More stories

  • in

    Residential green environments are associated with human milk oligosaccharide diversity and composition

    Study populationThe study is based on data from mothers and children participating in a longitudinal Southwest Finland cohort, Steps to Healthy development of Children (the STEPS Study) (described in detail in Lagström et al.31). The STEPS study is an ongoing population-based and multidisciplinary study that investigates children’s physical, psychological and social development, starting from pregnancy and continuing until adolescence. All Finnish- and Swedish-speaking mothers delivering a child between 1 January, 2008 and 31 March, 2010 in the Hospital District of Southwest Finland formed the cohort population (in total, 9811 mothers and their 9936 children). Altogether, 1797 mothers with 1805 neonates volunteered as participants for the intensive follow-up group of the STEPS Study. Mothers were recruited by midwives either during the first trimester of pregnancy while visiting maternity health care clinics, or after delivery on the maternity wards of Turku University Hospital or Salo Regional Hospital, or by a letter mailed to the mothers. The participating mothers differ slightly from the whole cohort population in some background characteristics (being older, with first-born child and higher socioeconomic status)31. The ethics committee of the Hospital District of Southwest Finland has approved the STEPS Study (2/2007) and all methods were performed in accordance with relevant guidelines and regulations. Written informed consent was obtained from all the participants and, for children, from one parent for study participation. Subjects have been and are free to withdraw from the study at any time without any specific reason. The STEPS Study have the appropriate government authorization to the use of the National birth register (THL/974/5.05.00/2017).Breastmilk collection and HMO analysisMothers from the STEPS Study were asked to collect breastmilk samples when the infant was approximately 3 months old. In total, 812 of the 1797 mothers (45%) provided a breastmilk sample. There were only slight differences in maternal and child characteristics between the participants providing breastmilk samples and the total STEPS Study cohort40. Altogether, 795 breastmilk samples were included in this study (excluding the duplicate observations and the 2nd born twins, samples with technical unclarity or insufficient sample quantity, one breastmilk sample collected notably later than the other samples, at infant age of 14.5 months (range for the other breastmilk samples: 0.6–6.07 months), one sample with missing information on the date of collection and six mothers missing data on residential green environment) (Supplementary Fig. 2). Mothers received written instructions for the collection of breastmilk samples: samples were collected by manual expression in the morning from one single breast, first milking a few drops to waste before collecting the actual sample (~ 10 ml) into a plastic container (pre-feed sample). The samples were stored in the fridge and the mothers brought the samples to the research center or the samples were collected from their homes on the day of sampling. All samples were frozen and stored at − 70 °C until analysis.High Performance Liquid Chromatography (HPLC) was used to identify HMOs in breastmilk as previously described40,57,58 at the University of California, San Diego (methods described in detail in Berger et al.58). Milk samples were spiked with raffinose (a non-HMO carbohydrate) as an internal standard to allow absolute quantification. HMOs were extracted by high-throughput solid-phase extraction, fluorescently labelled, and measured using HPLC with fluorescent detection (HPLC-FLD)58. Absolute concentrations for the 19 HMOs were calculated based on standard retention times and corrected for internal standard recovery. Quantified HMOs included: 2′-fucosyllactose (2′FL), 3-fucosyllactose (3FL), lacto-N-neotetraose (LNnT), 3′-sialyllactose (3′SL), difucosyllactose (DFlac), 6′-sialyllactose (6′SL), lacto-N-tetraose (LNT), lacto-Nfucopentaose (LNFP) I, LNFP II, LNFP III, sialyl-LNT (LST) b, LSTc, difucosyllacto-LNT (DFLNT), lacto-N-hexaose (LNH), disialyllacto-N-tetraose (DSLNT), fucosyllacto-Nhexaose (FLNH), difucosyllacto-N-hexaose (DFLNH), fucodisialyllacto-lacto-N-hexaose (FDSLNH) and disialyllacto-N-hexaose (DSLNH). HMOs were also summed up to seven groups based on structural features: small HMOs (2′FL, 3FL, 3′SL, 6′SL, and DFLac), type 1 HMOs (LNT, LNFP I, LNFP II, LSTb, DSLNT), type 2 HMOs (LNnT, LNFP III, LSTc), α-1-2-fucosylated HMOs (2’FL, LNFP I), terminal α-2-6-sialylated HMOs (6′SL, LSTc), internal α-2-6-sialylated HMOs (DSLNT, LSTb), terminal α-2-3-sialylated HMOs (3′SL, DSLNT). The total concentration of HMOs was calculated as the sum of the 19 oligosaccharides. HMO-bound fucose and HMO-bound sialic acid were calculated on a molar basis. The proportion of each HMO comprising the total HMO concentration was also calculated. HMO Simpson’s diversity was calculated as Simpson’s Reciprocal Index 1/D, which is the reciprocal sum of the square of the relative abundance of each of the measured 19 HMOs57,59. The higher the diversity value, the more heterogenous is the HMO composition in the sample.Properties of the residential green environmentThe selected residential green environment variables measure the properties of the green environments surrounding the homes of the participants and do not include any measures of the house characteristics, indoor environment or the actual use of green spaces by the participants. The residential green environment variables were selected due to their previously observed associations with residential microbiota and health33,34,35. The variables of the residential green environments were derived from multispectral satellite images series, with a 30 m × 30 m of spatial resolution (Landsat TM 5, National Aeronautics and Space Administration—NASA) and land cover data (CORINE). We used Landsat TM images obtained over the summertime (June–August, greenest months in Finland), to minimize the seasonal variation of living vegetation and cloud cover as well as to better identify vegetation areas and maximise the contrast in our estimated exposure. In each selected Landsat TM 5 images, the cloud was masked out, and the Normalized Difference Vegetation Index (NDVI)36 was calculated. The final NDVI map was the mean of NDVI images collected over three consecutive years (2008–2010), to make an NDVI map with non-missing values due to cloud cover for the study area. NDVI map measures the vegetation cover, vitality and density. The NDVI can get values ranging from − 1 to 1 where values below zero represent water surfaces, values close to zero indicate areas with low intensity of living vegetation and values close to one indicate high abundance of living vegetation. For the analyses, areas covered by water were removed and the value ranged from 0 to 1, to prevent negative values for underestimating the greenness values of the residential area like in some prior studies60. We assumed that summertime NDVI identified the green space and vegetation density well, but greenness intensity might vary seasonally.Second, we used calculated indicators related to the diversity and naturalness of the land cover from CORINE Land Cover data sets of the year 201261. The 12 land cover types include: (1) Residential area, (2) Industrial/commercial area, (3) Transport network, (4) Sport/leisure, (5) Agriculture, (6) Broad-leave forest, (7) Coniferous forest, (8) Mixed forest, (9) Shrub/grassland, (10) Bare surface, (11) Wetland, and (12) Water bodies. From this information, we calculated two vegetation cover indexes. The Vegetation Cover Diversity Index (Simpson’s Diversity Index of Vegetation Cover, VCDI)37, only includes vegetation classes from CORINE land cover types (categories 5–9 and 11). VCDI approaches 1 as the number of different vegetation classes increases and the proportional distribution of area among the land use classes becomes more equitable. Furthermore, because we were particularly interested in the natural vegetation cover in the residential area, we calculated the area-weighted Naturalness Index (NI)38. This is an integrated indicator used to measure the human impact and degree of all human interventions on ecological components. The index is based on CORINE Land Cover data but reclassified to 15 classes. Residential areas have been divided to two classes: Continuous residential area (High density buildings) and Discontinuous residential area (Low density, mostly individual houses area). Agricultural area has also been divided to two classes: Agricultural area (Cropland) and Pasture as well as class 9 (Shrub/grassland) has been separated to Woodland and Natural grassland. Assignment of CORINE Land Cover classes to degrees of naturalness has been made based on Walz and Stein 201438. The area-weighted NI range from 1 to 7, where low values represent low human impact (≤ 3 = Natural), medium values moderate human impact (4–5 = Semi-natural) and high values strong human impact (6–7 = Non-Natural). To ease the interpretation of results and to correspond to the same direction than the other residential green environment variables, we have reverse-scaled the NI values, so that higher values illustrate more natural residential areas.Background factorsAs genetics is strongly linked to HMO composition, maternal secretor status was determined by high abundance (secretor) or near absence (non-secretor) of the HMO 2’FL in the breastmilk samples. Mothers with active secretor (Se) genes and FUT2 enzyme produce high amounts of α-1-2-fucosylated HMOs such as 2′-fucosyllactose (2′FL), whereas in the breastmilk of non-secretor mothers these HMOs are almost absent. Beyond genetics, other maternal and infant characteristics may influence HMO composition. So far, several associations have been reported, including lactation stage, maternal pre-pregnancy BMI, maternal age, parity, maternal diet, mode of delivery, infant gestational age and infant sex22,40. Information on the potential confounding factors, child sex, birth weight, maternal age at birth, number of previous births, marital status, maternal occupational status, smoking during pregnancy (before and during pregnancy), maternal pre-pregnancy BMI, mode of delivery, duration of pregnancy and maternal diseases [including both maternal disorders predominantly related to pregnancy such as pre-eclampsia and gestational diabetes and chronic diseases (diseases of the nervous, circulatory, respiratory, digestive, musculoskeletal and genitourinary systems, cancer and mental and behavioral disorders, according to ICD-10 codes, i.e. WHO International Classification of Diseases Tenth Revision)], were obtained from Medical Birth Registers. Self-administered questionnaires upon recruitment provided information on family net income and maternal education level. Those who had no professional training or a maximum of an intermediate level of vocational training (secondary education) were classified as “basic”. Those who had studied at a University of Applied Sciences or higher (tertiary education) were classified as “advanced”. The advanced level included any academic degree (bachelor’s, master’s, licentiate or doctoral degree). Maternal diet quality was assessed in late pregnancy using the Index of Diet Quality (IDQ62) which measures adherence to health promoting diet and nutrition recommendations. The IDQ score was used in its original form by setting the statistically defined cut-off value at 10, with scores below 10 points indicating unhealthy diets and non-adherence and scores of 10–15 points indicating a health-promoting diet and adherence dietary guidelines. Lactation time postpartum (child age) and season were received from the recorded breastmilk collection dates. Lactation status (exclusive/partial/unknown breastfeeding) at the time of breastmilk collection were gathered from follow-up diaries. From partially breastfeeding mothers (n = 277) 253 had started formula feeding and 28 solids at the time of milk collection. Last, a summary z score representing socio-economic disadvantage in the residential area was obtained from Statistics Finland grid database for the year 2009 and is based on the proportion of adults with low level of education, the unemployment rate, and proportion of people living in rented housing at each participant’s residential area55.Statistical analysesTo harmonize the residential green environment variables we calculated the mean values for NDVI, VCDI and NI in 750 × 750 m squares (and 250 × 250 m) around participant homes in a Geographical Information System (QGIS, www.qgis.org). The same grid sizes were used to calculate residential socioeconomic disadvantage in the residential area55 at the time of child birth. The geographical coordinates (latitude/longitude) of the cohort participants’ home address (795 mothers) were obtained from the Population Register Centre at the time of their child birth.The background characteristics of the mothers and children are given as means and standard deviations (SD) for continuous variables and percentages for categorical variables. Due to non-normal distribution, natural logarithmic transformation was performed for all HMO variables (19 individual components, sum of HMOs, HMO-bound sialic acid, HMO-bound fucose and HMO groups (all in nmol/mL)) except for HMO diversity. Associations between each background factor and HMO diversity and 19 individual HMO components were analysed with univariate generalized linear models to identify factors independently associated with HMO composition. All factors demonstrating a significant association (p  More

  • in

     Restoration and coral adaptation delay, but do not prevent, climate-driven reef framework erosion of an inshore site in the Florida Keys

    De Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 80(342), 108–110 (2013).Article 

    Google Scholar 
    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).Article 
    ADS 

    Google Scholar 
    Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018).Article 
    ADS 

    Google Scholar 
    Enochs, I. C. & Manzello, D. P. Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity 4, 94–104 (2012).Article 

    Google Scholar 
    Newman, S. P. et al. Reef flattening effects on total richness and species responses in the Caribbean. J. Anim. Ecol. 84, 1678–1689 (2015).Article 

    Google Scholar 
    Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 1–9 (2014).Article 

    Google Scholar 
    Storlazzi, C. D. et al. Rigorously valuing the potential coastal hazard risk reduction provided by coral reef restoration in Florida and Puerto Rico. U.S. Geol. Surv. 2, 1–24 (2021).
    Google Scholar 
    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2015265118 (2021).Article 

    Google Scholar 
    Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).Article 
    ADS 

