511 (2002).

    Google Scholar 

  • 28.

    De Boer, J. G., Ode, P. J., Vet, L. E. M., Whitfield, J. & Heimpel, G. E. Complementary sex determination in the parasitoid wasp Cotesia vestalis (C. plutellae). Journal of Evolutionary Biology 20, 340–348 (2010).

    Google Scholar 

  • 29.

    Li, Y., Liu, Y. & Liu, S. Effect of superparasitism on bionomics of Cotesia plutellae. Chinese Journal of Biological Control 17, 151–154 (2001).

    ADS  Google Scholar 

  • 30.

    Yu, R.-X., Shi, M., Huang, F. & Chen, X.-X. Immature development of Cotesia vestalis (Hymenoptera: Braconidae), an endoparasitoid of Plutella xylostella (Lepidoptera: Plutellidae). Annals of the Entomological Society of America 101, 189–196 (2008).

    Google Scholar 

  • 31.

    Mitsunaga, T., Shimoda, T. & Yano, E. Influence of food supply on longevity and parasitization ability of a larval endoparasitoid, Cotesia plutellae (Hymenoptera: Braconidae). Appl. Entomol. Zoolog 39, 691–697 (2004).

    Google Scholar 

  • 32.

    Roux, O., Van Baaren, J., Gers, C., Arvanitakis, L. & Legal, L. Antennal structure and oviposition behavior of the Plutella xylostella specialist parasitoid: Cotesia plutellae. Microscopy Research & Technique 68, 36–44 (2005).

    Google Scholar 

  • 33.

    Potting, R. P. J., Poppy, G. M. & Schuler, T. H. The role of volatiles from cruciferous plants and pre‐flight experience in the foraging behaviour of the specialist parasitoid Cotesia plutellae. Entomologia Experimentalis et Applicata 93, 87–95 (1999).

    CAS  Google Scholar 

  • 34.

    Chen, W. B. et al. Parasitised caterpillars suffer reduced predation: potential implications for intra-guild predation. Scientific Reports 7 (2017).

  • 35.

    Liu, T. S. et al. Isolation and characterization of microsatellite loci for Cotesia plutellae (Hymenoptera: Braconidae). Insects 8 (2017).

  • 36.

    Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295 (2006).

    Google Scholar 

  • 37.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Jervis, M. A., Ellers, J. & Harvey, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annual Review of Entomology 53, 361–385 (2008).

    CAS  PubMed  Google Scholar 

  • 39.

    Couchoux, C. & van Nouhuys, S. Effects of intraspecific competition and host-parasitoid developmental timing on foraging behaviour of a parasitoid wasp. Journal of Insect Behavior 27, 283–301 (2014).

    PubMed  Google Scholar 

  • 40.

    McKay, T. & Broce, A. B. Discrimination of self-parasitized hosts by the pupal parasitoid Muscidifurax zaraptor (Hymenoptera: Pteromalidae). Annals of the Entomological Society of America 97, 592–599 (2004).

    Google Scholar 

  • 41.

    Yamada, Y. Y. & Sugaura, K. Evidence for adaptive self-superparasitism in the dryinid parasitoid Haplogonatopus atratus when conspecifics are present. Oikos 103, 175–181 (2003).

    Google Scholar 

  • 42.

    Gariepy, T. D., Kuhlmann, U., Gillott, C. & Erlandson, M. Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods. Journal of Applied Entomology 131, 225–240 (2007).

    CAS  Google Scholar 

  • 43.

    Santolamazza-Carbone, S. & Rivera, A. C. Superparasitism and sex ratio adjustment in a wasp parasitoid: results at variance with local mate competition? Oecologia 136, 365–373 (2003).

    ADS  PubMed  Google Scholar 

  • 44.

    Zhang, L., Bai, S., Yu, H. & Li, X. Intraspecific competition in Cotesia vestalis, a solitary endoparasitoid of Plutella xylostella larvae. Chinese Journal of Biological Control 30, 128–133 (2014).

    Google Scholar 

  • 45.

    Lebreton, S., Christidès, J. P., Bagnères, A. G., Chevrier, C. & Darrouzet, E. Modifications of the chemical profile of hosts after parasitism allow parasitoid females to assess the time elapsed since the first attack. Journal of Chemical Ecology 36, 513–521 (2010).

