More stories

  • in

    Identification of potential light deficiency response regulators in endangered species Magnolia sinostellata

    Baranova, M. Systematic anatomy of the leaf epidermis in the Magnoliaceae and some related families. Int. Assoc. Plant Taxon. (IAPT) 21, 447–469 (1972).
    Google Scholar 
    Suzuki, S., Kiyoshi, I., Saneyoshi, U., Yoshihiko, T. & Nobuhiro, T. Population differentiation and gene flow within ametapopulation of a threatened tree, Magnolia stellata (magnoliaceae). Am. J. Bot. 94, 128–136 (2007).Article 

    Google Scholar 
    Tan, M. et al. Study on seed germination and seedling growth of Magnolia officinalis in different habitats. J. Ecol. Rural Environ. 34, 910–916 (2018).
    Google Scholar 
    Zezhi, Y. et al. Study on population distribution and community structure of Magnolia sinostellata. Zhejiang For. Sci. Technol. 35, 47–52 (2015).
    Google Scholar 
    Yu, Q. et al. Light deficiency and waterlogging affect chlorophyll metabolism and photosynthesis in Magnolia sinostellata. Trees 33, 11–22. https://doi.org/10.1007/s00468-018-1753-5 (2018).Article 

    Google Scholar 
    Promis, A. & Allen, R. B. Tree seedlings respond to both light and soil nutrients in a Patagonian evergreen-deciduous forest. PLoS ONE 12, e0188686. https://doi.org/10.1371/journal.pone.0188686 (2017).Article 

    Google Scholar 
    Qin, Y. Effect of Light intensity and waterlogging on the physiology characteristic and the relative expression of genes in Magnolia sinostellata. 33, 11–22 (2018).
    Chen, T. et al. Shade effects on peanut yield associate with physiological and expressional regulation on photosynthesis and sucrose metabolism. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21155284 (2020).Article 

    Google Scholar 
    Yao, X. et al. Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regul. 83, 409–416. https://doi.org/10.1007/s10725-017-0307-y (2017).Article 

    Google Scholar 
    Wu, Y., Gong, W. & Yang, W. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Sci. Rep. 7, 9259. https://doi.org/10.1038/s41598-017-10026-5 (2017).Article 
    ADS 

    Google Scholar 
    Zhao, D., Hao, Z. & Tao, J. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol. Biochem. 61, 187–196. https://doi.org/10.1016/j.plaphy.2012.10.005 (2012).Article 

    Google Scholar 
    Tamaki, I. et al. Evaluation of a field experiment for the conservation of a Magnolia stellata stand using clear-cutting. Landscape Ecol. Eng. 14, 269–276. https://doi.org/10.1007/s11355-018-0348-z (2018).Article 

    Google Scholar 
    Jian, W. et al. Photosynthesis and chlorophyll fluorescence reaction to different shade stresses of weak light sensitive maize. Pak. J. Bot. 49, 1681–1688 (2017).
    Google Scholar 
    Quail, P. H. The phytochrome family dissection of functional roles and signalling pathways among family members. Philos. Trans. R. Soc. B 353, 1399–1403 (1998).Article 

    Google Scholar 
    Yang, F. et al. Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition. Environ. Exp. Bot. 150, 79–87. https://doi.org/10.1016/j.envexpbot.2018.03.008 (2018).Article 

    Google Scholar 
    Luesse, D. R., DeBlasio, S. L. & Hangarter, R. P. Integration of Phot1, Phot2, and PhyB signalling in light-induced chloroplast movements. J. Exp. Bot. 61, 4387–4397. https://doi.org/10.1093/jxb/erq242 (2010).Article 

    Google Scholar 
    Dinakar, C., Vishwakarma, A., Raghavendra, A. S. & Padmasree, K. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems. Front. Plant Sci. 7, 68. https://doi.org/10.3389/fpls.2016.00068 (2016).Article 

    Google Scholar 
    Ruban, A. V. Light harvesting control in plants. FEBS Lett. 592, 3030–3039. https://doi.org/10.1002/1873-3468.13111 (2018).Article 

    Google Scholar 
    Wang, J. et al. Photosynthesis and chlorophyll fluorescence reaction to different shade stresses of weak light sensitive maize. Pak. J. Bo. 49, 1681–1688 (2017).
    Google Scholar 
    Yamori, W., Shikanai, T. & Makino, A. Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Sci. Rep. 5, 13908. https://doi.org/10.1038/srep13908 (2015).Article 
    ADS 

    Google Scholar 
    Ng, J. & Mueller-Cajar, O. Rubisco activase remodels plant Rubisco via the large subunit N-terminus. bioRxiv https://doi.org/10.1101/2020.06.14.151407 (2020).Article 

    Google Scholar 
    Zhang, Y., Liu, N., Wang, W., Sun, J. & Zhu, L. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. Front. Environ. Sci. Eng. https://doi.org/10.1007/s11783-020-1282-5 (2020).Article 

    Google Scholar 
    Suzuki, Y. & Makino, A. Translational downregulation of RBCL is operative in the coordinated expression of Rubisco genes in senescent leaves in rice. J. Exp. Bot. 64, 1145–1152. https://doi.org/10.1093/jxb/ers398 (2013).Article 

    Google Scholar 
    Sun, J. et al. Low light stress down-regulated rubisco gene expression and photosynthetic capacity during cucumber (Cucumis sativus L.) leaf development. J. Integr. Agric. 13, 997–1007. https://doi.org/10.1016/s2095-3119(13)60670-x (2014).Article 

    Google Scholar 
    Wu, H. Y., Liu, L. A., Shi, L., Zhang, W. F. & Jiang, C. D. Photosynthetic acclimation during low-light-induced leaf senescence in post-anthesis maize plants. Photosynth. Res. 150, 313–326. https://doi.org/10.1007/s11120-021-00851-1 (2021).Article 

    Google Scholar 
    Zou, D., Gao, K. & Chen, W. Photosynthetic carbon acquisition in Sargassum henslowianum (Fucales, Phaeophyta), with special reference to the comparison between the vegetative and reproductive tissues. Photosynth. Res. 107, 159–168. https://doi.org/10.1007/s11120-010-9612-2 (2011).Article 

    Google Scholar 
    Wu, Z.-F. et al. Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut. Chin. J. Plant Ecol. 38, 740–748. https://doi.org/10.3724/SP.J.1258.2014.00069 (2014).Article 

    Google Scholar 
    Valladares, F. et al. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16, 395–403. https://doi.org/10.1007/s00468-002-0184-4 (2002).Article 

    Google Scholar 
    Rojas-Gonzalez, J. A. et al. Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. J. Exp. Bot. 66, 2673–2689. https://doi.org/10.1093/jxb/erv062 (2015).Article 

    Google Scholar 
    Lowe, H., Hobmeier, K., Moos, M., Kremling, A. & Pfluger-Grau, K. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol. Biofuels 10, 190. https://doi.org/10.1186/s13068-017-0875-0 (2017).Article 

    Google Scholar 
    Wang, B. et al. Photosynthesis, sucrose metabolism, and starch accumulation in two NILs of winter wheat. Photosynth. Res. 126, 363–373. https://doi.org/10.1007/s11120-015-0126-9 (2015).Article 

    Google Scholar 
    Myers, J. A. & Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 95, 383–395. https://doi.org/10.1111/j.1365-2745.2006.01207.x (2007).Article 

    Google Scholar 
    Lestari, D. P. & Nichols, J. D. Seedlings of subtropical rainforest species from similar successional guild show different photosynthetic and morphological responses to varying light levels. Tree Physiol. 37, 186–198. https://doi.org/10.1093/treephys/tpw088 (2017).Article 

    Google Scholar 
    Wu, M., Li, Z. & Wang, J. Transcriptional analyses reveal the molecular mechanism governing shade tolerance in the invasive plant Solidago canadensis. Ecol. Evol. 10, 4391–4406. https://doi.org/10.1002/ece3.6206 (2020).Article 

    Google Scholar 
    Miao, Z. Q. et al. HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression. Plant Cell 30, 2761–2778. https://doi.org/10.1105/tpc.18.00584 (2018).Article 

    Google Scholar 
    Liu, B. et al. A domestication-associated gene, CsLH, encodes a phytochrome B protein that regulates hypocotyl elongation in cucumber. Mol. Hortic. https://doi.org/10.1186/s43897-021-00005-w (2021).Article 

    Google Scholar 
    Sun, W. et al. Mediator subunit MED25 physically interacts with phytochrome interacting factor4 to regulate shade-induced hypocotyl elongation in tomato. Plant Physiol. 184, 1549–1562. https://doi.org/10.1104/pp.20.00587 (2020).Article 

    Google Scholar 
    Bawa, G. et al. Gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature interaction. Physiol. Plant 170, 345–356. https://doi.org/10.1111/ppl.13158 (2020).Article 

    Google Scholar 
    Potter, T. I., Rood, S. B. & Zanewich, K. P. Light intensity, gibberellin content and the resolution of shoot growth in Brassica. Planta 207, 505–511 (1999).Article 

    Google Scholar 
    Ballare, C. L., Scopel, A. L. & San, R. A. Foraging for light photosensory ecology and agricultural implications. Plant Cell Environ. 20, 820–825 (1997).Article 

    Google Scholar 
    Hope, E., Gracie, A., Carins-Murphy, M. R., Hudson, C. & Baxter, L. Opium poppy capsule growth and alkaloid production is constrained by shade during early floral development. Ann. Appl. Biol. 176, 296–307 (2020).Article 

    Google Scholar 
    Lu, D. et al. Light deficiency inhibits growth by affecting photosynthesis efficiency as well as JA and ethylene signaling in endangered plant Magnolia sinostellata. Plants https://doi.org/10.3390/plants10112261 (2021).Article 

    Google Scholar 
    Lin, W., Guo, X., Pan, X. & Li, Z. Chlorophyll composition, chlorophyll fluorescence, and grain yield change in esl mutant rice. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19102945 (2018).Article 

    Google Scholar 
    Sano, S. et al. Stress responses of shade-treated tea leaves to high light exposure after removal of shading. Plants (Basel) https://doi.org/10.3390/plants9030302 (2020).Article 

    Google Scholar 
    Liu, D. L. et al. Genetic map construction and QTL analysis of leaf-related traits in soybean under monoculture and relay intercropping. Sci. Rep. 9, 2716. https://doi.org/10.1038/s41598-019-39110-8 (2019).Article 
    ADS 

    Google Scholar 
    Sekhar, S. et al. Comparative transcriptome profiling of low light tolerant and sensitive rice varieties induced by low light stress at active tillering stage. Sci. Rep. 9, 5753. https://doi.org/10.1038/s41598-019-42170-5 (2019).Article 
    ADS 

    Google Scholar 
    Wegener, F., Beyschlag, W. & Werner, C. High intraspecific ability to adjust both carbon uptake and allocation under light and nutrient reduction in Halimium halimifolium L. Front. Plant Sci. 6, 609. https://doi.org/10.3389/fpls.2015.00609 (2015).Article 

    Google Scholar 
    Liu, B. et al. A HY5-COL3-COL13 regulatory chain for controlling hypocotyl elongation in Arabidopsis. Plant Cell Environ. 44, 130–142. https://doi.org/10.1111/pce.13899 (2021).Article 

    Google Scholar 
    Cookson, S. J. & Granier, C. A dynamic analysis of the shade-induced plasticity in Arabidopsis thaliana rosette leaf development reveals new components of the shade-adaptative response. Ann. Bot. 97, 443–452. https://doi.org/10.1093/aob/mcj047 (2006).Article 

    Google Scholar 
    Zhong, X. M., Shi, Z. S., Li, F. H. & Huang, H. J. Photosynthesis and chlorophyll fluorescence of infertile and fertile stalks of paired near-isogenic lines in maize (Zea mays L.) under shade conditions. Photosynthetica 52, 597–603. https://doi.org/10.1007/s11099-014-0071-4 (2014).Article 

    Google Scholar 
    Kittiwongwattana, C. Differential effects of synthetic media on long-term growth, starch accumulation and transcription of ADP-glucosepyrophosphorylase subunit genes in Landoltia punctata. Sci. Rep. 9, 15310. https://doi.org/10.1038/s41598-019-51677-w (2019).Article 
    ADS 

    Google Scholar 
    Sagadevan, G. M. et al. Physiological and molecular insights into drought tolerance. Afr. J. Biotechnol. 1, 28–38 (2002).Article 

    Google Scholar 
    Xiaotao, D. et al. Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiologiae Plant. 35, 1427–1438. https://doi.org/10.1007/s11738-012-1182-9 (2012).Article 

    Google Scholar 
    Sofo, A., Dichio, B., Montanaro, G. & Xiloyannis, C. Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica 47, 602–608 (2009).Article 

    Google Scholar 
    Zhou, Y., Zhu, J., Shao, L. & Guo, M. Current advances in acteoside biosynthesis pathway elucidation and biosynthesis. Fitoterapia 142, 104495. https://doi.org/10.1016/j.fitote.2020.104495 (2020).Article 

    Google Scholar 
    Huang, P. et al. Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. Plant Sci. 203–204, 98–106. https://doi.org/10.1016/j.plantsci.2012.12.019 (2013).Article 

    Google Scholar 
    Vorontsov, I. I. et al. Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Protein Sci. 16, 2483–2490. https://doi.org/10.1110/ps.073029607 (2007).Article 

    Google Scholar 
    Guo, M. et al. Proteomic and phosphoproteomic analyses of NaCl stress-responsive proteins in Arabidopsis roots. J. Plant Interact. 9, 396–401. https://doi.org/10.1080/17429145.2013.845262 (2013).Article 

    Google Scholar 
    Smith, C. et al. Alterations in the mitochondrial alternative NAD(P)H Dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress. Plant Cell Physiol. 52, 1222–1237. https://doi.org/10.1093/pcp/pcr073 (2011).Article 

    Google Scholar 
    Johnson, K. L., Jones, B. J., Bacic, A. & Schultz, C. J. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol. 133, 1911–1925. https://doi.org/10.1104/pp.103.031237 (2003).Article 

    Google Scholar 
    Merz, D. et al. T-DNA alleles of the receptor kinase THESEUS1 with opposing effects on cell wall integrity signaling. J. Exp. Bot. 68, 4583–4593. https://doi.org/10.1093/jxb/erx263 (2017).Article 

    Google Scholar 
    Figueiredo, J., Silva, M. S. & Figueiredo, A. Subtilisin-like proteases in plant defence: The past, the present and beyond. Mol. Plant Pathol. 19, 1017–1028. https://doi.org/10.1111/mpp.12567 (2018).Article 

    Google Scholar 
    Sintupachee, S., Promden, W., Ngamrojanavanich, N., Sitthithaworn, W. & De-Eknamkul, W. Functional expression of a putative geraniol 8-hydroxylase by reconstitution of bacterially expressed plant CYP76F45 and NADPH-cytochrome P450 reductase CPR I from Croton stellatopilosus Ohba. Phytochemistry 118, 204–215. https://doi.org/10.1016/j.phytochem.2015.08.005 (2015).Article 

    Google Scholar 
    Chen, Y. et al. Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process. Foods https://doi.org/10.3390/foods9010066 (2020).Smidansky, E. D. et al. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225, 965–976. https://doi.org/10.1007/s00425-006-0400-3 (2007).Article 

    Google Scholar 
    Mathur, S., Jain, L. & Jajoo, A. Photosynthetic efficiency in sun and shade plants. Photosynthetica https://doi.org/10.1007/s11099-018-0767-y (2018).Article 

    Google Scholar 
    Huang, W., Zhang, S. B. & Liu, T. Moderate photoinhibition of photosystem II significantly affects linear electron flow in the shade-demanding plant panax notoginseng. Front. Plant Sci. 9, 637. https://doi.org/10.3389/fpls.2018.00637 (2018).Article 

    Google Scholar 
    Li, Q. et al. Quantitative trait locus (QTLs) mapping for quality traits of wheat based on high density genetic map combined with bulked segregant analysis RNA-seq (BSR-Seq) indicates that the basic 7S globulin gene is related to falling number. Front. Plant Sci. 11, 600788. https://doi.org/10.3389/fpls.2020.600788 (2020).Article 

    Google Scholar 
    Hashempour, A., Ghasemnezhad, M., Sohani, M. M., Ghazvini, R. F. & Abedi, A. Effects of freezing stress on the expression of fatty acid desaturase (FAD2, FAD6 and FAD7) and beta-glucosidase (BGLC) genes in tolerant and sensitive olive cultivars. Russ. J. Plant Physiol. 66, 214–222. https://doi.org/10.1134/s1021443719020079 (2019).Article 

