More stories

  • in

    Carbohydrate complexity limits microbial growth and reduces the sensitivity of human gut communities to perturbations

    Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tap, J. et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 17, 4954–4964 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morrison, K. E., Jašarević, E., Howard, C. D. & Bale, T. L. It’s the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome 8, 15 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maslowski, K. M. & Mackay, C. R. Diet, gut microbiota and immune responses. Nat. Immunol. 12, 5–9 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Slavin, J. Fiber and prebiotics: mechanisms and health benefits. Nutrients 5, 1417–1435 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makki, K., Deehan, E. C., Walter, J. & Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cantu-Jungles, T. M. et al. Dietary fiber hierarchical specificity: the missing link for predictable and strong shifts in gut bacterial communities. mBio 12, e01028-21 (2022).
    Google Scholar 
    Murga-Garrido, S. M. et al. Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome 9, 117 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantu-Jungles, T. M. & Hamaker, B. R. New view on dietary fiber selection for predictable shifts in gut microbiota. mBio 11, e02179-19 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, V. et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175, 679–694.e22 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Terrapon, N., Lombard, V., Gilbert, H. J. & Henrissat, B. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics 31, 647–655 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Terrapon, N. et al. PULDB: the expanded database of Polysaccharide Utilization Loci. Nucleic Acids Res. 46, D677–D683 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kouzuma, A., Kato, S. & Watanabe, K. Microbial interspecies interactions: recent findings in syntrophic consortia. Front. Microbiol. 6, 477 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cartmell, A. et al. A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nat. Microbiol. 3, 1314–1326 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pichler, M. J. et al. Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat. Commun. 11, 3285 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat. Commun. 6, 7481 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Feng, J. et al. Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Cell Host Microbe https://doi.org/10.1016/j.chom.2021.12.006 (2022).Pollak, S. et al. Public good exploitation in natural bacterioplankton communities. Sci. Adv. 7, eabi4717 (2022).Article 

    Google Scholar 
    Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patnode, M. L. et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell 179, 59–73.e13 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walter, J., Maldonado-Gómez, M. X. & Martínez, I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr. Opin. Biotechnol. 49, 129–139 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Becattini, S., Taur, Y. & Pamer, E. G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22, 458–478 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stone, L. The stability of mutualism. Nat. Commun. 11, 2648 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).Article 
    PubMed 

    Google Scholar 
    Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, W. & Stevens, M. H. H. Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121, 435–441 (2012).Article 

    Google Scholar 
    Nobuhiko, K. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).Article 

    Google Scholar 
    Maltby, R., Leatham-Jensen, M. P., Gibson, T., Cohen, P. S. & Conway, T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS ONE 8, e53957 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leatham, M. P. et al. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect. Immun. 77, 2876–2886 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark, R. L. et al. Design of synthetic human gut microbiome assembly and butyrate production. Nat. Commun. 12, 3254 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hromada, S. et al. Negative interactions determine Clostridioides difficile growth in synthetic human gut communities. Mol. Syst. Biol. 17, e10355 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ndeh, D. et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544, 65–70 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grondin, J. M., Tamura, K., Déjean, G., Abbott, D. W. & Brumer, H. Polysaccharide utilization loci: fueling microbial communities. J. Bacteriol. 199, e00860-16 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devendran, S. et al. Clostridium scindens ATCC 35704: integration of nutritional requirements, the complete genome sequence, and global transcriptional responses to bile acids. Appl. Environ. Microbiol. 85, e00052-19 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rey, F. E. et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc. Natl Acad. Sci. USA 110, 13582–13587 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaoutari, A. E., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11, 497–504 (2013).Article 
    PubMed 

    Google Scholar 
    Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Despres, J. et al. Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics 17, 326 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Déjean, G. et al. Synergy between cell surface glycosidases and glycan-binding proteins dictates the utilization of specific beta(1,3)-glucans by human gut bacteroides. mBio 11, e00095-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamaker, B. R. & Tuncil, Y. E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 426, 3838–3850 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, 2006).Wasserman, L. All of Statistics: A Concise Course in Statistical Inference (Springer Texts in Statistics) (Springer, 2003).Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host–microbiota mutualism. Nat. Rev. Microbiol. 9, 233–243 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Panda, S. et al. Short-term effect of antibiotics on human gut microbiota. PLoS ONE 9, e95476 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ng, K. M. et al. Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. Cell Host Microbe 26, 650–665.e4 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van der Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-van der Wees, J. E. C. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hygiene 69, 405–411 (1971).Article 

    Google Scholar 
    Freter, R. In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. II. The inhibitory mechanism. J. Infect. Dis. 110, 38–46 (1962).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maldonado-Gómez, M. X. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20, 515–526 (2016).Article 
    PubMed 

    Google Scholar 
    Sorbara, M. T. & Pamer, E. G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 12, 1–9 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Litvak, Y. & Bäumler, A. J. The founder hypothesis: a basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens. PLoS Pathog. 15, e1007563 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jenior, M. L., Leslie, J. L., Young, V. B. & Schloss, P. D. Clostridium difficile colonizes alternative nutrient niches during infection across distinct murine gut microbiomes. mSystems 2, e00063-17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Momose, Y., Hirayama, K. & Itoh, K. Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie van Leeuwenhoek 94, 165–171 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fabich, A. J. et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 76, 1143–1152 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jenior, M. L., Leslie, J. L., Young, V. B. & Schloss, P. D. Clostridium difficilealters the structure and metabolism of distinct cecal microbiomes during initial infection to promote sustained colonization. mSphere 3, e00261-18 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, S., Tan, J., Yang, X., Ma, C. & Jiang, L. Niche and fitness differences determine invasion success and impact in laboratory bacterial communities. ISME J. 13, 402–412 (2019).Article 
    PubMed 

    Google Scholar 
    Deng, Y.-J. & Wang, S. Y. Synergistic growth in bacteria depends on substrate complexity. J. Microbiol. 54, 23–30 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deng, Y.-J. & Wang, S. Y. Complex carbohydrates reduce the frequency of antagonistic interactions among bacteria degrading cellulose and xylan. FEMS Microbiol. Lett. 364, fnx019 (2017).Article 
    PubMed Central 

    Google Scholar 
    Wu, F. et al. Modulation of microbial community dynamics by spatial partitioning. Nat. Chem. Biol. 18, 394–402 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Åström, K. J. & Murray, R. Feedback Systems. An Introduction for Scientists and Engineers (Princeton Univ. Press, 2008).Hammarlund, S. P. & Harcombe, W. R. Refining the stress gradient hypothesis in a microbial community. Proc. Natl Acad. Sci. USA 116, 15760–15762 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pacheco, A. R., Osborne, M. L. & Segrè, D. Non-additive microbial community responses to environmental complexity. Nat. Commun. 12, 2365 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dal Bello, M., Lee, H., Goyal, A. & Gore, J. Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat. Ecol. Evol. 5, 1424–1434 (2021).Article 
    PubMed 

