More stories

  • in

    Differential carbon utilization enables co-existence of recently speciated Campylobacteraceae in the cow rumen epithelial microbiome

    Humpenöder, F. et al. Projected environmental benefits of replacing beef with microbial protein. Nature 605, 90–96 (2022).Article 

    Google Scholar 
    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).Article 
    CAS 

    Google Scholar 
    Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science 370, 705–708 (2020).Article 
    CAS 

    Google Scholar 
    Eisler, M. C. et al. Agriculture: steps to sustainable livestock. Nature 507, 32–34 (2014).Article 

    Google Scholar 
    Kamke, J. et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 4, 56 (2016).Article 

    Google Scholar 
    Kruger Ben Shabat, S. et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958–2972 (2016).Article 

    Google Scholar 
    Janssen, P. H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160, 1–22 (2010).Article 
    CAS 

    Google Scholar 
    Wallace, R. J. et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci. Adv. 5, eaav8391 (2019).Article 
    CAS 

    Google Scholar 
    Urrutia, N. L. & Harvatine, K. J. Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. J. Nutr. 147, 763–769 (2017).Article 
    CAS 

    Google Scholar 
    Seshadri, R. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36, 359–367 (2018).Article 
    CAS 

    Google Scholar 
    Anderson, C. J., Koester, L. R. & Schmitz-Esser, S. Rumen epithelial communities share a core bacterial microbiota: a meta-analysis of 16S rRNA Gene Illumina MiSeq sequencing datasets. Front. Microbiol. 12, 625400 (2021).Wallace, R. J., Cheng, K.-J., Dinsdale, D. & Ørskov, E. R. An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen. Nature 279, 424–426 (1979).Article 
    CAS 

    Google Scholar 
    Mann, E., Wetzels, S. U., Wagner, M., Zebeli, Q. & Schmitz-Esser, S. Metatranscriptome sequencing reveals insights into the gene expression and functional potential of rumen wall bacteria. Front. Microbiol. 9, 43 (2018).Pacífico, C. et al. Unveiling the bovine epimural microbiota composition and putative function. Microorganisms 9, 342 (2021).Article 

    Google Scholar 
    VanInsberghe, D., Arevalo, P., Chien, D. & Polz, M. F. How can microbial population genomics inform community ecology?. Phil. Trans. R. Soc. B 375, 20190253 (2020).Article 

    Google Scholar 
    Hunt, D. E. et al. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320, 1081–1085 (2008).Article 
    CAS 

    Google Scholar 
    Fraser, C., Hanage, W. P. & Spratt, B. G. Recombination and the nature of bacterial speciation. Science 315, 476–480 (2007).Article 
    CAS 

    Google Scholar 
    Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 335, 48–51 (2012).Article 

    Google Scholar 
    Cadillo-Quiroz, H. et al. Patterns of gene flow define species of thermophilic Archaea. PLoS Biol. 10, e1001265 (2012).Article 
    CAS 

    Google Scholar 
    Koeppel, A. et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc. Natl Acad. Sci. USA 105, 2504–2509 (2008).Article 
    CAS 

    Google Scholar 
    Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J. & Polz, M. F. A reverse ecology approach based on a biological definition of microbial populations. Cell 178, 820–834.e14 (2019).Article 
    CAS 

    Google Scholar 
    Wetzels, S. U. et al. Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge. J. Dairy Sci. 100, 1829–1844 (2017).Article 
    CAS 

    Google Scholar 
    Neubauer, V. et al. Effects of clay mineral supplementation on particle-associated and epimural microbiota, and gene expression in the rumen of cows fed high-concentrate diet. Anaerobe 59, 38–48 (2019).Article 
    CAS 

    Google Scholar 
    Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, 953–961 (2019).Article 
    CAS 

    Google Scholar 
    Waite, D. W. et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front. Microbiol. 8, 682 (2017).Article 

    Google Scholar 
    Rodriguez-R, L. M. & Konstantinidis, K. T. Bypassing cultivation to identify bacterial species. Microbe Mag. 9, 111–118 (2014).Article 

    Google Scholar 
    Bendall, M. L. et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 10, 1589–1601 (2016).Article 

    Google Scholar 
    Birky, C. W., Adams, J., Gemmel, M. & Perry, J. Using population genetic theory and DNA sequences for species detection and identification in asexual organisms. PLoS ONE 5, e10609 (2010).Article 

    Google Scholar 
    Li, W.-H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J. Mol. Evol. 36, 96–99 (1993).Article 
    CAS 

    Google Scholar 
    Novichkov, P. S., Wolf, Y. I., Dubchak, I. & Koonin, E. V. Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J. Bacteriol. 191, 65–73 (2009).Article 
    CAS 

    Google Scholar 
    Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977).Article 
    CAS 

    Google Scholar 
    Yawata, Y. et al. Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc. Natl Acad. Sci. USA 111, 5622–5627 (2014).Article 
    CAS 

    Google Scholar 
    Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).Article 
    CAS 

    Google Scholar 
    Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W. & Milo, R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl Acad. Sci. USA 110, 10039–10044 (2013).Article 
    CAS 

    Google Scholar 
    Szymanski, C. M., Yao, R., Ewing, C. P., Trust, T. J. & Guerry, P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030 (1999).Article 
    CAS 

    Google Scholar 
    Roux, D. et al. Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. J. Biol. Chem. 290, 19261–19272 (2015).Article 
    CAS 

    Google Scholar 
    Troutman, J. M. & Imperiali, B. Campylobacter jejuni PglH is a single active site processive polymerase that utilizes product inhibition to limit sequential glycosyl transfer reactions. Biochemistry 48, 2807–2816 (2009).Article 
    CAS 

    Google Scholar 
    Hehemann, J. H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).Article 
    CAS 

    Google Scholar 
    Treangen, T. J. & Rocha, E. P. C. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet. 7, e1001284 (2011).Article 
    CAS 

    Google Scholar 
    Castric, P. pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 141, 1247–1254 (1995).Article 
    CAS 

    Google Scholar 
    Mourkas, E. et al. Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. eLife 11, e73552 (2022).Article 
    CAS 

    Google Scholar 
    Sheppard, S. K. et al. Genome-wide association study identifies vitamin B 5 biosynthesis as a host specificity factor in Campylobacter. Proc. Natl Acad. Sci. USA 110, 11923–11927 (2013).Article 
    CAS 

    Google Scholar 
    Bobay, L.-M. & Ochman, H. Biological species are universal across life’s domains. Genome Biol. Evol. https://doi.org/10.1093/gbe/evx026 (2017).Dieho, K. et al. Morphological adaptation of rumen papillae during the dry period and early lactation as affected by rate of increase of concentrate allowance. J. Dairy Sci. 99, 2339–2352 (2016).Article 
    CAS 

    Google Scholar 
    Lawson, C. E. et al. Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping. ISME J. 15, 673–687 (2021).Article 
    CAS 

    Google Scholar 
    Kwong, W. K., Zheng, H. & Moran, N. A. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria. Nat. Microbiol. 2, 17067 (2017).Article 
    CAS 

    Google Scholar 
    Kather, B., Stingl, K., van der Rest, M. E., Altendorf, K. & Molenaar, D. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase. J. Bacteriol. 182, 3204–3209 (2000).Article 
    CAS 

    Google Scholar 
    Mullins, E. A. & Kappock, T. J. Crystal structures of Acetobacter aceti succinyl-coenzyme A (CoA):acetate CoA-transferase reveal specificity determinants and illustrate the mechanism used by class I CoA-transferases. Biochemistry 51, 8422–8434 (2012).Article 
    CAS 

    Google Scholar 
    Letten, A. D., Hall, A. R. & Levine, J. M. Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nat. Ecol. Evol. 5, 431–441 (2021).Article 

    Google Scholar 
    Park, S. Y. et al. Strain-level fitness in the gut microbiome is an emergent property of glycans and a single metabolite. Cell 185, 513–529.e21 (2022).Article 
    CAS 

    Google Scholar 
    Kim, C. H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol. Immunol. 18, 1161–1171 (2021).Article 
    CAS 

    Google Scholar 
    Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).Article 

    Google Scholar 
    Frampton, J., Murphy, K. G., Frost, G. & Chambers, E. S. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat. Metab. 2, 840–848 (2020).Article 
    CAS 

    Google Scholar 
    Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).Article 

    Google Scholar 
    Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).Article 
    CAS 

    Google Scholar 
    Shapiro, B. J. & Polz, M. F. Microbial speciation. Cold Spring Harb. Perspect. Biol. 7, a018143 (2015).Article 

    Google Scholar 
    Sheppard, S. K. et al. Evolution of an agriculture-associated disease causing Campylobacter coli clade: evidence from national surveillance data in Scotland. PLoS ONE 5, e15708 (2010).Article 
    CAS 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).Article 
    CAS 

    Google Scholar 
    Pacífico, C. et al. Bovine rumen epithelial miRNA–mRNA dynamics reveals post-transcriptional regulation of gene expression upon transition to high-grain feeding and phytogenic supplementation. Genomics 114, 110333 (2022).Article 

    Google Scholar 
    Rivera-Chacon, R. et al. Supplementing a phytogenic feed additive modulates the risk of subacute rumen acidosis, rumen fermentation and systemic inflammation in cattle fed acidogenic diets. Animals 12, 1201 (2022).Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).Article 
    CAS 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
    CAS 

    Google Scholar 
    Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).Article 
    CAS 

    Google Scholar 
    O’doherty, A. et al. Development of nalidixic acid amphotericin B vancomycin (NAV) medium for the isolation of Campylobacter ureolyticus from the stools of patients presenting with acute gastroenteritis. Br. J. Biomed. Sci. 71, 6–12 (2014).Article 

    Google Scholar 
    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).Article 
    CAS 

    Google Scholar 
    Karst, S. M., Kirkegaard, R. H. & Albertsen, M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. Preprint at bioRxiv https://doi.org/10.1101/059121 (2014).Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).Article 
    CAS 

    Google Scholar 
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).Article 

    Google Scholar 
    Jukes, T. H. & Cantor, C. R. in Mammalian Protein Metabolism (ed. Munro, H. N.) 21–132 (Elsevier, 1969).Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).Article 
    CAS 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).Article 
    CAS 