    Google Scholar 
    Limami, M. A., Sun, L.-Y., Douat, C., Helgeson, J. & Tepfer, D. Natural genetic transformation by__Agrobacterium rhizogenes. Plant Physiol. 118, 543–550 (1998).Article 

    Google Scholar 
    Devlin, P. F., Yanovsky, M. J. & Kay, S. A. A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol. 133, 1617–1629. https://doi.org/10.1104/pp.103.034397 (2003).Article 

    Google Scholar 
    Lorenzo, C. D. et al. Shade delays flowering in Medicago sativa. Plant J. 99, 7–22. https://doi.org/10.1111/tpj.14333 (2019).Article 

    Google Scholar 
    Rezazadeh, A., Harkess, R. & Telmadarrehei, T. The effect of light intensity and temperature on flowering and morphology of potted red firespike. Horticulturae https://doi.org/10.3390/horticulturae4040036 (2018).Article 

    Google Scholar 
    Guo, C. et al. OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. J. Integr. Plant Biol. 58, 492–502. https://doi.org/10.1111/jipb.12376 (2016).Article 

    Google Scholar 
    Kapolas, G. et al. APRF1 promotes flowering under long days in Arabidopsis thaliana. Plant Sci. 253, 141–153. https://doi.org/10.1016/j.plantsci.2016.09.015 (2016).Article 

    Google Scholar 
    Walla, A. et al. An Acyl-CoA N-Acyltransferase regulates meristem phase change and plant architecture in barley. Plant Physiol. 183, 1088–1109. https://doi.org/10.1104/pp.20.00087 (2020).Article 
    ADS 

    Google Scholar 
    Goto, M. K. A. S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).Article 

    Google Scholar  More

  • in

    Insights from the Niger Delta Region, Nigeria on the impacts of urban pollution on the functional organisation of Afrotropical macroinvertebrates

    De Jesús-Crespo, R. & Ramírez, A. Effects of urbanisation on stream physicochemistry and macroinvertebrate assemblages in a tropical urban watershed in Puerto Rico. J. N. Am. Benthol. Soc. 30, 739. https://doi.org/10.1899/10-081.1 (2011).Article 

    Google Scholar 
    Start, D., Barbour, M. A. & Bonner, C. Urbanisation reshapes a food web. J. Anim. Ecol. 89(3), 808–816. https://doi.org/10.1111/1365-2656.131366 (2020).Article 

    Google Scholar 
    Liu, Y. et al. Analysis of the influence paths of land use and landscape pattern on organic matter decomposition in river ecosystems: Focusing on microbial groups. Sci. Total Environ. 95(14), 106408. https://doi.org/10.1016/j.scitotenv.2022.152999 (2022).Article 
    CAS 

    Google Scholar 
    Vörösmarty, C. J., Mcintyre, P. B., Gessner, M. O., Dudgeon, D. & Prusevich, A. Global threats to human water security and river biodiversity. Nature 467(7315), 555–561. https://doi.org/10.1038/nature09440 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Weideman, E. A., Perold, V., Arnold, G. & Ryan, P. G. Quantifying changes in litter loads in urban stormwater runoff from Cape Town, South Africa, over the last two decades. Sci. Total Environ. 724, 138310. https://doi.org/10.1016/j.scitotenv.2020.138310 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Charters, F. J., Cochrane, T. A. & O’Sullivan, A. D. The influence of urban surface type and characteristics on runoff water quality. Sci. Total Environ. 755, 142470. https://doi.org/10.1016/j.scitotenv.2020.142470 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Espinoza-Toledo, A., Mendoza-Carranza, M., Castillo, M. M., Barba-Macías, E. & Capps, K. A. Taxonomic and functional responses of macroinvertebrates to riparian forest conversion in tropical streams. Sci. Total Environ. 757, 143972. https://doi.org/10.1016/j.scitotenv.2020.143972 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Akamagwuna, C. F., Ntloko, P., Edegbene, A. O. & Odume, O. N. Are Ephemeroptera, Plecoptera and Trichoptera traits reliable indicators of semi- urban pollution in the Tsitsa River, Eastern Cape Province of South Africa ? Environ. Monit. Assess. 193, 1–15. https://doi.org/10.1007/s10661-021-09093-z (2021).Article 
    CAS 

    Google Scholar 
    Edegbene, A. O., Odume, O. N., Arimoro, F. O. & Keke, U. N. Identifying and classifying macroinvertebrate indicator signature traits and ecological preferences along urban pollution gradient in the Niger Delta. Environ. Pollut. 281, 117076. https://doi.org/10.1016/j.envpol.2021.117076 (2021).Article 
    CAS 

    Google Scholar 
    Odume, O. N. Searching for urban pollution signature and sensitive macroinvertebrate traits and ecological preferences in a river in the Eastern Cape of South Africa. Ecol. Indic. 108, 105759. https://doi.org/10.1016/j.ecolind.2019.105759 (2020).Article 
    CAS 

    Google Scholar 
    World Bank Group. e-Conomy Africa 2020 Africa’s $180 billion Internet economy future. In E-Conomy Africa 2020 (2020).Petersen, C. R., Jovanovic, N. Z., Grenfell, M. C., Oberholster, P. J. & Cheng, P. Responses of aquatic communities to physical and chemical parameters in agriculturally impacted coastal river systems. Hydrobiologia 813(1), 157–175. https://doi.org/10.1007/s10750-018-3518-y (2018).Article 
    CAS 

    Google Scholar 
    Zhao, Q., Guo, F., Zhang, Y., Yang, Z. & Ma, S. Effects of secondary salinisation on macroinvertebrate functional traits in surface mining-contaminated streams, and recovery potential. Sci. Total Environ. 640–641, 1088–1097. https://doi.org/10.1016/j.scitotenv.2018.05.347 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, Y. et al. Trophic structure in response to land use in subtropical streams. Ecol. Indic. 127, 107746. https://doi.org/10.1016/j.ecolind.2021.107746 (2021).Article 
    CAS 

    Google Scholar 
    David, A. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122 (2004).Article 

    Google Scholar 
    Monk, W. A., Wood, P. J., Hannah, D. M. & Wilson, D. A. Macroinvertebrate community response to inter-annual and regional river flow regime dynamics. River Res. Appl. 24(70), 988–1001 (2008).Article 

    Google Scholar 
    Fitzgerald, D. B., Winemiller, K. O., SabajPerez, M. H. & Sousa, L. M. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98, 21–31. https://doi.org/10.1002/ecy.1616 (2017).Article 

    Google Scholar 
    Rosenberg, D. M. & Resh, V. H. Freshwater Biomonitoring and Benthic Macroinvertebrates (Chapman and Hall, 1993).
    Google Scholar 
    Jiang, X., Xiong, J., Xie, Z. & Chen, Y. Longitudinal patterns of macroinvertebrate functional feeding groups in a Chinese river system: A test for river continuum concept (RCC). Quatern. Int. 244(2), 289–295. https://doi.org/10.1016/j.quaint.2010.08.015 (2011).Article 

    Google Scholar 
    Sun, L. Q. et al. Food web structure and ecosystem attributes of integrated multi-trophic aquaculture waters in Sanggou Bay. Aquac. Rep. 16, 100279. https://doi.org/10.1016/j.aqrep.2020.100279 (2020).Article 

    Google Scholar 
    Covich, A. P., Palmer, M. A. & Crowl, T. A. The role of benthic invertebrate species in freshwater ecosystems. Bioscience 49, 119–127 (1999).Article 

    Google Scholar 
    Hladyz, S., Kajsa, Å., Paul, S. G. & Guy, W. Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J. Appl. Ecol. 48(2), 443–452. https://doi.org/10.1111/j.1365-2664.2010.01924.x (2011).Article 

    Google Scholar 
    Crowl, T. A. & Covich, A. P. Predator-induced life history shifts in a freshwater snail. Science 247, 949–951 (1990).Article 
    ADS 
    CAS 

    Google Scholar 
    Fierro, P. et al. Effects of local land-use on riparian vegetation, water quality, and the functional organisation of macroinvertebrate assemblages. Sci. Total Environ. 609, 724–734. https://doi.org/10.1016/j.scitotenv.2017.07.197 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Lenat, D. R. & Barbour, M. T. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring: Rapid bioassessment. Biol. Monit. Aquat. Syst. 1, 187–215 (1994).
    Google Scholar 
    Edegbene, A., Arimoro, F. O. & Odume, O. N. How does urban pollution influence macroinvertebrate traits in forested riverine systems? Water 1, 2–17. https://doi.org/10.3390/w12113111 (2020).Article 

    Google Scholar 
    Walsh, C. J. et al. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Renthol. Soc. 24(3), 706–723. https://doi.org/10.1899/04-028.1 (2005).Article 

    Google Scholar 
    Bêche, L. A., Eric, P. M. & Vincent, H. R. Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two mediterranean-climate streams in California, USA. Freshw. Biol. 51(1), 56–75. https://doi.org/10.1111/j.1365-2427.2005.01473.x (2006).Article 

    Google Scholar 
    Sitati, A., Raburu, P. O., Yegon, M. J. & Masese, F. O. Land-use influence on the functional organization of Afrotropical macroinvertebrate assemblages. Limnologica 88, 125875. https://doi.org/10.1016/j.limno.2021.125875 (2021).Article 
    CAS 

    Google Scholar 
    Álvarez-Cabria, M. J. & José, A. J. Spatial and seasonal variability of macroinvertebrate metrics: Do macroinvertebrate communities track river health? Ecol. Indic. 10(2), 370–379. https://doi.org/10.1016/j.ecolind.2009.06.018 (2010).Article 
    CAS 

    Google Scholar 
    Masese, F. O. et al. Litter processing and shredder distribution as indicators of riparian and catchment influences on ecological health of tropical streams. Ecol. Indic. 46, 23–37. https://doi.org/10.1016/j.ecolind.2014.05.032 (2014).Article 

    Google Scholar 
    Merritt, R. & Cummins, K. An Introduction to the Aquatic Insects of North America 1996–862 (Kendall Hunt Publishing Co, 1995).
    Google Scholar 
    Merritt, R. W., Fenoglio, S. & Cummins, K. W. Promoting a functional macroinvertebrate approach in the biomonitoring of Italian lotic systems. J. Limnol. https://doi.org/10.4081/jlimnol.2016.1502 (2016).Article 

    Google Scholar 
    Edegbene, A.O., Akamagwuna, F.C., Arimoro, F.O., Akumabor, E.C. & Kaine, E.A. Effects of urban-agricultural land-use on Afrotropical macroinvertebrate functional feeding groups in selected rivers in the Niger Delta Region, Nigeria. Hydrobiologia 849, 4857–4869. https://doi.org/10.1007/s10750-022-05034-0 (2022).Article 
    CAS 

    Google Scholar 
    Masese, F. O. et al. Macroinvertebrate functional feeding groups in Kenyan highland streams: Evidence for a diverse shredder guild. Freshw. Sci. 33(2), 435–450. https://doi.org/10.1086/675681 (2014).Article 

    Google Scholar 
    Moyo, S. & Richoux, N. B. Macroinvertebrate functional organisation along the longitudinal Gradient of an austral temperate river. Afr. Zool. 52(3), 125–136. https://doi.org/10.1080/15627020.2017.1354721 (2017).Article 

    Google Scholar 
    Vannote, R. L. et al. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).Article 

    Google Scholar 
    Ding, J. et al. Impacts of land use on surface water quality in a subtropical river basin: A case study of the Dongjiang River Basin, Southeastern China. Water 7(8), 4427–4445. https://doi.org/10.3390/w7084427 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Miserendino, M. L. & Masi, C. I. The effects of land use on environmental features and functional organisation of macroinvertebrate communities in Patagonian low order streams. Ecol. Indic. 10(2), 311–319. https://doi.org/10.1016/j.ecolind.2009.06.008 (2010).Article 
    CAS 

    Google Scholar 
    Solis, M., Arias, M., Fanelli, S., Bonetto, C. & Mugni, H. Agrochemicals’ effects on functional feeding groups of macroinvertebrates in Pampas streams. Ecol. Indic. 101, 373–379. https://doi.org/10.1016/j.ecolind.2019.01.036 (2019).Article 
    CAS 

    Google Scholar 
    Mangadze, T., Wasserman, R., Froneman, W. & Dalu, T. Macroinvertebrate functional feeding group alterations in response to habitat degradation of headwater Austral streams. Sci. Total Environ. 695, 133910. https://doi.org/10.1016/j.scitotenv.2019.133910 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Akamagwuna, F. C. & Odume, O. N. Ephemeroptera, Plecoptera and Trichoptera (EPT) functional feeding group responses to fine grain sediment stress in a river in the Eastern Cape, South Africa. Environ. Monit. Assess. 2, 1–11 (2020).
    Google Scholar 
    Iwegbue, C. M. A. et al. Polycyclic aromatic hydrocarbons (PAHs) in surficial sediments from selected rivers in the western Niger Delta of Nigeria: Spatial distribution, sources, and ecological and human health risks. Mar. Pollut. Bull. 167, 112351. https://doi.org/10.1016/j.marpolbul.2021.112351 (2021).Article 
    CAS 

    Google Scholar 
    Arimoro, F. O., Abubakar, M. D., Obi-iyeke, G. E. & Keke, U. N. Environmental and sustainability indicators achieving sustainable river water quality for rural dwellers by prioritising the conservation of macroinvertebrates biodiversity in two Afrotropical streams. Environ. Sustain. Indic. 10, 100103. https://doi.org/10.1016/j.indic.2021.100103 (2021).Article 

    Google Scholar 
    Zabbey, N., Erondu, E. S. & Hart, A. I. Nigeria and the prospect of shrimp farming: Critical issues. Livestock Res. Rural Dev. 22, 11 (2010).
    Google Scholar 
    Edegbene, A. O., Arimoro, F. O. & Odume, O. N. Developing and applying a macroinvertebrate-based multimetric index for urban rivers in the Niger Delta, Nigeria. Ecol. Evol. 9(22), 12869–12885. https://doi.org/10.1002/ece3.5769 (2019).Article 

    Google Scholar 
    Iwegbue, C. M. A. et al. Distribution, sources and ecological risks of metals in surficial sediments of the Forcados River and its Estuary, Niger Delta, Nigeria. Environ. Earth Sci. 77(6), 1–18. https://doi.org/10.1007/s12665-018-7344-3 (2018).Article 
    CAS 

    Google Scholar 
    Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K. & Norris, R. H. Setting expectations for the ecological condition of running waters: The concept of reference condition. Ecol. Appl. 16, 1267–1276 (2006).Article 

    Google Scholar 
    Whittier, T. R. et al. A structured approach for developing indices of biotic integrity: Three examples from streams and rivers in the western USA. Trans. Am. Fish. Soc. 136, 718–735 (2007).Article 

    Google Scholar 
    APHA. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, 1995).
    Google Scholar 
    Dickens, C. W. & Graham, P. M. The South African scoring system (SASS) Version 5 rapid bioassessment method for Rivers. Afr. J. Aquat. Sci. 27(1), 1–10. https://doi.org/10.2989/16085914.2002.9626569 (2002).Article 

    Google Scholar 
    Day, J. A., & de Moor, I. J. Guides to the freshwater invertebrates of southern Africa. In Volume 6: Arachnida and Mollusca (Araneae, Water Mites and Mollusca). Water Research Commision, 6. WRC Report No. TT 182/02 (2002).De Moor, I. J., Day, J. A. & De Moor, F. C. Guides to the freshwater invertebrates of southern Africa. In Volume 8: Insecta II: Hemiptera, Megaloptera, Neuroptera, Trichoptera and Lepidoptera. Water Research Commision, 8 (2003).Merrit, R. W. et al. An Introduction to the Aquatic Insects of North America 4th edn. (Kendall Hunt Publishing Company, 2008).
    Google Scholar 
    Cummins, K. W., Merritt, R. W. & Andrade, P. C. N. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in South Brazil. Stud. Neotrop. Fauna Environ. 40(1), 69–89. https://doi.org/10.1080/01650520400025720 (2005).Article 