    Google Scholar 
    Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).Article 
    PubMed 

    Google Scholar 
    Baranwal, M. et al. Recurrent neural networks enable design of multifunctional synthetic human gut microbiome dynamics. eLife 11, e73870 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ramirez, J. et al. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 10, 572912 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raue, A. et al. Lessons learned from quantitative dynamical modeling in systems biology. PLoS ONE 8, e74335 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Babtie, A. C., Kirk, P. & Stumpf, M. P. H. Topological sensitivity analysis for systems biology. Proc. Natl Acad. Sci. USA 111, 18507–18512 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munsky, B., Hlavacek, W. S. & Tsimring, L. S. Quantitative Biology. Theory, Computational Methods, and Models (MIT Press, 2018).Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J. A. & Blom, J. G. Systems biology: parameter estimation for biochemical models. FEBS J. 276, 886–902 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ravcheev, D. A., Godzik, A., Osterman, A. L. & Rodionov, D. A. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics 14, 873 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salyers, A. A., Vercelloitti, J. R., West, S. E. & Wilkins, T. D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 319–322 (1977).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun, X., Liu, Y., Jiang, P., Song, S. & Ai, C. Interaction of sulfated polysaccharides with intestinal Bacteroidales plays an important role in its biological activities. Int. J. Biol. Macromol. 168, 496–506 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Respondek, F. et al. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice. PLoS ONE 8, e71026 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schwiertz, A. et al. Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Syst. Appl. Microbiol. 25, 46–51 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benítez-Páez, A., Moreno, F. J., Sanz, M. L. & Sanz, Y. Genome structure of the symbiont Bifidobacterium pseudocatenulatum CECT 7765 and gene expression profiling in response to lactulose-derived oligosaccharides. Front. Microbiol. 7, 624 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernalier, A., Willems, A., Leclerc, M., Rochet, V. & Collins, M. D. Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch. Microbiol. 166, 176–183 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moshfegh, A. J., Friday, J. E., Goldman, J. P. & Ahuja, J. K. C. Presence of inulin and oligofructose in the diets of Americans. J. Nutr. 129, 1407S–1411S (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–1252 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devillé, C., Damas, J., Forget, P., Dandrifosse, G. & Peulen, O. Laminarin in the dietary fibre concept. J. Sci. Food Agric. 84, 1030–1038 (2004).Article 

    Google Scholar 
    Selvendran, R. R. The plant cell wall as a source of dietary fiber: chemistry and structure. Am. J. Clin. Nutr. 39, 320–337 (1984).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Measuring the world’s cropland area

    Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).Article 

    Google Scholar 
    Land Use Statistics and Indicators. Global, Regional and Country Trends 2000–2020 FAOSTAT Analytical Brief Series No 48 https://www.fao.org/food-agriculture-statistics/data-release/data-release-detail/en/c/1599856/ (FAO, 2022).FAO. Land Statistics. Global, Regional and Country Trends, 1990–2018 FAOSTAT Analytical Brief Series No. 15 https://www.fao.org/3/cb2860en/cb2860en.pdf (FAO, 2021).Summary for policymakers in: Special Report on Climate Change and Land (eds Shukla, P. R. et al.) https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf (WMO, in the press).Sustainable Development Goals Indicator 2.4.1 (FAO, accessed); https://www.fao.org/sustainable-development-goals/indicators/241/en/Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IGES, 2006).Grassi, G. et al. Carbon fluxes from land 2000–2020: bringing clarity on countries’ reporting. Earth Syst. Sci. Data 14, 4643–4666 (2022).Article 
    ADS 

    Google Scholar 
    Tubiello, F. N. et al. Measuring Progress Towards Sustainable Agriculture FAO Statistical Working Papers Series No. 21–24 https://www.fao.org/3/cb4549en/cb4549en.pdf (FAO, 2021).Conchedda, G. & Tubiello, F. N. Drainage of organic soils and GHG emissions: validation with country data. Earth Syst. Sci. Data 12, 3113–3137 (2020).Article 
    ADS 

    Google Scholar 
    Hanson, C., Mazur, E., Stolle, F., Davis, C. & Searchinger, T. 5 takeaways on cropland expansion and what it means for people and the planet. WRI Insights https://www.wri.org/insights/cropland-expansion-impacts-people-planet (2022).Potapov, P. et al. The Global 2000–-2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens. 3, 856903 (2022).Article 

    Google Scholar 
    Hansen, M. C. et al. Global land use extent and dispersion within natural land cover using Landsat data. Environ. Res. Lett. 17, 034050 (2022).Article 
    ADS 

    Google Scholar 
    Tubiello, F. N. et al. Carbon emissions and removals from forests: new estimates, 1990–2020. Earth Syst. Sci. Data. 13, 1681–1691 (2021).Article 
    ADS 

    Google Scholar  More

  • in

    Plant traits and marsh fate

    Coleman, D. J. et al. Limnol. Oceanogr. Lett. 7, 140–149 (2022).Article 

    Google Scholar 
    Noyce, G. L. et al. https://doi.org/10.1038/s41561-022-01070-6 (2022).Kirwan, M. L. & Megonigal, J. P. Nature 504, 53–60 (2013).Article 

    Google Scholar 
    Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerve, B. & Cahoon, D. R. Ecology 83, 2869–2877 (2002).Article 

    Google Scholar 
    Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Proc. Natl Acad. Sci. 116, 21623–21628 (2019).Article 

    Google Scholar 
    Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Proc. Natl Acad. Sci. 106, 182–6186 (2009).Article 

    Google Scholar 
    Dean, J. F. et al. Rev. Geophys. 56, 207–250 (2018).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).Lin, Y. et al. Water Res. 205, 117682 (2021).Article 

    Google Scholar 
    Zakharova, L., Meyer, K. M. & Seifan, M. Ecol. Modell. 407, 108703 (2019).Article 

    Google Scholar  More

  • in

    Residential green environments are associated with human milk oligosaccharide diversity and composition

