Protistan epibionts affect prey selectivity patterns and vulnerability to predation in a cyclopoid copepod
Wahl, M., Hay, M. E. & Enderlein, P. Effects of epibiosis on consumer–prey interactions. Hydrobiologia 355, 49–59 (1997).Article
Google Scholar
Fernandez-Leborans, G., Zitzler, K. & Gabilondo, R. Protozoan ciliate epibionts on the freshwater shrimp Caridina (Crustacea, Decapoda, Atyidae) from the Malili lake system on Sulawesi (Indonesia). J. Nat. Hist. 40, 1983–2000 (2006).Article
Google Scholar
Puckett, G. L. & Carman, K. R. Ciliate epibiont effects on feeding, energy reserves, and sensitivity to hydrocarbon contaminants in an estuarine harpactacoid copepod. Estuaries 25, 372–381 (2002).Article
Google Scholar
Fernandez-Leborans, G. Epibiosis in Crustacea: an overview. Crustaceana 83, 549–640 (2010).Article
Google Scholar
Regali-Seleghim, M. H. & Godinho, M. J. Peritrich epibiont protozoans in the zooplankton of a subtropical shallow aquatic ecosystem (Monjolinho Reservoir, São Carlos, Brazil). J Plankton Res. 26, 501–508 (2004).Article
Google Scholar
Bickel, S. L., Tang, K. W. & Grossart, H. P. Ciliate epibionts associated with crustacean zooplankton in German lakes: distribution, motility, and bacterivory. Front. Microbiol. 3, 1–11 (2012).Article
Google Scholar
Souissi, A., Souissi, S. & Hwang, J. S. The effect of epibiont ciliates on the behavior and mating success of the copepod Eurytemora affinis. J. Exp. Mar. Biol. Ecol. 445, 38–43. https://doi.org/10.1016/j.jembe.2013.04.002 (2013).Article
Google Scholar
Willey, R. L., Cantrell, P. A. & Threlkeld, S. T. Epibiotic euglenoid flagellates increase the susceptibility of some zooplankton to fish predation. Limnol. Oceanogr. 35, 952–959 (1990).Article
ADS
Google Scholar
Ólafsdóttir, S. H. & Svavarsson, J. Ciliate (Protozoa) epibionts of deep-water asellote isopods (Crustacea): pattern and diversity. J. Crust. Biol. 22, 607–618 (2002).Article
Google Scholar
Kumari, S., Kumar, R., Sarkar, U. K. & Das, B. S. Record of epibiont ciliates (Ciliophora: Peritrichia) living on freshwater invertebrates in a floodplain wetland. J. Inland Fish. Soc. India. 53, 210–214. https://doi.org/10.47780/jifsi.52.3.2021 (2021).Article
Google Scholar
Utz, L. R. P. & Coats, D. W. Spatial and temporal patterns in the occurrence of peritrich ciliates as epibionts on calanoid copepods in the Chesapeake Bay, USA. J. Eukaryot. Microbiol. 52, 236–244 (2005).Article
Google Scholar
Utz, L. R. P. & Coats, D. W. Telotroch formation, survival and attachment in the epibiotic peritrich Zoothamnium intermedium (Ciliophora, Oligohymenophorea). Invert. Biol. 127, 237–248 (2008).Article
Google Scholar
Ohtsuka, S., et al. Symbiosis of planktonic copepods and mysids with epibionts and parasites in the Northpacific: diversity and interactions. In New Frontiers in Crustacean Biology, 1–14, Brill (2011).Sługocki, Ł et al. Passenger for millenniums: association between stenothermic microcrustacean and suctorian epibiont – the case of Eurytemora lacustris and Tokophyra sp. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-66730-2 (2020).Article
Google Scholar
Fernandez-Leborans, G. A review of the species of protozoan epibionts on crustaceans. III. Chonotrich ciliates. Crustaceana 74, 581–607. https://doi.org/10.1163/156854001300228852 (2001).Article
Google Scholar
Fernandez-Leborans, G. & Tato- Porto, M. L. A review of the species of the protozoan epibionts on crustaceans. I. Peritrich ciliates. Crustaceana 73, 643–683. https://doi.org/10.1163/156854000504705 (2000).Article
Google Scholar
Utz, L. R. P. & Coats, D. W. The role of motion in the formation of free living stages and attachment of the peritrich epibiont Zoothamnium intermedium (Ciliophora, Peritrichia). Biosciências 13, 69–74 (2005).