    Google Scholar 
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).Article 
    CAS 

    Google Scholar 
    Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).Article 
    CAS 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 
    CAS 

    Google Scholar 
    Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).Article 
    CAS 

    Google Scholar 
    Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).Article 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 

    Google Scholar 
    Tan, R. S. G., Zhou, M., Li, F. & Guan, L. L. Identifying active rumen epithelial associated bacteria and archaea in beef cattle divergent in feed efficiency using total RNA-seq. Curr. Res. Microbial Sci. 2, 100064 (2021).Article 
    CAS 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics https://doi.org/10.1093/bioinformatics/btz848 (2019).Brewer, M. T., Anderson, K. L., Yoon, I., Scott, M. F. & Carlson, S. A. Amelioration of salmonellosis in pre-weaned dairy calves fed Saccharomyces cerevisiae fermentation products in feed and milk replacer. Vet. Microbiol. 172, 248–255 (2014).Article 

    Google Scholar  More

  • in

    Altered gut microbiota in individuals with episodic and chronic migraine

    ParticipantsIn total, 80, 63, and 56 participants in the EM, CM, and control groups, respectively, initially agreed to participate in this study. Nevertheless, 28, 12, and 13 individuals in the EM, CM, and control groups, respectively, withdrew their participation and did not bring any fecal samples to the study site. After providing fecal samples, 10 and 6 individuals with EM and CM, respectively, reported intake of probiotics and were excluded from the analysis. No participant in the control group consumed probiotics during the study period. Eventually, 42, 45, and 43 participants in the EM, CM, and control groups, respectively, were enrolled (Fig. 1). The demographic and clinical characteristics of participants are summarized in Table 1. All participants with EM and CM used acute treatments for migraine. Moreover, 25 (59.5%) and 27 (60.0%) participants with EM and CM, respectively, received prophylactic treatment for migraine. Of the 42 participants with EM, 20 used anti-epileptic medications, 11 used beta blockers, 2 used an anti-depressant, and 1 used a calcium-channel blocker for prophylactic treatment. Of the 45 participants with CM, 23 used anti-epileptic medications, 8 used beta blockers, 1 used an anti-depressant, and no participant used calcium-channel blockers for prophylactic treatment. No participant in the EM, CM, and control groups was infected with SARS-CoV-2 before or during participation in the study.Figure 1Flow of participants in a study on the composition of gut microbiota in participants with episodic or chronic migraine.Full size imageTable 1 Demographic and clinical characteristics of participants with episodic and chronic migraine and the control.Full size tableCollection of 16 s RNA sequencing dataWe obtained 7,802,425 read sequences, accounting for 99.8% of the valid sequences from the fecal samples of 130 participants. According to barcode and primer sequence filtering, an average of 59,305 (range, 3716–90,832) observed sequences per sample was recovered for downstream analysis. Thus, 2,242,325 sequences were obtained from the controls for phylogenetic analysis, whereas 2,747,952 and 2,812,148 sequences were obtained from the EM and CM groups, respectively.Microbial diversityAlpha diversity was defined as microbial community richness and evenness. Alpha diversities in the genus richness, as evaluated by Chao1 (Fig. 2A), Shannon (Fig. 2B), and Simpson (Fig. 2C) indices, did not differ significantly among the EM, CM, and control groups. Beta diversity represented the community composition dissimilarity between samples. PCoA with the weighted UniFrac distance (Fig. 3A and Supplementary Fig. S1A, p = 0.176, permutational multivariate analysis of variance [PERMANOVA]), the unweighted UniFrac distance (Fig. 3B and Supplementary Fig. S1B, p = 0.132, PERMANOVA), and the Bray–Curtis dissimilarity index (Fig. 3C and Supplementary Fig. S1C, p = 0.220, PERMANOVA) for beta diversity at the genus level among the EM, CM, and control groups revealed that these three groups could not be separated.Figure 2Alpha diversity at the genus level using Chao1 (A), Shannon (B), and Simpson (C) indices*,†. *Controls (green) and participants with episodic migraine (blue) and chronic migraine (yellow). †In the box plots, the lower boundary of the box indicates the 25th percentile; a blue line within the box marks the median, and the upper boundary of the box indicates the 75th percentile. Whiskers above (red) and below the box (green) indicate the highest and the lowest values, respectively.Full size imageFigure 3Beta diversity of microbiota in principal coordinate analysis plot with the weighted UniFrac distance (A), the unweighted UniFrac distance (B) and the Bray–Curtis dissimilarity index (C)*. *Controls (green) and participants with episodic migraine (blue) and chronic migraine (yellow).Full size imageRelative abundance of fecal microbes between participants with EM and the controlRelative abundance of fecal microbes at the phylum level did not differ significantly among participants in the control, EM, and CM groups (Supplementary Fig. S2). Moreover, Tissierellales (p = 0.001) and Tissierellia (p = 0.001) were more abundant in the EM group than that in the control group at the order and class levels, respectively (Fig. 4A). At the family level, Peptoniphilaceae (p = 0.001) and Eubacteriaceae (p = 0.045) occurred at a significantly higher proportion in the EM group than that in the control group. Furthermore, at the genus level, the abundance of 11 genera differed significantly between the two groups, including one more abundant and 10 less abundant genera in the EM group. Catenibacterium (p = 0.031) and Olsenella (p = 0.038) had the highest relative abundance in the control and EM groups, respectively.Figure 4Taxonomic differences in fecal microbiota among participants. The fold change (log2) denotes the difference in relative abundance between participants with episodic migraine and the control (A), between those with chronic migraine and the control (B), and between those with episodic and chronic migraine (C). CM chronic migraine; EM episodic migraine.Full size imageRelative abundance of fecal microbes between participants with CM and the controlThe analysis results at the class, order, family, genus, and species levels between CM and control groups are illustrated in Fig. 4B. Tissierellia (p = 0.001), Tissierellales (p = 0.001), and Peptoniphilaceae (p = 0.001) were more abundant in the CM group than that in the control group at the class, order, and family levels, respectively; however, at the genus level, the abundances of 18 genera differed significantly, including four more abundant and 14 less abundant genera in the CM group than in the control group.Relative abundance of fecal microbes between participants with EM and CMThe analysis results at the class, order, family, and genus levels between CM and EM groups are summarized in Fig. 4C. At the class level, Bacilli (p = 0.033) were less abundant in the CM group than that in the EM group; however, at the order level, Selenomonadales (p = 0.016) and Lactobacillales (p = 0.034) were less abundant in the CM group than that in the EM group. Moreover, at the class level, Selenomonadaceae (p = 0.016) and Prevotellaceae (p = 0.012) were less abundant in the CM group than that in the EM group. Furthermore, at the genus level, PAC001212_g (p = 0.019) revealed relative positive predominancy in the CM groups, whereas Prevotella (p = 0.019), Holdemanella (p = 0.009), Olsenella (p = 0.033), Adlercreutzia (p = 0.018), and Coprococcus (p = 0.040) revealed relative positive predominancy in the EM group.Association among fecal microbiota and clinical characteristics and comorbidities of migraineAmong the five genera (Roseburia, Eubacterium_g4, Agathobacter, PAC000195_g, and Catenibacterium) depicting predominance or less-predominance both in EM and CM groups, we conducted additional analyses for clinical characteristics and migraine comorbidities.Combining the results of the 42 and 45 participants with EM and CM, respectively, the Poisson regression analysis for relative abundance of microbiota revealed that a higher composition of PAC000195_g (p = 0.040) was significantly associated with lower headache frequency (Table 2). Furthermore, Agathobacter (p = 0.009) had a negative association with severe headache intensity (Table 3). Anxiety was associated with Catenibacterium (p = 0.027); however, depression did not reveal any association with the five genera (Table 3).Table 2 The association between headache frequency and the relative abundance of microbiota.*Full size tableTable 3 The association of severe headache intensity and comorbidities with the relative abundance of microbiota*.Full size tableRelative abundance of fecal microbes in participants with EM based on prophylactic treatmentAlpha and beta diversities in participants with EM did not differ significantly based on their prophylactic treatment (Supplementary Figs S3A–C, S4A–C, and S5A–C). At the genus level, Klebsiella (p = 0.009), Enterobacteriaceae_g (p = 0.006), and Faecalibacterium (p = 0.046) were more abundant in the prophylactic group than the non-prophylactic group (Supplementary Fig. S6A).Relative abundance of fecal microbes in participants with CM based on prophylactic treatmentAlpha and beta diversities in participants with CM did not differ significantly based on prophylactic treatment (Supplementary Figs S7A–C, S8A–C, and S9A–C). Emergencia (p = 0.043), Ruthenibacterium (p = 0.005), Eggerthella (p = 0.003), PAC000743_g (p = 0.034), and Anaerostipes (p = 0.039) were more abundant in the prophylactic group, whereas PAC000196_g (p = 0.049), Fusicatenibacter (p = 0.028), and Faecalibacterium (p = 0.021) were more abundant in the non-prophylactic group at the genus level (Supplementary Fig. S6B). More

  • in

    Differential effects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes

    Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, P. et al. The genome evolution and domestication of tropical fruit mango. Genome Biol. 21, 60 (2020).Article 

    Google Scholar 
    Yang, H. et al. Advances in the regulatory mechanisms of pollen response to heat stress in crops. Chin. Bull. Bot. 54(2), 157–167 (2019).CAS 

    Google Scholar 
    Liang, Q. Z. et al. Transcriptome and metabolome analyses reveal the involvement of multiple pathways in flowering intensity in mango. Front. Plant Sci. 13, 933923 (2022).Article 

    Google Scholar 
    Ranasinghe, C. S., Waidyarathna, K. P., Pradeep, A. P. C. & Meneripitiya, M. S. K. Approach to screen coconut varieties for high temperature tolerance by in-vitro pollen germination. COCOS. 19, 01–11 (2010).
    Google Scholar 
    Das, S., Krishnan, P., Nayak, M. & Ramakrishnan, B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ. Exp. Bot. 101, 36–46 (2014).Article 

    Google Scholar 
    Balasubramanian, S., Sureshkumar, S., Lempe, J. & Weigel, D. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2(7), e106 (2006).Article 