    Study populationThe study is based on data from mothers and children participating in a longitudinal Southwest Finland cohort, Steps to Healthy development of Children (the STEPS Study) (described in detail in Lagström et al.31). The STEPS study is an ongoing population-based and multidisciplinary study that investigates children’s physical, psychological and social development, starting from pregnancy and continuing until adolescence. All Finnish- and Swedish-speaking mothers delivering a child between 1 January, 2008 and 31 March, 2010 in the Hospital District of Southwest Finland formed the cohort population (in total, 9811 mothers and their 9936 children). Altogether, 1797 mothers with 1805 neonates volunteered as participants for the intensive follow-up group of the STEPS Study. Mothers were recruited by midwives either during the first trimester of pregnancy while visiting maternity health care clinics, or after delivery on the maternity wards of Turku University Hospital or Salo Regional Hospital, or by a letter mailed to the mothers. The participating mothers differ slightly from the whole cohort population in some background characteristics (being older, with first-born child and higher socioeconomic status)31. The ethics committee of the Hospital District of Southwest Finland has approved the STEPS Study (2/2007) and all methods were performed in accordance with relevant guidelines and regulations. Written informed consent was obtained from all the participants and, for children, from one parent for study participation. Subjects have been and are free to withdraw from the study at any time without any specific reason. The STEPS Study have the appropriate government authorization to the use of the National birth register (THL/974/5.05.00/2017).Breastmilk collection and HMO analysisMothers from the STEPS Study were asked to collect breastmilk samples when the infant was approximately 3 months old. In total, 812 of the 1797 mothers (45%) provided a breastmilk sample. There were only slight differences in maternal and child characteristics between the participants providing breastmilk samples and the total STEPS Study cohort40. Altogether, 795 breastmilk samples were included in this study (excluding the duplicate observations and the 2nd born twins, samples with technical unclarity or insufficient sample quantity, one breastmilk sample collected notably later than the other samples, at infant age of 14.5 months (range for the other breastmilk samples: 0.6–6.07 months), one sample with missing information on the date of collection and six mothers missing data on residential green environment) (Supplementary Fig. 2). Mothers received written instructions for the collection of breastmilk samples: samples were collected by manual expression in the morning from one single breast, first milking a few drops to waste before collecting the actual sample (~ 10 ml) into a plastic container (pre-feed sample). The samples were stored in the fridge and the mothers brought the samples to the research center or the samples were collected from their homes on the day of sampling. All samples were frozen and stored at − 70 °C until analysis.High Performance Liquid Chromatography (HPLC) was used to identify HMOs in breastmilk as previously described40,57,58 at the University of California, San Diego (methods described in detail in Berger et al.58). Milk samples were spiked with raffinose (a non-HMO carbohydrate) as an internal standard to allow absolute quantification. HMOs were extracted by high-throughput solid-phase extraction, fluorescently labelled, and measured using HPLC with fluorescent detection (HPLC-FLD)58. Absolute concentrations for the 19 HMOs were calculated based on standard retention times and corrected for internal standard recovery. Quantified HMOs included: 2′-fucosyllactose (2′FL), 3-fucosyllactose (3FL), lacto-N-neotetraose (LNnT), 3′-sialyllactose (3′SL), difucosyllactose (DFlac), 6′-sialyllactose (6′SL), lacto-N-tetraose (LNT), lacto-Nfucopentaose (LNFP) I, LNFP II, LNFP III, sialyl-LNT (LST) b, LSTc, difucosyllacto-LNT (DFLNT), lacto-N-hexaose (LNH), disialyllacto-N-tetraose (DSLNT), fucosyllacto-Nhexaose (FLNH), difucosyllacto-N-hexaose (DFLNH), fucodisialyllacto-lacto-N-hexaose (FDSLNH) and disialyllacto-N-hexaose (DSLNH). HMOs were also summed up to seven groups based on structural features: small HMOs (2′FL, 3FL, 3′SL, 6′SL, and DFLac), type 1 HMOs (LNT, LNFP I, LNFP II, LSTb, DSLNT), type 2 HMOs (LNnT, LNFP III, LSTc), α-1-2-fucosylated HMOs (2’FL, LNFP I), terminal α-2-6-sialylated HMOs (6′SL, LSTc), internal α-2-6-sialylated HMOs (DSLNT, LSTb), terminal α-2-3-sialylated HMOs (3′SL, DSLNT). The total concentration of HMOs was calculated as the sum of the 19 oligosaccharides. HMO-bound fucose and HMO-bound sialic acid were calculated on a molar basis. The proportion of each HMO comprising the total HMO concentration was also calculated. HMO Simpson’s diversity was calculated as Simpson’s Reciprocal Index 1/D, which is the reciprocal sum of the square of the relative abundance of each of the measured 19 HMOs57,59. The higher the diversity value, the more heterogenous is the HMO composition in the sample.Properties of the residential green environmentThe selected residential green environment variables measure the properties of the green environments surrounding the homes of the participants and do not include any measures of the house characteristics, indoor environment or the actual use of green spaces by the participants. The residential green environment variables were selected due to their previously observed associations with residential microbiota and health33,34,35. The variables of the residential green environments were derived from multispectral satellite images series, with a 30 m × 30 m of spatial resolution (Landsat TM 5, National Aeronautics and Space Administration—NASA) and land cover data (CORINE). We used Landsat TM images obtained over the summertime (June–August, greenest months in Finland), to minimize the seasonal variation of living vegetation and cloud cover as well as to better identify vegetation areas and maximise the contrast in our estimated exposure. In each selected Landsat TM 5 images, the cloud was masked out, and the Normalized Difference Vegetation Index (NDVI)36 was calculated. The final NDVI map was the mean of NDVI images collected over three consecutive years (2008–2010), to make an NDVI map with non-missing values due to cloud cover for the study area. NDVI map measures the vegetation cover, vitality and density. The NDVI can get values ranging from − 1 to 1 where values below zero represent water surfaces, values close to zero indicate areas with low intensity of living vegetation and values close to one indicate high abundance of living vegetation. For the analyses, areas covered by water were removed and the value ranged from 0 to 1, to prevent negative values for underestimating the greenness values of the residential area like in some prior studies60. We assumed that summertime NDVI identified the green space and vegetation density well, but greenness intensity might vary seasonally.Second, we used calculated indicators related to the diversity and naturalness of the land cover from CORINE Land Cover data sets of the year 201261. The 12 land cover types include: (1) Residential area, (2) Industrial/commercial area, (3) Transport network, (4) Sport/leisure, (5) Agriculture, (6) Broad-leave forest, (7) Coniferous forest, (8) Mixed forest, (9) Shrub/grassland, (10) Bare surface, (11) Wetland, and (12) Water bodies. From this information, we calculated two vegetation cover indexes. The Vegetation Cover Diversity Index (Simpson’s Diversity Index of Vegetation Cover, VCDI)37, only includes vegetation classes from CORINE land cover types (categories 5–9 and 11). VCDI approaches 1 as the number of different vegetation classes increases and the proportional distribution of area among the land use classes becomes more equitable. Furthermore, because we were particularly interested in the natural vegetation cover in the residential area, we calculated the area-weighted Naturalness Index (NI)38. This is an integrated indicator used to measure the human impact and degree of all human interventions on ecological components. The index is based on CORINE Land Cover data but reclassified to 15 classes. Residential areas have been divided to two classes: Continuous residential area (High density buildings) and Discontinuous residential area (Low density, mostly individual houses area). Agricultural area has also been divided to two classes: Agricultural area (Cropland) and Pasture as well as class 9 (Shrub/grassland) has been separated to Woodland and Natural grassland. Assignment of CORINE Land Cover classes to degrees of naturalness has been made based on Walz and Stein 201438. The area-weighted NI range from 1 to 7, where low values represent low human impact (≤ 3 = Natural), medium values moderate human impact (4–5 = Semi-natural) and high values strong human impact (6–7 = Non-Natural). To ease the interpretation of results and to correspond to the same direction than the other residential green environment variables, we have reverse-scaled the NI values, so that higher values illustrate more natural residential areas.Background factorsAs genetics is strongly linked to HMO composition, maternal secretor status was determined by high abundance (secretor) or near absence (non-secretor) of the HMO 2’FL in the breastmilk samples. Mothers with active secretor (Se) genes and FUT2 enzyme produce high amounts of α-1-2-fucosylated HMOs such as 2′-fucosyllactose (2′FL), whereas in the breastmilk of non-secretor mothers these HMOs are almost absent. Beyond genetics, other maternal and infant characteristics may influence HMO composition. So far, several associations have been reported, including lactation stage, maternal pre-pregnancy BMI, maternal age, parity, maternal diet, mode of delivery, infant gestational age and infant sex22,40. Information on the potential confounding factors, child sex, birth weight, maternal age at birth, number of previous births, marital status, maternal occupational status, smoking during pregnancy (before and during pregnancy), maternal pre-pregnancy BMI, mode of delivery, duration of pregnancy and maternal diseases [including both maternal disorders predominantly related to pregnancy such as pre-eclampsia and gestational diabetes and chronic diseases (diseases of the nervous, circulatory, respiratory, digestive, musculoskeletal and genitourinary systems, cancer and mental and behavioral disorders, according to ICD-10 codes, i.e. WHO International Classification of Diseases Tenth Revision)], were obtained from Medical Birth Registers. Self-administered questionnaires upon recruitment provided information on family net income and maternal education level. Those who had no professional training or a maximum of an intermediate level of vocational training (secondary education) were classified as “basic”. Those who had studied at a University of Applied Sciences or higher (tertiary education) were classified as “advanced”. The advanced level included any academic degree (bachelor’s, master’s, licentiate or doctoral degree). Maternal diet quality was assessed in late pregnancy using the Index of Diet Quality (IDQ62) which measures adherence to health promoting diet and nutrition recommendations. The IDQ score was used in its original form by setting the statistically defined cut-off value at 10, with scores below 10 points indicating unhealthy diets and non-adherence and scores of 10–15 points indicating a health-promoting diet and adherence dietary guidelines. Lactation time postpartum (child age) and season were received from the recorded breastmilk collection dates. Lactation status (exclusive/partial/unknown breastfeeding) at the time of breastmilk collection were gathered from follow-up diaries. From partially breastfeeding mothers (n = 277) 253 had started formula feeding and 28 solids at the time of milk collection. Last, a summary z score representing socio-economic disadvantage in the residential area was obtained from Statistics Finland grid database for the year 2009 and is based on the proportion of adults with low level of education, the unemployment rate, and proportion of people living in rented housing at each participant’s residential area55.Statistical analysesTo harmonize the residential green environment variables we calculated the mean values for NDVI, VCDI and NI in 750 × 750 m squares (and 250 × 250 m) around participant homes in a Geographical Information System (QGIS, www.qgis.org). The same grid sizes were used to calculate residential socioeconomic disadvantage in the residential area55 at the time of child birth. The geographical coordinates (latitude/longitude) of the cohort participants’ home address (795 mothers) were obtained from the Population Register Centre at the time of their child birth.The background characteristics of the mothers and children are given as means and standard deviations (SD) for continuous variables and percentages for categorical variables. Due to non-normal distribution, natural logarithmic transformation was performed for all HMO variables (19 individual components, sum of HMOs, HMO-bound sialic acid, HMO-bound fucose and HMO groups (all in nmol/mL)) except for HMO diversity. Associations between each background factor and HMO diversity and 19 individual HMO components were analysed with univariate generalized linear models to identify factors independently associated with HMO composition. All factors demonstrating a significant association (p  More