    Google Scholar 
    Palmer, C. G. Benthic Assemblage Structure, and the Feeding Biology of Sixteen Macro Invertebrate Taxa from the Buffalo River, Eastern Cape, South Africa. Rhodes University, Ph.D. thesis (1991).Palmer, C. G., Maart, B., Palmer, A. R. & O’keeffe, J. H. An assessment of macroinvertebrate functional feeding groups as water quality indicators in the Buffalo River, eastern Cape Province, South Africa. Hydrobiologia 318, 153–164 (1996).Article 

    Google Scholar 
    Palmer, C. G. & O’Keeffe, J. H. O. Feeding patterns of four macroinvertebrate taxa in the headwaters of the Buffalo River, Eastern Cape. Hydrobiologia 228, 157–173 (1992).Article 

    Google Scholar 
    Gayraud, S. & Michel, P. Influence of bed-sediment features on the interstitial habitat available for macroinvertebrates in 15 French streams. Int. Rev. Hydrobiol. 88(1), 77–93. https://doi.org/10.1002/iroh.200390007 (2003).Article 

    Google Scholar 
    Beketov, M. A. et al. SPEAR indicates pesticide effects in streams—Comparative use of species- and family-level biomonitoring data. Environ. Pollut. 157, 1841–1848. https://doi.org/10.1016/j.envpol.2009.01.021 (2009).Article 
    CAS 

    Google Scholar 
    Anderson, M., Gorley, R. N. & Clarke, K. R. PERMANOVA + for PRIMER user manual. Primer-E Ltd 1(1), 218 (2008).
    Google Scholar 
    Dolédec, S., Chessel, D., ter Braak, C. J. F. & Champely, S. Matching species traits to environmental variables: A new three-table ordination method. Environ. Ecol. Stat. 3(2), 143–166. https://doi.org/10.1007/BF02427859 (1996).Article 

    Google Scholar 
    Juvigny-Khenafou, N. P. D. et al. Impacts of multiple anthropogenic stressors on stream macroinvertebrate community composition and functional diversity. Ecol. Evol. 11(1), 133–152. https://doi.org/10.1002/ece3.6979 (2021).Article 

    Google Scholar 
    Dray, P. S. et al. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95(1), 14–21 (2014).Article 

    Google Scholar 
    R Core Team, E. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Lubanga, H. L., Manyala, J. O., Sitati, A., Yegon, M. J. & Masese, F. O. Spatial variability in water quality and macroinvertebrate assemblages across a disturbance gradient in the Mara River. Ecohydrol. Hydrobiol. https://doi.org/10.1016/j.ecohyd.2021.03.001 (2021).Article 

    Google Scholar 
    Arimoro, F. O. & Ikomi, R. B. Ecological integrity of upper Warri River, Niger Delta using aquatic insects as bioindicators. Ecol. Indic. 9(3), 455–461. https://doi.org/10.1016/j.ecolind.2008.06.006 (2009).Article 
    CAS 

    Google Scholar 
    Arimoro, F. O., Odume, O. N., Uhunoma, S. I. & Edegbene, A. O. Anthropogenic impact on water chemistry and benthic macroinvertebrate associated changes in a southern Nigeria stream. Environ. Monit. Assess. 187(2), 1–14 (2015).Article 
    CAS 

    Google Scholar 
    Keke, U. N. et al. Macroinvertebrate communities and physicochemical characteristics along an anthropogenic stress gradient in a southern Nigeria stream: Implications for ecological restoration. Environ. Sustain. Indic. https://doi.org/10.1016/j.indic.2021.100157 (2021).Article 

    Google Scholar 
    Edegbene, A. O. et al. A macroinvertebrate-based multimetric index for assessing ecological condition of forested stream sites draining Nigerian urbanizing landscapes. Sustainability 14, 11289. https://doi.org/10.3390/su141811289 (2022).Article 

    Google Scholar 
    Matemilola, S., Adedeji, O. H. & Enoguanbhor, E. C. Land use/land cover change in petroleum-producing regions of Nigeria. In The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem (eds Matemilola, S. et al.) (Elsevier Inc., 2018).
    Google Scholar 
    Ukhurebor, K. E. et al. Environmental implications of petroleum spillages in the Niger Delta region of Nigeria: A review. J. Environ. Manag. 293, 112872. https://doi.org/10.1016/j.jenvman.2021.112872 (2021).Article 
    CAS 

    Google Scholar 
    Masese, F. O. & Raburu, P. O. Improving the performance of the EPT Index to accommodate multiple stressors in Afrotropical streams. Afr. J. Aquat. Sci. 42(3), 219–233. https://doi.org/10.2989/16085914.2017.1392282 (2017).Article 

    Google Scholar 
    Akamagwuna, F. C. Application of Macroinvertebrate-Based Biomonitoring and Stable Isotopes for Assessing the Effects of Agricultural Land-Use on River Ecosystem Structure and Function in the Kat River, Eastern Cape, South Africa, 4 (Rhodes University, 2021).
    Google Scholar 
    Yang, F. et al. Application of stable isotopes to the bioaccumulation and trophic transfer of arsenic in aquatic organisms around a closed realgar mine. Sci. Total Environ. 726, 138550. https://doi.org/10.1016/j.scitotenv.2020.138550 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Minaya, V., Mcclain, M. E., Moog, O., Omengo, F. & Singer, G. A. Scale-dependent effects of rural activities on benthic macroinvertebrates and physico-chemical characteristics in headwater streams of the Mara River, Kenya. Ecol. Indic. 32, 116–122. https://doi.org/10.1016/j.ecolind.2013.03.011 (2013).Article 
    CAS 

    Google Scholar 
    Nelson Mwaijengo, G., Msigwa, A., Njau, K. N., Brendonck, L. & Vanschoenwinkel, B. Where does land use matter most? Contrasting land use effects on river quality at different spatial scales. Sci. Total Environ. 715, 134825. https://doi.org/10.1016/j.scitotenv.2019.134825 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Moyo, S. & Richoux, N. B. The relative importance of autochthony along the longitudinal gradient of a small South African river influenced by agricultural activities. Food Webs 15, 1–12. https://doi.org/10.1016/j.fooweb.2018.e00082 (2018).Article 

    Google Scholar 
    Jones, I., Growns, I., Arnold, A., McCall, S. & Bowes, M. The effects of increased flow and fine sediment on hyporheic invertebrates and nutrients in stream mesocosms. Freshw. Biol. 60(4), 813–826. https://doi.org/10.1111/fwb.1253664 (2015).Article 
    CAS 

    Google Scholar 
    Krynak, E. M. & Yates, A. G. Benthic invertebrates taxonomic and trait associations with land use intensively managed watershed: Implications for indicator identification. Ecol. Ind. 93, 1050–1059 (2018).Article 

    Google Scholar 
    Kuzmanovic, M. et al. Environmental stressors as driver of the trait composition of benthic macroinvertebrates assemblages in polluted Iberian rivers. Environ. Res. 156, 485–493 (2017).Article 
    CAS 

    Google Scholar 
    Dalu, T. et al. Benthic diatom-based indices and isotopic biomonitoring of nitrogen pollution in a warm temperate Austral river system. Sci. Total Environ. 748, 142452. https://doi.org/10.1016/j.scitotenv.2020.142452 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Tomanova, S., Goitia, E. & Helesˇic, J. H. Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia 556(3), 251–264. https://doi.org/10.1007/s10750-005-1255-5 (2006).Article 

    Google Scholar 
    da Conceição, A. A., Albertoni, E. F., Milesi, S. V. & Hepp, L. U. Influence of anthropic impacts on the functional structure of aquatic invertebrates in subtropical wetlands. Wetlands. https://doi.org/10.1007/s13157-020-01317-1 (2020).Article 

    Google Scholar 
    De, R. B. Effects of forest conversion on the assemblages’ structure of aquatic insects in subtropical regions. Rev. Bras. Entomol. 59(1), 43–49. https://doi.org/10.1016/j.rbe.2015.02.005 (2015).Article 
    ADS 

    Google Scholar 
    Cheshire, K., Boyero, L. & Pearson, R. G. Food webs in tropical Austrian streams: Shredders are not scarce. Freshw. Biol. https://doi.org/10.1111/j.1365-2427.2005.01355-x (2005).Article 

    Google Scholar 
    Camacho, R., Boyero, L., Cornejo, A., Ibáñez, A. & Pearson, R. G. Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica 41, 625–632 (2009).Article 

    Google Scholar 
    Boyero, L., Ramírez, A., Dudgeon, D. & Pearson, R. G. Are tropical streams really different? J. N. Am. Benthol. Soc. 28, 397–403 (2009).Article 

    Google Scholar 
    Ferreira, V. & Chauvet, E. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob. Change Biol. 17(1), 551–564. https://doi.org/10.1111/j.1365-2486.2010.02185.x (2011).Article 
    ADS 

    Google Scholar 
    Whiles, M. R. & Wallace, J. B. Leaf litter decomposition and macroinvertebrate communities in headwater streams draining pine and hardwood catchments. Hydrobiologia 353, 107–119 (1997).Article 

    Google Scholar 
    Foucreau, N., Piscart, C., Puijalon, S. & Hervant, F. Effects of rising temperature on a functional process: Consumption and digestion of leaf litter by a freshwater shredder. Fundam. Appl. Limnol. 187(4), 295–306. https://doi.org/10.1127/fal/2016/0841 (2016).Article 

    Google Scholar 
    Poff, N. L. et al. Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships. J. N. Am. Benthol. Soc. 25(4), 730–755 (2006).Article 

    Google Scholar 
    Menezes, S., Baird, D. J. & Soares, A. M. V. M. Beyond taxonomy: A review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J. Appl. Ecol. 47(4), 711–719. https://doi.org/10.1111/j.1365-2664.2010.01819.x (2010).Article 

    Google Scholar 
    Verberk, W. C. E. P., van Noordwijk, C. G. E. & Hildrew, A. G. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshw. Sci. 32(2), 531–547. https://doi.org/10.1899/12-092.1 (2013).Article 

    Google Scholar 
    Usseglio-Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. Biomonitoring through biological traits of benthic macroinvertebrates: How to use species trait databases? Hydrobiologia 423, 153–162 (2000).Article 

    Google Scholar 
    Kneitel, J. & Chase, J. Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecol. Lett. 7, 69–80 (2004).Article 

    Google Scholar 
    Pilière, A. F. H. et al. On the importance of trait interrelationships for understanding environmental responses of stream macroinvertebrates. Freshw. Biol. 61, 181–194. https://doi.org/10.1111/fwb.12690 (2016).Article 

    Google Scholar  More

  • in

    The occurrence and molecular identification of Thelazia spp. in European bison (Bison bonasus) in the Bieszczady Mountains

    Smith, K. F., Sax, D. F. & Lafferty, K. D. Evidence for the role of infectious disease in species extinction and endangerment. Conserv. Biol. 20, 1349–1357 (2006).Article 

    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 287, 443–449 (2000).Article 
    ADS 

    Google Scholar 
    Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. Infectious diseases and extinction risk in wild mammals. Conserv. Biol. 21, 1269–1279 (2007).Article 

    Google Scholar 
    Kołodziej-Sobocińska, M. Factors affecting the spread of parasites in populations of wild European terrestrial mammals. Mamm. Res. 64, 301–318 (2019).Article 

    Google Scholar 
    Borowik, T., Ratkiewicz, M., Maślanko, W., Duda, N. & Kowalczyk, R. Too hot to handle: Summer space use shift in a cold-adapted ungulate at the edge of its range. Landsc. Ecol. 35, 1341–1351 (2020).Article 

    Google Scholar 
    Demiaszkiewicz, A. W. et al. The Nematodes Thelazia gulosa Railiet and Henry, 1910 and Thelazia skrjabini Erschov, 1928 as a cause of blindness in European Bison (Bison bonasus) in Poland. Acta Parasitol. 65, 963–968 (2020).Article 

    Google Scholar 
    Anderson, R. C. (ed.) Nematode Parasites of Vertebrates. Their Development and Transmission (CAB International, 1992).
    Google Scholar 
    Otranto, D. & Traversa, D. Thelazia eyeworm: An original endo- and ecto-parasitic nematode. Trends Parasitol. 21, 1–4 (2005).Article 

    Google Scholar 
    Bradbury, R. S. et al. A second case of human conjunctival infestation with Thelazia gulosa and a review of T. gulosa in North America. Clin. Infect. Dis. 70, 518–520 (2020).
    Google Scholar 
    Lyons, E. T., Drudge, J. H. & Tolliver, S. C. Thelazia lacrymalis in horses in Kentucky and observations on the face fly (Musca autumnalis) as a probable intermediate host. J. Parasitol. 62, 877–880 (1976).Article 

    Google Scholar 
    Giangaspero, A., Traversa, D. & Otranto, D. Ecology of Thelazia spp. in cattle and their vectors in Italy. Parasitologia 46, 257–259 (2004).
    Google Scholar 
    Kostyra, J. The clinical picture and treatment of bovine thelaziosis (Przebieg i leczenie telazjozy u bydła, in Polish). Med. Weter. 16, 584–587 (1960).
    Google Scholar 
    Rosłan, J. Badania nad telazjozą bydła w Polsce. Wiad. Parazyt. 11, 73–79 (1965).
    Google Scholar 
    Kozakiewicz, B. Bovine thelaziosis in Żuławy (Telazjoza bydła na Żuławach, in Polish). Med. Weter. 27, 241–243 (1971).
    Google Scholar 
    Samojlik, T. (ed.) European Bison. The Nature Monograph (Springer, 2013).
    Google Scholar 
    Raczyński, J. (ed.) European Bison Pedigree Book (Księga rodowodowa żubrów, in Polish) 1–82 (Białowieski Park Narodowy, 2019).
    Google Scholar 
    Pucek, Z. et al. (eds) European Bison. Status Survey and Conservation Action Plan (IUCN/SSC Action Plans for the Conservation of Biological Diversity, 2004).
    Google Scholar 
    Buchmann, K., Christiansen, L.-L., Kania, P. W. & Thamsborg, S. M. Introduced European bison (Bison bonasus) in a confined forest district: A ten year parasitological survey. Int. J. Parasitol. Parasites Wildl. 18, 292–299 (2022).Article 

    Google Scholar 
    Giangaspero, A., Otranto, D., Vovlas, N. & Puccini, V. Thelazia gulosa Railliet & Henry, 1910 and T. skrjabini Erschow, 1928 infection in southern Europe (Italy). Parasite 7, 327–329 (2000).Article 

    Google Scholar 
    Klësov, M. D. Contribution to the question of the biology of two nematodes of the genus Thelazia Bosc, 1819, parasites of the eyes of cattle. Dokl. Akad. Nauk SSSR 75, 591–594 (1950).
    Google Scholar 
    Arbuckle, J. B. & Khalil, L. F. A survey of Thelazia worms in the eyelids of British cattle. Vet. Rec. 102, 207–210 (1978).Article 

    Google Scholar 
    Tweedle, D. M., Fox, M. T., Gibbons, L. M. & Tennant, K. V. Change in the prevalence of Thelazia species in bovine eyes in England. Vet. Rec. 157, 555–556 (2005).Article 

    Google Scholar 
    Kolstrup, N. Thelazia skrjabini in Danish cattle. Nord. Vet. Med. 26, 459–462 (1974).
    Google Scholar 
    Deak, G., Ionică, A. M., Oros, N. V., Gherman, C. M. & Mihalca, A. D. Thelazia rhodesi in a dairy farm in Romania and successful treatment using eprinomectin. Parasitol. Int. 80, 102183 (2021).Article 

    Google Scholar 
    Dróżdż, J. A study on helminth and helminthiases in bison, Bison bonasus (L.) in Poland. Acta Parasitol. Pol. 9, 55–96 (1961).
    Google Scholar 
    Dróżdż, J., Demiaszkiewicz, A. W. & Lachowicz, J. The helminth fauna of free-ranging European bison, Bison bonasus (L.). Acta Parasitol. Pol. 34, 117–124 (1989).
    Google Scholar 
    Otranto, D., Tarsitano, E., Traversa, D., De Luca, F. & Giangaspero, A. Molecular epidemiological survey on the vectors of Thelazia gulosa, Thelazia rhodesi and Thelazia skrjabini (Spirurida: Thelaziidae). Parasitology 127, 365–373 (2003).Article 

    Google Scholar 
    Viney, M. E. & Graham, A. L. Patterns and processes in parasite co-infection. Adv. Parasitol. 82, 321–369 (2013).Article 

