Variations in home range and core area of red-backed voles (Myodes regulus) in response to various ecological factors
Gorosito, I., Benitez, A. & Busch, M. Home range variability, spatial aggregation, and excursions of Akodon azarae and Oligoryzomys flavescens in Pampean agroecosystems. Integr. Zool. 15, 401–415 (2020).Article
Google Scholar
Christy, M. T., Savidge, J. A., Adams, A. A. Y., Gragg, J. E. & Rodda, G. H. Experimental landscape reduction of wild rodents increases movements in the invasive brown treesnake (Boiga irregularis). Manag. Biol. Invasion. 8, 455–467 (2017).Article
Google Scholar
Cutrera, A. P., Antinuchi, C. D., Mora, M. S. & Vassallo, A. I. Home-range and activity patterns of the south American subterranean rodent Ctenomys talarum. J. Mammal. 87, 1183–1191 (2006).Article
Google Scholar
Tisell, H. B., Degrassi, A. L., Stephens, R. B. & Rowe, R. J. Influence of field technique, density, and sex on home range and overlap of the southern red-backed vole (Myodes gapperi). Can. J. Zool. 97, 1101–1108 (2019).Article
Google Scholar
Vieira, E. M., Baumgarten, L. C., Paise, G. & Becker, R. G. Seasonal patterns and influence of temperature on the daily activity of the diurnal neotropical rodent Necromys lasiurus. Can. J. Zool. 88, 259–265 (2010).Article
Google Scholar
Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 346–352 (1943).Article
Google Scholar
Samuel, M. D., Pierce, D. & Garton, E. O. Identifying areas of concentrated use within the home range. J. Anim. Ecol. 54, 711–719 (1985).Article
Google Scholar
Worton, B. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70, 164–168 (1989).Article
Google Scholar
Powell, R. A. & Mitchell, M. S. What is a home range?. J. Mammal. 93, 948–958 (2012).Article
Google Scholar
White, G. C. & Garrott, R. A. Analysis of Wildlife Radio-tracking Data (Academic Press, 1990).
Google Scholar
Lee, E. J., Rhim, S. J. & Lee, W. S. Seasonal movements and home range sizes of Korean field mouse Apodemus peninsulae in unburned and post-fire pine planted stands within a pine forest. J. Anim. Vet. Adv. 11, 3834–3839 (2012).
Google Scholar
Thompson, R. L., Chambers, C. L. & McComb, B. C. Home range and habitat of western red-backed voles in the Oregon Cascades. Northwest Sci. 83, 46–56 (2009).Article
Google Scholar
Tu, C. L., He, T. B., Lu, X. H., Luo, Y. & Smith, P. Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China. CATENA 163, 204–209 (2018).Article
CAS
Google Scholar
Khandelwal, S., Goyal, R., Kaul, N. & Mathew, A. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egypt. J. Remote Sens. 21, 87–94 (2018).
Google Scholar
Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).Article
Google Scholar
Fang, J. Y. et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32, L21411 (2005).Article
ADS
Google Scholar
Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A “dynamic” landscape of fear: Prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).Article
CAS
Google Scholar
Lee, J. K., Hwang, H. S., Eom, T. K. & Rhim, S. J. Influence of tree thinning on abundance and survival probability of small rodents in a natural deciduous forest. Turk. J. Zool. 42, 323–329 (2018).