  • in

    Limits on phenological response to high temperature in the Arctic

    Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).Article 
    ADS 

    Google Scholar 
    Overland, J. E. et al. Surface air temperature. In Arctic Report Card: Update for 2019 (eds Richter-Menge, J. et al.) (U.S. National Park Service, 2020).
    Google Scholar 
    Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).Article 
    ADS 

    Google Scholar 
    Diepstraten, R. A. E., Jessen, T. D., Fauvelle, C. M. D. & Musiani, M. M. Does climate change and plant phenology research neglect the Arctic tundra?. Ecosphere 9, e02362 (2018).Article 

    Google Scholar 
    Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).Article 
    CAS 

    Google Scholar 
    Billings, W. D. & Bliss, L. C. An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40, 388–397 (1959).Article 

    Google Scholar 
    Billings, W. D. & Mooney, H. A. The ecology of arctic and alpine plants. Biol. Rev. 43, 481–529 (1968).Article 

    Google Scholar 
    Sørensen, T. Temperature relations and phenology of the northeast Greenland flowering plants. Meddr Gronland 1–305 (1941).Barrett, R. T. & Hollister, R. D. Arctic plants are capable of sustained responses to long-term warming. Polar Res. 35, 25405 (2016).Article 

    Google Scholar 
    Julitta, T. et al. Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. For. Meteorol. 198–199, 116–125 (2014).Article 
    ADS 

    Google Scholar 
    Petraglia, A. et al. Responses of flowering phenology of snowbed plants to an experimentally imposed extreme advanced snowmelt. Plant Ecol. 215, 759–768 (2014).Article 

    Google Scholar 
    Semenchuk, P. R. et al. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: An example of periodicity. Environ. Res. Lett. 11, 125006 (2016).Article 
    ADS 

    Google Scholar 
    Hollister, R. D., Webber, P. J. & Bay, C. Plant response to temperature in northern Alaska: Implications for predicting vegetation change. Ecology 86, 1562–1570 (2005).Article 

    Google Scholar 
    Oberbauer, S. et al. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120481 (2013).Article 
    CAS 

    Google Scholar 
    Tieszen, L. L. Photosynthesis in the principal Barrow, Alaska, species: A summary of field and laboratory responses. In Vegetation and Production Ecology of an Alaskan Arctic Tundra (ed. Tieszen, L. L.) 241–268 (Springer, 1978).Chapter 

    Google Scholar 
    Körner, Ch. CO2 exchange in the alpine sedge Carex curvula as influenced by canopy structure, light and temperature. Oecologia 53, 98–104 (1982).Article 
    ADS 

    Google Scholar 
    Tieszen, L. L. Photosynthesis and respiration in arctic tundra grasses: Field light intensity and temperature responses. Arct. Alp. Res. 5, 239–251 (1973).Article 
    CAS 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).Article 

    Google Scholar 
    Marchand, F. L., Mertens, S., Kockelbergh, F., Beyens, L. & Nijs, I. Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Glob. Change Biol. 11, 2078–2089 (2005).Article 
    ADS 

    Google Scholar 
    Yan, W. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607–614 (1999).Article 

    Google Scholar 
    Zhou, G. & Wang, Q. A new nonlinear method for calculating growing degree days. Sci. Rep. 8, 10149 (2018).Article 
    ADS 