Google Scholar
Pan, Y. et al. Effects of epibiotic diatoms on the productivity of the Calanoid Copepod Acartia tonsa (Dana) in intensive aquaculture systems. Front. Mar. Sci. 8, 2296–7745. https://doi.org/10.3389/fmars.2021.728779 (2021).Article
Google Scholar
Bickel, S. L., Tang, K. W. & Grossart, H. P. Ciliate epibionts associated with crustacean zooplankton in German lakes: distribution, motility, and bacterivory. Front. Microbiol. 3, 243. https://doi.org/10.3389/fmicb.2012.00243 (2012).Article
Google Scholar
De Domitrovic, Y. Z. et al. Epibiont algae on planktic micro-crustaceans from a subtropical shallow lake (Argentina). Algol. Stud. 127, 29–38 (2008).Article
Google Scholar
Ohman, M. D. Behavioral responses of zooplankton to predation. Bull. Mar. Sci. 43(3), 530–550 (1988).
Google Scholar
Acevedo-Trejos, E., Marañón, E. & Merico, A. Phytoplankton size diversity and ecosystem function relationships across oceanic regions. Proc. Roy. Soc. B Biol. Sci. 285, 2180621. https://doi.org/10.1098/rspb.2018.0621 (2018).Article
Google Scholar
Francesco, P. et al. Interacting temperature, nutrients and Zooplankton Grazing Control Phytoplankton size-abundance relationships in eight Swiss Lakes. Front. Microbiol. 10, 1664–2302. https://doi.org/10.3389/fmicb.2019.03155 (2020).Article
Google Scholar
Carman, K. & Dobbs, F. C. Epibiotic microorganisms on copepods and other marine crustaceans. Microsci. Res. Tech. 37, 116–135 (1997).Article
Google Scholar
Cabral, A. F. et al. Spatial and temporal occurrence of Rhabdostyla cf. chronomi Kahl, 1933 (Ciliophora, Peritrichia) as an epibiont on chironomid larvae in a lotic system in the neotropics. Hydrobiologia 644, 351–359 (2010).Article
Google Scholar
Burris, Z. & Dam, H. G. Deleterious effects of the ciliate epibiont Zoothamnium sp. On fitness of the copepod Acartia tonsa. J. Plankton Res. 36, 788–799. https://doi.org/10.1093/plankt/fbt137 (2014).Article
Google Scholar
Yin, Y. et al. Hidden defensive morphology in rotifers: benefits, costs, and fitness consequences. Sci. Rep. 7, 4488. https://doi.org/10.1038/s41598-017-04809-z (2017).Article
ADS
Google Scholar
Gilbert, J. J. & Shröder, T. The ciliate epibiont Epistylis Pygmaeum: selection for zooplankton hosts, reproduction and effect on two rotifers. Freshw. Biol. 48, 878–893 (2003).Article
Google Scholar
Gilbert, J. J. Morphological and behavioural responses of a rotifer to the predator Asplanchna. J. Plankton Res. 36, 1576–1584. https://doi.org/10.1093/plankt/fbu075 (2014).Article
Google Scholar
Fernandez-Leborans, G. Epibiosis in crustacea: an overview. Crustaceana 83(5), 549–640. https://doi.org/10.1163/001121610X491059 (2010).Article
Google Scholar
Iyer, N. & Rao, T. R. Epizoic mode of life in Brachionus rubens Ehrenberg as a deterrent against predation by Asplanchna intermedia Hudson. Hydrobiologia 313, 377–380 (1995).Article
Google Scholar
Boyan, B. D., Lotz, E. M. & Schwartz, Z. Roughness and hydrophilicity as osteogenic biomimetic surface properties. Tissue Eng. 23, 1479–1489. https://doi.org/10.1089/ten.TEA.2017.0048 (2017).Article
Google Scholar
Ubuo, E. E. et al. the direct cause of amplified wettability: roughness or surface chemistry?. J. Compos. Sci. 5, 213. https://doi.org/10.3390/jcs5080213 (2021).Article
Google Scholar
Gilbert, J. J. Attachment behavior in the rotifer Brachionus rubens: induction by Asplanchna and effect on sexual reproduction. Hydrobiologia 844, 9–20. https://doi.org/10.1007/s10750-018-3805-7 (2019).Article
Google Scholar
Kumar, R. Effect of Mesocyclops thermocyclopoides (Copepoda, Cyclopoida) predation on population dynamics of different prey: a laboratory study. J. Freshwater Ecol. 18, 383–393. https://doi.org/10.1080/02705060.2003.966397 (2003).Article
Google Scholar
Bulut, H. & Saler, S. Presence of an epibiont Epistylis sp. (Protozoa, Ciliophora) on some zooplankton. Fresenius Environ. Bull. 26(11), 6334–6339 (2017).