    Google Scholar 
    Achlatis, M. et al. Sponge bioerosion on changing reefs: Ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge. Sci. Rep. 7, 1–13 (2017).Article 

    Google Scholar 
    Perry, C. T. & Alvarez-Filip, L. Changing geo-ecological functions of coral reefs in the Anthropocene. Funct. Ecol. 33, 976–988 (2019).
    Google Scholar 
    Manzello, D. P., Enochs, I. C., Kolodziej, G. & Carlton, R. Recent decade of growth and calcification of Orbicella faveolata in the Florida Keys: An inshore-offshore comparison. Mar. Ecol. Prog. Ser. 521, 81–89 (2015).Article 
    ADS 

    Google Scholar 
    de Bakker, D. M., van Duyl, F. C., Perry, C. T. & Meesters, E. H. Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients. Glob. Chang. Biol. 25, 4092–4104 (2019).Article 
    ADS 

    Google Scholar 
    Wisshak, M., Schönberg, C. H. L., Form, A. & Freiwald, A. Ocean acidification accelerates reef bioerosion. PLoS ONE 7, e45124 (2012).Article 
    ADS 

    Google Scholar 
    Webb, A. E. et al. Combined effects of experimental acidification and eutrophication on reef sponge bioerosion rates. Front. Mar. Sci. 4, 311 (2017).Article 

    Google Scholar 
    Perry, C. T. et al. Estimating rates of biologically driven coral reef framework production and erosion: A new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31, 853–868 (2012).Article 
    ADS 

    Google Scholar 
    Molina-Hernández, A., González-Barrios, F. J., Perry, C. T. & Álvarez-Filip, L. Two decades of carbonate budget change on shifted coral reef assemblages: Are these reefs being locked into low net budget states?: Caribbean reefs carbonate budget trends. Proc. R. Soc. B Biol. Sci. 287, 20202305 (2020).Article 

    Google Scholar 
    Toth, L. T., Courtney, T. A., Colella, M. A., Kupfner, S. A. & Robert, J. The past, present, and future of coral reef growth in the Florida Keys. Glob. Change Biol. 28(17), 5294–5309. https://doi.org/10.1111/gcb.16295 (2022).Article 

    Google Scholar 
    Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4, 1402–1407 (2013).Article 
    ADS 

    Google Scholar 
    Enochs, I. C. et al. Ocean acidification enhances the bioerosion of a common coral reef sponge: Implications for the persistence of the Florida Reef Tract. Bull. Mar. Sci. 91, 271–290 (2015).Article 

    Google Scholar 
    Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article 

    Google Scholar 
    van Hooidonk, R., Maynard, J. A., Liu, Y. & Lee, S. K. Downscaled projections of Caribbean coral bleaching that can inform conservation planning. Glob. Chang. Biol. 21, 3389–3401 (2015).Article 
    ADS 

    Google Scholar 
    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 80(333), 418 (2011).Article 
    ADS 

    Google Scholar 
    Teneva, L. et al. Predicting coral bleaching hotspots: The role of regional variability in thermal stress and potential adaptation rates. Coral Reefs 31, 1–12 (2012).Article 
    ADS 

    Google Scholar 
    Albright, R., Langdon, C. & Anthony, K. R. N. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central great Barrier Reef. Biogeosciences 10, 6747–6758 (2013).Article 
    ADS 

    Google Scholar 
    Van Hooidonk, R., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 20, 103–112 (2014).Article 
    ADS 

    Google Scholar 
    Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the paris agreement. Sci. Rep. 6, 1–8 (2016).
    Google Scholar 
    Lee, J.-Y. et al. (2021) Future global climate: Scenario-based projections and near-term information supplementary material climate change 2021: the physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change doi:https://doi.org/10.1017/9781009157896.006McCulloch, M., Falter, J., Trotter, J. & Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat. Clim. Chang. 2, 623–627 (2012).Article 
    ADS 

    Google Scholar 
    Okazaki, R. R. et al. Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Glob. Chang. Biol. 23, 1023–1035 (2017).Article 
    ADS 

    Google Scholar 
    Kornder, N. A., Riegl, B. M. & Figueiredo, J. Thresholds and drivers of coral calcification responses to climate change. Glob. Chang. Biol. 24, 5084–5095 (2018).Article 
    ADS 

    Google Scholar 
    Van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Chang. 3, 508–511 (2013).Article 
    ADS 

    Google Scholar 
    Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Glob. Chang. Biol. 20, 125–139 (2014).Article 
    ADS 

    Google Scholar 
    Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918 (2013).Article 

    Google Scholar 
    Ruzicka, R. R. et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141 (2013).Article 
    ADS 

    Google Scholar 
    Manzello, D. P., Enochs, I. C., Kolodziej, G., Carlton, R. & Valentino, L. Resilience in carbonate production despite three coral bleaching events in 5 years on an inshore patch reef in the Florida Keys. Mar. Biol. 165, 1–11 (2018).Article 

    Google Scholar 
    Gintert, B. E. et al. Marked annual coral bleaching resilience of an inshore patch reef in the Florida Keys: A nugget of hope, aberrance, or last man standing?. Coral Reefs 37, 533–547 (2018).Article 
    ADS 

    Google Scholar 
    Maynard, J. A., Anthony, K. R. N., Marshall, P. A. & Masiri, I. Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155, 173–182 (2008).Article 

    Google Scholar 
    Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl. Acad. Sci. U. S. A. 105, 10444–10449 (2008).Article 
    ADS 

    Google Scholar 
    Silverstein, R. N., Correa, A. M. S. & Baker, A. C. Specificity is rarely absolute in coral–algal symbiosis: Implications for coral response to climate change. Proc. R. Soc. B Biol. Sci. 279, 2609–2618 (2012).Article 

    Google Scholar 
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl. Acad. Sci. U. S. A. 110, 1387–1392 (2013).Article 
    ADS 

    Google Scholar 
    Voolstra, C. R. et al. Rapid evolution of coral proteins responsible for interaction with the environment. PLoS ONE 6(5), e20392 (2011).Article 
    ADS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 
    ADS 

    Google Scholar 
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 80(344), 895 (2014).Article 
    ADS 

    Google Scholar 
    Tribollet, A., Chauvin, A. & Cuet, P. Carbonate dissolution by reef microbial borers: A biogeological process producing alkalinity under different pCO 2 conditions. Facies 65, 1–10 (2019).Article 

    Google Scholar 
    Chaves-Fonnegra, A. et al. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs. Glob. Chang. Biol. 24, 773–785 (2018).Article 
    ADS 

    Google Scholar 
    Enochs, I. C. et al. Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific. Ecol. Monogr. 91, 1–16 (2021).Article 

    Google Scholar 
    Van Westen, R. M. & Dijkstra, H. A. Ocean eddies strongly affect global mean sea-level projections. Sci. Adv. 7, 1–12 (2021).
    Google Scholar 
    DeMerlis, A. et al. Pre-exposure to a variable temperature treatment improves the response of Acropora cervicornis to acute thermal stress. Coral Reefs https://doi.org/10.1007/s00338-022-02232-z (2022).Article 

    Google Scholar 
    Webb, A. E. et al. Quantifying functional consequences of habitat degradation on a Caribbean coral reef. Biogeosciences 18, 6501–6516 (2021).Article 
    ADS 

    Google Scholar 
    Silbiger, N. J. et al. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc. R. Soc. B Biol. Sci. 285, 2–10 (2018).
    Google Scholar 
    DeCarlo, T. M. et al. Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43, 7–10 (2015).Article 
    ADS 

    Google Scholar 
    Wooldridge, S. A. Water quality and coral bleaching thresholds: Formalising the linkage for the inshore reefs of the Great Barrier Reef. Australia. Mar. Pollut. Bull. 58, 745–751 (2009).Article 

    Google Scholar 
    Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. https://doi.org/10.5194/gmd-9-1937-2016 (2016).O’Neill, B. C., Kriegler, E., Riahi, K. & Ebi, K. L. A new scenario framework for climate change research : The concept of shared socioeconomic pathways. Clim. Change https://doi.org/10.1007/s10584-013-0905-2 (2014).Article 

    Google Scholar 
    O’Neill, B. C. et al. The scenario model intercomparison project ( ScenarioMIP ) for CMIP6. Geosci. Model Dev. 9(9), 3461–3482 (2018).Article 
    ADS 

    Google Scholar 
    Towle, E. K. et al. (2021) National coral reef monitoring plan.Kuffner, I. B., Hickey, T. D. & Morrison, J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs 32, 987–997 (2013).Article 
    ADS 

    Google Scholar 
    Manzello, D. P., Enochs, I. C., Kolodziej, G. & Carlton, R. Coral growth patterns of Montastraea cavernosa and Porites astreoides in the Florida Keys: The importance of thermal stress and inimical waters. J. Exp. Mar. Bio. Ecol. 471, 198–207 (2015).Article 

    Google Scholar 
    Gattuso, J.P. et al. (2015) Package ‘ seacarb ’Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M. & Hoegh-Gulberg, O. Global assessment of coral bleaching and required rates of adaptation under climate change. Glob. Chang. Biol. 11, 2251–2265 (2005).Article 
    ADS 

    Google Scholar 
    van Hooidonk, R. & Huber, M. Quantifying the quality of coral bleaching predictions. Coral Reefs 28, 579–587 (2009).Article 
    ADS 

    Google Scholar 
    Yee, S. H. & Barron, M. G. Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data. Environ. Monit. Assess. 161, 423–438 (2010).Article 

    Google Scholar 
    Liu, G., Strong, A. E. & Skirving, W. Remote sensing of sea surface temperatures during 2002 barrier reef coral bleaching (Eos, Washington, DC, 2003).Book 

    Google Scholar 
    van Hooidonk, R. et al. Projections of future coral bleaching conditions using IPCC CMIP6 models: Climate policy implications, management applications, and Regional Seas summaries. (2020).Kinsey, D. W. & Hopley, D. The significance of coral reefs as global carbon sinks-response to Greenhouse. Glob. Planet. Change 3, 363–377 (1991).Article 
    ADS 

    Google Scholar 
    van Westen, R. M. et al. Ocean model resolution dependence of Caribbean sea-level projections. Sci. Rep. 10, 1–11 (2020).
    Google Scholar  More

  • in

    Solar radiation, temperature and the reproductive biology of the coral Lobactis scutaria in a changing climate

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).Article 
    ADS 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. 116, 12907–12912 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).Article 
    ADS 

    Google Scholar 
    Van Oppen, M. J., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. 112, 2307–2313 (2015).Article 
    ADS 

    Google Scholar 
    Parrett, J. M. & Knell, R. J. The effect of sexual selection on adaptation and extinction under increasing temperatures. Proc. R. Soc. B. 285, 20180303 (2018).Article 

    Google Scholar 
    Hagedorn, M. et al. Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc. Natl. Acad. Sci. 118, e2110559118 (2021).Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Epstein, N., Bak, R. & Rinkevich, B. Applying forest restoration principles to coral reef rehabilitation. Aquat. Conserv. Mar. Freshw. Ecosyst. 13, 387–395 (2003).Article 

    Google Scholar 
    West, J. M. & Salm, R. V. Resistance and resilience to coral bleaching: Implications for coral reef conservation and management. Conserv. Biol. 17, 956–967 (2003).Article 

    Google Scholar 
    Yeemin, T., Sutthacheep, M. & Pettongma, R. Coral reef restoration projects in Thailand. Ocean Coast. Manag. 49, 562–575 (2006).Article 

    Google Scholar 
    Anthony, K. et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Chang. Biol. 21, 48–61 (2015).Article 
    ADS 

    Google Scholar 
    Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).Article 
    ADS 

    Google Scholar 
    Porter, J. W., Fitt, W. K., Spero, H. J., Rogers, C. S. & White, M. W. Bleaching in reef corals: Physiological and stable isotopic responses. Proc. Natl. Acad. Sci. 86, 9342–9346 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102 (2002).Article 
    ADS 

    Google Scholar 
    Grottoli, A., Rodrigues, L. & Juarez, C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar. Biol. 145, 621–631 (2004).Article 
    CAS 

    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).Article 
    ADS 

    Google Scholar 
    Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L. & Matsui, Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: Implications for resilience in mounding corals. PLoS ONE 8, e63267 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B. 282, 20151887 (2015).Article 

    Google Scholar 
    Dai, C., Fan, T. & Yu, J. Reproductive isolation and genetic differentiation of a scleractinian coral Mycedium elephantotus. Mar. Ecol. Prog. Ser. 201, 179–187 (2000).Article 
    ADS 