    Google Scholar 
    Sakata, T., Takahashi, H., Nishiyama, I. & Higashitani, A. Effects of high temperature on the development of pollen mother cells and microspores in Barley Hordeum vulgare L.. J. Plant Res. 113(4), 395–402 (2000).Article 

    Google Scholar 
    Hedhly, A., Hormaza, J. I. & Herrero, M. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol. 7(5), 476–483 (2005).Article 
    CAS 

    Google Scholar 
    Pirlak, L. The effects of temperature on pollen germination and pollen tube growth of apricot and sweet cherry. Gartenbauwissenschaft 67(2), 61–64 (2002).
    Google Scholar 
    Koti, S., Reddy, K. R., Reddy, V. R., Kakani, V. G. & Zhao, D. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. J. Exp. Bot. 56(412), 725–736 (2004).Article 

    Google Scholar 
    Pham, V. T., Herrero, M. & Hormaza, J. I. Effect of temperature on pollen germination and pollen tube growth in longan (Dimocarpus longan Lour.). Sci. Hort. 197, 470–475 (2015).Article 

    Google Scholar 
    Meehl, T. G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Reddy, K. R., Hodges, H. F. & Reddy, V. R. Temperature effects on cotton fruit retention. Agron. J. 84, 26–30 (1992).Article 

    Google Scholar 
    Reddy, K. R., Reddy, V. R. & Hodges, H. F. Effects of temperature on early season cotton growth and development. Agron. J. 84, 229–237 (1992).Article 

    Google Scholar 
    Stainforth, D. et al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, 403–406 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, Z., Yuan, Y., Liu, S., Yu, X. & Rao, L. Screening for high temperature tolerant cotton cultivars by testing in vitro pollen germination, pollen tube growth and boll retention. J. Integr. Plant Biol. 48, 706–714 (2006).Article 

    Google Scholar 
    Kakani, V. G., Prasad, P. V. V., Craufurd, P. Q. & Wheeler, T. R. Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ. 25, 1651–1661 (2002).Article 

    Google Scholar 
    Kakani, V. G. et al. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann. Bot. 96(1), 59–67 (2005).Article 
    CAS 

    Google Scholar 
    Hebbar, K. B. et al. Differences in in vitro pollen germination and pollen tube growth of coconut (Cocos nucifera L.) genotypes in response to high temperature stress. Environ. Ex. Bot. 153, 35–44 (2018).Article 

    Google Scholar 
    Aloni, B., Peet, M., Pharr, M. & Karmi, L. The effect of high temperaturare and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiol. Plant 112, 505–512 (2001).Article 
    CAS 

    Google Scholar 
    Dai, Q., Shaobing, P., Chavez, A. Q. & Vergara, B. S. Intraspecific responses of 188 rice cultivars to enhanced UVB radiation. Environ. Exp. Bot. 34(4), 433–442 (1994).Article 

    Google Scholar 
    Hepler, P. K., Vidali, L. & Cheung, A. Y. Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol. 17(1), 159–187 (2001).Article 
    CAS 

    Google Scholar 
    Prado, A. M., Porterfield, D. M. & Feijo, J. A. Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131(11), 2707–2714 (2004).Article 
    CAS 

    Google Scholar 
    Potocky, M., Jones, M. A., Bezvoda, R., Smirnoff, N. & Zarsky, V. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 174(4), 742–751 (2007).Article 
    CAS 

    Google Scholar 
    Lassig, R., Gutermuth, T., Bey, T. D., Konrad, K. R. & Romeis, T. Pollen tube NAD (P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 78(1), 94–106 (2014).Article 
    CAS 

    Google Scholar 
    McInnis, S. M., Desikan, R., Hancock, J. T. & Hiscock, S. J. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk?. New Phytol. 172(2), 221–228 (2006).Article 
    CAS 

    Google Scholar 
    Duan, Q. et al. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 5, 3129 (2014).Article 
    ADS 

    Google Scholar 
    You, J. & Chan, Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci. 6, 1092 (2015).Article 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).Article 
    CAS 

    Google Scholar 
    Pandhair, V. & Sekhon, B. S. Reactive oxygen species and antioxidants in plants: An overview. J. Plant Biochem. Biot. 15(2), 71–78 (2006).Article 
    CAS 

    Google Scholar 
    Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. https://doi.org/10.1155/2012/217037 (2012).Article 

    Google Scholar 
    Luo, C. et al. Construction of a high-density genetic map based on large-scale marker development in mango using specific-locus amplified fragment sequencing (SLAF-seq). Front. Plant Sci. 7, 1310 (2016).Article 

    Google Scholar 
    IPCC. IPCC Fourth Assessment Report. http://www.ipcc.ch/. Accessed 15 Jan 2010 (2007)Reddy, K. R. & Kakani, V. G. Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Sci. Hort. 112, 130–135 (2007).Article 

    Google Scholar 
    Armendariz, B. H. C., Oropeza, C., Chan, J. L., Maust, B., Aguilar, C. C. C., & Saenz, L. Pollen Fertility and Female Flower Anatomy of Micropropagated Coconut Palms. 373–378 (Revista Fitotecnia Mexicana, Sociedad Mexicana de Fitogenetica, A C. Mexico, 2006)Binelli, G., Manincor, E. V. & Ottaviano, E. Temperature effects on pollen germination and pollen tube growth in maize. Genetica Agraria 39, 269–281 (1985).
    Google Scholar 
    Matlob, A. N. & Kelly, W. C. Effect of high temperature on pollen tube growth of snake melon and cucumber. J. Am. Soc. Hortic. Sci. 98, 296–300 (1973).Article 

    Google Scholar 
    Zhou, Q. F. An Empirical Study on the Evolution of Mango Production in China. 1–53 (Hainan University, 2017)He, L. et al. Grafting trial on mango varieties in hot-dry region Jinsha River. Subtropic. Agric. Res. 6(3), 21–24 (2010) (in Chinese with English abstract).
    Google Scholar 
    Gong, D. Y., Liu, Q. G., Zhang, Y. & Zhang, X. B. Studies on adaptability and application of mango varieties in south subtropical regions of Guizhou. Acta Agricult. Jiangxi 24(7), 28–31 (2012) (in Chinese).CAS 

    Google Scholar 
    Liu, Z. T. Performance and cultivation techniques of coconut mango in Panxi hot area. Trop. Agricult. Guangxi 3(110), 11–12 (2007).
    Google Scholar 
    Gajanayake, B., Trader, B. W., Reddy, K. R. & Harkess, R. L. Screening ornamental pepper cultivars for temperature tolerance using pollen and physiological parameters. Hortic. Sci. 46, 878–884 (2011).
    Google Scholar 
    Salem, M. A., Kakani, V. G., Koti, S. & Reddy, K. R. Pollen-based screening of soybean genotypes for high temperatures. Crop Sci. 47, 219–231 (2007).Article 

    Google Scholar 
    Young, L. W., Wilen, R. W. & Bonham-Smith, P. C. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55, 485–495 (2004).Article 
    CAS 

    Google Scholar 
    Kafizadeh, N., Carapetian, J. & Kalantari, K. M. Effects of heat stress on pollen viability and pollen tube growth in pepper. Res. J. Biol. Sci. 3, 1159–1162 (2008).
    Google Scholar 
    Pressman, E., Peet, M. M. & Pharr, D. M. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot. 90, 613–636 (2002).Article 

    Google Scholar 
    Sukhvibul, N. et al. Effect of temperature on pollen germination and pollen tube growth of four cultivars of mango (Mangifera indica L.). J. Hortic. Sci. Biotechnol. 75(2), 214–222 (2000).Article 

    Google Scholar 
    Koubouris, G. C., Metzidakis, I. T. & Vasilakakis, M. D. Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environ. Exp. Bot. 67(1), 209–214 (2009).Article 

    Google Scholar 
    Huang, J. H. et al. Effects of low temperatures on sexual reproduction of ‘Tainong 1’ mango (Mangifera indica). Sci. Horticult. 126(2), 109–119 (2010) (in Chinese with English abstract).Article 

    Google Scholar 
    Çetinbaş-Gença, A., Cai, G., Vardara, F. & Ünal, M. Differential effects of low and high temperature stress on pollen germination and tube length of hazelnut (Corylus avellana L.) genotypes. Sci. Horticult. 255, 61–69 (2019).Article 

    Google Scholar 
    Sorkheh, K. et al. Interactive effects of temperature and genotype on almond (Prunus dulcis L.) pollen germination and tube length. Sci. Hortic. 227, 162–168 (2018).Article 

    Google Scholar 
    Wang, L. et al. Analysis of common errors of custom enzyme activity units and suggestions for standardized use. Chin. J. Sci. Technol. 24(5), 1009–1011 (2013).
    Google Scholar 
    Wang, W. et al. Combined cytological and transcriptomic analysis reveals a nitric oxide signaling pathway involved in cold-inhibited Camellia sinensis pollen tube growth. Front. Plant Sci. 7, 456 (2016).
    Google Scholar 
    He, J. M., Bai, X. L., Wang, R. B., Cao, B. & She, X. P. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro. Physiol. Plant 131(2), 273–282 (2007).CAS 

    Google Scholar 
    Gao, Y. et al. Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in Pyrus pyrifolia. Physiol. Plant 153(4), 603–615 (2015).Article 
    CAS 

    Google Scholar 
    Hall, A. E. Breading for heat tolerance. Plant Breed. Rev. (SAS Institute) 10, 129–168 (1999) (SAS/STAT user’s guide, version 9.2. SAS Institute, 1992).Mearns, L. O., Easterling, W., Hays, C. & Marx, D. Comparison of agricultural impacts of climate change calculated from high and low resolution climate change scenarios. Part I. The uncertainty due to spatial scale. Clim. Change. 51, 131–172 (2001).Article 

    Google Scholar 
    SAS Institute SAS/STAT User’s Guide, Version 9.1.3. (SAS Institute Inc., 2004).Li, H. S., Sun, Q., Zhao, S. J. & Zhang, W. H. Experiment Principle and Technology of Plant Physiology and Biochemistry (Higher Education Press, 2000).
    Google Scholar 
    Cai, Q. S. Plant Physiology Experiment. Vol. 4(1). 182–186 (China Agricultural University Press, 2013) (in Chinese).Jia, M. X. et al. ROS-induced oxidative stress is closely related to pollen deterioration following cryopreservation. In Vitro Cell Dev. Biol. Plant 53(4), 433–439 (2017).Article 
    CAS 