    Google Scholar 
    Demiaszkiewicz, A. W. & Kaczor, S. Thelaziasis in European bison in Bieszczady—A case report. Życie Weter. 90, 108–110 (2015).
    Google Scholar 
    Thompson, R. C. Parasite zoonoses and wildlife: One health, spillover and human activity. Int. J. Parasitol. 43, 1079–1088 (2013).Article 

    Google Scholar 
    Naem, S. Thelazia rhodesi (Spirurida, Thelaziidae), bovine eyeworm: Morphological study by scanning electron microscopy. Parasitol. Res. 100, 855–860 (2007).Article 

    Google Scholar 
    Krasińska, M. & Krasiński, Z. A. Composition, group size, and spatial distribution of European bison bulls in Białowieża Forest. Acta Theriol. 40, 1–21 (1995).Article 

    Google Scholar 
    Krasińska, M., Krasiński, Z. A. & Bunevich, A. N. Factors affecting the variability in home range size and distribution in European bison in the Polish and Belarussian parts of the Białowieża Forest. Acta Theriol. 45, 321–334 (2000).Article 

    Google Scholar 
    Lloyd, S. Effect of pregnancy and lactation upon infection. Vet. Immunol. Immunopathol. 4, 153–176 (1983).Article 

    Google Scholar 
    Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. Trans. R. Soc. Lond. B Biol Sci. 363, 321–339 (2008).Article 

    Google Scholar 
    Muturi, K. N. et al. The effect of dietary polyunsaturated fatty acids (PUFA) on infection with the nematodes Ostertagia ostertagi and Cooperia oncophora in calves. Vet. Parasitol. 129, 273–283 (2005).Article 

    Google Scholar 
    Krasnov, B. R. & Matthee, S. Spatial variation in gender-biased parasitism: Host-related, parasite-related and environment-related effects. Parasitology 137, 1527–1536 (2010).Article 

    Google Scholar 
    Dunn, A. M. (ed.) Veterinary Helminthology (William Heinemann Medical Books, 1978).
    Google Scholar 
    Khedri, J., Radfar, M. H., Borji, H. & Azizzadeh, M. Epidemiological survey of bovine thelaziosis in southeastern of Iran. Iran. J. Parasitol. 11, 221–225 (2016).
    Google Scholar 
    Draber-Mońko, A. Synanthropic Calyptrata in selected habitats in Poland. Wiad. Parazytol. 32, 411–418 (1986).
    Google Scholar 
    Draber-Mońko, A. Dipterans of the families Muscidae (Muscinae) and Scathophagidae (Diptera, Calyptrata) of the Świętokrzyski Region. Fragmenta Faunistica 36, 205–233 (1993).Article 

    Google Scholar 
    Nosal, P., Kowal, J., Węglarz, A. & Wyrobisz-Papiewska, A. The occurrence and diversity of flies (Diptera) related to ruminant farming in southern Poland. Ann. Parasitol. 65, 357–363 (2019).
    Google Scholar 
    Cotuțiu, V. D. et al. Thelazia lacrymalis in horses from Romania: Epidemiology, morphology and phylogenetic analysis. Parasites Vectors 15, 425 (2022).Article 

    Google Scholar 
    Nowosad, M. Outlines of climate of the Bieszczady National Park and its buffer zone in the light of previous studies. Roczniki Bieszczadzkie 4, 163–183 (1995).
    Google Scholar 
    Guindon, S. & Gascuel, O. A. Simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 77 (2012).Article 

    Google Scholar 
    Altman, D. G. et al. (eds) Statistics with Confidence 2nd edn, 46–47 (BMJ Books, 2000).
    Google Scholar  More

  • in

    The rhizospheric bacterial diversity of Fritillaria taipaiensis under single planting pattern over five years

    Yu, X. L., Ji, H., Wang, C. L. & Li, P. A survey of pharmacological effects of Fritillaria. Chin. Tradit. Herb. Drugs. 31, 313–315 (2000).
    Google Scholar 
    Wang, D. D. et al. Antitussive, expectorant and anti-inflammatory activities of four alkaloids isolated from bulbus of Fritillaria wabuensis. J. Ethnopharmacol. 139, 189 (2012).Article 
    CAS 

    Google Scholar 
    Tan, S. F. et al. Evaluation on the effect of analgesia and expectorant of aconiti radix cocta in coordination with Fritillaria cirrhosa and Fritillaria thunbergii based on the uniform design method. China J. Chin. Mater. Med. 38, 2706–2713 (2013).
    Google Scholar 
    Chen, T. Z. & Zhang, M. Suitable technology for production and processing of Fritillaria cirrhosa (ed. Chen, T. Z. & Zhang, M.) 8 (China Medical Science Press, 2018).Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (ed. Zhao, Y. Y. et al.) (China Medical Science Press, 2015).Duan, B. Z. et al. A survey of resource science of Fritillaria taipaiensis. Mod. Chin. Med. 12, 12–14 (2010).
    Google Scholar 
    Duan, B. Z. et al. Regionalization for growing Fritillaria taipaiensis P Y Li by TCMGIS-II. World Sci. Technol/Modern Tradit. Chin. Med. Mater Med. 12, 486–488 (2012).
    Google Scholar 
    Jiang, S. Y., Sun, H. B., Qin, J. H., Zhu, W. T. & Sun, H. Functional production regionalization for Fritillariae Cirrhosae Bulbus based on growth and quality suitability assessment. China J. Chin. Mater. Med. 17, 3194–3201 (2016).
    Google Scholar 
    Gu, W. C., Mu, M. J., Yang, M., Guo, D. Q. & Zhou, N. Correlation analysis between bulb quality and rhizosphere soil factors of Fritillaria taibaiensis. Chin. J. Exp. Tradit. Med. Formulae. 26, 165–177 (2020).
    Google Scholar 
    Mu, M. J. et al. Correlation between rhizospheric microorganisms distribution and alkaloid content of Fritillaria taipaiensis. China J. Chin. Mater. Med. 11, 2231–2235 (2019).
    Google Scholar 
    Peng, R., Ma, P., Mo, R. Y. & Sun, N. X. Analysis of the bioactive components from different growth stages of Fritillaria taipaiensis PY Li. Acta Pharm. Sin. B. 3, 167–173 (2013).Article 

    Google Scholar 
    Zhou, X. J., Yang, Y. X., Hu, P., Zhang, M. & Xia, Y. L. Investigation on the resources of Fritillaria taipaiensis. J. Anhui Agric. Sci. 17, 84–85 (2015).CAS 

    Google Scholar 
    Wu, Z. Z. & Wu, C. S. Effects of different fertilization modes on the growth of Fritillaria taipaiensis. Agric. Eng. 6, 153–154 (2016).
    Google Scholar 
    Nannipieri, P., Kandeler, E., Ruggiero, P., Burns, R. G. & Dick, R. P. Enzymes in the environment: activity, ecology and applications (ed. Nannipieri, P.) (Marcel Dekker, 2002).Sparling, G. P. Biological indicators of soil health (ed. Sparling, G. P.) (CAB International, 1997).Alkorta, I. et al. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health. 18, 65–73 (2003).Article 

    Google Scholar 
    Lu, L. H. et al. Fungal networks in yield-invigorating and debilitating soils induced by prolonged potato monoculture. Soil. Biol. Biochem. 65, 186–194 (2013).Article 
    CAS 

    Google Scholar 
    Sun, J., Zhang, Q., Zhou, J. & Wei, Q. P. Illumina amplicon sequencing of 16S rRNA Tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site. PLoS ONE 9, e111744 (2014).Article 
    ADS 

    Google Scholar 
    Yao, H. Y., Jiao, X. D. & Wu, F. Z. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant. Soil. 284, 195–203 (2006).Article 
    CAS 

    Google Scholar 
    Lee, S. A. et al. Diferent types of agricultural land use drive distinct soil bacterial communities. Sci. Rep. 10, 1–12 (2020).ADS 

    Google Scholar 
    Chen, M. et al. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut-pathogenic and beneficial fungi were selected. PLoS ONE 7, e40659 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Xiong, W. et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing. PLoS ONE 10, e0136946 (2015).Article 

    Google Scholar 
    Zhang, Z. Y., Yang, W. X., Chen, Y. H. & Chen, X. J. Effects of consecutively monocultured Rehmannia glutinosa L. on diversity of fungal community in rhizospheric soil. J. Integr. Agric. 10, 1374–1384 (2011).
    Google Scholar 
    Zhou, X. & Wu, F. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol. Ecol. 80, 469–478 (2012).Article 
    CAS 

    Google Scholar 
    Mu, M. J. et al. Effect of growth years to the soil enzyme activities and heavy metal residue of Fritillaria taipaiensis P.Y. Li. Environ. Chem. 38, 1966–1972 (2019).CAS 

    Google Scholar 
    Zhou, N. et al. Rhizospheric Fungal diversities and soil biochemical factors of Fritillaria taipaiensis over five cultivation years. Horticulturae. 7(12), 560–574 (2021).Article 

    Google Scholar 
    Cai, L. T., Hu, Z. Y. & Luo, Z. Y. Extraction of total DNA of microbes from tobacco diseased-field soil by SDS-CTAB method. Acta Agric. Jiangxi. 23, 119–121 (2011).
    Google Scholar 
    Liang, Y. T. et al. Century long fertilization reduces stochasticity controlling grassland microbial community succession. Soil Biol. Biochem. 151, 128–142 (2020).Article 

    Google Scholar 
    Fudou, R. et al. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structural elucidation. J. Antibiot. 54(2), 153–156 (2001).Article 
    CAS 

    Google Scholar 
    Lewin, G. R. et al. Cellulose-enriched microbial communities from leaf-cutter ant (Atta colombica) refuse dumps vary in taxonomic composition and degradation ability. PLoS ONE. 11(3), e0151840 (2016).Article 

    Google Scholar 
    Brewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A. & Fierer, N. Genome reduction in an abundant and ubiquitous soil bacterium Candidatus Udaeobacter copiosus. Nat. Microbiol. 2, 16198 (2016).Article 
    CAS 

    Google Scholar 
    Kalyuzhnaya, M. G., Hristova, K. R., Lidstrom, M. E. & Chistoserdova, L. Characterization of a novel methanol dehydrogenase in representatives of the Burkholderiales: Implication for environmental detection of methylotrophy and evidence for convergent evolution. J. Bacterial. 190, 3817–3823 (2008).Article 
    CAS 

    Google Scholar 
    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil. Biol. Biochem. 97, 188–198 (2016).Article 
    CAS 

    Google Scholar 
    Yi, X. et al. Microbial community structures and important associations between soil nutrients and the responses of specific taxa to rice-frog cultivation. Front. Microbiol. 6(10), 1752 (2019).Article 

    Google Scholar 
    Makk, J. et al. Arenimonas subflava sp nov., isolated from a drinking water network, and emended description of the genus Arenimonas. Int. J. Syst. Evol. Microbiol. 65, 1915–1921 (2015).Article 
    CAS 

    Google Scholar 
    Maki, K., Mitsuo, S., Masako, I., Shinji, S. & Yoshimi, B. Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 55(5), 2143–2147 (2005).Article 

    Google Scholar 
    Zhao, Y. C. et al. Variation of rhizosphere microbial community in continuous mono-maize seed production. Sci. Rep. 11, 1544 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, J. J. et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil. Biol. Biochem. 70, 113–122 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Yin, C. T. et al. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome. 9, 86–103 (2021).Article 
    CAS 

    Google Scholar 
    Ren, H. Y. et al. Effect of two kinds of fertilizers on growth and rhizosphere soil properties of bayberry with decline disease. Plants. 10, 2386–2409 (2021).Article 
    CAS 

    Google Scholar 
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103(3), 626–631 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75(15), 5111–5120 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, B., Liang, C., He, H. B. & Zhang, X. D. Variations in soil microbial communities and residues along an altitude gradient on the northern slope of changbai mountain, China. PLoS ONE. 8(6), e66184 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, Z. X. et al. Effects of continuous cropping years of soybean on the bacterial community structure in black soil. Acta Ecol. Sin. 39(12), 4337–4345 (2019).CAS 

    Google Scholar 
    Jekins, S. N. et al. Actinobacterial community dynamics in long term managed grasslands. Antonie Van Leeuwenhoek 95(4), 319–334 (2009).Article 

    Google Scholar 
    Lauber, C. L., Strickland, M. S., Bradford, M. & Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40(9), 2407–2415 (2008).Article 
    CAS 

    Google Scholar 
    Lu, K. H., Hu, Z. Y., Liang, J. J. & Zhu, J. Y. Characteristics of rhizosphere microbial community structure of two aquatic plants in eutrophic waters. China Environ. Sci. 30, 1508–1515 (2010).CAS 

    Google Scholar 
    Wang, J. J., Cao, B., Bai, C. C., Zhang, L. L. & Che, L. Potential distribution prediction and suitability evaluation of Fritillaria cirrhosa D. Don based on maxent modeling and GIS. Bull. Bot. Res. 34, 642–649 (2014).
    Google Scholar 
    Montazer, Z., Najafi, M. B. H. & Levin, B. D. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can. J. Microbiol. 65, 224–234 (2019).Article 
    CAS 

    Google Scholar 
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classifification of soil bacteria. Ecology 88, 1354–1364 (2007).Article 

    Google Scholar 
    Lin, S., Zhuang, J. Q., Chen, T., Zhang, A. J. & Lin, W. X. Microbial diversity in rhizosphere soils of different planting year tea trees: An analysis with phospholipid fatty acid biomarkers. Chin. J. Ecol. 32, 64–71 (2013).CAS 

    Google Scholar 
    Bardgett, R. D., Lovell, R. D., Hobbs, P. J. & Jarvis, C. C. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol. Biochem. 31, 1021–1030 (1999).Article 
    CAS 

    Google Scholar 
    Haynes, K. M., Preston, M. D., McLaughlin, J. W., Webster, K. & Basiliko, N. Dissimilar bacterial and fungal decomposer communities across rich to poor fen peatlands exhibit functional redundancy. Can. J. Soil Sci. 95, 219–230 (2015).Article 
    CAS 

    Google Scholar 
    Ye, W., Li, Y. C., Ye, M., Qian, Y. T. & Dai, W. S. Microbial biodiversity in rhizospheric soil of Torreya grandis ‘Merrillii’relative to cultivation history. Chin. J. Appl. Ecol. 29, 3783–3792 (2018).
    Google Scholar 
    Shen, Z. Z. et al. Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. Eur. J. Soil Biol. 57, 1–8 (2013).Article 

    Google Scholar 
    Liu, C. et al. Soil bacterial communities of three types of plants from ecological restoration areas and plant-growth promotional benefits of Microbacterium invictum (strain X-18). Front. Microbiol. 13, 926037 (2022).Article 

    Google Scholar 
    Wang, L. X., Pang, X. Y., Li, N., Qi, K. & Yin, C. Effects of vegetation type, fine and coarse roots on soil microbial communities and enzyme activities in eastern tibetan plateau. Catena 194, 104694 (2020).Article 
    CAS 

    Google Scholar 
    Su, Y. Z., Li, Y. L., Cui, J. Y. & Zhao, W. Z. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, Northern China. Catena 59(3), 267–278 (2005).Article 

    Google Scholar 
    Wallenstein, M. D., Mcmahon, S. K. & Schimel, J. P. Seasonal variation in enzyme activities and temperature sensitivities in arctic tundra soils. Glob. Chang. Biol. 15(7), 1631–1639 (2009).Article 
    ADS 

    Google Scholar 
    Chang, W. H., Ma, W. W., Li, G., Xu, G. R. & Song, L. C. Temporal and spatial distribution characteristics of soil urease and protease activities in different degraded gradients of Gahai wetland. Soils. 54(3), 524–531 (2022).
    Google Scholar 
    Zhang, Y., Liu, C., Song, A., Jin, Z. J. & Li, Q. Relationship between soil physicochemical properties and soil enzyme activities in huixian karst wetland system based on canonica correspondence analysis. Carsol. Sin. 35(1), 11–18 (2016).
    Google Scholar 
    Zhang, Y., Ke, X., Zhang, G. C. & Guan, L. Z. Effects of acetochlor on soil urease kinetic characteristics. Plant Nutr. Fert. Sci. 18(4), 915–921 (2012).CAS 

    Google Scholar 
    Wang, H. Y., Ma, P. & Peng, R. Quantitative determination of peimisin and total alkaloids in Fritillaria taipaiensis of different growing stage. J. Chin. Med. Mater. 34, 1034–1037 (2011).
    Google Scholar 
    Gershenzon, J. Metabolic costs of terpenoid accumulation in high plants. J. Chem. Ecol. 20, 1281–1328 (1994).Article 
    CAS 