Google Scholar
Threlkeld, S. T., Chiavelli, D. A. & Willey, R. L. The organization of zooplankton epibiont communities. Trends Ecol Evol. 8, 317–321 (1993).Article
Google Scholar
Iyer, N. & Rao, T. R. Effect of epizoic rotifer Brachionus rubens on the population growth of three cladoceran species. Hydrobiologia 255(256), 325–332 (1993).Article
Google Scholar
Ramírez-Ballesteros, M., Fernandez-Leborans, G., Mayén-Estrada, R. New record of Epistylis hentscheli (Ciliophora, Peritrichia) as an epibiont of Procambarus (Austrocambarus) sp. (Crustacea, Decapoda) in Chiapas, Mexico. ZooKeys. 782, 1–9. https://doi.org/10.3897/zookeys.782.26417 (2018).Wu, H.X., Feng, M.G. Mass mortality of larval Eriocheir sinensis (Decapoda: Grapsidae) population bred under facility conditions: possible role of Zoothamnium sp. (Peritrichida: Vorticellidae) epiphyte. J. Invertebr. Pathol. 86, 59–60 (2004).Kumar, R. et al. Potential of three aquatic predators to control mosquitoes in the presence of alternative prey: a comparative experimental assessment. Mar. Freshw. Res. 59, 817–835 (2008).Article
Google Scholar
Kumar, R., Sami Souissi, S. & Hwang, J. S. Vulnerability of carp larvae to copepod predation as a function of larval age and body length. Aquaculture. 338, 274–283 (2012).Rao, T. R. & Kumar, R. Patterns of prey selectivity in the cyclopoid copepod Mesocyclops thermocyclopoides. Aquat. Ecol. 36, 411–424 (2002).Article
Google Scholar
Kumar, R. & Rao, T. R. Predation on Mosquito Larvae by Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) in the Presence of Alternate Prey. Int Rev Hydrobiol. 88, 570–581 (2003).Article
Google Scholar
Baldrighi, E. et al. The cost for biodiversity: records of ciliate-nematode epibiosis with the description of three new Suctorian species. Diversity 12, 224. https://doi.org/10.3390/d12060224 (2020).Article
Google Scholar
Morado, J. F. & Small, E. B. Ciliate parasites and related diseases of Crustacea: a review. Rev. Fish. Sci. 3, 275–354 (1995).Article
Google Scholar
Lúcia, S. L., Safi Kam, W., Tang, Ryan, B. Carnegie. Investigating the epibiotic peritrich Zoothamnium intermedium Precht, 1935: Seasonality and distribution of its relationships with copepods in Chesapeake Bay (USA), Eur. J. Protistol. 84, 125880, https://doi.org/10.1016/j.ejop.2022.125880 (2022).Coats, D. W. & Heinbokel, J. F. A study of reproduction and other life cycle phenomena in planktonic protists using an acridine orange fluorescence technique. Mar. Biol. 67, 71–79. https://doi.org/10.1007/BF00397096 (1982).Article
Google Scholar
Montagnes, D. J. S. A Quantitative Protargol Stain (QPS) for Ciliates: method description and test of its quantitative nature. Mar. Microb. Food Webs. 2, 83–93 (1987).
Google Scholar
Montagnes, D. J. S. & Lynn, D. H. A Quantitative Protargol stain (QPS) for ciliates and other protists. In Handbook of methods in aquatic microbial ecology (eds Kemp, P. et al.) 229–240 (Lewis Publishers, 1993).
Google Scholar
Warren, A. Revision of the genus Vorticella (Ciliophora: Peritrichida). Bull. Br. Museum Nat. History 50, 48–52 (1986).
Google Scholar
Foissner, W. et al. Intraclass evolution and classification of the Colpodea (Ciliophora). J. Eukaryot. Microbiol. 58, 397–415 (2011).Article
Google Scholar
Foissner, W., Berger, H. & Kohmann, F. Taxonomische und oekologische Revision der Ciliaten des Saprobiensystems—Band II: Peritrichia, Heterotrichida, Odontostomatida – Informationsberichte des Bayr. Landesamtes fuer Wasserwirtschaft. Heft 5(92), 1–502 (1992).
Google Scholar
Santoferrara, L. F., Alder, V. V. & McManus, G. B. Phylogeny, classification and diversity of Choreotrichia and Oligotrichia (Ciliophora, Spirotrichea). Mol. Phylogenet. Evol. 112, 12–22 (2017).Article
Google Scholar
Hudson, P. L. et al. Cyclopoid and Harpacticoid Copepods of the Laurentian Great Lakes. Ohio Biol. Survey Bull. New Series. 12, 50 (1998).
Google Scholar
Hudson, P. L et al. Cyclopoid copepods of the Laurentian Great Lakes US Geological Survey, Great Lakes Science Center, Ann Arbor, Michigan. Available: www.glsc.usgs.gov/greatlakescopepods/Key.asp (2003).Kumar, R., Muhid, P., Dahms, H. U., Sharma, J. & Hwang, J.-S. Biological mosquito control is affected by alternative prey. Zool. Stud. 54, 55. https://doi.org/10.1186/s40555-015-0132-9 (2015).Article
Google Scholar
Chesson, J. The estimation and analysis of preference and its relationship to foraging models. Ecology 64, 1297–1304 (1983).Article
Google Scholar More