    Google Scholar  More

  • in

    Publisher Correction: Seasonal peak photosynthesis is hindered by late canopy development in northern ecosystems

    Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, ChinaQian Zhao, Yao Zhang & Shilong PiaoSchool of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, ChinaZaichun Zhu & Hui ZengKey Laboratory of Earth Surface System and Human—Earth Relations, Ministry of Natural Resources of China, Shenzhen Graduate School, Peking University, Shenzhen, ChinaZaichun Zhu & Hui ZengDepartment of Earth and Environment, Boston University, Boston, MA, USARanga B. MyneniCSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia, SpainJosep PeñuelasCREAF, Barcelona, Catalonia, SpainJosep PeñuelasState Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, ChinaShilong Piao More

  • in

    Predator-mediated diversity of stream fish assemblages in a boreal river basin, China

    Chase, J. M. et al. The interaction between predation and competition: A review and synthesis. Ecol. Lett. 5, 302–315. https://doi.org/10.1046/j.1461-0248.2002.00315.x (2002).Article 

    Google Scholar 
    Droge, E., Creel, S., Becker, M. S. & M’Soka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evol. 1, 1123–1128. https://doi.org/10.1038/s41559-017-0220-9 (2017).Article 

    Google Scholar 
    Allesina, S. & Levine Jonathan, M. A competitive network theory of species diversity. Proc. Natl. Acad. Sci. U.S.A. 108, 5638–5642. https://doi.org/10.1073/pnas.1014428108 (2011).Article 
    ADS 

    Google Scholar 
    Bairey, E., Kelsic, E. D. & Kishony, R. High-order species interactions shape ecosystem diversity. Nat. Commun. 7, 12285. https://doi.org/10.1038/ncomms12285 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Letten, A. D. & Stouffer, D. B. The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecol. Lett. 22, 423–436. https://doi.org/10.1111/ele.13211 (2019).Article 

    Google Scholar 
    Lotka, A. J. Elements of physical biology. Sci. Prog. Twent. Century (1919–1933) 21, 341–343 (1926).
    Google Scholar 
    Volterra, V. Variazioni e Fluttuazioni del Numero d’Individui in Specie Animali Conviventi. (Società Anonima Tipografica “Leonardo da Vinci”, 1926).Schmitz, O. J. Top predator control of plant biodiversity and productivity in an old-field ecosystem. Ecol. Lett. 6, 156–163. https://doi.org/10.1046/j.1461-0248.2003.00412.x (2003).Article 

    Google Scholar 
    Fey, K., Banks, P. B., Oksanen, L. & Korpimäki, E. Does removal of an alien predator from small islands in the Baltic Sea induce a trophic cascade?. Ecography 32, 546–552. https://doi.org/10.1111/j.1600-0587.2008.05637.x (2009).Article 

    Google Scholar 
    Terborgh John, W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. U.S.A. 112, 11415–11422. https://doi.org/10.1073/pnas.1501070112 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Pringle, R. M. et al. Predator-induced collapse of niche structure and species coexistence. Nature 570, 58–64. https://doi.org/10.1038/s41586-019-1264-6 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Sandom, C. et al. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94, 1112–1122. https://doi.org/10.1890/12-1342.1 (2013).Article 

    Google Scholar 
    Louette, G. & De Meester, L. Predation and priority effects in experimental zooplankton communities. Oikos 116, 419–426. https://doi.org/10.1111/j.2006.0030-1299.15381.x (2007).Article 

    Google Scholar 
    Johnston, N. K., Pu, Z. & Jiang, L. Predator identity influences metacommunity assembly. J. Anim. Ecol. 85, 1161–1170. https://doi.org/10.1111/1365-2656.12551 (2016).Article 

    Google Scholar 
    Karakoc, C., Radchuk, V., Harms, H. & Chatzinotas, A. Interactions between predation and disturbances shape prey communities. Sci. Rep. 8, 2968. https://doi.org/10.1038/s41598-018-21219-x (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton University Press, 2011).Book 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 2001).Book 

    Google Scholar 
    Daniel, J., Gleason, J. E., Cottenie, K. & Rooney, R. C. Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos 128, 1158–1169. https://doi.org/10.1111/oik.05987 (2019).Article 

    Google Scholar 
    Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028 (2004).Article 
    ADS 

    Google Scholar 
    Chase, J. M., Biro, E. G., Ryberg, W. A. & Smith, K. G. Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecol. Lett. 12, 1210–1218. https://doi.org/10.1111/j.1461-0248.2009.01362.x (2009).Article 

    Google Scholar 
    Werner, E. E. & Peacor, S. D. A review of trait-mediated indirect interactions in ecological communities. Ecology 84, 1083–1100. https://doi.org/10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2 (2003).Article 

    Google Scholar 
    Pearson, D. E., Ortega, Y. K., Eren, Ö. & Hierro, J. L. Community assembly theory as a framework for biological invasions. Trends Ecol. Evol. 33, 313–325. https://doi.org/10.1016/j.tree.2018.03.002 (2018).Article 

    Google Scholar 
    Duchesne, É. et al. Variable strength of predator-mediated effects on species occurrence in an arctic terrestrial vertebrate community. Ecography 44, 1236–1248. https://doi.org/10.1111/ecog.05760 (2021).Article 

    Google Scholar 
    Ryberg, W. A., Smith, K. G. & Chase, J. M. Predators alter the scaling of diversity in prey metacommunities. Oikos 121, 1995–2000. https://doi.org/10.1111/j.1600-0706.2012.19620.x (2012).Article 

    Google Scholar 
    Carrete Vega, G. & Wiens, J. J. Why are there so few fish in the sea?. Proc. R. Soc. B 279, 2323–2329. https://doi.org/10.1098/rspb.2012.0075 (2012).Article 

    Google Scholar 
    Barrett, M. et al. Living planet report 2018: Aiming higher. (2018).Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480 (2019).Article 

    Google Scholar 
    Di Marco, M. et al. Changing trends and persisting biases in three decades of conservation science. Glob. Ecol. Conserv. 10, 32–42. https://doi.org/10.1016/j.gecco.2017.01.008 (2017).Article 

    Google Scholar 
    Hammerschlag, N. et al. Ecosystem function and services of aquatic predators in the anthropocene. Trends Ecol. Evol. 34, 369–383. https://doi.org/10.1016/j.tree.2019.01.005 (2019).Article 

    Google Scholar 
    Wang, T. et al. Amur tigers and leopards returning to China: direct evidence and a landscape conservation plan. Landsc Ecol 31, 491–503. https://doi.org/10.1007/s10980-015-0278-1 (2016).Article 

    Google Scholar 
    Hong, S. et al. Stream health, topography, and land use influences on the distribution of the Eurasian otter Lutra lutra in the Nakdong River basin, South Korea. Ecol. Indic. 88, 241–249. https://doi.org/10.1016/j.ecolind.2018.01.004 (2018).Article 

    Google Scholar 
    Guter, A., Dolev, A., Saltz, D. & Kronfeld-Schor, N. Using videotaping to validate the use of spraints as an index of Eurasian otter (Lutra lutra) activity. Ecol. Indic. 8, 462–465. https://doi.org/10.1016/j.ecolind.2007.04.009 (2008).Article 

    Google Scholar 
    Sittenthaler, M., Bayerl, H., Unfer, G., Kuehn, R. & Parz-Gollner, R. Impact of fish stocking on Eurasian otter (Lutra lutra) densities: A case study on two salmonid streams. Mamm. Biol. 80, 106–113. https://doi.org/10.1016/j.mambio.2015.01.004 (2015).Article 

    Google Scholar 
    Zheng, B., Huang, H., Zhang, Y. & Dai, D. The Fishes of Tumen River (Jilin People’s Publishing House, 1980).
    Google Scholar 
    Fleishman, E., Murphy, D. D. & Brussard, P. F. A new method for selection of umbrella species for conservation planning. Ecol Appl 10, 569–579. https://doi.org/10.1890/1051-0761(2000)010[0569:ANMFSO]2.0.CO;2 (2000).Article 

    Google Scholar 
    Roberge, J.-M. & Angelstam, P. E. R. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18, 76–85. https://doi.org/10.1111/j.1523-1739.2004.00450.x (2004).Article 

    Google Scholar 
    McGowan, J. et al. Conservation prioritization can resolve the flagship species conundrum. Nat. Commun. 11, 994. https://doi.org/10.1038/s41467-020-14554-z (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Katano, I., Doi, H., Eriksson, B. K. & Hillebrand, H. A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. Oikos 124, 1427–1435. https://doi.org/10.1111/oik.02430 (2015).Article 

    Google Scholar 
    Leibold, M. A. A graphical model of keystone predators in food webs: Trophic regulation of abundance, incidence, and diversity patterns in communities. Am. Nat. 147, 784–812. https://doi.org/10.1086/285879 (1996).Article 

    Google Scholar 
    McPeek, M. A. The consequences of changing the top predator in a food web: A comparative experimental approach. Ecol. Monogr. 68, 1–23. https://doi.org/10.1890/0012-9615(1998)068[0001:TCOCTT]2.0.CO;2 (1998).Article 

    Google Scholar 
    Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).Book 

    Google Scholar 
    Gravel, D., Canham, C. D., Beaudet, M. & Messier, C. Reconciling niche and neutrality: The continuum hypothesis. Ecol. Lett. 9, 399–409. https://doi.org/10.1111/j.1461-0248.2006.00884.x (2006).Article 

    Google Scholar 
    Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306. https://doi.org/10.1038/nature01767 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Yin, X., Wang, J., Yin, H. & Ruan, Y. Does inducible defense mitigate physiological stress responses of prey to predation risk?. Hydrobiologia 843, 173–181. https://doi.org/10.1007/s10750-019-04046-7 (2019).Article 