    Google Scholar 
    Vargas-Ángel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110–122 (2006).Article 
    ADS 

    Google Scholar 
    Rosser, N. & Gilmour, J. New insights into patterns of coral spawning on Western Australian reefs. Coral Reefs 27, 345–349 (2008).Article 
    ADS 

    Google Scholar 
    Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).Article 
    ADS 

    Google Scholar 
    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).Article 
    ADS 

    Google Scholar 
    Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10 (2014).Article 
    ADS 

    Google Scholar 
    Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. In Proc. 9th Int. Coral Reef Symp. 1123–1128 (2002).Johnston, E. C., Counsell, C. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 34, 2315–2325 (2020).Article 

    Google Scholar 
    Hirose, M. & Hidaka, M. Reduced reproductive success in scleractinian corals that survived the 1998 bleaching in Okinawa. Galaxea 2000, 17–21 (2000).Article 

    Google Scholar 
    Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999: An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706 (2001).Article 
    ADS 

    Google Scholar 
    Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. 28, 1061–1071 (2016).Article 
    CAS 

    Google Scholar 
    Bassim, K., Sammarco, P. & Snell, T. Effects of temperature on success of (self and non-self) fertilization and embryogenesis in Diploria strigosa (Cnidaria, Scleractinia). Mar. Biol. 140, 479–488 (2002).Article 

    Google Scholar 
    Kenkel, C. D. et al. Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS ONE 6, e26914 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Louis, Y. D., Bhagooli, R., Kenkel, C. D., Baker, A. C. & Dyall, S. D. Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 191, 63–77 (2017).Article 
    CAS 

    Google Scholar 
    Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719 (2017).Article 

    Google Scholar 
    Gierz, S., Ainsworth, T. D. & Leggat, W. Diverse symbiont bleaching responses are evident from 2-degree heating week bleaching conditions as thermal stress intensifies in coral. Mar. Freshw. Res. 71, 1149–1160 (2020).Article 

    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).Article 
    CAS 

    Google Scholar 
    Yee, S. H. & Barron, M. G. Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data. Environ. Monit. Assess. 161, 423–438 (2010).Article 

    Google Scholar 
    Lesser, M. P. Coral bleaching: causes and mechanisms. In Coral Reefs: An Ecosystem in Transition (eds Riegl, B. M. & Purkis, S. J.) 405–419 (Springer, 2011).Chapter 

    Google Scholar 
    Barber, J. & Andersson, B. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 17, 61–66 (1992).Article 
    CAS 

    Google Scholar 
    Aro, E.-M., Virgin, I. & Andersson, B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta Bioenergy 1143, 113–134 (1993).Article 
    CAS 

    Google Scholar 
    Lesser, M. P. & Farrell, J. H. Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23, 367–377 (2004).Article 

    Google Scholar 
    Salih, A., Hoegh-Guldberg, O. & Cox, G. Bleaching responses of symbiotic dinoflagellates in corals: the effects of light and elevated temperature on their morphology and physiology. In Proceedings of the Australian Coral Reef Society 75th Anniversary Conference (eds Greenwood, J. G. & Hall, N. R.) 199–216 (1998).Smith, D. J., Suggett, D. J. & Baker, N. R. Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals?. Glob. Chang. Biol. 11, 1–11 (2005).Article 
    ADS 

    Google Scholar 
    Downs, C. et al. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS ONE 8, e77173 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Banaszak, A. T. & Lesser, M. P. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 8, 1276–1294 (2009).Article 
    CAS 

    Google Scholar 
    Jokiel, P. L. & York, R. H. Jr. Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae. Bull. Mar. Sci. 32, 301–315 (1982).
    Google Scholar 
    Vareschi, E. & Fricke, H. Light responses of a scleractinian coral (Plerogyra sinuosa). Mar. Biol. 90, 395–402 (1986).Article 

    Google Scholar 
    Henley, E. M. et al. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci. Rep. 11, 12525 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Wellington, G. & Fitt, W. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192 (2003).Article 
    CAS 

    Google Scholar 
    Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836–838 (1993).Article 
    ADS 

    Google Scholar 
    Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013 (2017).Article 
    ADS 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay. Hawaiʻi. PeerJ 3, e1136 (2015).Article 

    Google Scholar 
    Rodgers, K. S., Bahr, K. D., Jokiel, P. L. & Richards Donà, A. Patterns of bleaching and mortality following widespread warming events in 2014 and 2015 at the Hanauma Bay Nature Preserve, Hawai‘i. PeerJ 5, e3355 (2017).Article 

    Google Scholar 
    Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kāne‘ohe Bay, Hawai‘i. Coral Reefs 39, 757–769 (2020).Article 

    Google Scholar 
    Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159–164 (1983).Article 
    ADS 

    Google Scholar 
    Kramarsky-Winter, E. & Loya, Y. Reproductive strategies of two fungiid corals from the northern Red Sea: Environmental constraints?. Mar. Ecol. Prog. Ser. 174, 175–182 (1998).Article 
    ADS 

    Google Scholar 
    Loya, Y. & Sakai, K. Bidirectional sex change in mushroom stony corals. Proc. R. Soc. B. 275, 2335–2343 (2008).Article 

    Google Scholar 
    Hagedorn, M. et al. Coral larvae conservation: Physiology and reproduction. Cryobiology 52, 33–47 (2006).Article 
    CAS 

    Google Scholar 
    Jokiel, P. L. & Brown, E. K. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Chang. Biol. 10, 1627–1641 (2004).Article 
    ADS 

    Google Scholar 
    Tanaka, K., Guidry, M. W. & Gruber, N. Ecosystem responses of the subtropical Kaneohe Bay, Hawaii, to climate change: A nitrogen cycle modeling approach. Aquat. Geochem. 19, 569–590 (2013).Article 
    CAS 

    Google Scholar 
    Couch, C. S. et al. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 12, e0185121 (2017).Article 

    Google Scholar 
    Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, e5347 (2018).Article 

    Google Scholar 
    Barnhill, K. A. & Bahr, K. D. Coral resilience at Malaukaa fringing reef, Kāneʻohe Bay, Oʻahu after 18 years. J. Mar. Sci. Eng. 7, 311 (2019).Article 

    Google Scholar 
    Lesser, M., Stochaj, W., Tapley, D. & Shick, J. Bleaching in coral reef anthozoans: Effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8, 225–232 (1990).Article 
    ADS 

    Google Scholar 
    Brown, B., Dunne, R., Scoffin, T. & Le Tissier, M. Solar damage in intertidal corals. Mar. Ecol. Prog. Ser. 219–230 (1994).Le Tissier, M. D. A. & Brown, B. E. Dynamics of solar bleaching in the intertidal reef coral Goniastrea aspera at Ko Phuket, Thailand. Mar. Ecol. Prog. Ser. 136, 235–244 (1996).Article 
    ADS 

    Google Scholar 
    Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).Article 
    ADS 
    CAS 

    Google Scholar 
    Takahashi, S., Nakamura, T., Sakamizu, M., Woesik, R. V. & Yamasaki, H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45, 251–255 (2004).Article 
    CAS 

    Google Scholar 
    Coelho, V. et al. Shading as a mitigation tool for coral bleaching in three common Indo-Pacific species. J. Exp. Mar. Biol. Ecol. 497, 152–163 (2017).Article 

    Google Scholar 
    Marquis, R. J. Phenological variation in the neotropical understory shrub Piper arielanum: Causes and consequences. Ecology 69, 1552–1565 (1988).Article 

    Google Scholar 
    Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs 40, 1411–1418 (2021).Article 

    Google Scholar 
    Hagedorn, M. et al. Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS ONE 7, e33354 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Zuchowicz, N. et al. Assessing coral sperm motility. Sci. Rep. 11, 61 (2021).Article 
    CAS 

    Google Scholar 
    Binet, M., Doyle, C., Williamson, J. & Schlegel, P. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 452, 91–100 (2014).Article 
    CAS 

    Google Scholar 
    Jokiel, P., Maragos, J. & Franzisket, L. Coral growth: buoyant weight technique. In Coral Reefs: Research Methods Vol. 5 (eds Stoddart, D. R. & Johannes, R. E.) 529–542 (UNESCO, 1978).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2019).Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2019).
    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 
    MATH 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. J. Math. Methods Biosci. 50, 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar 
    Graves, S., Piepho, H.-P. & Selzer, M. L. multcompView: Visualizations of paired comparisons. R package version 0.1-7. https://CRAN.R-project.org/package=multcompView (2015).Christensen, R. H. B. ordinal-Regression models for ordinal data. R package version 2019.4-25. https://cran.r-project.org/package=ordinal/. (2019).Mangiafico, S. rcompanion: functions to support extension education program evaluation. R package version 2.3.7. https://cran.r-project.org/package=rcompanion (2019).Hope, R. M. Rmisc: Ryan Miscellaneous. R package version 1.5. https://cran.r-project.org/package=Rmisc (2013).Hervé, M. RVAideMemoire: Testing and plotting procedures for biostatistics, R package version 0.9-73. https://cran.r-project.org/package=RVAideMemoire (2019).Callaghan, J. A short note on the intensification and extreme rainfall associated with Hurricane Lane. Trop. Cyclone Res. Rev. 8, 103–107 (2019).Article 

    Google Scholar 
    Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Seasonal reproduction in equatorial reef corals. Invertebr. Reprod. Dev. 48, 207–218 (2005).Article 

    Google Scholar 
    Lotterhos, K. E. & Levitan, D. Gamete release and spawning behavior in broadcast spawning marine invertebrates. In The Evolution of Primary Sexual Characters (eds Leonard, J. & Córdoba-Aguilar, A.) 99–120 (Oxford Univ. Press, 2010).
    Google Scholar 
    Ims, R. A. The ecology and evolution of reproductive synchrony. Trends Ecol. Evol. 5, 135–140 (1990).Article 
    CAS 

    Google Scholar 
    Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Guest, J. R., Baird, A. H., Bouwmeester, J. & Edwards, A. J. To assess temporal breakdown in spawning synchrony requires comparable temporal data. https://doi.org/10.1126/comment.737627/full/ (2020).Hartmann, D. L. et al. Observations: atmosphere and surface. In Climate change 2013 The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 159–254 (Cambridge University Press, 2013).Pörtner, H. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC Intergovernmental Panel on Climate Change, 2019).
    Google Scholar 
    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming?. Science 363, 128–129 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gorbunov, M. Y. & Falkowski, P. G. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309–315 (2002).Article 
    ADS 

    Google Scholar 
    Boch, C. A., Ananthasubramaniam, B., Sweeney, A. M., Doyle Iii, F. J. & Morse, D. E. Effects of light dynamics on coral spawning synchrony. Biol. Bull. 220, 161–173 (2011).Article 

    Google Scholar 
    Sweeney, A. M., Boch, C. A., Johnsen, S. & Morse, D. E. Twilight spectral dynamics and the coral reef invertebrate spawning response. J. Exp. Biol. 214, 770–777 (2011).Article 

    Google Scholar 
    Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: Influence of temperature. Biol. Bull. 222, 192–202 (2012).Article 

    Google Scholar 
    Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394 (1986).Article 

    Google Scholar 
    Hunter, C. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilatata. In Proc 6th Int Coral Reef Symp. vol. 2, 727–732.Levitan, D. R. et al. Mechanisms of reproductive isolation among sympatric broadcast spawning corals of the Montastraea annularis species complex. Evolution 58, 308–323 (2004).
    Google Scholar 
    Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763 (2007).Article 
    ADS 

    Google Scholar 
    Humanes, A., Noonan, S. H., Willis, B. L., Fabricius, K. E. & Negri, A. P. Cumulative effects of nutrient enrichment and elevated temperature compromise the early life history stages of the coral Acropora tenuis. PLoS ONE 11, e0161616 (2016).Article 

    Google Scholar 
    Lesser, M. P., Kruse, V. A. & Barry, T. M. Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos. J. Exp. Biol. 206, 4097–4103 (2003).Article 

    Google Scholar 
    Häder, D.-P. et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem. Photobiol. Sci. 14, 108–126 (2015).Article 

    Google Scholar 
    Albright, R. & Mason, B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS ONE 8, e56468 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Espinoza, J., Schulz, M., Sanchez, R. & Villegas, J. Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia 41, 51–54 (2009).Article 
    CAS 

    Google Scholar 
    Paoli, D. et al. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil. Steril. 95, 2315–2319 (2011).Article 
    CAS 

    Google Scholar 
    Gallo, A., Esposito, M. C., Tosti, E. & Boni, R. Sperm motility, oxidative status, and mitochondrial activity: Exploring correlation in different species. Antioxidants 10, 1131 (2021).Article 
    CAS 