Google Scholar
Navarro-Castilla, A. & Barja, I. Stressful living in lower-quality habitats? Body mass, feeding behavior and physiological stress levels in wild wood mouse populations. Integr. Zool. 14, 114–126 (2019).Article
Google Scholar
Casula, P., Luiselli, L. & Amori, G. Which population density affects home ranges of co-occurring rodents?. Basic Appl. Ecol. 34, 46–54 (2019).Article
Google Scholar
D’Elia, G., Fabre, P. H. & Lessa, E. P. Rodent systematics in an age of discovery: Recent advances and prospects. J. Mammal. 100, 852–871 (2019).Article
Google Scholar
Lee, J. K., Eom, T. K., Bae, H. K., Lee, D. H. & Rhim, S. J. Responsive strategies of three sympatric small rodents to the altitudinal effects on microhabitats. Anim. Biol. 72, 63–77 (2022).Article
Google Scholar
Lee, J. K., Hwang, H. S., Eum, T. K., Bae, H. K. & Rhim, S. J. Cascade effects of slope gradient on ground vegetation and small-rodent populations in a forest ecosystem. Anim. Biol. 70, 203–213 (2020).Article
Google Scholar
Orrock, J. L. & Connolly, B. M. Changes in trap temperature as a method to determine timing of capture of small mammals. PLoS ONE 11, e0165710 (2016).Article
Google Scholar
Endries, M. J. & Adler, G. H. Spacing patterns of a tropical forest rodent, the spiny rat (Proechimys semispinosus), in Panama. J. Zool. 265, 147–155 (2005).Article
Google Scholar
Kawata, M. & Saitoh, T. The effect of introduced males on spatial patterns of initially introduced red-backed voles. Acta Theriol. 33, 585–588 (1988).Article
Google Scholar
Desy, E., Batzli, G. & Liu, J. Effects of food and predation on behaviour of prairie voles: A field experiment. Oikos 58, 159–168 (1990).Article
Google Scholar
Attuquayefio, D., Gorman, M. & Wolton, R. Home range sizes in the wood mouse Apodemus sylvaticus: Habitat, sex and seasonal differences. J. Zool. 210, 45–53 (1986).Article
Google Scholar
Lovari, S., Sforzi, A. & Mori, E. Habitat richness affects home range size in a monogamous large rodent. Behav. Process. 99, 42–46 (2013).Article
Google Scholar
Puckey, H., Lewis, M., Hooper, D. & Michell, C. Home range, movement and habitat utilisation of the Carpentarian rock-rat (Zyzomys palatalis) in an isolated habitat patch. Wildlife Res. 31, 327–337 (2004).Article
Google Scholar
Jones, E. N. Effects of forage availability on home range and population density of Microtus pennsylvanicus. J. Mammal. 71, 382–389 (1990).Article
Google Scholar
Chun, J. H., Ali, A. & Lee, C. B. Topography and forest diversity facets regulate overstory and understory aboveground biomass in a temperate forest of South Korea. Sci. Total. Environ. 744, 140783 (2020).Article
ADS
CAS
Google Scholar
Koskela, E., Mappes, T. & Ylonen, H. Territorial behaviour and reproductive success of bank vole Clethrionomys glareolus females. J. Anim. Ecol. 66, 341–349 (1997).Article
Google Scholar
Vlasata, T. et al. Daily activity patterns in the giant root rat (Tachyoryctes macrocephalus), a fossorial rodent from the Afro-alpine zone of the Bale Mountains, Ethiopia. J. Zool. 302, 157–163 (2017).Article
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).