    Google Scholar 
    Chalcraft, D. R. & Resetarits, W. J. Jr. Predator identity and ecological impacts: Functional redundancy or functional diversity?. Ecology 84, 2407–2418. https://doi.org/10.1890/02-0550 (2003).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x (2006).Article 

    Google Scholar 
    Burner, R. C. et al. Functional structure of European forest beetle communities is enhanced by rare species. Biol. Conserv. 267, 109491. https://doi.org/10.1016/j.biocon.2022.109491 (2022).Article 

    Google Scholar  More

  • in

    Enhanced regional connectivity between western North American national parks will increase persistence of mammal species diversity

    Newmark, W. D. A land-bridge island perspective on mammalian extinctions in western North American parks. Nature 325, 430–432 (1987).Article 
    ADS 
    CAS 

    Google Scholar 
    Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008).Article 

    Google Scholar 
    Radeloff, V. C. et al. Housing growth in and near United States protected areas limits their conservation value. Proc. Natl. Acad. Sci. U. S. A. 107, 940–945 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).Article 
    CAS 

    Google Scholar 
    Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. https://doi.org/10.1126/sciadv.aay0814 (2020).Article 

    Google Scholar 
    Wasser, S. K. et al. Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science 349, 84–87 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Davis, C. R. & Hansen, A. J. Trajectories in land use change around U,S. national parks and challenges and opportunities for management. Ecol. Appl. 21, 3299–3316 (2011).Article 

    Google Scholar 
    Newmark, W. D. Extinction of mammal populations in western North American national parks. Conserv. Biol. 9, 512–526 (1995).Article 

    Google Scholar 
    Newmark, W. D. Insularization of Tanzanian parks and the local extinction of large mammals. Conserv. Biol. 10, 1549–1556 (1996).Article 

    Google Scholar 
    Brashares, J. S., Arcese, P. & Sam, M. K. Human demography and reserve size predict wildlife extinction in West Africa. Proc. R. Soc. B Biol. Sci. 268, 2473–2478 (2001).Article 
    CAS 

    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Turner, M. G. & Dale, V. H. Comparing large, infrequent disturbances: What have we learned?. Ecosystems 1, 493–496 (1998).Article 

    Google Scholar 
    Berger, J. The last mile: How to sustain long-distance migration in mammals. Conserv. Biol. 18, 320–331 (2004).Article 

    Google Scholar 
    Bolger, D. T., Newmark, W. D., Morrison, T. A. & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2008).
    Google Scholar 
    Sawyer, H., Kauffman, M. J., Nielson, R. M. & Horne, J. S. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol. Appl. 19, 2016–2025 (2009).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the anthropocene: Global reductions in terrestrial mammalian movements. Science 469, 466–469 (2018).Article 
    ADS 

    Google Scholar 
    Soulé, M. E. & Terborgh, J. Conserving nature at regional and continental scales-a scientific program for North America. Bioscience 49, 809–817 (1999).Article 

    Google Scholar 
    Hilty, J. et al. Guidelines for conserving connectivity through ecological networks and corridors. Best Pract. Prot. Area Guidel. Ser. 30, 122 (2020).
    Google Scholar 
    Haddad, N. & Tewksbury, J. Impacts of corridors on populations and communities. in Connectivity Conservation (eds. Crooks, K. R. & Sanjayan, M.) 390–415 (Cambridge University Press, 2010).
    Google Scholar 
    Ramiadantsoa, T., Ovaskainen, O., Rybicki, J. & Hanski, I. Large-scale habitat corridors for biodiversity conservation: A forest corridor in Madagascar. PLoS One 10, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    Newmark, W. D., Jenkins, C. N., Pimm, S. L., McNeally, P. B. & Halley, J. M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. USA. 114, 9635–9640 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Diamond, J. M. Biogeographic kinetics: Estimation of relaxation times for avifaunas of southwest Pacific islands. Proc. Natl. Acad. Sci. 69, 3199–3203 (1972).Article 
    ADS 
    CAS 

    Google Scholar 
    Terborgh, J. Preservation of natural diversity: The problem of extinction prone species. Bioscience 24, 715–722 (1974).Article 

    Google Scholar 
    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt revisited. Nature 371, 65–66 (1994).Article 
    ADS 

    Google Scholar 
    Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7, 1–6 (2016).Article 

    Google Scholar 
    Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian amazon. Science 337, 228–232 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Hanski, I. Extinction debt and species credit in boreal forests: Modelling the consequences of different approaches to conservation. Ann. Zool. Fennici 37, 271–280 (2000).
    Google Scholar 
    LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Annu. Rev. Ecol. Syst. 20, 97–117 (1989).Article 

    Google Scholar 
    Oakleaf, J. K. et al. Habitat selection by recolonizing wolves in the northern Rocky mountains of the United States. J. Wildl. Manage. 70, 554–563 (2006).Article 

    Google Scholar 
    Cushman, S. A., McKelvey, K. S. & Schwartz, M. K. Use of empirically derived source-destination models to map regional conservation corridors. Conserv. Biol. 23, 368–376 (2009).Article 

    Google Scholar 
    Schwartz, M. K. et al. Wolverine gene flow across a narrow climatic niche. Ecology 90, 3222–3232 (2014).Article 

    Google Scholar 
    McKelvey, K. S. et al. Climate change predicted to shift wolverine distributions, connectivity, and dispersal corridors. Ecol. Appl. 21, 2882–2897 (2011).Article 

    Google Scholar 
    Carroll, C., Mcrae, B. H. & Brookes, A. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conserv. Biol. 26, 78–87 (2012).Article 

    Google Scholar 
    Parks, S. A., McKelvey, K. S. & Schwartz, M. K. Effects of weighting schemes on the identification of wildlife corridors generated with least-cost methods. Conserv. Biol. 27, 145–154 (2013).Article 

    Google Scholar 
    Peck, C. P. et al. Potential paths for male-mediated gene flow to and from an isolated grizzly bear population. Ecosphere 8, e01969 (2017).Article 

    Google Scholar 
    Wild Migrations: Atlas of Wyoming’s Ungulates. (Oregon State University, 2018).Singleton, P. H., Gaines, W. L. & Lehmkuhl, J. F. Landscape permeability for large carnivores in Washington: A geographic information system weighted-distance and least-cost corridor assessment. (2002).Long, R. A. et al. The Cascades carnivore connectivity project: A landscape genetic assessment of connectivity in Washington’s north Cascades ecosystem. Final report for the Seattle City Light Wildlife Research Program (2013).Diamond, J. M. The island dilemma: Lessons of modern biogeographic studies for the design of natural reserves. Biol. Conserv. 7, 129–146 (1975).Article 

    Google Scholar 
    Wilson, E. O. & Willis, E. O. Applied biogeography. In Ecological structure of ecological communities (eds. Cody, M. L, & Diamond, J. M.) 522–534 (Harvard University Press, 1975)
    Google Scholar 
    Halley, J. M. & Iwasa, Y. Neutral theory as a predictor of avifaunal extinctions after habitat loss. Proc. Natl. Acad. Sci. USA 108, 2316–2321 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Cushman, S. A., Lewis, J. S. & Landguth, E. L. Evaluating the intersection of a regional wildlife connectivity network with highways. Mov. Ecol. 1, 1–11 (2013).Article 

    Google Scholar 
    Singleton, P. H. & Lehmkuhl, J. F. I-90 Snoqualmie pass wildlife habitat linkage assessment. Final Report. USDA, Pacific Northwest Research Station. (2000).Craighead, L., Craighead, A., Oeschslia, L. & Kociolek, A. Bozeman pass post-fencing wildlife monitoring. Final Report. FHWA/MT-10-006/8173 (2011).Andis, A. Z., Huijser, M. P. & Broberg, L. Performance of arch-style road crossing structures from relative movement rates of large mammals. Front. Ecol. Evol. 5, 1–13 (2017).Article 

    Google Scholar 
    Millward, L. Small mammal microhabitat use and species composition at a wildlife crossing structure compared with nearby forest (Central Washington University, 2018).
    Google Scholar 
    Bischof, R., Steyaert, S. M. J. G. & Kindberg, J. Caught in the mesh: Roads and their network-scale impediment to animal movement. Ecography 40, 1369–1380 (2017).Article 

    Google Scholar 
    Balkenhol, N. & Waits, L. P. Molecular road ecology: Exploring the potential of genetics for investigating transportation impacts on wildlife. Mol. Ecol. 18, 4151–4164 (2009).Article 

    Google Scholar 
    Clevenger, A. P. & Wierzchowski, J. Maintaining and restoring connectivity in landscapes fragmented by roads. In Connectivity Conservation, (eds. Crooks, K. R. & Sanjayan, M.) 502–535 (Cambridge University Press, 2010.)
    Google Scholar 
    Sawaya, M. A., Kalinowski, S. T. & Clevenger, A. P. Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park. Proc. R. Soc. B Biol. Sci. 281, 20131705 (2014).Article 

    Google Scholar 
    Sawaya, M. A., Clevenger, A. P. & Schwartz, M. K. Demographic fragmentation of a protected wolverine population bisected by a major transportation corridor. Biol. Conserv. 236, 616–625 (2019).Article 

    Google Scholar 
    Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: A review of global strategies with a proposed classification system. J. Environ. Plan. Manag. 58, 576–597 (2015).Article 

    Google Scholar 
    Wasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J. & Landguth, E. L. Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conserv. Genet. 14, 529–541 (2013).Article 

    Google Scholar 
    Wasserman, T. N., Cushman, S. A., Shirk, A. S., Landguth, E. L. & Littell, J. S. Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landsc. Ecol. 27, 211–225 (2012).Article 

    Google Scholar 
    Cushman, S. A., Landguth, E. L. & Flather, C. H. Evaluating the sufficiency of protected lands for maintaining wildlife population connectivity in the U.S. northern Rocky Mountains. Divers. Distrib. 18, 873–884 (2012).Article 

    Google Scholar 
    Beier, P., Spencer, W., Baldwin, R. F. & Mcrae, B. H. Toward best practices for developing regional connectivity maps. Conserv. Biol. 25, 879–892 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2020). More