    Google Scholar 
    Pramanik, M. H. R., Nagai, M., Asao, T. & Matsui, Y. Effect of temperature and hotoperiod on the phytotoxic root exudate of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol. 28, 1953–1967 (2000).Article 

    Google Scholar 
    Bertin, C., Yang, X. & Weston, L. A. The role of root exudates and allelochemicals in rhizosphere. Plant Soil. 256, 67–83 (2003).Article 
    CAS 

    Google Scholar 
    Zhang, Z. Y. & Lin, W. X. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Chin. J. Eco-Agric. 17, 189–196 (2019).Article 

    Google Scholar 
    Huang, Y. Q. et al. Effects of vanillic acid on seed germination, seedling growth and rhizosphere microflora of peanut. Sci. Agric. Sin. 9, 1735–1745 (2018).
    Google Scholar  More

  • in

    Optimizing nutrient inputs by balancing spring wheat yield and environmental effects in the Hetao Irrigation District of China

    Research site descriptionA 3-year stationary field experiment was conducted at the Yuanziqu experimental station of the Bayannur Academy of Agricultural and Animal Husbandry Sciences (40° 90′ N, 107° 17′ E), Linhe, Inner Mongolia, China, from 2019 to 2021. The site has a continental monsoon climate typical of the northern mid-temperate zone, with a mean annual temperature from 3.7  to  7.6 °C, and the potential evaporation is 2200–2400 mm15. The total precipitation during the wheat growth period (March–July) was 66 mm, 110 mm and 47 mm in 2019, 2020, and 2021, respectively. Daily air temperature and precipitation during the field trial period are presented in Fig. 1.Figure 1Daily maximum temperature, daily minimum temperature and precipitation during the growth period (March–July) of spring wheat from 2019 to 2021 in the field experiment at Linhe, Inner Mongolia, China.Full size imageThe soil at the experimental site is a silt loam. The major physical and chemical properties of the 0–20 cm soil layer at the experimental site in 2019 were as follows: a bulk density of 1.48 g cm−3, pH 8.3, organic matter content of 15.49 g kg−1, total N concentration of 1.20 g kg−1, nitrate (NO3− N) concentration of 3.98 mg N kg−1, Olsen-P concentration of 32.3 mg P kg−1 and available K concentration of 180.0 mg K kg−1.Experimental design and field managementA local popular spring wheat (Triticum aestivum L.) cultivar, Yongliang No. 4, was used in the trials. The sowing dates were 20 March, 16 March and 13 March in 2019, 2020 and 2021, respectively; the harvest dates were 15 July, 15 July and 5 July in 2019, 2020 and 2021, respectively. A total of 375 kg ha−1 wheat seeds were sown at a depth of 5 cm.Five fertilization treatments were set in the three consecutive experimental years, including the control (CK), farmer practice (FP) and three balanced fertilization treatments (BF1, BF2 and BF3), as presented in Table 1. The P and K fertilizers as single superphosphate and K2SO4 were basal dressed, respectively. Both basal- and top-dressing of N fertilizer as urea were applied as shown in the research program. The basal applications occurred during sowing, and the remaining N fertilizer was top-dressed at the tillering stage (Table 1). The experimental plot was 10 m × 7 m with 13 cm row spacing and a buffer zone of 1 m between plots. The plots were laid out in a completely randomized block design with three replications.Table 1 Fertilization regimes of the different treatments in the 2019–2021 field trial.Full size tableEvery plot was ridged around its border to ensure the uniformity of irrigation. Flood irrigation from Yellow River water was performed according to the local policy and farmer practices. Irrigation water (30 mm) was applied at the tillering, jointing, heading and grain filling stages of spring wheat in 2019–2021. Disease, weed, and pest control, as well as other management, were performed according to local standard methods.Sampling and sample analysisThree 50 cm-long rows of spring wheat plants were selected randomly and pulled from each plot, from which 10 large, middle and small seedlings were picked out during each sampling effort. Then, the roots were cut off from the junction between the root and the stem, two plant parts (leaves and stems) before the heading stage, three plant parts (leaves, stems and spikes) at the heading stage, and four plant parts (leaves, stems, glumes and grains) at the grain filling stages and maturity were separated and pooled. The samples were dried for 30 min at 105 °C and then at 80 °C in an oven (DHG-9070A, China) until they reached a constant weight; the dry weight was then measured.The N concentrations in leaves, stems, spikes and grains of spring wheat were measured with three replications depending on the crop stage, following the Kjeldahl procedure using an element analyzer (Vario El cube, Elementar, Germany).Three soil cores containing 0–100 cm of soil were taken from each plot using an auger at the harvest of spring wheat each year. The soil samples of each 20 cm layer were collected separately and sealed immediately in a marked plastic bag. The extracts were immediately measured for nitrate-N concentration as described by Dai et al. (2015) with a continuous flow analyzer (SKALAR SAN++, Netherlands)16. The soil nitrate-N concentration was expressed on the basis of the oven-dried soil.Grain yield was evaluated at maturity by selecting two 2 m2 (avoiding border rows) randomly and harvested. A fresh weight of ∼ 1 kg of grain from each plot was weighed in the field, and the water content from each plot was oven dried for the calculation. The actual yield was adjusted by a grain water content of 13%17. Grains per spike, 1000-grain weight and spike number were determined at three 50-cm sites sampled randomly from each plot.Calculation methodsTo clarify the effect of nitrate residue in the soil under balanced fertilization, the amount of soil nitrate-N (AN, kg N ha−1) in each layer was expressed as:$${text{AN}} = left( {{text{Ti}};*;{text{Di}};*;{text{Ci}}} right)/10$$
    where Ti is the soil layer thickness (cm), Di is the soil bulk density (g cm−3), Ci is the soil nitrate concentration (mg N kg−1) of the corresponding layer, and 10 is the conversion coefficient16. The AN of 0–20, 20–40, 40–60, 60–80 and 80–100 cm soil layers were recorded and measured, respectively.Nitrogen accumulation in the vegetative organs and their distribution into the grain were investigated. Based on the dry weight and corresponding measured N concentration in the different organs, apparent N translocation (TA, kg ha−1) and apparent N translocation efficiency (TR, %) were calculated as proposed by Cox et al.18 as follows:$$begin{aligned} {text{TA}} & {text{ = H}}_{{text{N}}} – {text{M}}_{{text{N}}} \ {text{TR}} & = {text{TA/H}}_{{text{N}}} *100 \ end{aligned}$$
    where HN is the N assimilation in leaves or stems prior to anthesis (kg ha−1), MN is the N assimilation in leaves or stems at maturity (kg ha−1).Two parameters of nitrogen use efficiency of spring wheat, nitrogen fertilizer partial productivity (PFPN, kg/kg) and agronomic nitrogen efficiency (NAEN, kg kg−1) were determined using the following formulas:$$begin{aligned} {text{PFP}}_{{text{N}}} & = {text{ Y}}_{N; , fertilizer} /{text{N}}_{rate} \ {text{NAE}}_{{text{N}}} & = , left( {{text{Y}}_{{N;fertilizer , {-}}} {text{Y}}_{blank} } right)/{text{N}}_{rate} \ end{aligned}$$
    where YN fertilizer is the grain yield of the plot with dressed N fertilizer (kg ha−1), Yblank is the grain yield of the plot without dressed N fertilizer (kg ha−1), and Nrate is the N rate of the dressed fertilizer plot (kg ha−1). Three measurements for each treatment was recorded and calculated.Two key indicators were chosen to evaluate the risk of N losses as described by Li et al. (2020)7, including N surplus (kg N per hectare per year, Nsur) and N input (kg N per hectare per year, Ninput). The N surplus was used to evaluate the risk of N losses and the N input to guide farmers’ fertilization practices directly. The detailed calculation is as follows:$$begin{aligned} {text{N}}_{{{text{sur}}}} & = {text{ N}}_{{{text{fer}}}} + {text{ N}}_{{{text{dep}}}} + {text{ N}}_{{{text{fix}}}} – {text{ N}}_{{{text{har}}}} \ {text{N}}_{{{text{input}}}} & = {text{ N}}_{{{text{har}}}} + {text{ N}}_{{{text{sur}}}} + {text{ soil N change in stock }};;;( approx 0{text{ in long run}}) \ end{aligned}$$
    where Nfer, Ndep and Nfix represent N from fertilizer, atmospheric deposition and biological fixed N, respectively. Seed N was negligible as it was present in a very small amount compared to the fertilization input19. The total N deposition of spring wheat field and biological N fixation were adopted according to Li et al. (2020). Nhar refers to the harvested N in spring wheat.Economic analysisThe inputs into local spring wheat production included chemical fertilizer, irrigated water, agricultural chemicals, seed, mechanical effort and labor costs, while income was obtained from the grain and wheat straw. The net income was determined from the difference between the total output and total input. The irrigated water, agricultural chemicals, seed, mechanical effort and labor costs were the same for the different treatments. The prices of the input and output materials were determined according to the average local market prices, and fluctuations were not considered among years.Statistical analysesThe results were analyzed using SPSS software (version 19.0; SPSS Inc., Chicago, IL, USA). Analysis of variance (ANOVA) and the least significant difference (LSD) test were used, and a P value of 0.05 was considered significant. More

  • in

    Low genetic diversity and predation threaten a rediscovered marine sponge

    McCauley, D. J., Pinsky, M. L., Palumbi, S. R., Estes, J. A. & Warner, R. R. Marine defaunation: Animal loss in the global ocean. Science 347(6219), 1255641 (2015).Article 

    Google Scholar 
    Webb, T. J. & Mindel, B. L. Global patterns of extinction risk in marine and non-marine systems. Curr. Biol. 25(4), 506–511 (2015).Article 
    CAS 

    Google Scholar 
    Pinsky, M. L. & Fredston, A. A stark future for ocean life. Science 376(6592), 452–453 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Bell, J. J., Bennett, H. M., Rovellini, A. & Webster, N. S. Sponges to be winners under near-future climate scenarios. Bioscience 68(12), 955–968 (2018).Article 

    Google Scholar 
    Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31(21), 4773-4787.e8 (2021).Article 
    CAS 

    Google Scholar 
    Penn, J. L. & Deutsch, C. Avoiding ocean mass extinction from climate warming. Science 376(6592), 524–526 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Hubbard, D. M., Dugan, J. E., Schooler, N. K. & Viola, S. M. Local extirpations and regional declines of endemic upper beach invertebrates in southern California. Estuar. Coast. Shelf Sci. 150(Part A), 67–75 (2014).Article 
    ADS 

    Google Scholar 
    Poquita-Du, R. C. et al. Last species standing: loss of Pocilloporidae corals associated with coastal urbanization in a tropical city state. Mar. Biodivers. 49, 1727–1741 (2019).Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article 

    Google Scholar 
    Bell, et al. Global conservation status of sponges. Conserv. Biol. 29(1), 42–53 (2015).Article 

    Google Scholar 
    Kelmo, F., Bell, J. J. & Attrill, M. J. Tolerance of sponge assemblages to temperature anomalies: Resilience and proliferation of sponges following the 1997–8 El-Niño southern oscillation. PLoS ONE 8(10), e76441 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Micaroni, V. et al. Adaptive strategies of sponges to deoxygenated oceans. Glob. Change Biol. 28(6), 1972–1989 (2022).Article 

    Google Scholar 
    Di Camillo, C. G., Bartolucci, I., Cerrano, C. & Bavestrello, G. Sponge disease in the Adriatic Sea. Mar. Ecol. 34(1), 62–71 (2013).Article 
    ADS 

    Google Scholar 
    Pérez, T. & Vacelet, J. Effect of climatic and anthropogenic disturbances on sponge fisheries. In The Mediterranean Sea (eds Goffredo, S. & Dubinsky, Z.) 577–587 (Springer, 2014).Chapter 

    Google Scholar 
    Ereskovsky, A., Ozerov, D. A., Pantyulin, A. N. & Tzetlin, A. B. Mass mortality event of White Sea sponges as the result of high temperature in summer 2018. Polar Biol. 42, 2313–2318 (2019).Article 

    Google Scholar 
    Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26(6), 3202–3211 (2020).Article 
    ADS 

    Google Scholar 
    Stevenson, A. et al. Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation. Sci. Rep. 10, 8176 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Beepat, S. S., Davy, S. K., Woods, L. & Bell, J. J. Short-term responses of tropical lagoon sponges to elevated temperature and nitrate. Mar. Environ. Res. 157, 104922 (2020).Article 
    CAS 

    Google Scholar 
    Shore, A. et al. On a reef far, far away: Anthropogenic impacts following extreme storms affect sponge health and bacterial communities. Front. Mar. Sci. 8, 608036 (2021).Article 

    Google Scholar 
    de Voogd et al. World Porifera Database https://www.marinespecies.org/porifera/ (2022).Wulff, J. L. Assessing and monitoring coral reef sponges: Why and how?. Bull. Mar. Sci. 69(2), 831–846 (2001).ADS 

    Google Scholar 
    Bell, J. J. The functional roles of marine sponges. Estuar. Coast. Shelf Sci. 79(3), 341–353 (2008).Article 
    ADS 

    Google Scholar 
    Folkers, M. & Rombouts, T. Sponges revealed: a synthesis of their overlooked ecological functions within aquatic ecosystems. In YOUMARES 9—The Oceans: Our Research, Our Future (eds Jungblut, S. et al.) 181–194 (Springer, 2019).
    Google Scholar 
    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann. Rev. Mar. Sci. 12, 315–337 (2020).Article 

    Google Scholar 
    Sawangwong, P. et al. Secondary metabolites from a marine sponge Cliona patera. Biochem. Syst. Ecol. 36(5), 493–496 (2008).Article 
    CAS 

    Google Scholar 
    Zhang, H. et al. Bioactive secondary metabolites from the marine sponge genus Agelas. Mar. Drugs 15(11), 351 (2017).Article 

    Google Scholar 
    He, Q., Miao, S., Ni, N., Man, Y. & Gong, K. A review of the secondary metabolites from the marine sponges of the genus Aaptos. Nat. Prod. Commun. 15(9), 1–12 (2020).CAS 

    Google Scholar 
    Ho, et al. Assessing the diversity and biomedical potential of microbes associated with the Neptune’s Cup sponge, Cliona patera. Front. Microbiol. 12, 631445 (2021).Article 

    Google Scholar 
    Pronzato, R. Mediterranean sponge fauna: A biological, historical and cultural heritage. Biogeographia 24(1), 91–99 (2003).
    Google Scholar 
    DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. 10, 8365 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319(5865), 948–952 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Vosmaer, G. C. J. Poterion a boring sponge. K. Ned. Akad. Wet. Proc. 11, 37–41 (1908).
    Google Scholar 
    Lim, S. C., Tun, K. & Goh, E. Rediscovery of the Neptune’s Cup sponge in Singapore: Cliona or Poterion? Contributions to Marine Science 2012, 49–56 (2012).Low, M. E. Y. The date of publication of Cliona patera (Hardwicke), the ‘sponge plant from the shores of Singapore’ (Porifera: Hadromerida: Clionaidae). Nat. Singap. 5, 223–227 (2012).
    Google Scholar 
    Knight, K. Super-rare giant sponge discovered in seahorse hotspot. Fauna & Floral International https://www.fauna-flora.org/news/super-rare-sponge-discovered-seahorse-hotspot/ (2018).The State of Queensland (Queensland Museum). Cliona patera. Queensland Museum Network https://collections.qm.qld.gov.au/objects/73638/cliona-patera (2012–2022).Heath, D. J. Simultaneous hermaphroditism; Cost and benefit. J. Theor. Biol. 64, 363–373 (1977).Article 
    ADS 
    CAS 

    Google Scholar 
    André, C. & Lindegarth, M. Fertilization efficiency and gamete viability of a sessile, free-spawning bivalve, Cerastoderma edule. Ophelia 43(3), 215–227 (1995).Article 

    Google Scholar 
    Bayer, S. R. et al. Fertilization success in scallop aggregations: Reconciling model predictions and field measurements of density effects. Ecosphere 9(8), e02359 (2018).Article 

    Google Scholar 
    Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15(1), 10–13 (2000).Article 
    CAS 

    Google Scholar 
    Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10(6), 1500–1508 (1996).Article 