Google Scholar
Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).Article
Google Scholar
Rhim, S. J., Kim, K. J., Son, S. H. & Hwang, H. S. Effect of forest road on stand structure and small mammals in temperate forests. J. Anim. Vet. Adv. 11, 2540–2547 (2012).Article
Google Scholar
Carrilho, M., Teixeira, D., Santos-Reis, M. & Rosalino, L. M. Small mammal abundance in Mediterranean Eucalyptus plantations: How shrub cover can really make a difference. For. Ecol. Manag. 391, 256–263 (2017).Article
Google Scholar
Emsens, W. J. et al. Effects of food availability on space and refuge use by a beotropical scatterhoarding rodent. Biotropica 45, 88–93 (2013).Article
Google Scholar
Malo, A. F. et al. Positive effects of an invasive shrub on aggregation and abundance of a native small rodent. Behav. Ecol. 24, 759–767 (2013).Article
Google Scholar
Johnson, M. D. & De Leon, Y. L. Effect of an invasive plant and moonlight on rodent foraging behavior in a coastal dune ecosystem. PLoS ONE 10, e0117903 (2015).Article
Google Scholar
Mori, E., Sangiovanni, G. & Corlatti, L. Gimme shelter: The effect of rocks and moonlight on occupancy and activity pattern of an endangered rodent, the garden dormouse Eliomys quercinus. Behav. Process. 170, 103999 (2020).Article
Google Scholar
Prugh, L. R. & Golden, C. D. Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J. Anim. Ecol. 83, 504–514 (2014).Article
Google Scholar
Orrock, J. L., Danielson, B. J. & Brinkerhoff, R. J. Rodent foraging is affected by indirect, but not by direct, cues of predation risk. Behav. Ecol. 15, 433–437 (2004).Article
Google Scholar
Penteriani, V., Delgado, M. D. M., Campioni, L. & Lourenco, R. Moonlight makes owls more chatty. PLoS ONE 5, e8696 (2010).Article
ADS
Google Scholar
Penteriani, V., Kuparinen, A., del Mar Delgado, M., Lourenço, R. & Campioni, L. Individual status, foraging effort and need for conspicuousness shape behavioural responses of a predator to moon phases. Anim. Behav. 82, 413–420 (2011).Article
Google Scholar
Reher, S., Dausmann, K. H., Warnecke, L. & Turner, J. M. Food availability affects habitat use of Eurasian red squirrels (Sciurus vulgaris) in a semi-urban environment. J. Mammal. 97, 1543–1554 (2016).Article
Google Scholar
Lee, J. K., Hwang, H. S., Eom, T. K., Lee, D. H. & Rhim, S. J. Slope gradient effect on microhabitat and small rodents in a tree thinned Japanese larch plantation. Pak. J. Zool. 54, 2213–2220 (2022).Article
Google Scholar
Heroldova, M., Bryja, J., Janova, E., Suchomel, J. & Homolka, M. Rodent damage to natural and replanted mountain forest regeneration. Sci. World J. 2012, 872536 (2012).Article
Google Scholar
Jo, Y. S., Baccus, J. T. & Koprowski, J. L. Mammals of Korea (National Institute of Biological Resources, 2018).
Google Scholar
Bondrup-Nielsen, S. Investigation of spacing behavior of Clethrionomys gapperi by experimentation. J. Anim. Ecol. 55, 269–279 (1986).Article
Google Scholar
Ylonen, H., Kojola, T. & Viitala, J. Changing female spacing behavior and demography in an enclosed breeding population of Clethrionomys glareolus. Holarctic Ecol. 11, 286–292 (1988).
Google Scholar
Vander Wall, S. B. Seed harvest by scatter-hoarding yellow pine chipmunks (Tamias amoenus). J. Mammal. 100, 531–536 (2019).Article
Google Scholar
Lee, E. J. & Rhim, S. J. Seasonal home ranges and activity of three rodent species in a post-fire planted stand. Folia Zool. 65, 101–106 (2016).Article
Google Scholar
Bondrup-Nielsen, S. & Ims, R. A. Reproduction and spacing behavior of females in a peak density population of Clethrionomys glareolus. Holarctic Ecol. 9, 109–112 (1986).
Google Scholar
Bujalska, G. & Grum, L. Social organization of the bank vole (Clethrionomys glareolus, Schreber 1780) and its demographic consequences: A model. Oecologia 80, 70–81 (1989).Article
ADS
CAS
Google Scholar
Henttonen, H. Importance of demography in understanding disease ecology in small mammals. Therya 13, 33–38 (2022).Article
Google Scholar
Rezende, E. L., Cortes, A., Bacigalupe, L. D., Nespolo, R. F. & Bozinovic, F. Ambient temperature limits above-ground activity of the subterranean rodent Spalacopus cyanus. J. Arid Environ. 55, 63–74 (2003).Article
ADS
Google Scholar
Guiden, P. W. & Orrock, J. L. Seasonal shifts in activity timing reduce heat loss of small mammals during winter. Anim. Behav. 164, 181–192 (2020).Article
Google Scholar More