  • in

    Migration direction in a songbird explained by two loci

    Ethics statementAnimals’ care was in accordance with institutional guidelines. Ethical permit was issued by Malmö-Lund djurförsöksetiska nämnd 5.8.18-00848/2018.Field workWe carried out the field work in Sweden during four breeding seasons (2018–2021). Adult male willow warblers were captured in their breeding territories using mist nets and playback of a song. From each bird, we collected the innermost primary feather from the right wing. From the birds that returned with a logger we also collected ~20 μl of blood from the brachial wing vein. The blood was stored in SET buffer (0.015 M NaCl, 0.05 M Tris, 0.001 M of EDTA, pH 8.0) at room temperature until deposited for permanent storage at −20 °C. We deployed Migrate Technology Ltd geolocators (Intigeo-W30Z11-DIP 12 × 5 × 4 mm, 0.32 g) and used a nylon string to mount them on birds with the “leg-loop” harness method as outlined in our previous work24. The mass of the logger relative to that of the bird was on average 3.3% (range 2.7–3.8%).The tagged birds were ringed with a numbered aluminum ring, and two, colored plastic rings for later identification in the field. In total, we tagged 466 males (349 in 2018 and 117 in 2020) at breeding territories. During the first tagging season (2018), birds were trapped at 17 locations (average 22 birds per site; range 7–30) distributed across Sweden (Fig. S1). Three of the sites were in southern Sweden to document migration routes of allopatric trochilus and three sites were located above the Arctic circle to record migratory routes of allopatric acredula, whereas the remaining (239) loggers were spread over 11 sites located in the migratory divide. Given the observed densities and distribution of hybrids after analyzing returning birds in 2019, we deployed 117 more loggers at one single site (63.439°N, 14.831°E) in 2020. We successfully retrieved tracks from 57 birds tagged in 2019 and 16 from birds tagged in 2021. In search for birds with loggers, we checked circa 3000 willow warbler males and covered an area of at least 0.5 km radius around each site the year after tagging.Geolocator data treatmentThe R package GeoLight (version 2.0)25 was used to extract and analyze locations from raw geolocator data. All twilight events were obtained with light threshold of 3 lux. The most extreme outliers were trimmed with “loessFilter” function and a K value of 3. We used GeoLight’s function “getElevation” for estimating the sun elevation angle for the breeding period: these sets of locations were used to infer the positions for autumn departure direction. In addition, we carried out a “Hill-Ekström” calibration for the longest stationary winter site during the period before the spring equinox. Winter calibration produced location sets that better reflected the winter coordinates of the main winter site in sub-Saharan Africa26. We reduced some of the inherent geolocation “noise” by applying cantered 5-day rolling means to the coordinates. The equinox periods were visually identified by inspecting standard deviations in latitude. Latitudes from equinox periods were omitted (on average autumn equinox obscured data for 45 days (range 25–68). For the main winter site, we used the longest period at which bird stayed stationary and from which in all cases begun the spring migration (mean = 118, SD = 23 days). Timing of autumn departure was estimated by manual inspection of longitudes and latitudes plotted in time series. To estimate at which longitude the birds crossed the Mediterranean, we extracted the longitude when birds crossed latitude 35 N° (Mediterranean crossing longitude). For 29 birds, it was possible to directly extract the longitude at crossing latitude 35 N°. For the rest of the cases, the birds had not reached latitude 35 N° before the latitude was obscured by the equinox, we calculated the mean longitude of 10 days from the onset of fall equinox as a measure of the Mediterranean crossing. This measurement correlated highly with the winter longitude (r = 0.78, p = 2.8 × 10−16). To control for the birds relative breeding site longitude, we extracted the departure direction (1°–360°) relative from the tagging site to the location where the birds crossed the Mediterranean (departure direction). The departure data was of circular type (measured in 360°), however the variance did not span more than 180° degrees (range 151°–224°). Therefore, we proceeded with analyses using linear statistics. Geographic distances and departure direction were calculated using R package “geosphere” (version 1.5-10). Complete set of positions of each individual bird with equinoxes excluded is presented in Supplementary Data 1.Laboratory work and molecular data extractionWe extracted DNA from blood samples following the ammonium acetate protocol16. Genotyping for divergent regions on chromosome 1 (InvP-Ch1) and chromosome 5 (InvP-Ch5) was done using a qPCR SNP assay16, which is based on one informative SNP per region (SNP 65 for chromosome 1 and SNP 285 for chromosome 5). Probes and primers were produced by Thermo Fisher Scientific and were designed using the online Custom TaqMan® Assay Design tool (Table S4). We used Bio-Rad CFX96™ Real-time PCR system (Bio-Rad Laboratories, CA, USA) and the universal Fast-two-steps protocol: 95 °C, 15 min—40*(95 °C, 10 s–60 °C, 30 s, plate read. Both regions contain inversion polymorphisms that restrict recombination between subspecies-specific haplotypes and contain nearly all the SNPs separating the two subspecies13. For each region, we scored genotypes as either “Tro” (homozygous for trochilus haplotypes), “Acr” (homozygous for acredula haplotypes) or “Het” (heterozygous). The method that we used to assess the presence of MARB-a is based on a qPCR assay that quantifies the copy number of a novel TE (previously known as AFLP-WW212) that has expanded in acredula. The quantification of repeats by this method has been shown to be highly repeatable (R2 = 0.88) when comparing estimates obtained from DNA in blood and feathers15. We used the forward (5′-CCTTGCATACTTCTATTTCTCCC-3′) and reverse (5′-CATAGGACAGACATTGTTGAGG-3′) primers developed by Caballero-López et al.15 to amplify the TE motif. For reference of a single copy region we used the primers SFRS3F and SFRS3R27. We diluted DNA to 1 ng/μl−1 and used a Bio-Rad CFX96™ Real-time PCR system (Bio-Rad Laboratories, CA, USA) with SYBR-green-based detection. Total reaction volume was 25 μl of which 4 μl of DNA, 12.5 μl of SuperMix, 0.1 μl ROX, 1 μl of primer (forward and reverse), and 6.4 μl of double distilled H2O. We ran quantifications of the single copy gene and the TE variant found on MARB-a on separate plates with the following settings: 50 °C for 2 min as initial incubation, 95 °C for 2 min X 43 (94 °C for 30 s [55.3 °C SFRS3 and 55.5 °C for TE, 30 s] and 72 °C for 45 s). Each sample was run in duplicate and together with a two-fold serial standard dilution (2.5–7.8 × 10−2 ng). Allopatric trochilus have 0–6 copies whereas allopatric acredula have 8–45 copies15; a bimodal distribution was also confirmed in this new data set (Fig. S2). Accordingly, for the present analyses, we split the data in two groups: birds with ≤6 TE copies and birds with >7, translating into absence or presence of MARB-a, with the former assumed to be homozygous for the absence of MARB-a and the latter heterozygous or homozygous for the presence of MARB-a. Data from two investigated willow warbler families suggest a Mendelian inheritance pattern and provide support for our interpretation of how TE copy numbers reflect the three genotypes (Table S5). Moreover, the TE copy numbers within the hybrid swarm have a distribution similar to a combination of allopatric trochilus and acredula, further supporting that the copies are inherited as intact blocks (haplotypes). However, a precise distinction between heterozygotes and homozygotes on MARB-a is still not possible15.Statistical analysisWe used linear models with departure direction, winter longitude, migration distance and departure timing as response variables and the three genetic markers: MARB-a (a factor with two levels), InvP-Ch1 (a factor with three levels) and InvP-Ch5 (a factor with three levels) as explanatory variables. Models were constructed with R base package “stats”. We reported Type II ANOVA for models with more than one explanatory variable and no interactions and type III ANOVA results for models with interaction term by using R package “Car” (version 3.0-12)28. We initially constructed mixed effect models with timing of departure and tagging year as random factors however, this delivered singular fits due to insufficient sample sizes across categories. Normality of residuals was checked with a Shapiro–Wilk test. For carrying out circular statistics on autumn migration direction we used the R package “circular” (version 0.4-93). Watson’s U2 pairwise comparisons of different groups delivered the same results as linear models (Table S2 and Fig. S5). Circular means were identical to conventional linear means in our data set, which we take as another evidence that linear models are appropriate for the analysis of our data (Table S3 and Fig. S5). Maps in Figs. 1 and 2b and S1, S3 and S4 were created with R package “ggplot2” (version 3.3.6) using continent contours from Natural Earth, naturalearthdata.com/. Heat gradient over the maps in Fig. 1a–d were created with R package “gstat” (version 2.0-8) and the inverse distance weighting power of 3.0. Circular plots were created with ORIANA (version 4.02). All analyses were carried out with R version 4.1.1 (R Core Team 2021).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Conservation genomics of an endangered arboreal mammal following the 2019–2020 Australian megafire

    Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4(10), 1321–1326. https://doi.org/10.1038/s41559-020-1251-1 (2020).Article 

    Google Scholar 
    Legge, S. et al. Estimates of the impacts of the 2019–20 fires on populations of native animal species, Brisbane (2021).Yibo, H. et al. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6(9), eaax5751. https://doi.org/10.1126/sciadv.aax5751 (2022).Article 

    Google Scholar 
    Grossen, C., Guillaume, F., Keller, L. F. & Croll, D. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Commun. 11(1), 1001. https://doi.org/10.1038/s41467-020-14803-1 (2020).Article 
    ADS 

    Google Scholar 
    van Aalst, M. K. The impacts of climate change on the risk of natural disasters. Disasters 30(1), 5–18. https://doi.org/10.1111/j.1467-9523.2006.00303.x (2006).Article 

    Google Scholar 
    Banholzer, S., Kossin, J. & Donner, S. The impact of climate change on natural disasters. In Reducing Disaster: Early Warning Systems For Climate Change (eds Singh, A. & Zommers, Z.) 21–49 (Springer Netherlands, 2014). https://doi.org/10.1007/978-94-017-8598-3_2.Chapter 

    Google Scholar 
    Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics 2nd edn. (Cambridge University Press, 2010).Book 

    Google Scholar 
    Bouzat, J. L. Conservation genetics of population bottlenecks: The role of chance, selection, and history. Conserv. Genet. 11(2), 463–478. https://doi.org/10.1007/s10592-010-0049-0 (2010).Article 

    Google Scholar 
    Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12(8), 1505–1512. https://doi.org/10.1111/eva.12810 (2019).Article 