    Google Scholar 
    Schlegel, P., Binet, M. T., Havenhand, J. N., Doyle, C. J. & Williamson, J. E. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol. 218, 1084–1090 (2015).Article 

    Google Scholar 
    Gulko, D. Effects of ultraviolet radiation on fertilization and production of planula larvae in the Hawaiian coral Fungia scutaria. In Ultraviolet Radiation and Coral Reefs Vol. 41 (eds Gulko, D. & Jokiel, P. L.) 135–147 (University of Hawai’i, 1995).
    Google Scholar 
    Pruski, A. M., Nahon, S., Escande, M.-L. & Charles, F. Ultraviolet radiation induces structural and chromatin damage in Mediterranean sea-urchin spermatozoa. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 673, 67–73 (2009).Article 
    CAS 

    Google Scholar 
    Dahms, H.-U. & Lee, J.-S. UV radiation in marine ectotherms: Molecular effects and responses. Aquat. Toxicol. 97, 3–14 (2010).Article 
    CAS 

    Google Scholar 
    Nesa, B., Baird, A. H., Harii, S., Yakovleva, I. & Hidaka, M. Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool. Stud. 51, 12–17 (2012).CAS 

    Google Scholar 
    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511 (2015).Article 

    Google Scholar 
    Jokiel, P. & Coles, S. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208 (1977).Article 

    Google Scholar 
    Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the Central Red Sea. Science 329, 322–325. https://doi.org/10.1126/science.1190182 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Cooper, T. F., De’Ath, G., Fabricius, K. E. & Lough, J. M. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob. Chang. Biol. 14, 529–538 (2008).Article 
    ADS 

    Google Scholar 
    Tanzil, J., Brown, B., Tudhope, A. & Dunne, R. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28, 519–528 (2009).Article 
    ADS 

    Google Scholar 
    Tanzil, J. T. I. et al. Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob. Chang. Biol. 19, 3011–3023 (2013).Article 
    ADS 

    Google Scholar 
    Richmond, R. H., Tisthammer, K. H. & Spies, N. P. The effects of anthropogenic stressors on reproduction and recruitment of corals and reef organisms. Front. Mar. Sci. 5, 226 (2018).Article 

    Google Scholar 
    Chen, P.-Y., Chen, C.-C., Chu, L. & McCarl, B. Evaluating the economic damage of climate change on global coral reefs. Glob. Environ. Change 30, 12–20 (2015).Article 

    Google Scholar 
    Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. Elife 4, e09991 (2015).Article 

    Google Scholar 
    Lin, C.-H., Takahashi, S., Mulla, A. J. & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl. Acad. Sci. 118, e2101985118 (2021).Article 
    CAS 

    Google Scholar 
    Anthony, K. R. et al. Interventions to help coral reefs under global change—A complex decision challenge. PLoS ONE 15, e0236399 (2020).Article 
    CAS 

    Google Scholar 
    Daly, J. et al. Cryopreservation can assist gene flow on the Great Barrier Reef. Coral Reefs 41, 455–462 (2022).Article 

    Google Scholar  More

  • in

    Escaping Darwin’s shadow: how Alfred Russel Wallace inspires Indigenous researchers

    A map of the Amazon River and its tributaries, as published in Alfred Russel Wallace’s 1853 book.Credit: Mary Evans/Natural History Museum

    Dzoodzo Baniwa, a member of an Indigenous community in Brazil’s Amazonas state, has been collecting data on the region’s biodiversity for around 15 years. He lives in a remote village called Canadá on the Ayari River, a tributary of the Içana, which in turn feeds the Rio Negro, one of the main branches of the Amazon. The nearest city, São Gabriel da Cachoeira, is a three-day trip by motor boat.Dzoodzo (who goes by his Indigenous name but is also known as Juvêncio Cardoso) takes inspiration for his work from many cross-cultural sources. A perhaps unexpected one is a 170-year-old book by the British naturalist Alfred Russel Wallace, who visited the Amazon and Negro rivers on his expeditions in 1848–52. A Narrative of Travels on the Amazon and Rio Negro gives detailed accounts of the wildlife and people Wallace encountered near Dzoodzo’s home, including the Guianan cock-of-the-rock (Rupicola rupicola), a bright orange bird that Wallace describes as “magnificent … sitting amidst the gloom, shining out like a mass of brilliant flame”1.Dzoodzo’s passion for local biodiversity is reflected in his work at Baniwa Eeno Hiepole School, an internationally praised education centre for Indigenous people. He dreams of one day turning it into a research institute and university that might increase scientific understanding of the region’s species, including R. rupicola.
    Alfred Russel Wallace’s first expedition ended in flames
    Wallace, who was born 200 years ago, on 8 January 1823, is best known for spurring Charles Darwin into finally publishing On the Origin of Species, after Wallace sent Darwin his own independent discovery of evolution by natural selection in 1858. Most of Wallace’s subsequent work drew on observations from his 1854–62 expeditions in southeast Asia; his earlier work in Amazonia is much less well known.Yet there are lessons from Wallace’s time in Brazil that are especially relevant for conservationists and other scientists today — notably, what can come from paying attention to what local people say about their own territory.Barriers and boundariesWallace made two key contributions that still shape thinking about Amazonia, the world’s most biodiverse region, which covers parts of Bolivia, Brazil, Colombia, Ecuador, Peru, Venezuela, Guyana, Suriname and French Guiana.On 14 December 1852, Wallace read out his manuscript ‘On the monkeys of the Amazon’ at a meeting of the Zoological Society of London. In this study, which was later published2, Wallace relays observations that form the basis of the most debated hypothesis for how Amazonian organisms diversified: the riverine barrier hypothesis.His paper refers to the large Amazonian rivers as spatial boundaries to the ranges of several primate species. “I soon found that the Amazon, the Rio Negro and the Madeira formed the limits beyond which certain species never passed,” he writes. Since 1852, Wallace’s observations that large rivers could act as geographical barriers that shape the distribution of species have been corroborated, criticized and debated by many. The phenomenon he described clearly holds for some groups, such as monkeys and birds3,4, but not for other groups, such as plants and insects5.Subsequent researchers have explored whether the distribution patterns of species, such as those observed by Wallace, indicate that the evolution of the Amazonian drainage system has itself driven the diversification of species6. Work in the past few years by geologists and biologists show that this drainage system, which includes some of the largest rivers in the world, is dynamic7, and that its rearrangements lead to changes in the distribution ranges of species8. Current species ranges thus hold information about how the Amazonian landscape has changed over time.

    The Guianan cock-of-the-rock (Rupicola rupicola), which Wallace likened to a “brilliant flame”.Credit: Hein Nouwens/Getty

    The second crucial observation made by Wallace, also in his 1852 paper, was that the composition of species varies in different regions. He describes how “several Guiana species come up to the Rio Negro and Amazon, but do not pass them; Brazilian species on the contrary reach but do not pass the Amazon to the north. Several Ecuador species from the east of the Andes reach down into the tongue of land between the Rio Negro and Upper Amazon, but pass neither of those rivers, and others from Peru are bounded on the north by the Upper Amazon, and on the east by the Madeira.” From these observations, he concluded that “there are four districts, the Guiana, the Ecuador, the Peru and the Brazil districts, whose boundaries on one side are determined by the rivers I have mentioned.”
    Evolution’s red-hot radical
    Even though Amazonia is presented as a single, large, green ellipse in most world maps, it is actually a heterogeneous place, with each region and habitat type holding a distinct set of species9,10. The four districts proposed by Wallace are bounded by the region’s largest rivers: the Amazon, Negro and Madeira. But further studies of species ranges since then have revealed more districts, now called areas of endemism, some of which are also bounded by these and other large Amazonian rivers, such as the Tapajós, Xingu and Tocantins9,11.This recognition of spatial heterogeneity in Amazonian species distributions — first accomplished by Wallace — is essential for today’s research, conservation and planning10. Each area of endemism includes species that occur only in that area. And different areas of endemism are affected differently by anthropogenic impacts, such as deforestation, fires and development10. More than half of Amazonia is now within federal or state reserves or Indigenous lands — territories that are recognized by current governments as belonging to Indigenous people. But nearly half of the region’s areas of endemism are located in the south of the region, close to the agricultural frontier, and the species they contain are severely threatened by habitat loss10 (see also www.raisg.org/en).Local knowledgeAlthough Wallace’s writings indicate that in many ways he admired most of the Indigenous people he met, especially those from the upper Rio Negro basin, he still viewed Indigenous people through the European colonial lens of his time. In A Narrative of Travels on the Amazon and Rio Negro1, Wallace describes the Indigenous communities he encountered as “in an equally low state of civilization” — albeit seemingly “capable of being formed, by education and good government, into a peaceable and civilized community”.Yet he did better than many of his contemporaries when it came to respecting local knowledge. In his 1852 paper, for example, Wallace notes that his fellow European naturalists often give vague information about the locality of their collected specimens, and fail to specify such localities in relation to river margins. By contrast, he writes, the “native hunters are perfectly acquainted” with the impact of rivers on the distribution of species, “and always cross over the river when they want to procure particular animals, which are found even on the river’s bank on one side, but never by any chance on the other.” Likewise, in his 1853 book1, Wallace frequently corroborates his findings with information he has obtained from Indigenous people — for example, about the habitat preferences of umbrellabirds (Cephalopterus ornatus) or of “cow-fish” (manatees; Trichechus inunguis).Considering the vastness and complexity of Amazonia, it is hard to see how Wallace could have gained the insights he did after working in the region for only four years, had he not paid close attention to local knowledge.
    The other beetle-hunter
    Amazonian Indigenous peoples have had to endure invasion of their lands, enslavement, violence from invaders and the imposition of other languages and cultures. Despite this, numerous Indigenous researchers wish to expand their knowledge about Amazonia by combining Indigenous and European world views. Meanwhile, a better understanding of how the Amazonian socio-ecological system is organized, and how it is being affected by climate change and local and regional impacts12, hinges on the ability of researchers worldwide to learn from and to be led by Indigenous scientists.The 98 Indigenous lands in the Rio Negro basin cover more than 33 million hectares (see go.nature.com/3wkkftu). If the hopes of Dzoodzo and others to build a research institute and university for the region are met, school students will no longer have to leave their homeland to pursue higher education. The community would have a way to document its own knowledge and that of its ancestors in a more systematic way. And the legitimization of Indigenous people’s research efforts in the legal and academic frameworks recognized by non-Indigenous scientists — such as through the awarding of degrees — would make it easier for Indigenous researchers to partner with other organizations, both nationally and internationally.Indigenous people in the Rio Negro basin today are no longer objects of observation — they have taken charge of their own research using tools from different cultures. Indeed, Dzoodzo is turning to Wallace’s writings, in part, to learn more about how his own ancestors lived.Perhaps the thread between Wallace and Dzoodzo, spanning so many years and such disparate cultures, could seed new kinds of partnership in which learning is reciprocal and for the benefit of all. More

  • in

    Global-scale parameters for ecological models

    EU Commission. Achieve Good Environmental Status. EU Commission Web site https://ec.europa.eu/environment/marine/good-environmental-status/index_en.htm (2008).Olenin, S. et al. Marine strategy framework directive. Task Group 2 (2010).Long, R. The marine strategy framework directive: a new european approach to the regulation of the marine environment, marine natural resources and marine ecological services. Journal of Energy & Natural Resources Law 29, 1–44 (2011).Article 
    ADS 

    Google Scholar 
    Borja, A. et al. Good environmental status of marine ecosystems: what is it and how do we know when we have attained it? Marine Pollution Bulletin 76, 16–27 (2013).Article 

    Google Scholar 
    Froese, R., Demirel, N., Coro, G. & Kleisner, K. M. & Winker, H. Estimating fisheries reference points from catch and resilience. Fish and Fisheries 18, 506–526 (2017).Article 

    Google Scholar 
    Coro, G. Open science and artificial intelligence supporting blue growth. Environmental Engineering & Management Journal (EEMJ) 19 (2020).JRC. EU data collection Web site https://datacollection.jrc.ec.europa.eu/ – Accessed June 2022 (2021).EcoScope Consortium. The EcoScope EU project Web site https://ecoscopium.eu/ – Accessed June 2022 (2021).Pikitch, E. K. et al. Ecosystem-based fishery management. Science 305, 346–347 (2004).Article 

    Google Scholar 
    McLeod, K. L. & Leslie, H. M. Why ecosystem-based management. Ecosystem-based management for the oceans 3–12 (2009).Coro, G., Magliozzi, C., Ellenbroek, A. & Pagano, P. Improving data quality to build a robust distribution model for architeuthis dux. Ecological modelling 305, 29–39 (2015).Article 

