Orr, M. R. & Smith, T. B. Ecology and speciation. Trends Ecol. Evol. 13, 502–506 (1998).Article
CAS
Google Scholar
Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).
Google Scholar
Gillespie, R. G. Adaptive radiation: Convergence and non-equilibrium. Curr. Biol. 23, R71–R74 (2013).Article
CAS
Google Scholar
Price, T. Speciation in Birds (Roberts and Company Publishers, 2008).
Google Scholar
Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).Article
ADS
CAS
Google Scholar
Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).Article
Google Scholar
Jønsson, K. A. et al. Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas. Proc. Natl. Acad. Sci. 109, 6620–6625 (2012).Article
ADS
Google Scholar
Wiens, J. J. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).
Google Scholar
Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article
Google Scholar
Wiens, J. J. & Graham, C. H. Niche Conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article
Google Scholar
Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).Article
ADS
CAS
Google Scholar
Winger, B. M., Barker, F. K. & Ree, R. H. Temperate origins of long-distance seasonal migration in New World songbirds. Proc. Natl. Acad. Sci. 111, 12115–12120 (2014).Article
ADS
CAS
Google Scholar
Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260 (2003).Article
Google Scholar
Gómez, C., Tenorio, E. A., Montoya, P. & Cadena, C. D. Niche-tracking migrants and niche-switching residents: Evolution of climatic niches in New World warblers (Parulidae). Proc. R. Soc. B Biol. Sci. 283, 20152458 (2016).Article
Google Scholar
Menchaca, A., Arteaga, M. C., Medellin, R. A. & Jones, G. Conservation units and historical matrilineal structure in the tequila bat (Leptonycteris yerbabuenae). Glob. Ecol. Conserv. 23, e01164 (2020).Article
Google Scholar
Medellín, R. A. et al. Follow me: Foraging distances of Leptonycteris yerbabuenae (Chiroptera: Phyllostomidae) in Sonora determined by fluorescent powder. J. Mammal. 99, 306–311 (2018).Article
Google Scholar
Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).Article
CAS
Google Scholar
Martínez-Meyer, E., Peterson, A. T. & Hargrove, W. W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305–314 (2004).Article
Google Scholar
Soto-Centeno, J. A. & Steadman, D. W. Fossils reject climate change as the cause of extinction of Caribbean bats. Sci. Rep. 5, 7971 (2015).Article
ADS
CAS
Google Scholar
Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).Book
Google Scholar
Hickerson, M. J. et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291–301 (2010).Article
CAS
Google Scholar
Pahad, G., Montgelard, C. & Jansen van Vuuren, B. Phylogeography and niche modelling: Reciprocal enlightenment. Mammalia 84, 10–25 (2019).Article
Google Scholar
Flanders, J. et al. Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: Contrasting results from mitochondrial and microsatellite data. Mol. Ecol. 18, 306–318 (2009).Article
CAS
Google Scholar
Machado, A. F. et al. Integrating phylogeography and ecological niche modelling to test diversification hypotheses using a Neotropical rodent. Evol. Ecol. 33, 111–148 (2019).Article
Google Scholar
Kalkvik, H. M., Stout, I. J., Doonan, T. J. & Parkinson, C. L. Investigating niche and lineage diversification in widely distributed taxa: Phylogeography and ecological niche modeling of the Peromyscus maniculatus species group. Ecography 35, 54–64 (2012).Article
Google Scholar
Wang, Y. et al. Ring distribution patterns—diversification or speciation? Comparative phylogeography of two small mammals in the mountains surrounding the Sichuan Basin. Mol. Ecol. 30, 2641–2658 (2021).Article
Google Scholar
Soto-Centeno, J. A., Barrow, L. N., Allen, J. M. & Reed, D. L. Reevaluation of a classic phylogeographic barrier: New techniques reveal the influence of microgeographic climate variation on population divergence. Ecol. Evol. 3, 1603–1613 (2013).Article
Google Scholar
Amador, L. I., Moyers Arévalo, R. L., Almeida, F. C., Catalano, S. A. & Giannini, N. P. Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. J. Mamm. Evol. 25, 37–70 (2018).Article
Google Scholar
Rojas, D., Warsi, O. M. & Dávalos, L. M. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant neotropical diversity. Syst. Biol. 65, 432–448 (2016).Article
Google Scholar
Shi, J. J. & Rabosky, D. L. Speciation dynamics during the global radiation of extant bats. Evolution 69, 1528–1545 (2015).Article
Google Scholar
Dumont, E. R. et al. Morphological innovation, diversification and invasion of a new adaptive zone. Proc. Biol. Sci. 279, 1797–1805 (2012).