    Google Scholar 
    Lim, S. C. Porifera. Singapore Red Data Book. https://www.nparks.gov.sg/biodiversity/wildlife-in-singapore/species-list/sponge (2022).Quek, Z. B. R., Chang, J. J. M., Ip, Y. C. A., Chan, Y. K. S. & Huang, D. Mitogenomes reveal alternative initiation codons and lineage-specific gene order conservation in echinoderms. Mol. Biol. Evol. 38(3), 981–985 (2021).Article 
    CAS 

    Google Scholar 
    Wörheide, G., Nichols, S. A. & Goldberg, J. Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): Implications for phylogenetic studies. Mol. Phylogenet. Evol. 33(3), 816–830 (2004).Article 

    Google Scholar 
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17), i884–i890 (2018).Article 

    Google Scholar 
    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads: A baiting and iterative mapping approach. Nucleic Acids Res. 41(13), e129 (2013).Article 
    CAS 

    Google Scholar 
    Donath, A. et al. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 47(20), 10543–10552 (2019).Article 
    CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013).Article 
    CAS 

    Google Scholar 
    Darriba, D. et al. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37(1), 291–294 (2020).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35(21), 4453–4455 (2019).Article 
    CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).Article 
    CAS 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012).Article 
    CAS 

    Google Scholar 
    Xavier, J. R. et al. Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Mol. Phylogenet. Evol. 56(1), 13–20 (2010).Article 
    CAS 

    Google Scholar 
    de Paula, T. S., Zilberberg, C., Hajdu, E. & Lôbo-Hajdua, G. Morphology and molecules on opposite sides of the diversity gradient: Four cryptic species of the Cliona celata (Porifera, Demospongiae) complex in South America revealed by mitochondrial and nuclear markers. Mol. Phylogenet. Evol. 62(1), 529–541 (2012).Article 

    Google Scholar 
    Plese, B. et al. Mitochondrial evolution in the Demospongiae (Porifera): Phylogeny, divergence time, and genome biology. Mol Phylogenet Evol 155, 107011 (2021).Article 

    Google Scholar 
    Lavrov, D. V., Adamski, M., Chevaldonné, P. & Adamska, M. Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges. Curr. Biol. 26(1), 86–92 (2016).Article 
    CAS 

    Google Scholar 
    Lavrov, D. V. & Pett, W. Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages. Genome Biol. Evol. 8(9), 2896–2913 (2016).Article 
    CAS 

    Google Scholar 
    Haen, K. M., Pett, W. & Lavrov, D. V. Eight new mtDNA sequences of glass sponges reveal an extensive usage of + 1 frameshifting in mitochondrial translation. Gene 535(2), 336–344 (2014).Article 
    CAS 

    Google Scholar 
    Shearer, T. L., van Oppen, M. J. H., Romano, S. L. & Wörheide, G. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol. Ecol. 11(12), 2475–2487 (2002).Article 
    CAS 

    Google Scholar 
    Lavrov, D. V., Forget, L., Kelly, M. & Lang, B. F. Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol. Biol. Evol. 22(5), 1231–1239 (2005).Article 
    CAS 

    Google Scholar 
    Huang, D., Meier, R., Todd, P. A. & Chou, L. M. Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J. Mol. Evol. 66(2), 167–174 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Wörheide, G. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar. Biol. 148, 907–912 (2006).Article 

    Google Scholar 
    León-Pech, M. G., Cruz-Barraza, J. A., Carballo, J. L., Calderon-Aguilera, L. E. & Rocha-Olivares, A. Pervasive genetic structure at different geographic scales in the coral-excavating sponge Cliona vermifera (Hancock, 1867) in the Mexican Pacific. Coral Reefs 34, 887–897 (2015).Article 
    ADS 

    Google Scholar 
    Yang, Q., Franco, C. M. M., Sorokin, S. J. & Zhang, W. Development of a multilocus-based approach for sponge (phylum Porifera) identification: Refinement and limitations. Sci. Rep. 7, 41422 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Wörheide, G., Epp, L. S. & Macis, L. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): Founder effects, vicariance, or both?. BMC Evol. Biol. 8, 24 (2008).Article 

    Google Scholar 
    Lai, S., Loke, L. H. L., Hilton, M. J., Bouma, T. J. & Todd, P. A. The effects of urbanisation on coastal habitats and the potential for ecological engineering: A Singapore case study. Ocean Coast. Manag. 103, 78–85 (2015).Article 

    Google Scholar 
    Kuempel, C. D. et al. Identifying management opportunities to combat climate, land, and marine threats across less climate exposed coral reefs. Conserv. Biol. 36(3), e13856 (2022).Article 

    Google Scholar 
    Neo, M. L. et al. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. In Oceanography and Marine Biology: An Annual Review Vol. 55 (eds Hawkins, S. J. et al.) 87–388 (CRC Press, 2017).Chapter 

    Google Scholar 
    Orlando, L. et al. Ancient DNA analysis. Nat. Rev. Methods Prim. 1, 14 (2021).Article 
    CAS 

    Google Scholar 
    Cárdenas, P. & Moore, J. A. First records of Geodia demosponges from the New England seamounts, an opportunity to test the use of DNA mini-barcodes on museum specimens. Mar. Biodiv. 49, 163–174 (2019).Article 

    Google Scholar 
    Erpenbeck, D. et al. Minimalist barcodes for sponges: A case study classifying African freshwater Spongillida. Genome 62(1), 1–10 (2019).Article 

    Google Scholar 
    Chang, D. & Shapiro, B. Using ancient DNA and coalescent-based methods to infer extinction. Biol. Lett. 12(2), 20150822 (2016).Article 

    Google Scholar 
    Pacioni, C. et al. Genetic diversity loss in a biodiversity hotspot: Ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial. Mol. Ecol. 24(23), 5813–5828 (2015).Article 
    CAS 

    Google Scholar 
    Lombal, A. J. et al. Using ancient DNA to quantify losses of genetic and species diversity in seabirds: A case study of Pterodroma petrels from a Pacific island. Biodivers. Conserv. 29, 2361–2375 (2020).Article 

    Google Scholar 
    Ruzicka, R. & Gleason, D. F. Sponge community structure and anti-predator defenses on temperate reefs of the South Atlantic Bight. J. Exp. Mar. Biol. Ecol. 380(1–2), 36–46 (2009).Article 

    Google Scholar 
    Loh, T. L. & Pawlik, J. R. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc. Natl. Acad. Sci. U.S.A. 111(11), 4151–4156 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Wulff, J. L. Targeted predator defenses of sponges shape community organization and tropical marine ecosystem function. Ecol. Monogr. 91(2), e01438 (2021).Article 

    Google Scholar 
    Coppock, A. G., Kingsford, M. J., Battershill, C. N. & Jones, G. P. Significance of fish–sponge interactions in coral reef ecosystems. Coral Reefs 41, 1285–1308 (2022).Article 

    Google Scholar 
    Baumbach, D. S., Zhang, R., Hayes, C. T., Wright, M. K. & Dunbar, S. G. Strategic foraging: Understanding hawksbill (Eretmochelys imbricata) prey item energy values and distribution within a marine protected area. Mar. Ecol. 00, e12703 (2022).CAS 

    Google Scholar 
    Guida, V. G. Sponge predation in the oyster reef community as demonstrated with Cliona celata Grant. J. Exp. Mar. Biol. Ecol. 25(2), 109–122 (1976).Article 

    Google Scholar 
    Verdín, P. C. J., Carballo, J. L. & Camacho, M. L. A qualitative assessment of sponge-feeding organisms from the Mexican Pacific coast. Open Mar. Biol. J. 4, 39–46 (2010).Article 

    Google Scholar 
    Márquez, J. C. & Zea, S. Parrotfish mediation in coral mortality and bioerosion by the encrusting, excavating sponge Cliona tenuis. Mar. Ecol. 33(4), 417–426 (2012).Article 
    ADS 

    Google Scholar 
    González-Rivero, M., Ferrari, R., Schönberg, C. H. L. & Mumby, P. J. Impacts of macroalgal competition and parrotfish predation on the growth of a common bioeroding sponge. Mar. Ecol. Prog. Ser. 444, 133–142 (2012).Article 
    ADS 

    Google Scholar 
    von Brandis, R. G., Mortimer, J. A., Reilly, B. K., van Soest, R. W. M. & Branch, G. M. Diet composition of hawksbill turtles (Eretmochelys imbricata) in the Republic of Seychelles. Western Indian Ocean J. Mar. Sci. 13(1), 81–91 (2014).
    Google Scholar 
    Mortimer, C., Dunn, M., Haris, A., Jompa, J. & Bell, J. Estimates of sponge consumption rates on an Indo-Pacific reef. Mar. Ecol. Prog. Ser. 672, 123–140 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Hoppe, W. F. Growth, regeneration and predation in three species of large coral reef sponges. Mar. Ecol. Prog. Ser. 50(12), 117–125 (1988).Article 
    ADS 

    Google Scholar 
    Bell, J. J. Regeneration rates of a sublittoral demosponge. J. Mar. Biol. Assoc. U.K. 82(1), 169–170 (2002).Article 

    Google Scholar 
    Wu, Y.-C. et al. Opisthobranch grazing results in mobilisation of spherulous cells and re-allocation of secondary metabolites in the sponge Aplysina aerophoba. Sci. Rep. 10, 21934 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Wu, Y.-C., Franzenburg, S., Ribes, M. & Pita, L. Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer. Sci. Rep. 12, 1307 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    González-Rivero, M. et al. Life-history traits of a common Caribbean coral-excavating sponge, Cliona tenuis (Porifera: Hadromerida). J. Nat. Hist. 47(45–46), 1–20 (2013).
    Google Scholar 
    Chaves-Fonnegra, A., Maldonado, M., Blackwelder, P. & Lopez, J. V. Asynchronous reproduction and multi-spawning in the coral-excavating sponge Cliona delitrix. J. Mar. Biol. Assoc. U.K. 96(2), 515–528 (2015).Article 

    Google Scholar 
    Bautista-Guerrero, E., Carballo, J. L. & Maldonado, M. Abundance and reproductive patterns of the excavating sponge Cliona vermifera: A threat to Pacific coral reefs?. Coral Reefs 33, 259–266 (2014).Article 
    ADS 

    Google Scholar 
    Piscitelli, M., Corriero, G., Gaino, E. & Uriz, M.-J. Reproductive cycles of the sympatric excavating sponges Cliona celata and Cliona viridis in the Mediterranean Sea. Invertebr. Biol. 130(1), 1–10 (2011).Article 

    Google Scholar 
    Chaves-Fonnegra, A., Feldheim, K. A., Secord, J. & Lopez, J. V. Population structure and dispersal of the coral-excavating sponge Cliona delitrix. Mol. Ecol. 24(7), 1447–1466 (2015).Article 

    Google Scholar 
    Zilberberg, C., Maldonado, M. & Solé-Cava, A. Assessment of the relative contribution of asexual propagation in a population of the coral-excavating sponge Cliona delitrix from the Bahamas. Coral Reefs 25, 297–301 (2006).Article 
    ADS 

    Google Scholar 
    Wulff, J. L. Effects of a hurricane on survival and orientation of large erect coral reef sponges. Coral Reefs 14, 55–61 (1995).Article 
    ADS 

    Google Scholar 
    Wilkinson, C. R. & Thompson, J. E. Experimental sponge transplantation provides information on reproduction by fragmentation. Proc. 8th Int. Coral Reef Symp. 2, 1417–1420 (1997).CAS 

    Google Scholar 
    da Silva, R. et al. Assessing the conservation potential of fish and corals in aquariums globally. J. Nat. Conserv. 48, 1–11 (2019).Article 

    Google Scholar 
    Neumann, A. C. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol. Oceanogr. 11(1), 92–108 (1966).Article 
    ADS 

    Google Scholar 
    Rosell, D. & Uriz, M. J. Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (Porifera: Hadromerida)? An experimental approach. Mar. Biol. 114, 503–507 (1992).Article 

    Google Scholar 
    Ramsby, B. D., Hoogenboom, M. O., Smith, H. A., Whalan, S. & Webster, N. S. The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming. Sci. Rep. 8, 8302 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Investigation of anticoagulant rodenticide resistance induced by Vkorc1 mutations in rodents in Lebanon

    Gentry, A. Mammal Species of the World. A Taxonomic and Geographic Reference. 2005. Don E. Wilson & DeeAnn M. Reeder (Eds.). Ed. 3, 2 Vols., 2142 Pp. Johns Hopkins University Press, Baltimore. ISBN 0-8018-8221-4. A Nomenclatural Review. The Bulletin of zoological nomenclature. 2006, 63, 215–219.Dickman, C. R. Rodent-ecosystem relationships: A review. Ecologically-based management of rodent pests. ACIAR Monogr. 59, 113–133 (1999).
    Google Scholar 
    Tobin, M., Fall, M. W. Pest control: Rodents. In Pest Control: Rodents, Encyclopedia of Life Support Systems (EOLSS) (2005).Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 35, 221–270. https://doi.org/10.1080/10408410902989837 (2009).Article 

    Google Scholar 
    Kalfayan, B. H. Leptospira Icterohaemorrhagiae in rats of Beirut. Trans. R. Soc. Trop. Med. Hyg. 40, 895–900. https://doi.org/10.1016/0035-9203(47)90045-X (1947).Article 

    Google Scholar 
    Jackson, W. B. Evaluation of rodent depredations to crops and stored products1. EPPO Bull. 7, 439–458. https://doi.org/10.1111/j.1365-2338.1977.tb02743.x (1977).Article 

    Google Scholar 
    Stejskal, V., Hubert, J., Aulicky, R. & Kucerova, Z. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J. Stored Prod. Res. 64, 122–132. https://doi.org/10.1016/j.jspr.2014.12.006 (2015).Article 

    Google Scholar 
    Jacob, J., Buckle, A. Use of anticoagulant rodenticides in different applications around the world. In Anticoagulant Rodenticides and Wildlife 11–43. https://doi.org/10.1007/978-3-319-64377-9_2Puckett, E. E. et al. Global population divergence and admixture of the brown rat (Rattus Norvegicus). Proc. R. Soc. B Biol. Sci. 283, 20161762. https://doi.org/10.1098/rspb.2016.1762 (2016).Article 

    Google Scholar 
    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215. https://doi.org/10.1007/s13593-015-0327-9 (2015).Article 

    Google Scholar 
    Chellappan, M. Rodents. in Polyphagous Pests of Crops (ed. Omkar) 457–532 (Springer: Singapore, 2021) ISBN 9789811580758.Prakash, I. in Rodent Pest Management (CRC Press, 2018) ISBN 978-1351-08490-1.Hadler, M. R., Buckle, A. P. Forty five years of anticoagulant rodenticides-past, present and future trends. In: Proceedings of the 15th Vertebrate Pest Conference 149–155 (1992).Watt, B. E., Proudfoot, A. T., Bradberry, S. M. & Vale, J. A. Anticoagulant rodenticides. Toxicol. Rev. 24, 259–269. https://doi.org/10.2165/00139709-200524040-00005 (2005).Article 

    Google Scholar 
    Matagrin, B. et al. New insights into the catalytic mechanism of vitamin K epoxide reductase (VKORC1)—The catalytic properties of the major mutations of RVKORC1 explain the biological cost associated to mutations. FEBS Open Bio 3, 144–150. https://doi.org/10.1016/j.fob.2013.02.001 (2013).Article 

    Google Scholar 
    RRAC Rodenticide Resistance Action Group Available online: http://guide.rrac.info/resistancemaps/resistance-maps/. Information correct as off 09. (Accessed on 7 April 2021).McGee, C. F., McGilloway, D. A. & Buckle, A. P. Anticoagulant rodenticides and resistance development in rodent pest species—A comprehensive review. J. Stored Prod. Res. 88, 101688. https://doi.org/10.1016/j.jspr.2020.101688 (2020).Article 

    Google Scholar 
    Tie, J.-K., Nicchitta, C., von Heijne, G. & Stafford, D. W. Membrane topology mapping of vitamin K epoxide reductase by in vitro translation/cotranslocation*. J. Biol. Chem. 280, 16410–16416. https://doi.org/10.1074/jbc.M500765200 (2005).Article 

    Google Scholar 
    Goulois, J., Lambert, V., Legros, L., Benoit, E. & Lattard, V. Adaptative evolution of the Vkorc1 gene in mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides. Ecol. Evol. 7, 2767–2776. https://doi.org/10.1002/ece3.2829 (2017).Article 