    Google Scholar 
    Coro, G., Ellenbroek, A. & Pagano, P. An open science approach to infer fishing activity pressure on stocks and biodiversity from vessel tracking data. Ecological Informatics 64, 101384 (2021).Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics 40, 677–697 (2009).Article 

    Google Scholar 
    Coro, G., Bove, P. & Ellenbroek, A. Habitat distribution change of commercial species in the adriatic sea during the covid-19 pandemic. Ecological Informatics 101675 (2022).Stanton, J. C., Pearson, R. G., Horning, N., Ersts, P. & Reşit Akçakaya, H. Combining static and dynamic variables in species distribution models under climate change. Methods in Ecology and Evolution 3, 349–357 (2012).Article 

    Google Scholar 
    Coro, G., Magliozzi, C., Ellenbroek, A., Kaschner, K. & Pagano, P. Automatic classification of climate change effects on marine species distributions in 2050 using the aquamaps model. Environmental and ecological statistics 23, 155–180 (2016).Article 
    MathSciNet 

    Google Scholar 
    Coro, G., Pagano, P. & Ellenbroek, A. Detecting patterns of climate change in long-term forecasts of marine environmental parameters. International Journal of Digital Earth 13, 567–585 (2020).Article 
    ADS 

    Google Scholar 
    Wayte, S. E. Management implications of including a climate-induced recruitment shift in the stock assessment for jackass morwong (nemadactylus macropterus) in south-eastern australia. Fisheries Research 142, 47–55 (2013).Article 

    Google Scholar 
    Tanaka, K. R. Integrating environmental information into stock assessment models for fisheries management. Predicting Future Oceans 193–206 (2019).Szuwalski, C. S. & Hollowed, A. B. Climate change and non-stationary population processes in fisheries management. ICES Journal of Marine Science 73, 1297–1305 (2016).Article 

    Google Scholar 
    Bevilacqua, A. H. V., Carvalho, A. R., Angelini, R. & Christensen, V. More than anecdotes: fishers’ ecological knowledge can fill gaps for ecosystem modeling. PLoS One 11, e0155655 (2016).Article 

    Google Scholar 
    Heymans, J. J. et al. Best practice in ecopath with ecosim food-web models for ecosystem-based management. Ecological Modelling 331, 173–184 (2016).Article 

    Google Scholar 
    Piroddi, C. et al. Historical changes of the mediterranean sea ecosystem: modelling the role and impact of primary productivity and fisheries changes over time. Scientific reports 7, 1–18 (2017).Article 
    ADS 

    Google Scholar 
    Campana, E. F., Ciappi, E. & Coro, G. The role of technology and digital innovation in sustainability and decarbonization of the blue economy. Bulletin of Geophysics and Oceanography 123 (2021).Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic change 109, 5–31 (2011).Article 
    ADS 

    Google Scholar 
    Intergovernmental Panel on Climate Change https://www.academia.edu/download/60673993/climate_change_emission_Special_scenarios20190922-59363-1j1i98f.pdf – Accessed October 2022. IPCC Special Report (2000).Scarcella, G. et al. The potential effects of covid-19 lockdown and the following restrictions on the status of eight target stocks in the adriatic sea. Frontiers in Marine Science 1963 (2022).Wikipedia. ESRI-GRID formats description. Wikipedia https://en.wikipedia.org/wiki/Esri_grid (2022).QGIS. Qgis software version 3.20.0. QGIS Web site https://www.qgis.org/en/site/ (2022).ESRI. Arcgis software version 10.7. ArcGIS Web site https://www.esri.com/it-it/arcgis/products/arcgis-desktop/overview (2022).American Museum of Natural History. Maxent software for modelling species distributions. AMNH Web site https://biodiversityinformatics.amnh.org/open_source/maxent/ (2022).Christensen, V. et al. Ecopath with ecosim: a user’s guide. Fisheries Centre, University of British Columbia, Vancouver 154, 31 (2005).
    Google Scholar 
    Coll, M., Bundy, A. & Shannon, L. J. Ecosystem modelling using the ecopath with ecosim approach. In Computers in fisheries research, 225–291 (Springer, 2009).Colléter, M. et al. Global overview of the applications of the ecopath with ecosim modeling approach using the ecobase models repository. Ecological Modelling 302, 42–53 (2015).Article 

    Google Scholar 
    VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L. & Storlie, C. Sdmtools: Species distribution modelling tools: Tools for processing data associated with species distribution modelling exercises. R package version 1, 1 (2014).
    Google Scholar 
    US National Institutes of Health. ImageJ software for image analysis with Java and the Terrain Cartography plugin for reading ASC files. ImageJ Web site https://imagej.nih.gov/ij/index.html (2018).GDAL. Translator library for raster and vector geospatial data, version 3.5.0. GDAL Web site https://gdal.org/ (2022).Claus, S. et al. Marine regions: towards a global standard for georeferenced marine names and boundaries. Marine Geodesy 37, 99–125 (2014).Article 

    Google Scholar 
    VLIZ. World marine regions definitions and geospatial data. Marine Regions Web site www.marineregions.org (2022).Coro, G. The ASCFileManagement GitHub repository. GitHub https://github.com/cybprojects65/ASCFileManagement (2022).Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecological Modelling 221, 467–478 (2010).Article 

    Google Scholar 
    Selig, E. R. et al. Global priorities for marine biodiversity conservation. PloS one 9, e82898 (2014).Article 
    ADS 

    Google Scholar 
    O’hara, C. C., Afflerbach, J. C., Scarborough, C., Kaschner, K. & Halpern, B. S. Aligning marine species range data to better serve science and conservation. PLoS One 12, e0175739 (2017).Article 

    Google Scholar 
    Scarponi, P., Coro, G. & Pagano, P. A collection of aquamaps native layers in netcdf format. Data in brief 17, 292–296 (2018).Article 

    Google Scholar 
    CMEMS. Copernicus Marine Service ocean products data. Copernicus Marine Service Web site https://marine.copernicus.eu/ (2022).E.U. Copernicus Marine Service Information. Global Ocean 1/12° Physics Analysis and Forecast updated Daily. Copernicus Marine Service Web site https://doi.org/10.48670/moi-00016 (2021).Article 

    Google Scholar 
    E.U. Copernicus Marine Service Information. Global Ocean Biogeochemistry Analysis and Forecast. Copernicus Marine Service Web site https://doi.org/10.48670/moi-00015 (2021).Article 

    Google Scholar 
    Hijmans, R. J. et al. Terra: Spatial data analysis. R Spatial Data Science Web site https://rspatial.org/terra/ (2022).MacLeod, C. D. Habitat representativeness score (hrs): a novel concept for objectively assessing the suitability of survey coverage for modelling the distribution of marine species. Journal of the Marine Biological Association of the United Kingdom 90, 1269–1277 (2010).Article 

    Google Scholar 
    Abdi, H. & Williams, L. J. Principal component analysis. Wiley interdisciplinary reviews: computational statistics 2, 433–459 (2010).Article 

    Google Scholar 
    Coro, G., Pagano, P. & Ellenbroek, A. Combining simulated expert knowledge with neural networks to produce ecological niche models for latimeria chalumnae. Ecological modelling 268, 55–63 (2013).Article 

    Google Scholar 
    Coro, G., Pagano, P. & Ellenbroek, A. Automatic procedures to assist in manual review of marine species distribution maps. In International Conference on Adaptive and Natural Computing Algorithms, 346–355 (Springer, 2013).Magliozzi, C., Coro, G., Grabowski, R. C., Packman, A. I. & Krause, S. A multiscale statistical method to identify potential areas of hyporheic exchange for river restoration planning. Environmental Modelling & Software 111, 311–323 (2019).Article 

    Google Scholar 
    Coro, G. & Bove, P. Global-Scale Parameters for Ecological Models, FigShare, https://doi.org/10.6084/m9.figshare.c.6039275.v4 (2022).Coro, G. Means, standard deviations, geometric means, and log-normal standard deviation of the data produced for the present publication. D4Science distributed storage system https://data.d4science.net/foLS (2022).Mann, M. E., Bradley, R. S. & Hughes, M. K. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779–787 (1998).Article 
    ADS 

    Google Scholar 
    Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nature communications 10, 1–11 (2019).Article 

    Google Scholar 
    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. science 300, 1560–1563 (2003).Article 
    ADS 

    Google Scholar 
    Huang, Y., Zhang, W., Sun, W. & Zheng, X. Net primary production of chinese croplands from 1950 to 1999. Ecological Applications 17, 692–701 (2007).Article 

    Google Scholar 
    Sunlu, U., Aksu, M., Buyukisik, B. & Sunlu, F. S. Spatio-temporal variations of organic carbon and chlorophyll degradation products in the surficial sediments of izmir bay (aegean sea/turkey). Environmental monitoring and assessment 146, 423–432 (2008).Article 

    Google Scholar 
    Kubryakov, A., Mikaelyan, A., Stanichny, S. & Kubryakova, E. Seasonal stages of chlorophyll-a vertical distribution and its relation to the light conditions in the black sea from bio-argo measurements. Journal of Geophysical Research: Oceans 125, e2020JC016790 (2020).ADS 

    Google Scholar 
    Gamo, T. Global warming may have slowed down the deep conveyor belt of a marginal sea of the northwestern pacific: Japan sea. Geophysical Research Letters 26, 3137–3140 (1999).Article 
    ADS 

    Google Scholar 
    Mahaffey, C., Palmer, M., Greenwood, N. & Sharples, J. Impacts of climate change on dissolved oxygen concentration relevant to the coastal and marine environment around the uk. MCCIP Science Review 2002, 31–53 (2020).
    Google Scholar 
    Zhang, W., Dunne, J. P., Wu, H., Zhou, F. & Huang, D. Using timescales of deficit and residence to evaluate near-bottom dissolved oxygen variation in coastal seas. Journal of Geophysical Research: Biogeosciences 127, e2021JG006408 (2022).ADS 

    Google Scholar 
    Helm, K. P., Bindoff, N. L. & Church, J. A. Changes in the global hydrological-cycle inferred from ocean salinity. Geophysical Research Letters 37 (2010).Ren, L., Speer, K. & Chassignet, E. P. The mixed layer salinity budget and sea ice in the southern ocean. Journal of Geophysical Research: Oceans 116 (2011).Mahmuduzzaman, M. et al. Causes of salinity intrusion in coastal belt of bangladesh. International Journal of Plant Research 4, 8–13 (2014).
    Google Scholar 
    Podymov, O., Zatsepin, A. & Ocherednik, V. Increase of temperature and salinity in the active layer of the north-eastern black sea from 2010 to 2020. Physical Oceanography 28, 257–265 (2021).Article 

    Google Scholar 
    Mizyuk, A. & Puzina, O. Sea ice modeling in the sea of azov for a study of long-term variability. In IOP Conference Series: Earth and Environmental Science, vol. 386, 012023 (IOP Publishing, 2019).Pärn, O., Friedland, R., Rjazin, J. & Stips, A. Regime shift in sea-ice characteristics and impact on the spring bloom in the baltic sea. Oceanologia 64, 312–326 (2022).Article 

    Google Scholar 
    Lundesgaard, Ø., Sundfjord, A. & Renner, A. H. Drivers of interannual sea ice concentration variability in the atlantic water inflow region north of svalbard. Journal of Geophysical Research: Oceans 126, e2020JC016522 (2021).ADS 

    Google Scholar 
    Schwegmann, S. & Holfort, J. Regional distributed trends of sea ice volume in the baltic sea for the 30-year period 1982 to 2019. Meteorologische Zeitschrift 33–43 (2021).Simon, S. Interpretation of the correlation coefficient. PMean Web site http://www.pmean.com/definitions/correlation.htm (2020).Yacobi, Y. et al. Chlorophyll distribution throughout the southeastern mediterranean in relation to the physical structure of the water mass. Journal of Marine Systems 6, 179–190, https://doi.org/10.1016/0924-7963(94)00028-A (1995).Article 
    ADS 

    Google Scholar 
    Kucuksezgin, F., Balci, A., Kontas, A. & Altay, O. Distribution of nutrients and chlorophyll-a in the aegean sea. Oceanologica Acta 18, 343–352 (1995).
    Google Scholar 
    Villate, F., Aravena, G., Iriarte, A. & Uriarte, I. Axial variability in the relationship of chlorophyll a with climatic factors and the north atlantic oscillation in a basque coast estuary, bay of biscay (1997–2006). Journal of Plankton Research 30, 1041–1049 (2008).Article 