    Google Scholar 
    Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37(1), 433–458 (2006).Article 

    Google Scholar 
    Tanaka, M. M., Wahl, L. M. & Wahl, L. M. Surviving environmental change: When increasing population size can increase extinction risk. Proc. R. Soc. B 289, 20220439. https://doi.org/10.1098/rspb.2022.0439 (2022).Article 

    Google Scholar 
    Gomulkiewicz, R. & Holt, R. D. When does evolution by natural selection prevent extinction?. Evolution 49(1), 201–207. https://doi.org/10.1111/j.1558-5646.1995.tb05971.x (1995).Article 

    Google Scholar 
    Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48(1), 605–627. https://doi.org/10.1146/annurev-ecolsys-110316-023011 (2017).Article 

    Google Scholar 
    Wood, J. L. A., Yates, M. C. & Fraser, D. J. Are heritability and selection related to population size in nature? Meta-analysis and conservation implications. Evol. Appl. 9(5), 640–657. https://doi.org/10.1111/eva.12375 (2016).Article 

    Google Scholar 
    Sgrò, C. M., Lowe, A. J. & Hoffmann, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4(2), 326–337 (2011).Article 

    Google Scholar 
    Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30(1), 62–82. https://doi.org/10.1111/mec.15720 (2021).Article 

    Google Scholar 
    Walters, A. D. & Schwartz, M. K. Population genomics for the management of wild vertebrate populations. In Population Genomics: Wildlife 419–436 (Springer, 2020).Chapter 

    Google Scholar 
    Willi, Y. et al. Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proc. Natl. Acad. Sci. USA 119(1), 1–10. https://doi.org/10.1073/pnas.2105076119 (2022).Article 

    Google Scholar 
    Moore, J. F. et al. The potential and practice of arboreal camera trapping. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13666 (2021).Article 

    Google Scholar 
    Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143(9), 1919–1927. https://doi.org/10.1016/j.biocon.2010.05.011 (2010).Article 

    Google Scholar 
    Allendorf, F. W., Luikart, G. H. & Aitken, S. N. Conservation and the Genetics of Populations 2nd edn. (Wiley, 2012).
    Google Scholar 
    Franklin, I. Evolutionary change in small populations. In Conservation Biology—An Evolutionary-Ecological Perspective 135–149 (Sinauer Associates, 1980).
    Google Scholar 
    Soulé, M. E. Thresholds for survival: maintaining fitness and evolutionary potential. In Conservation Biology: An Evolutionary-Ecological Perspective 151–169 (Sinauer, 1980).
    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. https://doi.org/10.1016/J.BIOCON.2020.108654 (2020).Article 

    Google Scholar 
    McGregor, D. C. et al. Genetic evidence supports three previously described species of greater glider, Petauroides volans, P. minor, and P. armillatus. Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-76364-z (2020).Article 

    Google Scholar 
    Hogg, C. J. et al. Threatened species initiative: Empowering conservation action using genomic resources. Proc. Natl. Acad. Sci. USA 119(4), e2115643118. https://doi.org/10.1073/pnas.2115643118 (2022).Article 

    Google Scholar 
    Pierson, J. C. et al. Genetic factors in threatened species recovery plans on three continents. Front. Ecol. Environ. 14(8), 433–440. https://doi.org/10.1002/fee.1323 (2016).Article 

    Google Scholar 
    Harris, J. M. & Maloney, K. S. S. Petauroides volans (Diprotodontia: Pseudocheiridae). Mamm. Species 42(866), 207–219. https://doi.org/10.1644/866.1 (2010).Article 

    Google Scholar 
    Kavanagh, R. P. & Lambert, M. J. Food selection by the greater glider, Petauroides volans: Is foliar nitrogen a determinant of habitat quality?. Austral. Wildl. Res. 17(3), 285–299 (1990).Article 

    Google Scholar 
    Youngentob, K. N. et al. Foliage chemistry influences tree choice and landscape use of a gliding marsupial folivore. J. Chem. Ecol. 37(1), 71–84. https://doi.org/10.1007/s10886-010-9889-9 (2011).Article 

    Google Scholar 
    Jensen, L. M., Wallis, I. R. & Foley, W. J. The relative concentrations of nutrients and toxins dictate feeding by a vertebrate browser, the greater glider Petauroides volans. PLoS ONE 10(5), 1–12. https://doi.org/10.1371/journal.pone.0121584 (2015).Article 

    Google Scholar 
    Kehl, J. & Borsboom, A. Home range, den tree use and activity patterns in the greater glider, Petauroides volans. Possums Gliders 229–236 (1984).Goldingay, R. L. Characteristics of tree hollows used by Australian arboreal and scansorial mammals. Aust. J. Zool. 59(5), 277–294 (2012).Article 

    Google Scholar 
    Eyre, T. J. Regional habitat selection of large gliding possums at forest stand and landscape scales in southern Queensland, Australia: I. Greater glider (Petauroides volans). For. Ecol. Manag 235(1–3), 270–282. https://doi.org/10.1016/j.foreco.2006.08.338 (2006).Article 

    Google Scholar 
    Kavanagh, R. P. & Bamkin, K. L. Distribution of nocturnal forest birds and mammals in relation to the logging mosaic in south-eastern New South Wales, Australia. Biol. Conserv. 71(1), 41–53. https://doi.org/10.1016/0006-3207(94)00019-M (1995).Article 

    Google Scholar 
    Lindenmayer, D. B. et al. Fire severity and landscape context effects on arboreal marsupials. Biol. Conserv. 167, 137–148 (2013).Article 

    Google Scholar 
    May-Stubbles, J. C., Gracanin, A. & Mikac, K. M. Increasing fire severity negatively affects greater glider density. Wildl. Res. https://doi.org/10.1071/wr21091 (2022).Article 

    Google Scholar 
    Smith, P. & Smith, J. Decline of the greater glider (Petauroides volans) in the lower Blue Mountains, New South Wales. Aust. J. Zool. 66(2), 103–114. https://doi.org/10.1071/ZO18021 (2019).Article 

    Google Scholar 
    Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3(3), 203–213. https://doi.org/10.1111/j.1755-263X.2010.00097.x (2010).Article 

    Google Scholar 
    Wagner, B. et al. Climate change drives habitat contraction of a nocturnal arboreal marsupial at its physiological limits. Ecosphere 11(10), e03262 (2020).Article 

    Google Scholar 
    McLean, C. M., Kavanagh, R. P., Penman, T. & Bradstock, R. The threatened status of the hollow dependent arboreal marsupial, the greater glider (Petauroides volans), can be explained by impacts from wildfire and selective logging. For. Ecol. Manag. 415, 19–25 (2018).Article 

    Google Scholar 
    Lindenmayer, D. B. et al. Conservation conundrums and the challenges of managing unexplained declines of multiple species. Biol. Conserv. 221, 279–292. https://doi.org/10.1016/j.biocon.2018.03.007 (2018).Article 

    Google Scholar 
    Lindenmayer, D. B. B. et al. How to make a common species rare: a case against conservation complacency. Biol. Conserv. 144(5), 1663–1672. https://doi.org/10.1016/j.biocon.2011.02.022 (2011).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species (2022) https://www.iucnredlist.org (Accessed 17 Nov 2022).Rübsamen, K., Hume, I. D., Foley, W. J. & Rübsamen, U. Implications of the large surface area to body mass ratio on the heat balance of the greater glider (Petauroides volans: Marsupialia). J. Comp. Physiol. B. 154(1), 105–111. https://doi.org/10.1007/BF00683223 (1984).Article 

    Google Scholar 
    Wintle, B. A., Legge, S. & Woinarski, J. C. Z. After the megafires: What next for Australian wildlife?. Trends Ecol. Evol. 35(9), 753–757. https://doi.org/10.1016/j.tree.2020.06.009 (2020).Article 

    Google Scholar 
    Legge, S. et al. Estimates of the impacts of the 2019–2020 fires on populations of native animal species, Brisbane (2021).Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470(7335), 479–485. https://doi.org/10.1038/nature09670 (2011).Article 
    ADS 

    Google Scholar 
    Hoffmann, A. A., Sgrò, C. M. & Kristensen, T. N. Revisiting adaptive potential, population size, and conservation. Trends Ecol. Evol. 32(7), 506–517. https://doi.org/10.1016/j.tree.2017.03.012 (2017).Article 

    Google Scholar 
    Rossetto, M. et al. A conservation genomics workflow to guide practical management actions. Glob. Ecol. Conserv. 26, e01492. https://doi.org/10.1016/j.gecco.2021.e01492 (2021).Article 

    Google Scholar 
    Mcmahon, B. J., Teeling, E. C. & Höglund, J. How and why should we implement genomics into conservation?. Evol. Appl. 7(9), 999–1007. https://doi.org/10.1111/eva.12193 (2014).Article 

    Google Scholar 
    Hoffmann, A. et al. A framework for incorporating evolutionary genomics into biodiversity conservation and management. Clim. Change Responses https://doi.org/10.1186/s40665-014-0009-x (2015).Article 

    Google Scholar 
    Lindenmayer, D. B. et al. Integrating demographic and genetic studies of the greater glider Petauroides volans in fragmented forests: predicting movement patterns and rates for future testing. Pac. Conserv. Biol. 5(1), 2–8 (1999).Article 

    Google Scholar 
    Taylor, A. C., Kraaijeveld, K. & Lindenmayer, D. B. Microsatellites for the greater glider, Petauroides volans. Mol. Ecol. Notes 2(1), 57–59. https://doi.org/10.1046/j.1471-8286.2002.00148.x (2002).Article 

    Google Scholar 
    Taylor, A. C., Tyndale-Biscoe, H. & Lindenmayer, D. B. Unexpected persistence on habitat islands: Genetic signatures reveal dispersal of a eucalypt-dependent marsupial through a hostile pine matrix. Mol. Ecol. 16(13), 2655–2666. https://doi.org/10.1111/j.1365-294X.2007.03331.x (2007).Article 