    Google Scholar 
    Pelz, H.-J. The genetic basis of resistance to anticoagulants in rodents. Genetics 170, 1839–1847. https://doi.org/10.1534/genetics.104.040360 (2005).Article 

    Google Scholar 
    Rost, S. et al. Novel mutations in the VKORC1 gene of wild rats and mice—A response to 50 years of selection pressure by warfarin?. BMC Genet. 10, 4. https://doi.org/10.1186/1471-2156-10-4 (2009).Article 

    Google Scholar 
    Çetintürk, D., Yiğit, N., Çolak, E., Duman, T., Gül, N., Saygılı Yiğit, F. First Report for Anticoagulant Rodenticide Resistance in Turkish Norway Rat. Jan 5 (2018).Gérard, J., Nehmé, C. Lebanon. A geography of contrasts. Méditerranée. Revue géographique des pays méditerranéens/J. Mediterr. Geogra. (2020).Haktanir, K., Karaca, A., Omar, S. M. The prospects of the impact of desertification on Turkey, Lebanon, Syria and Iraq. In Proceedings of the Environmental Challenges in the Mediterranean 2000–2050 (ed. Marquina, A.) 139–154 (Springer Netherlands, Dordrecht, 2004).Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102. https://doi.org/10.1016/j.tree.2006.11.001 (2007).Article 

    Google Scholar 
    Lewis, R., Lewis, J. & Atallah, S. A review of Lebanese Mammals Lagomorpha and Rodentia*. J. Zool. 153, 45–70. https://doi.org/10.1111/j.1469-7998.1967.tb05030.x (1967).Article 

    Google Scholar 
    Bate, D. M. A. XIV—Note on small Mammals from the Lebanon Mountains, Syria. Ann. Mag. Nat. Hist. 12, 141–158. https://doi.org/10.1080/00222934508527500 (1945).Article 

    Google Scholar 
    Sprenger, A., Lebanon, A. R. Small Mammal Survey Report (Dec 2001–Mar 2002). 5.Boukhdoud, L., Saliba, C., Kahale, R. & Kharrat, M. B. D. Tracking Mammals in a Lebanese protected area using environmental DNA-based approach. Environ. DNA https://doi.org/10.1002/edn3.183 (2021).Article 

    Google Scholar 
    Bou Dagher Kharrat, M., Kahale, R., Saliba, C., Boukhdoud, L. Mammals at first sight: Discover lebanese wild mammals (2019).Khater, C., El-Hajj, R. in Terrestrial Biodiversity in Lebanon 141–169 (2012).Nader, M. R., El Indary, S., Abi Salloum, B. & Abou Dagher, M. Combining non-invasive methods for the rapid assessment of Mammalian richness in a transect-quadrat survey scheme—Case study of the Horsh Ehden nature reserve, North Lebanon. Zookeys 119, 63–71. https://doi.org/10.3897/zookeys.119.1040 (2011).Article 

    Google Scholar 
    Kersten, A. M. P. Rodents and insectivores from the palaeolithic Rock Shelter of Ksar ’Akil (Lebanon) and their palaeoecological implications. Paléorient 18, 27–45. https://doi.org/10.3406/paleo.1992.4561 (1992).Article 

    Google Scholar 
    Amr, Z. S., Abi-Said, M. R. & Shehab, A. H. Diet of the Barn Owl (Tyto Alba ) from Chaddra-Akkar Northern Lebanon. JJBS 7, 109–112. https://doi.org/10.12816/0008223 (2014).Article 

    Google Scholar 
    Abi-Said, Mounir R. in A Baseline Survey of the Mammals in Jabal Moussa Nature Reserve (JMNR) (2009).Kryštufek, B., Abi-Said, M. & Hladnik, M. The Iranian vole microtus Irani occurs in Lebanon (Mammalia: Rodentia). Zool. Middle East 59, 101–106. https://doi.org/10.1080/09397140.2013.810863 (2013).Article 

    Google Scholar 
    Inc, G.I., Berger, D.S. in Leptospirosis: Global Status: 2020 Ed (GIDEON Informatics Inc, 2020) ISBN 978-1-4988-2877-2.Iacucci, A. et al. VKORC1 mutation in European populations of Rattus Norvegicus with first data for italy and the report of a new amino acid substitution. Hystrix It. J. Mamm. 29, 95–99. https://doi.org/10.4404/hystrix-00055-2018 (2018).Article 

    Google Scholar 
    Backhans, A. et al. Occurrence of pathogens in wild rodents caught on Swedish pig and chicken farms. Epidemiol. Infect. 141, 1885–1891. https://doi.org/10.1017/S0950268812002609 (2013).Article 

    Google Scholar 
    Franssen, F., Swart, A., van Knapen, F. & van der Giessen, J. Helminth Parasites in black rats (Rattus Rattus) and brown rats (Rattus Norvegicus) from different environments in the Netherlands. Infect. Ecol. Epidemiol. 6, 31413. https://doi.org/10.3402/iee.v6.31413 (2016).Article 

    Google Scholar 
    Umali, D. V., Lapuz, R. R. S. P., Suzuki, T., Shirota, K. & Katoh, H. Transmission and shedding patterns of salmonella in naturally infected captive wild roof rats (Rattus Rattus) from a salmonella-contaminated layer farm. Avian Dis. 56, 288–294. https://doi.org/10.1637/9911-090411-Reg.1 (2012).Article 

    Google Scholar 
    Heiberg, A.-C. Anticoagulant resistance: A relevant issue in sewer rat (Rattus Norvegicus) control?. Pest Manag. Sci. 65, 444–449. https://doi.org/10.1002/ps.1709 (2009).Article 

    Google Scholar 
    Mohammadi, Z., Darvish, J., Ghorbani, F., Mostafavi, E. First Record of the Caucasus Field Mouse Apodemus Ponticus Sviridenko, 1936 (Rodentia Muridae) from Iran. 7.Albaba, I. The terrestrial mammals of palestine: A preliminary checklist. Int. J. Fauna Biol. Stud. 3(4), 28–35 (2016).
    Google Scholar 
    Brooks, J. E. & Jackson, W. B. A review of commensal rodents and their control. CRC Crit. Rev. Environ. Control 3, 405–453. https://doi.org/10.1080/10643387309381607 (1973).Article 

    Google Scholar 
    Abou Zeid, M. I., Jammoul, A. M., Melki, K. C., Jawdah, Y. A. & Awad, M. K. Suggested policy and legislation reforms to reduce deleterious effect of pesticides in Lebanon. Heliyon 6, e05524. https://doi.org/10.1016/j.heliyon.2020.e05524 (2020).Article 

    Google Scholar 
    Buckle, A., Prescott, C. Anticoagulants and risk mitigation. In Anticoagulant Rodenticides and Wildlife (eds. van den Brink, N. W., Elliott, J. E., Shore, R. F., Rattner, B. A.) 319–355 (Springer International Publishing, Cham, 2018) ISBN 978-3-319-64377-9.Berny, P., Esther, A., Jacob, J., Prescott, C. Development of resistance to anticoagulant rodenticides in rodents. In Anticoagulant Rodenticides and Wildlife (eds. van den Brink, N. W., Elliott, J. E., Shore, R. F., Rattner, B. A.) (Springer International Publishing, Cham, 2018) 259–286 ISBN 978-3-319-64377-9.Abil Khalil, R. et al. Seasonal diet-based resistance to anticoagulant rodenticides in the fossorial water vole (Arvicola Amphibius). Environ. Res. 200, 111422 (2021).Article 

    Google Scholar 
    Ma, X. et al. Low warfarin resistance frequency in Norway rats in Two cities in China after 30 years of usage of anticoagulant rodenticides. Pest Manag. Sci. 74, 2555–2560. https://doi.org/10.1002/ps.5040 (2018).Article 

    Google Scholar 
    Prescott, C., Buckle, A., Gibbings, G., Allan, E. & Stuart, A. Anticoagulant resistance in Norway rats (Rattus Norvegicus Berk.) in Kent—A VKORC1 single nucleotide polymorphism, tyrosine139phenylalanine, New to the UK. Int. J. Pest Manag. 57, 61–65. https://doi.org/10.1080/09670874.2010.523124 (2011).Article 

    Google Scholar 
    Cowan, P. E. et al. Vkorc1 sequencing suggests anticoagulant resistance in rats in New Zealand. Pest Manag. Sci. 73, 262–266. https://doi.org/10.1002/ps.4304 (2017).Article 

    Google Scholar 
    Pelz, H.-J. et al. Distribution and Frequency of VKORC1 sequence variants conferring resistance to anticoagulants in mus musculus. Pest. Manag. Sci. 68, 254–259. https://doi.org/10.1002/ps.2254 (2012).Article 

    Google Scholar 
    Mooney, J. et al. VKORC1 sequence variants associated with resistance to anticoagulant rodenticides in irish populations of Rattus Norvegicus and mus musculus domesticus. Sci. Rep. 8, 4535. https://doi.org/10.1038/s41598-018-22815-7 (2018).Article 
    ADS 

    Google Scholar 
    Šćepović, T. et al. VKOR variant and sex are the main influencing factors on bromadiolone tolerance of the house mouse (Mus Musculus L.). Pest Manag. Sci. 72, 574–579. https://doi.org/10.1002/ps.4027 (2016).Article 

    Google Scholar 
    Greaves, J. H., Redfern, R. & Anasuya, B. Inheritance of resistance to warfarin in Rattus Rattus L. J. Stored Prod. Res. 12, 225–228. https://doi.org/10.1016/0022-474X(76)90037-0 (1976).Article 

    Google Scholar 
    Leung, L.K.-P. & Clark, N. M. Bait avoidance and habitat use by the roof rat, Rattus Rattus, in a Piggery. Int. Biodeterior. Biodegrad. 55, 77–84. https://doi.org/10.1016/j.ibiod.2004.07.004 (2005).Article 

    Google Scholar 
    Takeda, K. et al. Novel revelation of warfarin resistant mechanism in roof rats (Rattus Rattus) using pharmacokinetic/pharmacodynamic analysis. Pestic. Biochem. Physiol. 134, 1–7. https://doi.org/10.1016/j.pestbp.2016.04.004 (2016).Article 

    Google Scholar 
    Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice., adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21, 1296–1301. https://doi.org/10.1016/j.cub.2011.06.043 (2011).Article 

    Google Scholar 
    Aplin, K. P., Brown, P. R., Jacob, J., Krebs, C. J. & Singleton, G. R. Field methods for rodent studies in Asia and the Indo-Pacific (No. 435-2016-33720) (2003).Irwin, D. M., Kocher, T. D. & Wilson, A. C. Evolution of the cytochrome b gene of Mammals. J. Mol. Evol. 32, 128–144. https://doi.org/10.1007/BF02515385 (1991).Article 
    ADS 

    Google Scholar 
    Pagès, M. et al. Revisiting the taxonomy of the rattini tribe: A phylogeny-based delimitation of species boundaries. BMC Evol. Biol. 10, 184. https://doi.org/10.1186/1471-2148-10-184 (2010).Article 

    Google Scholar 
    Bradley, R. D. & Baker, E. J. A test of the genetic species concept: Cytochrome-b sequences and mammals. J. Mammal. 82, 960–973 (2001).Article 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
    Google Scholar 
    Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 37, D26–D31. https://doi.org/10.1093/nar/gkn723 (2009).Article 

    Google Scholar  More

  • in

    Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini)

    Charlesworth, B., Charlesworth, D. & Barton, N. H. The effects of genetic and geographic structure on neutral variation. Annu. Rev. Ecol. Evol. Syst. 34(1), 99–125 (2003).Article 

    Google Scholar 
    Bradburd, G. S., Ralph, P. L. & Coop, G. M. Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution 67(11), 3258–3273 (2013).Article 

    Google Scholar 
    Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & De Meester, L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22(24), 5983–5999 (2013).Article 

    Google Scholar 
    Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).Article 

    Google Scholar 
    Broquet, T. & Petit, E. J. Molecular estimation of dispersal for ecology and population genetics. Annu. Rev. Ecol. Evol. Syst. 40, 193–216 (2009).Article 

    Google Scholar 
    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article 

    Google Scholar 
    Qiao, H., Saupe, E. E., Soberón, J., Peterson, A. T. & Myers, C. E. Impacts of niche breadth and dispersal ability on macroevolutionary patterns. Am. Nat. 188(2), 149–162 (2016).Article 

    Google Scholar 
    Mayr, E. Ecological factors in speciation. Evolution 1(4), 263–288 (1947).
    Google Scholar 
    Hua, X. & Wiens, J. J. How does climate influence speciation?. Am. Nat. 182(1), 1–12 (2013).Article 

    Google Scholar 
    Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8(3), 336–352 (2005).Article 

    Google Scholar 
    Schluter, D. Evidence for ecological speciation and its alternative. Science 323(5915), 737–741 (2009).Article 
    ADS 

    Google Scholar 
    Wielstra, B. et al. Corresponding mitochondrial DNA and niche divergence for crested newt candidate species. PLoS ONE 7(9), e46671 (2012).Article 
    ADS 

    Google Scholar 
    Wiens, J. J. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58(1), 193–197 (2004).
    Google Scholar 
    Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18(4), 189–197 (2003).Article 

    Google Scholar 
    Alvarado-Serrano, D. F. & Hickerson, M. J. Spatially explicit summary statistics for historical population genetic inference. Methods Ecol. Evol. 7(4), 418–427 (2016).Article 

    Google Scholar 
    Rissler, L. J. Union of phylogeography and landscape genetics. PNAS 113(29), 8079–8086 (2016).Article 
    ADS 

    Google Scholar 
    Pinho, C. & Hey, J. Divergence with gene flow: Models and data. Annu. Rev. Ecol. Evol. Syst. 41, 215–230 (2010).Article 

    Google Scholar 
    Sobel, J. M., Chen, G. F., Watt, L. R. & Schemske, D. W. The biology of speciation. Evolution 64(2), 295–315 (2010).Article 

    Google Scholar 
    Richards, C. L., Carstens, B. C. & Knowles, L. L. Distribution modelling and statistical phylogeography: An integrative framework for generating and testing alternative biogeographical hypotheses. J. Biogeogr. 34(11), 1833–1845 (2007).Article 

    Google Scholar 
    Alvarado-Serrano, D. F. & Knowles, L. L. Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol. Ecol. 14(2), 233–248 (2014).Article 

    Google Scholar 
    Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67(12), 3403–3411 (2013).Article 

    Google Scholar 
    Wright, S. Isolation by distance. Genetics 28(2), 114–138 (1943).Article 

    Google Scholar 
    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68(1), 1–15 (2014).Article 

    Google Scholar 
    Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23(23), 5649–5662 (2014).Article 

    Google Scholar 
    Lee, C. R. & Mitchell-Olds, T. Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Mol. Ecol. 20(22), 4631–4642 (2011).Article 

    Google Scholar 
    Moreira-Muñoz, A. Plant Geography of Chile Vol. 10, 978–990 (Springer, 2011).Book 

    Google Scholar 
    Orme, A. R. Tectonism, climate, and landscape change. Phys. Geogr. South Am. 1, 23–44 (2007).
    Google Scholar 
    Morando, M. et al. Diversification and evolutionary histories of Patagonian steppe lizards. in Lizards of Patagonia (pp. 217–254). (Springer, 2020).Rull, V. Neotropical diversification: historical overview and conceptual insights. In Neotropical Diversification: Patterns and Processes (eds Rull, V. & Carnaval, A. C.) (Springer, 2020).Chapter 

    Google Scholar 
    Lessa, E. P., D’Elía, G. & Pardiñas, U. F. J. Mammalian biogeography of Patagonia and Tierra del Fuego. In Bones, Clones and Biomes: The History and Recent Geography of Neotropical Animals (eds Patterson, B. D. & Costa, L. P.) 379–398 (University of Chicago Press, 2012).Chapter 

    Google Scholar 
    Pardiñas, U. F., D’Elía, G. & Lessa, E. P. The evolutionary history of sigmodontine rodents in Patagonia and Tierra del Fuego. Biol. J. Linn. Soc. 2(103), 495–513 (2011).Article 

    Google Scholar 
    Alarcón, O., D’Elía, G., Lessa, E. P. & Pardiñas, U. Phylogeographic structure of the Fossorial Long-Clawed Mouse Chelemys macronyx (Cricetidae: Sigmodontinae). Zool. Stud. 50(5), 682–688 (2011).
    Google Scholar 
    Lessa, E. P., D’Elía, G. & Pardiñas, U. F. J. Genetic footprints of late Quaternary climate change in the diversity of Patagonian-Fueguian rodents. Mol. Ecol. 19(15), 3031–3037 (2010).Article 