    Google Scholar 
    Iriarte, A. et al. Dissolved oxygen in contrasting estuaries of the bay of biscay: effects of temperature, river discharge and chlorophyll a. Marine Ecology Progress Series 418, 57–71 (2010).Article 
    ADS 

    Google Scholar 
    Stanev, E. V. Black sea dynamics. Oceanography 18, 56–75 (2005).Article 

    Google Scholar 
    Tsimplis, M. N. & Rixen, M. Sea level in the mediterranean sea: The contribution of temperature and salinity changes. Geophysical research letters 29, 51–1 (2002).Article 

    Google Scholar 
    Schneider, A., Wallace, D. W. & Körtzinger, A. Alkalinity of the mediterranean sea. Geophysical Research Letters 34 (2007).Sara, G., Porporato, E. M., Mangano, M. C. & Mieszkowska, N. Multiple stressors facilitate the spread of a non-indigenous bivalve in the mediterranean sea. Journal of Biogeography 45, 1090–1103 (2018).Article 

    Google Scholar 
    Soto-Navarro, J. et al. Evolution of mediterranean sea water properties under climate change scenarios in the med-cordex ensemble. Climate Dynamics 54, 2135–2165 (2020).Article 
    ADS 

    Google Scholar 
    Dietze, H. & Löptien, U. Retracing hypoxia in eckernförde bight (baltic sea). Biogeosciences 18, 4243–4264 (2021).Article 
    ADS 

    Google Scholar 
    Ulses, C. et al. Oxygen budget of the north-western mediterranean deep-convection region. Biogeosciences 18, 937–960 (2021).Article 
    ADS 

    Google Scholar 
    Jaskulak, M., Sotomski, M., Michalska, M., Marks, R. & Zorena, K. The effects of wastewater treatment plant failure on the gulf of gdansk (southern baltic sea). International Journal of Environmental Research and Public Health 19, 2048 (2022).Article 

    Google Scholar 
    Mihanović, H. et al. Observation, preconditioning and recurrence of exceptionally high salinities in the adriatic sea. Frontiers in Marine Science 8, 834 (2021).Article 

    Google Scholar 
    De Leo, F., Besio, G. & Mentaschi, L. Trends and variability of ocean waves under rcp8. 5 emission scenario in the mediterranean sea. Ocean Dynamics 71, 97–117 (2021).Article 
    ADS 

    Google Scholar 
    Omar, A. M. et al. Trends of ocean acidification and pco2 in the northern north sea, 2003–2015. Journal of Geophysical Research: Biogeosciences 124, 3088–3103 (2019).Article 

    Google Scholar 
    Kröncke, I. et al. Comparison of biological and ecological long-term trends related to northern hemisphere climate in different marine ecosystems. Nature Conservation (2019).Bonnet, D. et al. Comparative seasonal dynamics of centropages typicus at seven coastal monitoring stations in the north sea, english channel and bay of biscay. Progress in oceanography 72, 233–248 (2007).Article 
    ADS 

    Google Scholar 
    Borja, Á. et al. Implementation of the european marine strategy framework directive: A methodological approach for the assessment of environmental status, from the basque country (bay of biscay). Marine Pollution Bulletin 62, 889–904, https://doi.org/10.1016/j.marpolbul.2011.03.031 (2011).Article 

    Google Scholar 
    Coro, G. An open-source re-implementation of the habitat representativeness score. GitHub https://github.com/cybprojects65/HabitatRepresentativenessScore (2022).Coro, G. An OGC-WPS compliant interface to calculate Habitat Representativeness Score. D4Science RPrototypingLab VRE https://services.d4science.org/group/rprototypinglab/data-miner?OperatorId = org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.HABITAT_REPRESENTATIVENESS_SCORE (2022).Assante, M. et al. Enacting open science by d4science. Future Generation Computer Systems 101, 555–563 (2019).Article 

    Google Scholar 
    Assante, M. et al. The gcube system: delivering virtual research environments as-a-service. Future Generation Computer Systems 95, 445–453 (2019).Article 

    Google Scholar 
    Assante, M. et al. Virtual research environments co-creation: The d4science experience. Concurrency and Computation: Practice and Experience e6925 (2022).Coro, G., Candela, L., Pagano, P., Italiano, A. & Liccardo, L. Parallelizing the execution of native data mining algorithms for computational biology. Concurrency and Computation: Practice and Experience 27, 4630–4644 (2015).Article 

    Google Scholar 
    Coro, G., Panichi, G., Scarponi, P. & Pagano, P. Cloud computing in a distributed e-infrastructure using the web processing service standard. Concurrency and Computation: Practice and Experience 29, e4219 (2017).Article 

    Google Scholar 
    Gačić, M., Borzelli, G. E., Civitarese, G., Cardin, V. & Yari, S. Can internal processes sustain reversals of the ocean upper circulation? the ionian sea example. Geophysical research letters 37 (2010).Grilli, F. et al. Seasonal and interannual trends of oceanographic parameters over 40 years in the northern adriatic sea in relation to nutrient loadings using the emodnet chemistry data portal. Water 12, 2280 (2020).Article 

    Google Scholar 
    Cozzi, S. et al. Climatic and anthropogenic impacts on environmental conditions and phytoplankton community in the gulf of trieste (northern adriatic sea). Water 12, 2652 (2020).Article 

    Google Scholar 
    Ducrotoy, J.-P. & Elliott, M. The science and management of the north sea and the baltic sea: Natural history, present threats and future challenges. Marine pollution bulletin 57, 8–21 (2008).Article 

    Google Scholar 
    Dupont, N. & Aksnes, D. L. Centennial changes in water clarity of the baltic sea and the north sea. Estuarine, Coastal and Shelf Science 131, 282–289 (2013).Article 
    ADS 

    Google Scholar 
    Dippner, J. W., Möller, C. & Hänninen, J. Regime shifts in north sea and baltic sea: a comparison. Journal of Marine Systems 105, 115–122 (2012).Article 
    ADS 

    Google Scholar 
    Sisma-Ventura, G. et al. Post-eastern mediterranean transient oxygen decline in the deep waters of the southeast mediterranean sea supports weakening of ventilation rates. Frontiers in Marine Science 1202 (2021).Mavropoulou, A.-M., Vervatis, V. & Sofianos, S. Dissolved oxygen variability in the mediterranean sea. Journal of Marine Systems 208, 103348 (2020).Article 

    Google Scholar 
    Tyberghein, L. et al. Bio-oracle: a global environmental dataset for marine species distribution modelling. Global ecology and biogeography 21, 272–281 (2012).Article 

    Google Scholar 
    Assis, J. et al. Bio-oracle v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography 27, 277–284 (2018).Article 

    Google Scholar 
    Coro, G. & Bove, P. A high-resolution global-scale model for covid-19 infection rate. ACM Transactions on Spatial Algorithms and Systems (TSAS) 8, 1–24 (2022).Article 

    Google Scholar 
    Inness, A. et al. The cams reanalysis of atmospheric composition. Atmospheric Chemistry and Physics 19, 3515–3556 (2019).Article 
    ADS 

    Google Scholar 
    Karger, D. N., Schmatz, D. R., Dettling, G. & Zimmermann, N. E. High-resolution monthly precipitation and temperature time series from 2006 to 2100. Scientific data 7, 1–10 (2020).Article 

    Google Scholar 
    Kesner-Reyes, K. et al. AquaMaps Environmental Dataset: Half-Degree Cells Authority File (HCAF ver. 7, 10/2019). AquaMaps Web site https://www.aquamaps.org/main/envt_data.php (2019).Kesner-Reyes, K. et al. AquaMaps Environmental Dataset: Half-Degree Cells Authority File (HCAF ver. 6, 08/2016). AquaMaps Web site https://www.aquamaps.org/main/envt_data.php (2016).NASA-NEX. NASA Earth Exchange data. NASA-NEX Web site https://www.nasa.gov/nex/data – data were publicly accessible up to 2020 (2020).Coro, G. A global-scale ecological niche model to predict sars-cov-2 coronavirus infection rate. Ecological modelling 431, 109187 (2020).Article 

    Google Scholar 
    CAMS. Global inversion-optimised greenhouse gas fluxes and concentrations. Copernicus Atmosphere Web site https://ads.atmosphere.copernicus.eu/cdsapp#/dataset/cams-global-greenhouse-gas-inversion?tab=doc (2020).NOAA. ETOPO2 Topography and Bathymetry. NOAA Web site https://sos.noaa.gov/catalog/datasets/etopo2-topography-and-bathymetry-natural-colors/ (2010).Coro, G. & Trumpy, E. Predicting geographical suitability of geothermal power plants. Journal of Cleaner Production 267, 121874 (2020).Article 

    Google Scholar 
    NOAA. World Vector Shorelines. NOAA Web site https://shoreline.noaa.gov/data/datasheets/wvs.html (2019).Tozer, B. et al. Global bathymetry and topography at 15 arc sec: Srtm15+. Earth and Space Science 6, 1847–1864, https://doi.org/10.1029/2019EA000658 (2019).Article 
    ADS 

    Google Scholar 
    Ramesh, R. et al. Land–ocean interactions in the coastal zone: Past, present & future. Anthropocene 12, 85–98 (2015).Article 

    Google Scholar 
    Spalding, M. et al. World atlas of coral reefs (Univ of California Press, 2001).Laske, G. A global digital map of sediment thickness. Eos Trans. AGU 78, F483 (1997).
    Google Scholar 
    Davies, J. H. Global map of solid earth surface heat flow. Geochemistry, Geophysics, Geosystems 14, 4608–4622 (2013).Article 
    ADS 

    Google Scholar 
    Rybach, L. & Muffler, L. J. P. Geothermal systems: principles and case histories. Chichester, Sussex, England and New York, Wiley-Interscience, 1981. 371 p. (1981).Glassley, W. E. Geology and hydrology of geothermal energy. Power Stations Using Locally Available Energy Sources: A Volume in the Encyclopedia of Sustainability Science and Technology Series, Second Edition 23–34 (2018).Barbier, E. Geothermal energy technology and current status: an overview. Renewable and sustainable energy reviews 6, 3–65 (2002).Article 
    ADS 

    Google Scholar 
    Engdahl, E. R., van der Hilst, R. & Buland, R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America 88, 722–743 (1998).
    Google Scholar 
    Engdahl, E. R. Global seismicity: 1900–1999. International handbook of earthquake and engineering seismology 665–690 (2002).Richts, A., Struckmeier, W. F. & Zaepke, M. WHYMAP and the groundwater resources map of the world 1: 25,000,000. In Sustaining groundwater resources, 159–173 (Springer, 2011).Warszawski, L. et al. Center for international earth science information network—ciesin—columbia university.(2016). gridded population of the world, version 4 (gpwv4): Population density. palisades. ny: Nasa socioeconomic data and applications center (sedac). Atlas of Environmental Risks Facing China Under Climate Change 228, https://doi.org/10.7927/h4np22dq (2017). More

  • in

    Alfred Russel Wallace’s first expedition ended in flames

    Naturalist Alfred Russel Wallace went on an expedition to Amazonas state in Brazil in 1848–52.Credit: Mondadori Portfolio via Getty

    Best known for formulating the theory of evolution by natural selection, independently of Charles Darwin, Alfred Russel Wallace is an appealing if enigmatic figure. The appeal stems in part from his underdog status: poor and self-educated, Wallace had none of Darwin’s social and financial advantages. The enigma comes from his keen embrace of a range of eccentric non-scientific causes, including spiritualism, phrenology and anti-vaccination (for smallpox).Scientists do not like their scientific heroes to bear the taint of irrational thinking. Wallace’s enthusiasms have therefore contributed to him becoming marginalized in the history of evolutionary thought. Most people know about Darwin and the HMS Beagle. But what about Wallace and the Helen?The Helen story is worth revisiting because it shows Wallace at his resolute best. Despite numerous disastrous career setbacks — of which the Helen episode was the most severe — he persevered and eventually succeeded as a scientist.More than 150 years after Wallace’s experience on the Helen, doing science continues to be hard and can be disappointing. Wallace’s misadventure provides both perspective and an object lesson in how to navigate setbacks. His response to problems showcases his most inspiring traits: his commitment to science, his almost superhuman resilience and his refusal to mire himself in self-pity.Tropical explorationsIn his first job as a land surveyor, Wallace developed an interest in the plants he encountered as he tramped across the countryside. Then, in 1844 at the age of 21, he met Henry Walter Bates, who would later discover ‘Batesian mimicry’ (whereby members of a palatable prey species gain protection by mimicking an unpalatable one).Bates, two years Wallace’s junior, had a fixation with beetles, and he catalysed Wallace’s transformation from hobbyist naturalist to serious collector. Wallace’s new-found focus on beetles transcended mere entomological stamp-collecting; he developed an interest in some of the great scientific questions of the time. He was particularly inspired by the anonymously published Vestiges of the Natural History of Creation (1844) by Robert Chambers, which put forward a vision of a transmutational process, with life progressing from simple to complex.Without money or connections, Wallace and Bates aspired to careers in science at a time when the field was the preserve of the moneyed elite. They would have to fund their scientific explorations by collecting and selling specimens. After a hasty choice of destination — tropical South America — and a crash course in collecting methods, Wallace, aged 25, and Bates, aged 23, arrived in Belém, Brazil, in May 1848 (see ‘Doggedly determined’).
    Doggedly determined