    Google Scholar 
    Kramer, K. Selecting a model to predict the onset of growth of Fagus sylvatica. J. Appl. Ecol. 31, 172 (1994).Article 

    Google Scholar 
    Nakano, Y., Higuchi, Y., Sumitomo, K. & Hisamatsu, T. Flowering retardation by high temperature in chrysanthemums: Involvement of FLOWERING LOCUS T-like 3 gene repression. J. Exp. Bot. 64, 909–920 (2013).Article 
    CAS 

    Google Scholar 
    del Olmo, I., Poza-Viejo, L., Piñeiro, M., Jarillo, J. A. & Crevillén, P. High ambient temperature leads to reduced FT expression and delayed flowering in Brassica rapa via a mechanism associated with H2A.Z dynamics. Plant J. 100, 343–356 (2019).Article 

    Google Scholar 
    Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Hollister, R. D. et al. A review of open top chamber (OTC) performance across the ITEX Network. Arct. Sci. https://doi.org/10.1139/AS-2022-0030 (2022).Article 

    Google Scholar 
    Bütikofer, L. et al. The problem of scale in predicting biological responses to climate. Glob. Change Biol. 26, 6657–6666 (2020).Article 
    ADS 

    Google Scholar 
    Gu, S. Growing degree hours—A simple, accurate, and precise protocol to approximate growing heat summation for grapevines. Int. J. Biometeorol. 60, 1123–1134 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F. & Pitcairn, M. J. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 42, 169–176 (1999).Article 
    ADS 

    Google Scholar 
    Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ettinger, A. K., Buonaiuto, D. M., Chamberlain, C. J., Morales-Castilla, I. & Wolkovich, E. M. Spatial and temporal shifts in photoperiod with climate change. New Phytol. 230, 462–474 (2021).Article 
    CAS 

    Google Scholar 
    Seyednasrollah, B., Swenson, J. J., Domec, J.-C. & Clark, J. S. Leaf phenology paradox: Why warming matters most where it is already warm. Remote Sens. Environ. 209, 446–455 (2018).Article 
    ADS 

    Google Scholar 
    Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. New Phytol. 231, 32–39 (2021).Article 

    Google Scholar 
    Chaudhry, S. & Sidhu, G. P. S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 41, 1–31 (2022).Article 
    CAS 

    Google Scholar 
    Sun, X. et al. Global diurnal temperature range (DTR) changes since 1901. Clim. Dyn. 52, 3343–3356 (2019).Article 

    Google Scholar 
    Ballinger, T. J. NOAA Arctic Report Card 2021: Surface Air Temperature. https://doi.org/10.25923/53XD-9K68 (2021).Jagadish, S. V. K., Way, D. A. & Sharkey, T. D. Plant heat stress: Concepts directing future research. Plant Cell Environ. 44, 1992–2005 (2021).Article 
    CAS 

    Google Scholar 
    Gilmore, E. C. Jr. & Rogers, J. S. Heat units as a method of measuring maturity in corn. Agron. J. 50, 611–615 (1958).Article 

    Google Scholar 
    Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: A review. Glob. Change Biol. 20, 408–417 (2014).Article 
    ADS 

    Google Scholar 
    Molitor, D., Junk, J., Evers, D., Hoffmann, L. & Beyer, M. A high-resolution cumulative degree day-based model to simulate phenological development of grapevine. Am. J. Enol. Vitic. 65, 72–80 (2014).Article 

    Google Scholar 
    CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl. Acad. Sci. 111, 4916–4921 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Inouye, B. D., Ehrlén, J. & Underwood, N. Phenology as a process rather than an event: From individual reaction norms to community metrics. Ecol. Monogr. 89, e01352 (2019).Article 

    Google Scholar 
    Miles, W. T. S. et al. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds. Glob. Change Biol. 23, 1400–1414 (2017).Article 
    ADS 

    Google Scholar 
    Moussus, J.-P., Julliard, R. & Jiguet, F. Featuring 10 phenological estimators using simulated data. Methods Ecol. Evol. 1, 140–150 (2010).Article 

    Google Scholar 
    Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’ (2019).Auguie, B. egg: Extensions for ‘ggplot2’: Custom Geom, Custom Themes, Plot Alignment, Labelled Panels, Symmetric Scales, and Fixed Panel Size (2019).Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’ (2020).Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics (2017).Hamner, B. & Frasco, M. Metrics: Evaluation Metrics for Machine Learning (2018).Gilli, M., Maringer, D. & Schumann, E. Numerical Methods and Optimization in Finance (Elsevier/Academic Press, 2019).MATH 

    Google Scholar 
    Garnier, S. viridis: Default Color Maps from ‘matplotlib’ (2018).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
    ADS 

    Google Scholar  More

  • in

    Terrestrial invasive species alter marine vertebrate behaviour

    Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Evol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Burpee, B. T. & Saros, J. E. Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes. Environ. Sci. 22, 1166–1189 (2020).CAS 

    Google Scholar 
    Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).Article 

    Google Scholar 
    Justino, D. G., Maruyama, P. K. & Oliveira, P. E. Floral resource availability and hummingbird territorial behaviour on a Neotropical savanna shrub. J. Ornithol. 153, 189–197 (2012).Article 

    Google Scholar 
    Van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155 (2018).Gunn, R. L., Hartley, I. R., Algar, A. C., Nadiarti, N. & Keith, S. A. Variation in the behaviour of an obligate corallivore is influenced by resource availability. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-022-03132-6 (2022).Keith, S. A. et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat. Clim. Change 8, 986–991 (2018).Article 

    Google Scholar 
    Davies, N. B. & Hartley, I. R. Food patchiness, territory overlap and social systems: an experiment with dunnocks Prunella modularis. J. Anim. Ecol. 65, 837–846 (1996).Article 

    Google Scholar 
    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delarue, P. E. M., Kerr, S. E. & Rymer, T. L. Habitat complexity, environmental change and personality: a tropical perspective. Behav. Process. 120, 101–110 (2015).Stimson, J. The role of the territory in the ecology of the intertidal limpet Lottia gigantea (Gray). Ecology 54, 1020–1030 (1973).Article 

    Google Scholar 
    Sells, S. N. & Mitchell, M. S. The economics of territory selection. Ecol. Modell. 438, 109329 (2020).Article 

    Google Scholar 
    Graf, P. M., Mayer, M., Zedrosser, A., Hackländer, K. & Rosell, F. Territory size and age explain movement patterns in the Eurasian beaver. Mamm. Biol. 81, 587–594 (2016).Article 

    Google Scholar 
    Simon, C. The influence of food abundance on territory size in the Iguanid lizard Sceloporus jarrovi. Ecology 56, 993–998 (1975).Article 

    Google Scholar 
    Ippi, S., Cerón, G., Alvarez, L. M., Aráoz, R. & Blendinger, P. G. Relationships among territory size, body size, and food availability in a specialist river duck. Emu 118, 293–303 (2018).Article 