Google Scholar
Leiser-Miller, L. B. & Santana, S. E. Morphological diversity in the sensory system of phyllostomid bats: Implications for acoustic and dietary ecology. Funct. Ecol. 34, 1416–1427 (2020).Article
Google Scholar
Hedrick, B. P. & Dumont, E. R. Putting the leaf-nosed bats in context: A geometric morphometric analysis of three of the largest families of bats. J. Mammal. 99, 1042–1054 (2018).Article
Google Scholar
Clare, E. L. Cryptic species? Patterns of maternal and paternal gene flow in eight neotropical bats. PLoS One 6, e21460 (2011).Article
ADS
CAS
Google Scholar
Chaverri, G. et al. Unveiling the hidden bat diversity of a neotropical montane forest. PLoS One 11, e0162712 (2016).Article
Google Scholar
Calahorra-Oliart, A., Ospina-Garcés, S. M. & León-Paniagua, L. Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): Do morphological data support molecular evidence?. J. Mammal. 102, 54–68 (2021).Article
Google Scholar
Lim, B. K., Loureiro, L. O. & Garbino, G. S. T. Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera, Phyllostomidae). Zookeys 918, 41–63 (2020).Article
Google Scholar
Loureiro, L. O., Engstrom, M., Lim, B., González, C. L. & Juste, J. Not all Molossus are created equal: Genetic variation in the mastiff bat reveals diversity masked by conservative morphology. Acta Chiropterologica 21, 51 (2019).Article
Google Scholar
Morales, A., Villalobos, F., Velazco, P. M., Simmons, N. B. & Piñero, D. Environmental niche drives genetic and morphometric structure in a widespread bat. J. Biogeogr. 43, 1057–1068 (2016).Article
Google Scholar
Hedrick, B. P. et al. Morphological diversification under high integration in a hyper diverse mammal clade. J. Mamm. Evol. 27, 563–575 (2020).Article
Google Scholar
Morales, A. E. & Carstens, B. C. Evidence that myotis lucifugus “subspecies” are five nonsister species, despite gene flow. Syst. Biol. 67, 756–769 (2018).Article
Google Scholar
Simmons, N. B. & Cirranello, A. L. Bat species of the world: A taxonomic and geographic database. https://batnames.org.Russell, A. L., Pinzari, C. A., Vonhof, M. J., Olival, K. J. & Bonaccorso, F. J. Two tickets to paradise: Multiple dispersal events in the founding of hoary bat populations in Hawai’i. PLoS One 10, 1–13 (2015).
Google Scholar
Shump, K. A. & Shump, A. U. Lasiurus cinereus. Mamm. Species 185, 1–5 (1982).
Google Scholar
Ziegler, A. C., Howarth, F. G. & Simmons, N. B. A second endemic land mammal for the Hawaiian Islands: A new genus and species of fossil bat (Chiroptera: Vespertilionidae). Am. Museum Novit. 1–52 (2016).Bonaccorso, F. J. & McGuire, L. P. Modeling the colonization of Hawaii by hoary bats (Lasiurus cinereus). In Bat Evolution, Ecology, and Conservation (eds Adams, R. A. & Pedersen, S. C.) 187–205 (Springer, 2013).Chapter
Google Scholar
Baird, A. B. et al. Molecular systematic revision of tree bats (Lasiurini): Doubling the native mammals of the Hawaiian Islands. J. Mammal. 96, 1255–1274 (2015).Article
Google Scholar
Jacobs, D. S. Morphological divergence in an insular bat, Lasiurus cinereus semotus. Funct. Ecol. 10, 622–630 (1996).Article
Google Scholar
Baird, A. B. et al. Nuclear and mtDNA phylogenetic analyses clarify the evolutionary history of two species of native Hawaiian bats and the taxonomy of Lasiurini (Mammalia: Chiroptera). PLoS One 12, e0186085 (2017).Article
Google Scholar
Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. U.S.A. 99, 803–808 (2002).Article
ADS
CAS
Google Scholar
Gillespie, R. G. et al. Comparing adaptive radiations across space, time, and taxa. J. Hered. 111, 1–20 (2020).Article
Google Scholar
Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).Article
Google Scholar
Espíndola, A. et al. Identifying cryptic diversity with predictive phylogeography. Proc. R. Soc. B Biol. Sci. 283, 20161529 (2016).Article
Google Scholar
Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 1–14 (2010).Article
Google Scholar
Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A. & Moritz, C. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol. 27, 480–488 (2012).Article
Google Scholar
Solari, S., Sotero-Caio, C. G. & Baker, R. J. Advances in systematics of bats: Towards a consensus on species delimitation and classifications through integrative taxonomy. J. Mammal. 100, 838–851 (2018).Article
Google Scholar
Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).