    Google Scholar 
    NSW Scientific Committee. Greater glider population in the Mount Gibraltar Reserve area” endangered population listing. Final Determination to list an endangered ecological community under the Threatened Species Conservation Act 1995 (2015).NSW Scientific Committee. Greater glider, Petauroides volans, in the Eurobodalla local government area endangered population listing. Final Determination to list an endangered ecological community under the Threatened Species Conservation Act 1995. (2007).NSW Scientific Committee. Greater Glider population at Seven Mile Beach National Park Endangered population listing. Final Determination to list an endangered ecological community under the Threatened Species Conservation Act 1995 (2016).Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. The Action Plan for Australian Mammals 2012 (CSIRO Publishing, 2014).Book 

    Google Scholar 
    W. and the E. Department of Agriculture. Conservation advice for Petauroides volans (Greater Glider (southern)), Canberra (2021).Gracanin, A., Pearce, A., Hofman, M., Knipler, M. & Mikac, K. Greater glider (Petauroides volans) live capture methods. Austral. Mammal. 44(2), 280–286 (2021).Article 

    Google Scholar 
    Comport, S. S., Ward, S. J. & Foley, W. J. Home ranges, time budgets and food-tree use in a high-density tropical population of greater gliders, Petauroides volans minor (Pseudocheiridae: Marsupialia). Wildl. Res. 23(4), 401–419. https://doi.org/10.1071/WR9960401 (1996).Article 

    Google Scholar 
    Henry, S. R. Social organisation of the greater glider (Petauroides volans) in Victoria. In Possums and Gliders (eds Smith, A. P. & Hume, I. D.) 221–228 (1984).Kilian, A. et al. Diversity arrays technology: A generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89. https://doi.org/10.1007/978-1-61779-870-2_5 (2012).Article 

    Google Scholar 
    Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18(3), 691–699. https://doi.org/10.1111/1755-0998.12745 (2018).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Privé, F., Luu, K., Vilhjálmsson, B. J. & Blum, M. G. B. Performing highly efficient genome scans for local adaptation with R package pcadapt version 4. Mol. Biol. Evol. 37(7), 2153–2154. https://doi.org/10.1093/molbev/msaa053 (2020).Article 

    Google Scholar 
    Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: An R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17(1), 67–77. https://doi.org/10.1111/1755-0998.12592 (2017).Article 

    Google Scholar 
    Dabney, A., Storey, J. D. & Warnes, G. R. qvalue: Q-value estimation for false discovery rate control. R package version, vol. 1, no. 0 (2010).Oksanen, J. et al. Package “vegan”. Community ecology package, version, vol. 2, no. 9, 1–295 (2013).Pratt, E. A. L. et al. Seascape genomics of coastal bottlenose dolphins along strong gradients of temperature and salinity. Mol. Ecol. 31(8), 2223–2241 (2022).Article 

    Google Scholar 
    Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol. 27(9), 2215–2233 (2018).Article 

    Google Scholar 
    Zimmerman, S. J. et al. Environmental gradients of selection for an alpine-obligate bird, the white-tailed ptarmigan (Lagopus leucura). Heredity 126(1), 117–131 (2021).Article 

    Google Scholar 
    Lott, M. J. et al. Future‐proofing the koala: Synergising genomic and environmental data for effective species management. Mol. Ecol. (2022).Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).Article 

    Google Scholar 
    Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5(1), 184–186. https://doi.org/10.1111/J.1471-8286.2004.00828.X (2005).Article 

    Google Scholar 
    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).Book 

    Google Scholar 
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11(1), 5–18. https://doi.org/10.1111/J.1755-0998.2010.02927.X (2011).Article 

    Google Scholar 
    Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002). https://doi.org/10.1016/j.foreco.2003.12.001.Book 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38(6), 1358. https://doi.org/10.2307/2408641 (1984).Article 

    Google Scholar 
    Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13(5), 946–952. https://doi.org/10.1111/1755-0998.12129 (2013).Article 

    Google Scholar 
    Bonferroni, S. Teoria statistica delle classi e calcolo delle probabilita. cir.nii.ac.jp, vol. 8, 3–62 (1936).Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).Article 

    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11(1), 1–15. https://doi.org/10.1186/1471-2156-11-94/FIGURES/9 (2010).Article 

    Google Scholar 
    Janes, J. K. et al. The K = 2 conundrum. Mol. Ecol. 26(14), 3594–3602. https://doi.org/10.1111/MEC.14187 (2017).Article 

    Google Scholar 
    Miller, J. M., Cullingham, C. I. & Peery, R. M. The influence of a priori grouping on inference of genetic clusters: Simulation study and literature review of the DAPC method. Heredity 125, 269–280. https://doi.org/10.1038/s41437-020-0348-2 (2020).Article 

    Google Scholar 
    Cullingham, C. I. et al. Confidently identifying the correct K value using the ΔK method: When does K = 2?. Mol. Ecol. 29(5), 862–869. https://doi.org/10.1111/mec.15374 (2020).Article 

    Google Scholar 
    Pritchard, J., Wen, X. & Falush, D. Documentation for STRUCTURE software: version 2.3|Request PDF (2003).Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Stankiewicz, K. H., Vasquez Kuntz, K. L. & Baums, I. B. The impact of estimator choice: Disagreement in clustering solutions across K estimators for Bayesian analysis of population genetic structure across a wide range of empirical data sets. Mol. Ecol. Resour. 22(3), 1135–1148. https://doi.org/10.1111/1755-0998.13522 (2022).Article 

    Google Scholar 
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).Article 

    Google Scholar 
    Harmon, L. J. & Braude, S. Conservation of small populations: effective population sizes, inbreeding, and the 50/500 rule. In An Introduction to Methods and Models in Ecology, Evolution, and Conservation Biology 125–138 (Princeton University Press, 2010).Chapter 

    Google Scholar 
    Do, C. et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne ) from genetic data. Mol. Ecol. Resour. 14(1), 209–214. https://doi.org/10.1111/1755-0998.12157 (2014).Article 

    Google Scholar 
    Waples, R. S. & Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8(4), 753–756. https://doi.org/10.1111/J.1755-0998.2007.02061.X (2008).Article 

    Google Scholar 
    Potvin, D. A. et al. Genetic erosion and escalating extinction risk in frogs with increasing wildfire frequency. J. Appl. Ecol. 54(3), 945–954. https://doi.org/10.1111/1365-2664.12809 (2017).Article 

    Google Scholar 
    Catullo, R. A. et al. Benchmarking taxonomic and genetic diversity after the fact: Lessons learned from the catastrophic 2019–2020 Australian bushfires. Front. Ecol. Evol. 9, 292. https://doi.org/10.3389/FEVO.2021.645820/BIBTEX (2021).Article 
    ADS 

    Google Scholar 
    DPIE. Fire Extent and Severity Mapping (FESM) 2019/20 (2021) https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm-2019-20 (Accessed 23 June 2021).Banks, S. C. et al. Fire severity and landscape context effects on arboreal marsupials. Biol. Conserv. 167, 137–148. https://doi.org/10.1016/j.biocon.2013.07.028 (2013).Article 

    Google Scholar 
    Andrew, D., Koffel, D., Harvey, G., Griffiths, K. & Fleming, M. Rediscovery of the greater glider Petauroides volans (Marsupialia: Petauroidea) in the Royal National Park, NSW. Austral. Zool. 37(1), 23–28. https://doi.org/10.7882/AZ.2013.008 (2014).Article 

    Google Scholar 
    Lindenmayer, D. et al. What 15 years of monitoring is telling us about mammals in Booderee National Park (2018).Chafer, C. J. et al. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. Int. J. Wildland Fire 13(2), 227–240. https://doi.org/10.1071/WF03041 (2004).Article 

    Google Scholar 
    Vinson, S. G., Johnson, A. P. & Mikac, K. M. Current estimates and vegetation preferences of an endangered population of the vulnerable greater glider at Seven Mile Beach National Park. Austral. Ecol. 46(2), 303–314. https://doi.org/10.1111/aec.12979 (2020).Article 

    Google Scholar 
    Kavanagh, R. & Wheeler, R. Home-range of the greater glider Petauroides volans in tall montane forest of southeastern New South Wales, and changes following logging. In The Biology of Possums and Gliders (eds Goldingay, R. & Jackson, S.) 413–425 (Surrey Beatty & Sons, 2004).
    Google Scholar 
    Fleay, D. Gliders of the Gum Trees: The Most Beautiful and Enchanting Australian Marsupials (1947).Wright, S. Isolation by distance under diverse systems of mating. Genetics 31, 39–59 (1946).Article 

    Google Scholar 
    McGowan, B. & Wright, C. Braidwood’s enduring Chinese heritage. Historic Environ. 23(3), 34–39 (2011).
    Google Scholar 
    Pérez, I. et al. What is wrong with current translocations? A review and a decision-making proposal. Front. Ecol. Environ. 10(9), 494–501 (2012).Article 

    Google Scholar 
    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22(6), 1424–1442. https://doi.org/10.1111/j.1523-1739.2008.01044.x (2008).Article 

    Google Scholar 
    Franklin, I. ‘Evolutionary change in small populations. In Conservation Biology—An Evolutionary-Ecological Perspective 135–149 (Sinauer Associates, 1980).
    Google Scholar 
    Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63. https://doi.org/10.1016/J.BIOCON.2013.12.036 (2014).Article 

    Google Scholar 
    Seaborn, T. et al. Integrating genomics in population models to forecast translocation success. Restor. Ecol. 29(4), e13395. https://doi.org/10.1111/rec.13395 (2021).Article 

    Google Scholar 
    Christie, M. R. & Knowles, L. L. Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes. Evol. Appl. 8(5), 454–463 (2015).Article 

    Google Scholar 
    Office of Environment and Heritage. Woody extent and foliage projective cover (2016) http://data.auscover.org.au/xwiki/bin/view/Product+pages/nsw+5m+woody+extent+and+fpc (Accessed 29 Oct 2020).Ashman, K. R., Watchorn, D. J., Lindenmayer, D. B. & Taylor, M. F. J. Is Australia’s environmental legislation protecting threatened species? A case study of the national listing of the greater glider. Pac. Conserv. Biol. 1980, 277–289. https://doi.org/10.1071/PC20077 (2021).Article 

    Google Scholar 
    ESRI. ArcGIS 10.7.1. (Environmental Systems Research Institute, 2011). More