    Google Scholar 
    Berumen, M. L. & Pratchett, M. S. Effects of resource availability on the competitive behaviour of butterflyfishes (Chaetodontidae). In Proc. 10th International Coral Reef Symposium 644–650 (ReefBase, 2006); http://reefbase.org/resource_center/publication/icrs.aspx?icrs=ICRS10Brown, J. L. The evolution of diversity in avian territorial systems. Wilson Bull. 76, 160–169 (1964).
    Google Scholar 
    Peiman, K. S. & Robinson, B. W. Ecology and evolution of resource-related heterospecific aggression. Q. Rev. Biol. 85, 133–158 (2010).Article 
    PubMed 

    Google Scholar 
    Grant, J. W. A., Girard, I. L., Breau, C. & Weir, L. K. Influence of food abundance on competitive aggression in juvenile convict cichlids. Anim. Behav. 63, 323–330 (2002).Article 

    Google Scholar 
    Duda, M. P. et al. Long-term changes in terrestrial vegetation linked to shifts in a colonial seabird population. Ecosystems 23, 1643–1656 (2020).Article 
    CAS 

    Google Scholar 
    Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22, 16–26 (2008).Article 
    PubMed 

    Google Scholar 
    Honig, S. E. & Mahoney, B. Evidence of seabird guano enrichment on a coral reef in Oahu, Hawaii. Mar. Biol. 163, 22 (2016).Benkwitt, C. E., Gunn, R. L., Le Corre, M., Carr, P. & Graham, N. A. J. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr. Biol. 31, 2704–2711.e4 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Savage, C. Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci. Rep. 9, 4284 (2019).Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).Article 

    Google Scholar 
    Benkwitt, C. E., Taylor, B. M., Meekan, M. G. & Graham, N. A. J. Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish. Sci. Rep. 11, 12575 (2021).Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat. Ecol. Evol. 4, 919–926 (2020).Article 
    PubMed 

    Google Scholar 
    Robles, H. & Martin, K. Resource quantity and quality determine the inter-specific associations between ecosystem engineers and resource users in a cavity-nest web. PLoS ONE 8, e74694 (2013).Catano, L. B., Gunn, B. K., Kelley, M. C. & Burkepile, D. E. Predation risk, resource quality, and reef structural complexity shape territoriality in a coral reef herbivore. PLoS ONE 10, e0118764 (2015).Wilcox, K. A., Wagner, M. A. & Reynolds, J. D. Salmon subsidies predict territory size and habitat selection of an avian insectivore. PLoS ONE 16, e0254314 (2021).Frost, S. K. & Frost, P. G. H. Territoriality and changes in resource use by sunbirds at Leonotis leonurus (Labiatae). Oecologia 45, 109–116 (1980).Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, 1982).Book 

    Google Scholar 
    Dochtermann, N. A., Schwab, T., Anderson Berdal, M., Dalos, J. & Royauté, R. The heritability of behavior: a meta-analysis. J. Hered. 110, 403–410 (2019).Article 
    PubMed 

    Google Scholar 
    Sheppard, C. R. C. et al. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. Aquat. Conserv. 22, 232–261 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soeparno, Y. N., Shibuno, T. & Yamaoka, K. Relationship between pelagic larval duration and abundance of tropical fishes on temperate coasts of Japan. J. Fish. Biol. 80, 346–357 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).Article 
    PubMed 

    Google Scholar 
    Dall, S. R. X., Houston, A. I. & McNamara, J. M. The behavioural ecology of personality: consistent individual differences from an adaptive perspective. Ecol. Lett. 7, 734–739 (2004).Article 

    Google Scholar 
    Klumpp, D., McKinnon, D. & Daniel, P. Damselfish territories: zones of high productivity on coral reefs. Mar. Ecol. Prog. Ser. 40, 41–51 (1987).Article 

    Google Scholar 
    Carr, P. et al. Status and phenology of breeding seabirds and a review of important bird and biodiversity areas in the British Indian Ocean Territory. Bird Conserv. Int. 31, 14–34 (2020).Article 

    Google Scholar 
    Hoey, A. S. & Bellwood, D. R. Damselfish territories as a refuge for macroalgae on coral reefs. Coral Reefs 29, 107–118 (2010).Article 

    Google Scholar 
    Samways, M. J. Breakdown of butterflyfish (Chaetodontidae) territories associated with the onset of a mass coral bleaching event. Aquat. Conserv. 15, 101–107 (2005).Article 

    Google Scholar 
    Morgan, I. E. & Kramer, D. L. Determinants of social organization in a coral reef fish, the blue tang, Acanthurus coeruleus. Environ. Biol. Fishes 72, 443–453 (2005).Article 

    Google Scholar 
    Ceccarelli, D. M. Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26, 853–866 (2007).Article 

    Google Scholar 
    Gochfeld, D. J. Territorial damselfishes facilitate survival of corals by providing an associational defense against predators. Mar. Ecol. Prog. Ser. 398, 137–148 (2010).Article 

    Google Scholar 
    Gordon, T. A. C., Cowburn, B. & Sluka, R. D. Defended territories of an aggressive damselfish contain lower juvenile coral density than adjacent non-defended areas on Kenyan lagoon patch reefs. Coral Reefs 34, 13–16 (2015).Article 

    Google Scholar 
    Hays, G. C. et al. A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges. Mar. Biol. 167, 159–167 (2020).Article 

    Google Scholar 
    Nanninga, G. B., Côté, I. M., Beldade, R. & Mills, S. C. Behavioural acclimation to cameras and observers in coral reef fishes. Ethology 123, 705–711 (2017).Article 

    Google Scholar 
    Polunin, N. V. C. & Klumpp, D. W. Ecological correlates of foraging periodicity in herbivorous reef fishes of the Coral Sea. J. Exp. Mar. Biol. Ecol. 126, 1–20 (1989).Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Paola, V. D., Vullioud, P., Demarta, L., Alwany, M. A. & Ros, A. F. H. Factors affecting interspecific aggression in a year-round territorial species, the jewel damselfish. Ethology 118, 721–732 (2012).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Bürkner, P. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Soft. 80, 1–28 (2017).Article 

    Google Scholar 
    RStan: the R interface to Stan. R package version 2.21.5 (Stan Development Team, 2022).Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Soft. 33, 1–22 (2010).Article 

    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).Article 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Burkner, P. C. Rank-normalization, folding, and localization: an improved (formula presented) for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar  More

  • in

    A possible unique ecosystem in the endoglacial hypersaline brines in Antarctica

    Martínez, G. M. & Renno, N. O. Water and brines on Mars: Current evidence and implications for MSL. Sp. Sci. Rev. 175(1), 29–51 (2013).Article 
    ADS 

    Google Scholar 
    Orosei, et al. Radar evidence of subglacial liquid water on Mars. Science 361(6401), 490–493. https://doi.org/10.1126/science.aar7268 (2018).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. et al. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nat. Commun. 6(6831), 1–9 (2015).
    Google Scholar 
    Forte, E., Dalle Fratte, M., Azzaro, M. & Guglielmin, M. Pressurized brines in continental Antarctica as a possible analogue of Mars. Sci. Rep. 6, 33158 (2016).Article 
    ADS 