Google Scholar
Morales, A. E., De-la-Mora, M. & Piñero, D. Spatial and environmental factors predict skull variation and genetic structure in the cosmopolitan bat Tadarida brasiliensis. J. Biogeogr. 45, 1529–1540 (2018).Article
Google Scholar
Pavan, A. C. & Marroig, G. Integrating multiple evidences in taxonomy: Species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Mol. Phylogenet. Evol. 103, 184–198 (2016).Article
Google Scholar
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).Article
CAS
Google Scholar
Robinson, D. & Foulds, L. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).Article
MathSciNet
MATH
Google Scholar
Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R., Moret, B. M. & Stamatakis, A. How many bootstrap replicates are necessary?. J. Comput. Biol. 17, 337–354 (2010).Article
MathSciNet
CAS
Google Scholar
Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).Article
ADS
CAS
Google Scholar
Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article
CAS
Google Scholar
Kapli, P. et al. Multi-rate Poisson Tree Processes for single-locus species delimitation under Maximum Likelihood and Markov Chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).CAS
Google Scholar
Yang, Z. & Rannala, B. Unguided species delimitation using DNA sequence data from multiple loci. Mol. Biol. Evol. 31, 3125–3135 (2014).Article
CAS
Google Scholar
Flouri, T., Jiao, X., Rannala, B. & Yang, Z. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 35, 2585–2593 (2018).Article
CAS
Google Scholar
Van Buuren, S. & Groothuis-Oudshoorn, K. Multivariate imputation by chained equations. J. Stat. Softw. 45, 1–67 (2011).Article
Google Scholar
Penone, C. et al. Imputation of missing data in life-history trait datasets: Which approach performs the best?. Methods Ecol. Evol. 5, 961–970 (2014).Article
Google Scholar
Berner, D. Size correction in biology: How reliable are approaches based on (common) principal component analysis?. Oecologia 166, 961–971 (2011).Article
ADS
Google Scholar
Simmons, N. B. Order Chiroptera. In Mammal Species of the World: A Taxonomic and Geographic Reference (eds Wilson, D. E. & Reeder, D. M.) 312–529 (The John Hopkins University Press, 2005).
Google Scholar
Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World. Vol. 9. Bats (Lynx Editions, 2019).
Google Scholar
R Core Team. R: A language and environment for statistical computing (2022).Kuhn, M. caret: Classification and Regression Training. R package version 6.0-86. https://CRAN.R-project.org/package=caret (2020).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Book
MATH
Google Scholar
Kuhn, M. & Johnson, K. Applied Predictive Modeling (Springer, 2013).Book
MATH
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
Hijmans, R. J. raster: Geographic Data Analysis and Modeling (2022).Barker, B. S., Rodríguez-Robles, J. A. & Cook, J. A. Climate as a driver of tropical insular diversity: Comparative phylogeography of two ecologically distinctive frogs in Puerto Rico. Ecography 38, 769–781 (2015).Article
Google Scholar
Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C. & Guisan, A. Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions. Glob. Ecol. Biogeogr. 26, 275–287 (2017).Article
Google Scholar
Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 05, 754–767 (2015).Article
Google Scholar
Izenman, A. J. Linear discriminant analysis. in Modern Multivariate Statistical Techniques 237–280 (2013).Lever, J., Krzywinski, M. & Altman, N. Points of significance: Principal component analysis. Nat. Methods 14, 641–642 (2017).Article
CAS
Google Scholar
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).Article
Google Scholar
Di Cola, V. et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).Article
Google Scholar
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).Article
Google Scholar
Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. 117, 23643–23651 (2020).Article
ADS
CAS
Google Scholar
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).Article
Google Scholar
Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
Google Scholar More