    Google Scholar 
    Valdez, L. & D’Elía, G. Genetic diversity and demographic history of the Shaggy Soft-Haired Mouse Abrothrix hirta (Cricetidae; Abrotrichini). Front. Genet. 12, 184 (2021).Article 

    Google Scholar 
    Valdez, L., Quiroga-Carmona, M. & D’Elía, G. Genetic variation of the Chilean endemic long-haired mouse Abrothrix longipilis (Rodentia, Supramyomorpha, Cricetidae) in a geographical and environmental context. PeerJ 8, e9517 (2020).Article 

    Google Scholar 
    Valdez, L. & D’Elía, G. Local persistence of Mann’s soft-haired mouse Abrothrix manni (Rodentia, Sigmodontinae) during Quaternary glaciations in southern Chile. PeerJ 6, e6130 (2018).Article 

    Google Scholar 
    Quiroga-Carmona, M., Abud, C., Lessa, E. P. & D’Elía, G. The mitochondrial genetic diversity of the olive field mouse Abrothrix olivacea (Cricetidae; Abrotrichini) is latitudinally structured across its geographic distribution. J. Mamm. Evol. 29, 431–433 (2022).Article 

    Google Scholar 
    Cañón, C., D’Elía, G., Pardiñas, U. F. & Lessa, E. P. Phylogeography of Loxodontomys micropus with comments on the alpha taxonomy of Loxodontomys (Cricetidae: Sigmodontinae). J. Mamm. 91(6), 1449–1458 (2010).Article 

    Google Scholar 
    Palma, R. E., Boric-Bargetto, D., Torres-Perez, F., Hernández, C. E. & Yates, T. L. Glaciation effects on the phylogeographic structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes. PLoS ONE 7(3), e32206 (2012).Article 
    ADS 

    Google Scholar 
    Rodríguez-Serrano, E., Cancino, R. & Palma, R. E. Molecular phylogeography of Abrothrix olivaceus (Rodentia: Sigmodontinae) in Chile. J. Mamm. 87(5), 971–980 (2006).Article 

    Google Scholar 
    Rodríguez-Serrano, E., Hernandez, C. & Palma, R. E. A new record and an evaluation of the phylogenetic relationships of Abrothrix olivaceus markhami (Rodentia: Sigmodontinae). Mamm. Biol. 73(4), 309–317 (2008).Article 

    Google Scholar 
    Sánchez, J., Poljak, S., Teta, P., Lanusse, L. & Lizarralde, M. S. A contribution to the knowledge of the taxonomy of the subgenus Abrothrix (Angelomys) (Rodentia, Cricetidae) in southernmost South America. Polar Biol. 45(4), 601–614 (2022).Article 

    Google Scholar 
    Patton, J., Pardiñas, U. F. & D’Elía, G. Mammals of South America Vol. 2 (The University of Chicago Press, 2015).Book 

    Google Scholar 
    Patterson, B. D., Smith, M. F. & Teta, P. Genus Abrothrix Waterhouse, 1837. In Mammals of South America Vol. 2 (eds Patton, J. L. et al.) 109–127 (The University of Chicago Press, 2015).
    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965–1978 (2005).Article 

    Google Scholar 
    Quantum GIS Development Team (2021) Quantum GIS Geographic Information System. Version 3.18.2-ZürichHijmans, R. J. et al. Package ‘raster’. R package. (2015).Kuhn, M. caret: Classification and Regression Training. (2019) https://CRAN.R-project.org/package=caret.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7. (2020). https://CRAN.R-project.org/package=vegan.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).Article 

    Google Scholar 
    Wang, C. et al. Comparing spatial maps of human population-genetic variation using Procrustes analysis. Stat. Appl. Genet. Mol. Biol. 9(1), 13 (2010).Article 
    MathSciNet 

    Google Scholar 
    Wang, C., Zöllner, S. & Rosenberg, N. A. A quantitative comparison of the similarity between genes and geography in worldwide human populations. PLoS Genet. 8(8), e1002886 (2012).Article 

    Google Scholar 
    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.5–28. (2021). https://CRAN.R-project.org/package=rgdal.Kierepka, M. E. & Latch, K. E. Performance of partial statistics in individual-based landscape genetics. Mol. Ecol. 15(3), 512–525 (2015).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar 
    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Soft. 25(1), 1–8 (2008).Article 

    Google Scholar 
    Barria, A. M. et al. The importance of intraspecific variation for niche differentiation and species distribution models: the ecologically diverse frog Pleurodema thaul as study case. Evol. Biol. 47(3), 206–219 (2020).Article 

    Google Scholar 
    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biol. 23(5), 595–609 (2014).Article 

    Google Scholar 
    Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38(5), 541–545 (2015).Article 

    Google Scholar 
    Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).Book 

    Google Scholar 
    Viale, M. et al. Contrasting climates at both sides of the Andes in Argentina and Chile. Front. Environ. Sci. 7, 69 (2019).Article 

    Google Scholar 
    Pacifici, M. et al. Global correlates of range contractions and expansions in terrestrial mammals. Nat. Commun. 11(1), 1–9 (2020).Article 

    Google Scholar 
    Di Marco, M., Pacifici, M., Maiorano, L. & Rondinini, C. Drivers of change in the realised climatic niche of terrestrial mammals. Ecography 44(8), 1180–1190 (2021).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40(7), 887–893 (2017).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent Software for Modeling Species Niches and Distributions. (American Museum of Natural History, 2018) http://biodiversityinformatics.amnh.org/opensource/maxent/.Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5(11), 1198–1205 (2014).Article 

    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41(4), 629–643 (2014).Article 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21(2), 335–342 (2011).Article 

    Google Scholar 
    Warren, D. L., Wright, A. N., Seifert, S. N. & Shaffer, H. B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diver. Dist. 20(3), 334–343 (2014).Article 

    Google Scholar 
    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, 2010).Book 

    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36(10), 1058–1069 (2013).Article 

    Google Scholar 
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1(4), 330–342 (2010).Article 

    Google Scholar 
    Osorio-Olvera, L. et al. ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 11(10), 1199–1206 (2020).Article 

    Google Scholar 
    Guevara, L., Gerstner, B. E., Kass, J. M. & Anderson, R. P. Toward ecologically realistic predictions of species distributions: A cross-time example from tropical montane cloud forests. Glob. Change Biol. 24, 1511–1522 (2018).Article 
    ADS 

    Google Scholar 
    Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311(5768), 1751–1753 (2008).Article 
    ADS 

    Google Scholar 
    Watanabe, S. et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4(4), 845 (2011).Article 
    ADS 

    Google Scholar 
    Knowles, L. L., Massatti, R., He, Q., Olson, L. E. & Lanier, H. C. Quantifying the similarity between genes and geography across Alaska’s alpine small mammals. J. Biogeogr. 43(7), 1464–1476 (2016).Article 

    Google Scholar 
    McGaughran, A., Morgan, K. & Sommer, R. J. Environmental variables explain genetic structure in a beetle-associated nematode. PLoS ONE 9(1), e87317 (2014).Article 
    ADS 

    Google Scholar 
    Wang, I. J. Choosing appropriate genetic markers and analytical methods for testing landscape genetic hypotheses. Mol. Ecol. 20(12), 2480–2482 (2011).Article 

    Google Scholar 
    Bohonak, A. J. & Vandergast, A. G. The value of DNA sequence data for studying landscape genetics. Mol. Ecol. 20(12), 2477–2479 (2011).Article 

    Google Scholar 
    Vandergast, A. G., Bohonak, A. J., Weissman, D. B. & Fisher, R. N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: Phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16(5), 977–992 (2007).Article 

    Google Scholar 
    Pearson, O. P. & Smith, M. F. Genetic similarity between Akodon olivaceus and Akodon xanthorhinus (Rodentia: Muridae) in Argentina. J. Zool. 247(1), 43–52 (1999).Article 

    Google Scholar 
    Smith, M. F., Kelt, D. A. & Patton, J. L. Testing models of diversification in mice in the Abrothrix olivaceus/xanthorhinus complex in Chile and Argentina. Mol. Ecol. 10(2), 397–405 (2001).Article 

    Google Scholar 
    Palma, R. E., Marquet, P. A. & Boric-Bargetto, D. Inter- and intraspecific phylogeography of small mammals in the Atacama Desert and adjacent areas of northern Chile. J. Biogeogr. 32(11), 1931–1941 (2005).Article 

    Google Scholar 
    Arroyo, M. T. K., Squeo, F. A., Armesto, J. J. & Villagran, C. Effects of aridity on plant diversity in the northern Chilean Andes: Results of a natural experiment. Ann. Mol. Bot. Gard. 1, 55–78 (1988).Article 

    Google Scholar 
    Del Pozo, A. H., Fuentes, E. R., Hajek, E. R. & Molina, J. D. Zonación microclimática por efecto de los manchones de arbustos en el matorral de Chile central. Rev. Chil. Hist. Nat. 62, 85–94 (1989).
    Google Scholar 
    Armesto, J. J., Vidiella, P. E. & Gutiérrez, J. R. Plant communities of the fog-free coastal desert of Chile: Plant strategies in a fluctuating environment. Rev. Chil. Hist. Nat. 66, 271–282 (1993).
    Google Scholar 
    Veblen, T. T., Young, K. R. & Orme, A. R. The Physical Geography of South America (Oxford University Press, 2015).
    Google Scholar 
    Kelt, D. A. et al. Community structure of desert small mammals: Comparisons across four continents. Ecology 77(3), 746–761 (1996).Article 

    Google Scholar 
    Shenbrot, G. B., Krasnov, B. R. & Rogovin, K. A. Spatial Ecology of Desert Rodent Communities (Springer, 1999).Book 

    Google Scholar 
    Van Strien, M. J., Holderegger, R. & Van Heck, H. J. Isolation-by-distance in landscapes: considerations for landscape genetics. Heredity 114(1), 27–37 (2015).Article 

    Google Scholar 
    Diniz-Filho, J. A. F. et al. Mantel test in population genetics. Genet. Mol. Biol. 36(4), 475–485 (2013).Article 

    Google Scholar 
    Blier, P. U., Dufresne, F. & Burton, R. S. Natural selection and the evolution of mtDNA-encoded peptides: Evidence for intergenomic co-adaptation. Trends Genet. 17(7), 400–406 (2001).Article 

    Google Scholar 
    Meiklejohn, C. D., Montooth, K. L. & Rand, D. M. Positive and negative selection on the mitochondrial genome. Trends Genet. 23(6), 259–263 (2007).Article 

    Google Scholar 
    Giorello, F. M. et al. An association between differential expression and genetic divergence in the Patagonian olive mouse (Abrothrix olivacea). Mol. Ecol. 27(16), 3274–3286 (2018).Article 

    Google Scholar 
    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115–1123 (2007).Article 

    Google Scholar 
    Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. PNAS 106(Supplement 2), 19659–19665 (2009).Article 
    ADS 

    Google Scholar 
    Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. PNAS 106(Supplement 2), 19644–19650 (2009).Article 
    ADS 

    Google Scholar 
    Kearney, M. & Porter, W. P. Mapping the fundamental niche: Physiology, climate, and the distribution of a nocturnal lizard. Ecology 85(11), 3119–3131 (2004).Article 

    Google Scholar 
    Kearney, M. & Porter, W. P. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12(4), 334–350 (2009).Article 

    Google Scholar 
    Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: A phylogenetic analysis in amphibians. Proc. R. Soc. B. 281(1795), 20133229 (2014).Article 

    Google Scholar 
    Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).Article 

    Google Scholar 
    Holt, R. D. On the evolutionary ecology of species’ ranges. Evol. Ecol. Res. 5(2), 159–178 (2003).
    Google Scholar 
    Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: The problem and the evidence. Evol. Appl. 7(1), 1–14 (2014).Article 

    Google Scholar 
    Schmid, M. & Guillaume, F. The role of phenotypic plasticity on population differentiation. Heredity 119(4), 214–225 (2017).Article 

    Google Scholar 
    Novoa, F., Rivera, A., Rosenmann, M. & Sabat, P. Intraspecific differences in metabolic rate of Chroeomys olivaceus (Rodentia: Muridae): The effect of thermal acclimation in arid and mesic habitats. Rev. Chil. Hist. Nat. 78, 207–214 (2005).Article 

    Google Scholar 
    Bozinovic, F., Rojas, J. M., Maldonado, K., Sabat, P. & Naya, D. E. Between-population differences in digestive flexibility in the olivaceous field mouse. Zool 113(6), 373–377 (2010).Article 

    Google Scholar 
    Bozinovic, F., Rojas, J. M., Gallardo, P. A., Palma, R. E. & Gianoli, E. Body mass and water economy in the South American olivaceous field mouse along a latitudinal gradient: Implications for climate change. J. Arid. Environ. 75(5), 411–415 (2011).Article 
    ADS 

    Google Scholar 
    Naya, D. E. et al. Digestive morphology of two species of Abrothrix (Rodentia, Cricetidae): Comparison of populations from contrasting environments. J. Mammal. 95(6), 1222–1229 (2014).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62(11), 2868–2883 (2008).Article 

    Google Scholar 
    Goudarzi, F. et al. Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser’s spotted newt (Neurergus kaiseri). Sci. Rep. 9(1), 1–12 (2019).Article 

    Google Scholar 
    Pyron, R. A., Costa, G. C., Patten, M. A. & Burbrink, F. T. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol. Rev. 90(4), 1248–1262 (2015).Article 

    Google Scholar 
    Latorre, C. et al. Late Quaternary environments and paleoclimate. In The Geology of Chile (eds Moreno, T. & Gibbons, W.) 309–328 (Geological Society, 2007).Chapter 

    Google Scholar 
    Kaplan, M. R., Moreno, P. I. & Rojas, M. Glacial dynamics in southernmost South America during Marine Isotope Stage 5e to the Younger Dryas chron: A brief review with a focus on cosmogenic nuclide measurements. J. Quat. Sci. 23(6–7), 649–658 (2008).Article 

    Google Scholar 
    McCulloch, R. D. et al. Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J. Quat. Sci. 15(4), 409–417 (2000).Article 

    Google Scholar 
    Giorello, F. M., D’Elía, G. & Lessa, E. P. Genomic footprints of Quaternary colonization and population expansion in the Patagonian-Fuegian region rules out a separate southern refugium in Tierra del Fuego. J. Biogeogr. 48(10), 2656–2670 (2021).Article 

    Google Scholar 
    Knowles, L. L., Carstens, B. C. & Keat, M. L. Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Curr. Biol. 17(11), 940–946 (2007).Article 

    Google Scholar 
    Diniz-Filho, J. A. F. et al. Correlation between genetic diversity and environmental suitability: Taking uncertainty from ecological niche models into account. Mol. Ecol. 15(5), 1059–1066 (2015).Article 

    Google Scholar 
    Guevara, L., León-Paniagua, L., Rios, J. & Anderson, R. P. Variación entre modelos de circulación global para reconstrucciones de distribuciones geográficas del Último Máximo Glacial: Relevancia en la filogeografía. Ecosistemas 27(1), 62–76 (2018).Article 

    Google Scholar 
    Guevara, L., Morrone, J. J. & León-Paniagua, L. Spatial variability in species’potential distributions during the Last Glacial Maximum under different Global Circulation Models: Relevance in evolutionary biology. J. Zool. Syst. Evol. Res. 57(1), 113–126 (2019).Article 

    Google Scholar 
    Cab-Sulub, L. & Álvarez-Castañeda, S. T. Genetic isolation between conspecific populations and their relationship to climate heterogeneity. Acta Oecol. 116, 103847 (2022).Article 

    Google Scholar 
    Teta, P., de la Sancha, N. U., D’Elía, G. & Patterson, B. D. Andean rain shadow effect drives phenotypic variation in a widely distributed Austral rodent. J. Biogeogr. 00, 1–12 (2022).
    Google Scholar 
    León-Tapia, M. A. DNA barcoding and demographic history of Peromyscus yucatanicus (Rodentia: Cricetidae) endemic to the Yucatan Peninsula, Mexico. J. Mammal. Evol. 28(2), 481–495 (2021).Article 

    Google Scholar 
    Lin, X. et al. Climatic-niche evolution with key morphological innovations across clades within Scutiger boulengeri (Anura: Megophryidae). Ecol. Evol. 11, 10353–10368 (2021).Article 

    Google Scholar  More