    Alfred Russel Wallace tends to be unjustly relegated to a footnote in the Charles Darwin story. He was, in fact, a pioneering biologist who refused to let disadvantage or disaster prevent him from pursuing his scientific dreams.
    January 1823: Alfred Russel Wallace is born in Usk in Wales.
    May 1848: Wallace and Henry Walter Bates arrive in Belém, Brazil.
    July 1852: Wallace boards the Helen, which catches fire three weeks later while at sea.
    October 1852: Wallace reaches Deal, England, aboard the Jordeson.
    March 1854: Wallace leaves Southampton for southeast Asia.
    September 1855: Wallace’s first evolutionary paper describing his ‘Sarawak Law’ is published.
    May 1856: Citing the Sarawak Law paper, geologist Charles Lyell alerts Darwin to the possibility that Wallace is developing ideas similar to Darwin’s.
    February 1858: Wallace sends his paper on natural selection to Darwin from Ternate in the Maluku islands (Moluccas), Indonesia.
    July 1858: The joint Darwin–Wallace paper is presented at the Linnean Society in London.
    November 1859: Darwin’s On the Origin of Species is published.
    March 1862: Wallace returns from southeast Asia.
    November 1913: Wallace dies in Broadstone, England.

    The two split up early on, with Wallace concentrating on the Amazon River’s northern tributary, the Rio Negro, and Bates on the southern fork, the Solimões.Collecting was challenging. The Amazon’s ubiquitous ants often deprived science of hard-won specimens. Crucial collecting materials also disappeared: Wallace once recovered from a bout of fever to discover that local people had drunk the cachaça (a Brazilian rum) he’d been using to pickle specimens. Transport was a constant headache, with travel upstream past rapids requiring unwieldy portages of canoes and cargo. And thanks to his collecting, the cargo became ever more voluminous and unwieldy.Wallace and Bates sporadically sent back shipments of material to their agent in London, Samuel Stevens, who publicized their adventures in scientific journals and sold their specimens, taking a 20% commission.
    Escaping Darwin’s shadow: how Alfred Russel Wallace inspires Indigenous researchers
    Wallace’s journeys on the Rio Negro and its tributaries took him into areas that had not yet been visited by Europeans. He saw (and collected) an extraordinary array of species, many of them new to science. He had a chance to observe and collect artefacts from several Indigenous groups with little or no previous contact with Europeans. As he travelled, Wallace capitalized on his surveying skills to map the terrain. But the remoteness took its toll. He made an “inward vow never to travel again in such wild, unpeopled districts without some civilised companion or attendant”1.Wallace was frequently ill, on one occasion nearly lethally so. His younger brother came out to join him as an assistant in 1849 but died of yellow fever two years later in Belém, on his way back to England. Wallace learnt that his brother was sick but had to wait many anxious months before news of his death made it upriver.In 1852, after four years of exploring and collecting, it was time for Wallace himself to head home. He envisaged a triumphant return. He would complement his collections of preserved organisms with a menagerie of living ones. Mr Wallace’s biological wonders would surely be the toast of scientific London.On 12 July in Belém, Wallace boarded the Helen, a freighter ship bound for London. The trip across the continent to Belém had not gone smoothly. The authorities in Manaus, Brazil, had had to be persuaded to release some of his earlier shipments meant for London, which they had impounded, making the final haul aboard the Helen even larger. But now all that remained was the long voyage back across the Atlantic. Wallace, who shared Captain Turner’s cabin, was the only passenger.Disaster strikesThree weeks into the voyage, Captain Turner interrupted Wallace’s morning routine to tell him that the ship was on fire.Friction caused by the rocking of the ship had ignited poorly stowed cargo. Attempts to intervene were counterproductive — removing the hold covers merely oxygenated the fire — and soon the ship became what Wallace later called “a most magnificent conflagration”1.Captain Turner gave the order to abandon ship, and the scramble to prepare two small wooden boats began. Having been stored on deck in the tropical sunshine, both boats leaked badly. The cook had to find corks to plug their hulls.Before he left the ship, Wallace “went down into the cabin, now suffocatingly hot and full of smoke, to see what was worth saving”1. He retrieved his “watch and a small tin box containing some shirts and a couple of old note-books, with some drawings of plants and animals, and scrambled up with them on deck”1. He tried to lower himself on a rope into one of the small boats, but fever-weakened, he ended up sliding down the rope, stripping the skin off his hands.

    Some of Alfred Russel Wallace’s sketches were salvaged from the fire aboard the Helen on his return journey from South America in 1852.Credit: The Natural History Museum/Alamy

    With fine weather, the best hope of rescue lay in other ships seeing the fire. The two boats duly circled the burning wreck for the next 24 hours, meaning that Wallace got to witness every moment of the tragedy. The animals he had brought with him on the long river journey across the continent, now free from their cages, sought refuge on the one part of the ship still untouched by the flames, the bowsprit. Wallace watched as the monkeys, parrots and more — his pets as well as his best hope of impressing London’s scientific elite — were incinerated.The hoped-for rescue did not immediately materialize, and Captain Turner turned the two open boats towards Bermuda, 1,100 kilometres away to the northwest.As the days ticked by, the situation became increasingly desperate. Water ran low and the tropical sun left Wallace’s “hands and face very much blistered”1. Wallace nevertheless remained upbeat, later recalling that during one night, he “saw several meteors, and in fact could not be in a better position for observing them, than lying on [his] back in a small boat in the middle of the Atlantic”1.Finally, ten days into the ordeal, salvation appeared on the horizon in the form of the Jordeson, a creaking and already overladen cargo ship bound for London.With the immediate crisis past, the magnitude of what had happened started to sink in. In a letter2 written aboard the Jordeson to botanist Richard Spruce (see go.nature.com/3prhbdk), Wallace tallied his catastrophic losses — “almost all the reward of my four years of privation & danger was lost” — and concluded with characteristic understatement, “I have some need of philosophic resignation to bear my fate with patience and equanimity.”
    Evolution’s red-hot radical
    The Jordeson finally limped into Deal, England, on 1 October 1852. Wallace had been at sea for 80 days. His outward voyage with Bates had taken only 29 days.Wallace added a PS to his letter to Spruce. First there was immediate exhilaration about the return — “Such a dinner! Oh! beef steaks & damson tart”. But then came thoughts about the future: “Fifty times since I left Pará [Belém] have I vowed if I once reached England never to trust myself more on the ocean.” Even then, he noted that “good resolutions soon fade”.Stevens had thoughtfully taken out insurance. So Wallace had £200 (US$980 at the time) — a fraction of his collections’ actual value — to cover his costs for a year in London while he tried to salvage what he could from the disaster and make future plans.He rushed out two books, one a travelogue, the other a more technical account of the palm trees of the Amazon. Neither did well — 250 copies remained unsold a decade later from the travel book’s print run of 750. But he was getting his name out there. Stevens, too, had a done a good job of publicizing Wallace’s discoveries while Wallace had been away.Perhaps most crucially, the positive response of the UK Royal Geographical Society to his mapping work of the Rio Negro yielded a free steamship ticket to Singapore.In March 1854, less than 18 months since the Jordeson’s bedraggled arrival at Deal, Wallace departed from Southampton in England for what he would call the “central and controlling incident”2 of his life.Eight more years of perilous travel awaited. So, too, did the discoveries of what came to be known as Wallace’s Line (a boundary between the Asian and Australasian biogeographic regions) and of the theory of evolution by natural selection3,4.The scientific acclaim that greeted Wallace’s return from southeast Asia in 1862 was a just reward both for his contributions and for that phenomenal doggedness — his determination, despite everything, to be a scientist. More

  • in

    Study on adsorption of hexavalent chromium by composite material prepared from iron-based solid wastes

    Material characterization resultsTo investigate the structural composition of NMC-2, XRD analysis plots were performed. Figure 1a shows the XRD pattern of the NMC-2 composite before adsorption. The XRD pattern shows the corresponding strong and narrow peaks, from which it can be seen that the peaks of broad diffraction NMC-2 can correspond to the standard cards of Fe, C, Fe7C3, Fe2C, and FeC, indicating that the synthesized adsorbent is an iron-carbon composite. It can be indicated that mesoporous nitrogen-doped composites were formed during the carbonization process. During the experiments, it was found that the materials are magnetic, probably because of the presence of Fe, FeC, Fe7C3, Fe2C. Due to the magnetic properties of this type of material, rapid separation and recovery can be obtained under the conditions of an applied magnetic field, which allows easy separation of the adsorbent and metal ions from the wastewater15.Figure 1XRD and nitrogen adsorption and desorption tests on materials: (a) XRD pattern of NMC-2 adsorbent before adsorption, (b) pore size distribution of NMC-2, (c) nitrogen adsorption–desorption curve of NMC-2 adsorbent.Full size imageFrom the adsorption–desorption curves of adsorbent N2 in Fig. 1b, it can be seen that the NMC-2 isotherm belongs to the class IV curve, and the appearance of H3-type hysteresis loops is observed at the medium pressure end, and H3 is commonly found in aggregates with laminar structure, producing slit mesoporous or macroporous materials, which indicates that N2 condenses and accumulates in the pore channels, and these phenomena prove that NMC-2 is a porous material16. Figure 1c shows the pore size distribution of the adsorbent NMC-2 obtained according to the BJH calculation method, from which it can be seen that the pore size distribution is not uniform in the range, and most of them are concentrated below 20 nm, while according to Table 1, the specific surface area of the original sample of Fenton sludge and fly ash is 124.08 m2/g and 3.79 m2/g, respectively, and the specific surface area of NMC-2 is 228.65 m2/g. The Fenton The pore volume of the original samples of Fenton sludge and fly ash were 0.18 cm3/g and 0.006 cm3/g respectively, while the pore volume of NMC-2 was 0.24 cm3/g. The pore diameters of the original sample of Fenton sludge and fly ash were 5.72 nm and 6.70 nm respectively, while the pore diameter of NMC-2 was 4.22 nm. The above data indicated that the synthetic materials have increased the specific surface area and pore volume compared with the original samples, indicating that the doping of nitrogen can increase the specific surface area of the material. Since the pore size of mesoporous materials is 2–50 nm, NMC-2 is a porous material with main mesopores. Thanks to the large specific surface area provided by the mesopores, the material has a large number of active sites, and in addition, the mesopores can store more Cr(VI)16, which contributes to efficient removal.Table 1 Total pore-specific surface area, pore volume, and pore size of BJH adsorption and accumulation of Fenton sludge, fly ash and NMC-2.Full size tableThe morphological analysis of the material surface using SEM can see the surface structure and the pore structure of NMC-2. And Fig. 2a–d shows the swept electron microscope image of NMC-2. Figure 2a shows that the surface of the material is not smooth, and there are more lint-like fiber structures. The fibers in Fig. 2b are loosely and irregularly arranged, which may be due to the irregular morphology caused by the small particles of the NMC-2 sample. As shown in Fig. 2c and Fig. 2a there are more pores generated on the surface of NMC-2, which may be due to the addition of K2CO3 to urea and, Fenton sludge solution to generate CO217.Figure 2SEM, TEM and EDS testing of materials: (a–d) SEM image of NMC-2 adsorbent, (e) TEM image of NMC-2; (g–i) TEM-EDS spectrum of NMC-2, (j) TEM-EDS spectra of NMC-2 obtained from.Full size imageThese pores can provide many active sites, which is consistent with the results derived in Fig. 1, where NMC-2 is a mesoporous-dominated porous material, and also demonstrates that the addition of urea can provide a nitrogen source for the material, providing abundant active sites. Figure 2j depicts the TEM of NMC-2. the TEM images show that the synthesized NMC-2 has a folded structure with a surface covered by a carbon film, and the HRTEM (Fig. 2e) also confirms this result with a lattice spacing of 0.13, 0.15, 0.20, 0.23, 0.24, and 0.25 nm, corresponding to the (4 5 2) and (1 0 2) of C, the (2 0 1) of FeC) surface, the (2 1 0) surface of Fe7C3, the (5 3 1) surface of Fe2C, and the (2 0 1) surface of FeC, which also confirms the synthesis of the above substances. The corresponding EDS spectra of the dark field diagram NMC-2 were obtained from Fig. 2j, and the EDS spectra proved the presence of various elements: carbon (C) (Fig. 2f) from fly ash, iron (Fe) (Fig. 2g) from Fenton sludge, nitrogen (N) (Fig. 2h) from urea, and the presence of (O) (Fig. 2i), further confirming the successful preparation of NMC-2.The type of functional groups and chemical bonding on the surface of the material can be analyzed by IR spectrogram analysis. Figure 3b shows the FTIR image of NMC-2 adsorbent 3440 cm−1 wide and strong absorption peak is due to the stretching vibration of –OH, there is a large amount of –OH present on the surface of the material; the peak appearing at 1640 cm−1 is –COOH. Characterization reveals that the –OH absorption peak is wider18,19. In addition, the absorptions at 1390 cm−1 and 1000 cm−1 were attributed to the bending of –OH vibrations of alcohols and phenol and the stretching vibration of C–O20. The above results indicate that the surface of NMC-2 contains a large number of oxygen-containing functional groups, and these functional groups can provide many active sites for the removal of Cr(VI). It was also found that the weak peaks corresponding to 573 cm−1 and 550 cm−1 were attributed to Fe–O groups21. The stretching of Fe–O may be due to the oxidation of loaded Fe0 and Fe2+ to Fe3+22. Figure 3a shows the Fenton sludge and fly ash FTIR images. It can be seen from the figure that the surfaces of Fenton sludge and fly ash contain a large number of oxygen-containing functional groups, the surface functional groups of the two raw materials are more abundant, and the functional groups of NMC-2 around 3441 cm−1, 1632 cm−1, and 1400 cm−1 are not significantly different from those of the raw materials, and the C–H stretching vibration peaks of NMC-2 around 873 cm−1 and 698 cm−1 is not obvious, which may be because the material the C–H bond on the surface of the raw material was oxidized to C–O in the process of synthesis.Figure 3FTIR testing of materials: (a) FTIR image of Fenton sludge, fly ash, (b) Ftir image of NMC-2 adsorbent.Full size imageCr(VI) adsorption experimentSelection of adsorbentTo select the best adsorbent, Cr(VI) adsorption tests were performed on four adsorbents. Figure 4a shows the effect of Fenton sludge and the urea addition on the adsorption efficiency. The Cr(VI) removal rates of the four adsorbents were ranked from low to high: MC-1  More