    CAS  PubMed  Google Scholar 

  • 46.

    Strand, M. R. & Godfray, H. C. J. Superparasitism and ovicide in parasitic Hymenoptera: theory and a case study of the ectoparasitoid Bracon hebetor. Behavioral Ecology & Sociobiology 24, 421–432 (1989).

    Google Scholar 

  • 47.

    Tena, A., Kapranas, A., Garcia-Marí, F. & Luck, R. F. Host discrimination, superparasitism and infanticide by a gregarious endoparasitoid. Animal Behaviour 76, 789–799 (2008).

    Google Scholar 

  • 48.

    Yamada, Y. Y. & Ikawa, K. Superparasitism strategy in a semisolitary parasitoid with imperfect self/non-self recognition, Echthrodelphax fairchildii. Entomologia Experimentalis et Applicata 114, 143–152 (2005).

    Google Scholar 

  • 49.

    Field, S., Keller, M. & Calbert, G. The pay-off from superparasitism in the egg parasitoid Trissolcus basalis, in relation to patch defence. Ecological Entomology 22, 142–149 (1997).

    Google Scholar 

  • 50.

    Díazfleischer, F., Galvez, C. & Montoya, P. Oviposition, superparasitism, and egg load in the solitary parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae): response to host availability. Annals of the Entomological Society of America 108, 235–241 (2015).

    Google Scholar 

  • 51.

    Gauthier, N., Monge, J. P. & Huignard, J. Superparasitism and host discrimination in the solitary ectoparasitoid Dinarmus basalis. Entomologia Experimentalis et Applicata 79, 91–99 (1996).

    Google Scholar 

  • 52.

    Weber, C. A., Smilanick, J. M., Ehler, L. E. & Zalom, F. G. Ovipositional behavior and host discrimination in three scelionid egg parasitoids of stink bugs. Biological Control 6, 245–252 (1996).

    Google Scholar 

  • 53.

    Darrouzet, E., Bignon, L. & Chevrier, C. Impact of mating status on egg-laying and superparasitism behaviour in a parasitoid wasp. Entomologia Experimentalis et Applicata 123, 279–285 (2007).

    Google Scholar 

  • 54.

    Lebreton, S., Labarussias, M., Chevrier, C. & Darrouzet, E. Discrimination of the age of conspecific eggs by an ovipositing ectoparasitic wasp. Entomologia Experimentalis et Applicata 130, 28–34 (2009).

    Google Scholar 

  • 55.

    Hoffmeister, T. S. & Roitberg, B. D. Evolutionary ecology of oviposition marking pheromones. In: Hilker, M., Meiners, T., (eds.), Chemoecology of insect eggs and egg deposition. (Germany: Blackwell Publishing, 2008).

  • 56.

    Ito, E. & Yamada, Y. Y. Self-/conspecific discrimination and superparasitism strategy in the ovicidal parasitoid Echthrodelphax fairchildii (Hymenoptera: Dryinidae). Insect Science 21, 741–749 (2014).

    PubMed  Google Scholar 

  • 57.

    Liang, Q. F., Jia, Y. J. & Liu, T. X. Self- and conspecific discrimination between unparasitized and parasitized green peach aphid (Hemiptera: Aphididae), by Aphelinus asychis (Hymenoptera: Aphelinidae). Journal of Economic Entomology 110, 430–437 (2017).

    PubMed  Google Scholar 

  • 58.

    Yazdani, M., Glatz, R. & Keller, M. Host discrimination by the solitary endoparasitoid Dolichogenidea tasmanica (Hymenopotera: Braconidae). Biocontrol Sci. Technol. 25, 155–162 (2015).

    Google Scholar 

  • 59.

    Wang, X. G. & Keller, M. A. A comparison of the host-searching efficiency of two larval parasitoids of Plutella xylostella. Ecological Entomology 27, 105–114 (2002).

    CAS  Google Scholar 

  • Source: Ecology -

    MIT research on seawater surface tension becomes international guideline

    Echolocation at high intensity imposes metabolic costs on flying bats