    Google Scholar 
    Siegert, M. J., Kennicutt, M. C. & Bindschadler, R. A. Antarctic Subglacial Aquatic Environments (Wiley, 2013).
    Google Scholar 
    Boulton, G. S., Caban, P. E. & van Gijssel, K. Groundwater flow beneath ice sheets: Part I—Large-scale patterns. Quatern. Sci. Rev. 14, 545–562 (1995).Article 
    ADS 

    Google Scholar 
    Fricker, H. A., Carter, S. P., Bell, R. E. & Scambos, T. Active lakes of Recovery Ice Stream, East Antarctica: A bedrock-controlled subglacial hydrological system. J. Glaciol. 60(223), 1015–1030. https://doi.org/10.3189/2014JoG14J063 (2014).Article 
    ADS 

    Google Scholar 
    Siegert, M. J. A wide variety of unique environments beneath the Antarctic ice sheet. Geology 44(5), 399–400. https://doi.org/10.1130/focus052016.1 (2016).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Lyons, W. B. et al. The geochemistry of englacial brine from Taylor Glacier, Antarctica. J. Geophys. Res. Biogeosci. 124, 633–648. https://doi.org/10.1029/2018JG004411 (2019).Article 

    Google Scholar 
    Campbell, S., Courville, Z., Sinclair, S. & Wilner, J. Brine, englacial structure and basal properties near the terminus of McMurdo Ice Shelf, Antarctica. Ann. Glaciol. 58, 74. https://doi.org/10.1017/aog.2017.26 (2017).Article 

    Google Scholar 
    Greene, S. et al. Canadian Shield brine from the Con Mine, Yellowknife, NT, Canada: Noble gas evidence for an evaporated Palaeozoic seawater origin mixed with glacial meltwater and Holocene recharge. Geochim. Cosmochim. Acta 72, 4008–4019. https://doi.org/10.1016/j.gca.2008.05.058 (2008).Article 
    ADS 

    Google Scholar 
    Siegfried, M. R., Fricker, H. A., Carter, S. P. & Tulaczyk, S. Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica. Geophys. Res. Lett. 43, 2640–2648. https://doi.org/10.1002/2016GL067758 (2016).Article 
    ADS 

    Google Scholar 
    Stearns, L. A., Smith, B. E. & Hamilton, G. S. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 1(12), 827–831. https://doi.org/10.1038/ngeo356 (2008).Article 
    ADS 

    Google Scholar 
    Kennicutt, M. C. et al. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct. Sci. 27(01), 3–18. https://doi.org/10.1017/S0954102014000674 (2015).Article 
    ADS 

    Google Scholar 
    Welch, K. A. et al. Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. Antarct. Sci. 22(06), 662–672. https://doi.org/10.1017/S0954102010000702 (2010).Article 
    ADS 

    Google Scholar 
    Skidmore, M., Tranter, M., Tulaczyk, S. & Lanoil, B. Hydrochemistry of ice stream beds—evaporitic or microbial effects?. Hydrol. Process. 24(4), 517–523 (2010).
    Google Scholar 
    Lüttge, A. & Conrad, P. G. Direct observation of microbial inhibition of calcite dissolution. Appl. Environ. Microbiol. 20, 1627–1632 (2004).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. & Priscu, J. C. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl. Environ. Microbiol. 73(12), 4029–4039 (2007).Article 
    ADS 

    Google Scholar 
    Mikucki, J. A. et al. A contemporary microbially maintained subglacial ferrous “Ocean”. Science 324(5925), 397–400. https://doi.org/10.1126/science.1167350 (2009).Article 
    ADS 

    Google Scholar 
    Chua, M. J. et al. Genomic and physiological characterization and description of Marinobacter gelidimuriae sp. Nov., a psychrophilic, moderate halophile from Blood Falls, an Antarctic subglacial brine. FEMS Microbiol. Ecol. 94, fiy021 (2018).Article 

    Google Scholar 
    Murray, A. E. et al. Microbial life at −13 °C in the brine of an ice-sealed Antarctic lake. PNAS 109, 20626–20631. https://doi.org/10.1073/pnas.1208607109 (2012).Article 
    ADS 

    Google Scholar 
    Borruso, L. et al. A thin ice layer segregates two distinct fungal communities in Antarctic brines from Tarn Flat (Northern Victoria Land). Sci. Rep. 8, 1–9 (2018).Article 

    Google Scholar 
    Papale, M. et al. Microbial assemblages in pressurized Antarctic brine pockets (Tarn Flat, Northern Victoria Land): A hotspot of biodiversity and activity. Microorganisms 7, 333 (2019).Article 

    Google Scholar 
    Azzaro, M. et al. The prokaryotic community in an extreme Antarctic environment: The brines of Boulder Clay lakes (Northern Victoria Land). Hydrobiologia 848, 1837–1857. https://doi.org/10.1007/s10750-021-04557-2 (2021).Article 

    Google Scholar 
    Lo Giudice, A. et al. Prokaryotic diversity and metabolically active communities in brines from two perennially ice-covered Antarctic lakes. Astrobiology 21, 551–565 (2021).Article 
    ADS 

    Google Scholar 
    Sannino, C. et al. Intra-and inter-cores fungal diversity suggests interconnection of different habitats in an Antarctic frozen lake (Boulder Clay, Northern Victoria Land). Environ. Microbiol. 22, 3463–3477 (2020).Article 

    Google Scholar 
    Bratina, B. J., Stevenson, B. S., Green, W. J. & Schmidt, T. M. Manganese reduction by microbes from oxic regions of the lake vanda (Antarctica) water column. Appl. Environ. Microbiol. 64, 3791–3797 (1998).Article 
    ADS 

    Google Scholar 
    Tregoning, G. S. et al. A halophilic bacterium inhabiting the warm, CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 81, 1988–1995 (2015).Article 
    ADS 

    Google Scholar 
    Kwon, M. et al. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environ. Microbiol. 19, 2258–2271 (2017).Article 

    Google Scholar 
    Forte, E., Azzaro, M. & Guglielmin, M. Evidence of an unprecedented water erosion and supraglacial-fluvial sedimentation on an Antarctic glacier in the Holocene. Sci. Total Environ. 20, 20 (2022).
    Google Scholar 
    Doran, P. T. et al. Radiocarbon distribution and the effect of legacy in lakes of the McMurdo Dry Valleys, Antarctica. Limnol. Oceanogr. 59(3), 811–826. https://doi.org/10.4319/lo.2014.59.3.0811 (2014).Article 
    ADS 

    Google Scholar 
    Saccò, M. et al. Salt to conserve: A review on the ecology and preservation of hypersaline ecosystems. Biol. Rev. 96, 2828–2850 (2021).Article 

    Google Scholar 
    Ramoneda, J. et al. Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system. FEMS Microbiol. Ecol. 97, fiab044 (2021).Article 