  • in

    Myzomyia and Pyretophorus series of Anopheles mosquitoes acting as probable vectors of the goat malaria parasite Plasmodium caprae in Thailand

    Asada, M. et al. Close relationship of Plasmodium sequences detected from South American pampas deer (Ozotoceros bezoarticus) to Plasmodium spp. in North American white-tailed deer. Int. J. Parasitol. 7, 44–47. https://doi.org/10.1016/j.ijppaw.2018.01.001 (2018).Article 

    Google Scholar 
    Boundenga, L. et al. Haemosporidian parasites of antelopes and other vertebrates from Gabon, Central Africa. PLoS ONE 11, e0148958. https://doi.org/10.1371/journal.pone.0148958 (2016).Article 
    CAS 

    Google Scholar 
    Martinsen, E. S., Perkins, S. L. & Schall, J. J. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol. Phylogen. Evol. 47, 261–273. https://doi.org/10.1016/j.ympev.2007.11.012 (2008).Article 
    CAS 

    Google Scholar 
    Templeton, T. J. et al. Ungulate malaria parasites. Sci. Rep. 6, 23230. https://doi.org/10.1038/srep23230 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Templeton, T. J., Martinsen, E., Kaewthamasorn, M. & Kaneko, O. The rediscovery of malaria parasites of ungulates. Parasitology 143, 1501–1508. https://doi.org/10.1017/s0031182016001141 (2016).Article 

    Google Scholar 
    Bruce, D., Harvey, D., Hamerton, A. E. & Bruce, L. Plasmodium cephalophi, sp. nov. Proc. R. Soc. B. 87, 45–47 (1913).ADS 

    Google Scholar 
    Sheather, A. L. A malarial parasite in the blood of a buffalo. J. Comp. Pathol. 32, 223–229 (1919).Article 

    Google Scholar 
    Kandel, R. C. et al. First report of malaria parasites in water buffalo in Nepal. Vet. Parasitol. Reg. Stud. Rep. 18, 100348. https://doi.org/10.1016/j.vprsr.2019.100348 (2019).Article 

    Google Scholar 
    de Mello, F. & Paes, S. Sur une plasmodiae du sang des chèvres. C. R. Séanc. Soc. Biol 88, 829–830 (1923).
    Google Scholar 
    Kaewthamasorn, M. et al. Genetic homogeneity of goat malaria parasites in Asia and Africa suggests their expansion with domestic goat host. Sci. Rep. 8, 5827. https://doi.org/10.1038/s41598-018-24048-0 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Garnham, P. C. & Edeson, J. F. Two new malaria parasites of the Malayan mousedeer. Riv. Malariol. 41, 1–8 (1962).CAS 

    Google Scholar 
    Garnham, P. C. & Kuttler, K. L. A malaria parasite of the white-tailed deer (Odocoileus virginianus) and its relation with known species of Plasmodium in other ungulates. Proc. R. Soc. Lond. B 206, 395–402. https://doi.org/10.1098/rspb.1980.0003 (1980).Article 
    ADS 
    CAS 

    Google Scholar 
    Martinsen, E. et al. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus). Sci. Adv. 2, e1501486. https://doi.org/10.1126/sciadv.1501486 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Rattanarithikul, R. et al. Illustrated keys to the mosquitoes of Thailand. IV. Anopheles. Southeast Asian. Trop. Med. Public Health 37, 1–128 (2006).
    Google Scholar 
    Walter Reed Biosystematics Unit. Systematic catalogue of Culicidae. http://mosquitocatalog.org (2021).Manguin, S., Garros, C., Dusfour, I., Harbach, R. E. & Coosemans, M. Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: An updated review. Infect. Genet. Evol. 8, 489–503. https://doi.org/10.1016/j.meegid.2007.11.004 (2008).Article 
    CAS 

    Google Scholar 
    Brosseau, L. et al. A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasit. Vectors 12, 223. https://doi.org/10.1186/s13071-019-3494-8 (2019).Article 

    Google Scholar 
    Paredes-Esquivel, C., Donnelly, M. J., Harbach, R. E. & Townson, H. A molecular phylogeny of mosquitoes in the Anopheles barbirostris Subgroup reveals cryptic species: implications for identification of disease vectors. Mol. Phylogen. Evol. 50, 141–151. https://doi.org/10.1016/j.ympev.2008.10.011 (2009).Article 
    CAS 

    Google Scholar 
    Taai, K. & Harbach, R. E. Systematics of the Anopheles barbirostris species complex (Diptera: Culicidae: Anophelinae) in Thailand. Zool. J. Linn. Soc. 174, 244–264. https://doi.org/10.1111/zoj.12236 (2015).Article 

    Google Scholar 
    Garros, C., Van Bortel, W., Trung, H. D., Coosemans, M. & Manguin, S. Review of the Minimus Complex of Anopheles, main malaria vector in Southeast Asia: From taxonomic issues to vector control strategies. Trop. Med. Int. Health 11, 102–114. https://doi.org/10.1111/j.1365-3156.2005.01536.x (2006).Article 
    CAS 

    Google Scholar 
    Dahan-Moss, Y. et al. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar. J. 19, 89. https://doi.org/10.1186/s12936-020-03168-x (2020).Article 
    CAS 

    Google Scholar 
    Van Bortel, W. et al. Confirmation of Anopheles varuna in Vietnam, previously misidentified and mistargeted as the malaria vector Anopheles minimus. Am. J. Trop. Med. Hyg. 65, 729–732. https://doi.org/10.4269/ajtmh.2001.65.729 (2001).Article 

    Google Scholar 
    Wharton, R. H., Eyles, D. E., Warren, M., Moorhouse, D. E. & Sandosham, A. A. Investigations leading to the identification of members of the Anopheles umbrosus group as the probable vectors of mouse deer malaria. Bull. 29, 357–374 (1963).CAS 

    Google Scholar 
    Nugraheni, Y. R. et al. Myzorhynchus series of Anopheles mosquitoes as potential vectors of Plasmodium bubalis in Thailand. Sci. Rep. 12, 5747. https://doi.org/10.1038/s41598-022-09686-9 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Tu, H. L. C. et al. Development of a novel multiplex PCR assay for the detection and differentiation of Plasmodium caprae from Theileria luwenshuni and Babesia spp. in goats. Acta Trop. 220, 105957. https://doi.org/10.1016/j.actatropica.2021.105957 (2021).Article 
    CAS 

    Google Scholar 
    Cywinska, A., Hunter, F. F. & Hebert, P. D. Identifying Canadian mosquito species through DNA barcodes. Med. Vet. Entomol. 20, 413–424. https://doi.org/10.1111/j.1365-2915.2006.00653.x (2006).Article 
    CAS 

    Google Scholar 
    Hebert, P. D., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).Article 
    CAS 

    Google Scholar 
    Ogola, E. O., Chepkorir, E., Sang, R. & Tchouassi, D. P. A previously unreported potential malaria vector in a dry ecology of Kenya. Parasit. Vectors 12, 80. https://doi.org/10.1186/s13071-019-3332-z (2019).Article 

    Google Scholar 
    Maquart, P. O., Fontenille, D., Rahola, N., Yean, S. & Boyer, S. Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia. Parasite 28, 60. https://doi.org/10.1051/parasite/2021056 (2021).Article 

    Google Scholar 
    Tainchum, K. et al. Diversity of Anopheles species and trophic behavior of putative malaria vectors in two malaria endemic areas of northwestern Thailand. J. Vector. Ecol. 39, 424–436. https://doi.org/10.1111/jvec.12118 (2014).Article 

    Google Scholar 
    Vantaux, A. et al. Anopheles ecology, genetics and malaria transmission in northern Cambodia. Sci. Rep. 11, 6458. https://doi.org/10.1038/s41598-021-85628-1 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Chookaew, S. et al. Anopheles species composition in malaria high-risk areas in Ranong Province. Dis. Control J. 46, 483–493. https://doi.org/10.14456/dcj.2020.45 (2020).Article 

    Google Scholar 
    Makanga, B. et al. Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc. Natl. Acad. Sci. USA. 113, 5329–5334. https://doi.org/10.1073/pnas.1603008113 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Ariey, F., Gay, F. & Ménard, R. Malaria Control and Elimination Vol. 254 (Springer, 2020).
    Google Scholar 
    Williams, J. & Pinto, J. Training Manual on Malaria Entomology (Springer, 2012).
    Google Scholar 
    Rigg, C. A., Hurtado, L. A., Calzada, J. E. & Chaves, L. F. Malaria infection rates in Anopheles albimanus (Diptera: Culicidae) at Ipetí-Guna, a village within a region targeted for malaria elimination in Panamá. Infect. Genet. Evol. 69, 216–223. https://doi.org/10.1016/j.meegid.2019.02.003 (2019).Article 

    Google Scholar 
    Torres-Cosme, R. et al. Natural malaria infection in anophelines vectors and their incrimination in local malaria transmission in Darién Panama. PLoS ONE 16, e0250059. https://doi.org/10.1371/journal.pone.0250059 (2021).Article 
    CAS 

    Google Scholar 
    Beebe, N. W. & Saul, A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am. J. Trop. Med. Hyg. 53, 478–481. https://doi.org/10.4269/ajtmh.1995.53.478 (1995).Article 
    CAS 

    Google Scholar 
    Perkins, S. L. & Schall, J. J. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J. Parasitol. 88, 972–978. https://doi.org/10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2 (2002).Article 
    CAS 

    Google Scholar 
    Snounou, G. et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol. 61, 315–320. https://doi.org/10.1016/0166-6851(93)90077-B (1993).Article 
    CAS 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).Article 
    CAS 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).Article 
    CAS 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300 (2015).Article 
    CAS 

    Google Scholar 
    Ventim, R. et al. Avian malaria infections in western European mosquitoes. Parasitol. Res. 111, 637–645. https://doi.org/10.1007/s00436-012-2880-3 (2012).Article 

    Google Scholar  More