    Google Scholar 
    Saxton, M. A. et al. Sulfate reduction and methanogenesis in the hypersaline deep waters and sediments of a perennially ice-covered lake. Limnol. Oceanogr. 66, 1804–1818 (2021).Article 
    ADS 

    Google Scholar 
    Frey, B. et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 92, fiw018. https://doi.org/10.1093/femsec/fiw018 (2016).Article 

    Google Scholar 
    Hu, W. et al. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau. Extremophiles 20, 337–349 (2016).Article 

    Google Scholar 
    Alekseev, I., Zverev, A. & Abakumov, E. Microbial communities in permafrost soils of Larsemann Hills, Eastern Antarctica: Environmental controls and effect of human impact. Microorganisms 8(8), 1202 (2020).Article 

    Google Scholar 
    Tian, R. et al. Small and mighty: Adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome 8, 51 (2020).Article 

    Google Scholar 
    Bowman, J. P., McCammon, S. A., Rea, S. M. & McMeekin, T. A. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol. Lett. 183, 81–88 (2000).Article 

    Google Scholar 
    Aislabie, J. & Bowman J. P. “Archaeal Diversity in Antarctic Ecosystems.” Polar Microbiology: The Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments 31–59 (CRC Press, 2010).
    Google Scholar 
    Zhang, C. J. et al. Spatial and seasonal variation of methanogenic community in a river-bay system in South China. Appl. Microbiol. Biotechnol. 104, 4593–4603. https://doi.org/10.1007/s00253-020-10613-z (2020).Article 

    Google Scholar 
    Bapteste, E., Brochier, C. & Boucher, Y. Higher-level classification of the archaea: Evolution of methanogenesis and methanogens. Archaea 1, 353–363 (2005).Article 

    Google Scholar 
    Bowman, J. P. et al. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov.. Microbiology 144, 1601–1609 (1998).Article 

    Google Scholar 
    Donachie, S. P., Bowman, J. P. & Alam, M. Psychroflexus tropicus sp. Nov., an obligately halophilic Cytophaga-Flavobacterium-Bacteroides group bacterium from an Hawaiian hypersaline lake. Int. J. Syst. Evol. Microbiol. 54, 935–940 (2004).Article 

    Google Scholar 
    Zhong, Z. P. et al. Psychroflexus salis sp. Nov. and Psychroflexus planctonicus sp. Nov., isolated from a salt lake. Int. J. Syst. Evol. Microbiol. 66, 125–131 (2016).Article 

    Google Scholar 
    Chun, J., Kang, J. Y. & Jahng, K. Y. Psychroflexus salarius sp. Nov., isolated from Gomso salt pan. Int. J. Syst. Evol. Microbiol. 64, 3467–3472 (2014).Article 

    Google Scholar 
    Yoon, J. H., Kang, S. J., Jung, Y. T. & Oh, T. K. Psychroflexus salinarum sp. Nov., isolated from a marine solar saltern. Int. J. Syst. Evol. Microbiol. 59, 2404–2407 (2009).Article 

    Google Scholar 
    Buzzini, P., Turchetti, B. & Yurkov, A. Extremophilic yeasts: The toughest yeasts around?. Yeast 35, 487–497 (2018).Article 

    Google Scholar 
    Coleine, C., Stajich, J. E. & Selbmann, L. Fungi are key players in extreme ecosystems. Trends Ecol. Evol. S0169–5347(22), 00025–00028 (2022).
    Google Scholar 
    Gonçalves, V. N. et al. Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles 21, 1005–1015 (2017).Article 

    Google Scholar 
    Ogaki, M. B. et al. Cultivable fungi present in deep-sea sediments of Antarctica: Taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 24, 227–238 (2020).Article 

    Google Scholar 
    Wedin, M., Döring, H. & Gilenstam, G. Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol. 164, 459–465 (2004).Article 

    Google Scholar 
    Sterflinger, K. Black yeasts and meristematic fungi: Ecology, diversity and identification. In Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook (eds Péter, G. & Rosa, C.) 501–514 (Springer, 2006).Chapter 

    Google Scholar 
    Canini, F. et al. Growth forms and functional guilds distribution of soil Fungi in coastal versus inland sites of Victoria Land, Antarctica. Biology (Basel) 10, 320 (2021).
    Google Scholar 
    Vaniman, D. T. et al. Magnesium sulfate salts and the history of water on Mars. Nature 431, 663–665 (2004).Article 
    ADS 

    Google Scholar 
    Gendrin, A. et al. Sulfates in martian layered terrains: The OMEGA/Mars Express view. Science 307, 1587–1591 (2005).Article 
    ADS 

    Google Scholar 
    Carr, M. H. & Head, J. W. I. I. I. Geologic history of Mars. Earth Planet Sci. Lett. 294, 185–203 (2010).Article 
    ADS 

    Google Scholar 
    Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015).Article 
    ADS 

    Google Scholar 
    Cragin, J. H., Gow, A. J. & Kovacs, A. Chemical fractionation of brine in the McMurdo Ice Shelf, Antarctica. CRREL Rep. 20, 83–86 (1983).
    Google Scholar 
    Frank, T. D. & Gui, Z. Cryogenic origin for brine in the subsurface of southern McMurdo Sound, Antarctica. Geology 38(7), 587–590. https://doi.org/10.1130/G30849.1 (2010).Article 
    ADS 

    Google Scholar 
    Gardner, C. B. & Lyons, W. B. Modeled geochemical composition of cryogenically produced subglacial Brines, Antarctica. Antarct. Sci. 31(3), 165–166 (2019).Article 
    ADS 

    Google Scholar 
    Lyons, W. B. et al. Halogen geochemistry of the McMurdo Dry Valleys lakes, Antarctica: Clues to the origin of solutes and lake evolution. Geochim. Cosmochim. Acta 69, 305–323 (2005).Article 
    ADS 

    Google Scholar 
    Armienti, P. & Baroni, C. Cenozoic climatic change in Antarctica recorded by volcanic activity and landscape evolution. Geology 27(7), 617–620 (1999).Article 
    ADS 

    Google Scholar 
    Di Nicola, L. et al. Multiple cosmogenic nuclides document complex Pleistocene exposure history of glacial drifts in Terra Nova Bay (northern Victoria Land, Antarctica). Quatern. Res. 71(1), 83–92 (2009).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Levy, R. et al. Late Neogene climate and glacial history of the Southern Victoria Land coast from integrated drill core, seismic and outcrop data. Glob. Planet. Change 80–81, 61–84 (2012).Article 
    ADS 

    Google Scholar 
    Prebble, J. G., Raine, J. I., Barrett, P. J. & Hannah, M. J. Vegetation and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 41–57 (2006).Article 

    Google Scholar 
    Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. Myco Keys 10, 1–43 (2015).Article 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. (2010).Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).Article 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47, D259–D264. https://doi.org/10.1093/nar/gky1022 (2019).Article 

    Google Scholar  More