More stories

  • in

    Vitality as a measure of animal welfare during purse seine pumping related crowding of Atlantic mackerel (Scomber scrombrus)

    Huntingford, F. A. et al. Current issues in fish welfare. J. Fish Biol. 68, 332–372 (2006).Article 

    Google Scholar 
    Kaiser, M. J. & Huntingford, F. A. Introduction to papers on fish welfare in commercial fisheries. J. Fish Biol. 75, 2852–2854 (2009).Article 
    CAS 

    Google Scholar 
    Veldhuizen, L. J. L., Berentsen, P. B. M., de Boer, I. J. M., van de Vis, J. W. & Bokkers, E. A. M. Fish welfare in capture fisheries: A review of injuries and mortality. Fish. Res. 204, 41–48 (2018).Article 

    Google Scholar 
    Breen, M. et al. Catch welfare in commercial fisheries. In The Welfare of Fish (eds Kristiansen, T. S. et al.) 401–437 (Springer, 2020).Chapter 

    Google Scholar 
    Diggles, B. K., Cooke, S. J., Rose, J. D. & Sawynok, W. Ecology and welfare of aquatic animals in wild capture fisheries. Rev. Fish. Biol. Fish. 21, 739–765 (2011).Article 

    Google Scholar 
    Korte, S. M., Olivier, B. & Koolhaas, J. M. A new animal welfare concept based on allostasis. Physiol. Behav. 92, 422–428 (2007).Article 
    CAS 

    Google Scholar 
    Broom, D. M. The scientific assessment of animal welfare. Appl. Anim. Behav. Sci. 20, 5–19 (1988).Article 

    Google Scholar 
    Broom, D. M. Animal welfare: Concepts and measurement. J. Anim. Sci. 69, 4167–4175 (1991).Article 
    CAS 

    Google Scholar 
    Tveit, G. M., Anders, N., Bondø, M. S., Mathiassen, J. R. & Breen, M. Atlantic mackerel (Scomber scombrus) change skin colour in response to crowding stress. J. Fish Biol. 100, 738–747 (2022).Article 
    CAS 

    Google Scholar 
    Noble, C. et al. Welfare Indicators for Farmed Atlantic Salmon: Tools for Assessing Fish Welfare (Nofima, 2018).
    Google Scholar 
    Sopinka, N. M., Donaldson, M. R., O’Connor, C. M., Suski, C. D. & Cooke, S. J. Stress indicators in fish. In Fish Physiology vol 35 405–462 (Elsevier, 2016).
    Google Scholar 
    Lawrence, M. J. et al. Are 3 minutes good enough for obtaining baseline physiological samples from teleost fish?. Can. J. Zool. 96, 774–786 (2018).Article 
    CAS 

    Google Scholar 
    Lawrence, M. J. et al. Best practices for non-lethal blood sampling of fish via the caudal vasculature. J. Fish Biol. 97, 4–15 (2020).Article 

    Google Scholar 
    Clark, T. D. et al. The efficacy of field techniques for obtaining and storing blood samples from fishes. J. Fish Biol. 79, 1322–1333 (2011).Article 
    CAS 

    Google Scholar 
    Davis, M. W., Olla, B. L. & Schreck, C. B. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress. J. Fish Biol. 58, 1–15 (2001).Article 

    Google Scholar 
    Rushen, J. Problems associated with the interpretation of physiological data in the assessment of animal welfare. Appl. Anim. Behav. Sci. 28, 381–386 (1991).Article 

    Google Scholar 
    Dawkins, M. Using behaviour to assess animal welfare. Anim. Welf. 13, 3–7 (2004).
    Google Scholar 
    Moberg, G. P. & Mench, J. A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (CABI, 2000).Book 

    Google Scholar 
    Wedemeyer, G. A. Effects of rearing conditions on the health and physiological quality of fish in intensive culture. In Fish Stress and Health in Aquaculture vol 278 (Cambridge University Press, 1997).
    Google Scholar 
    Botreau, R. et al. Aggregation of measures to produce an overall assessment of animal welfare. Part 1: A review of existing methods. Animal 1, 1179–1187 (2007).Article 
    CAS 

    Google Scholar 
    Turnbull, J., Bell, A., Adams, C., Bron, J. & Huntingford, F. Stocking density and welfare of cage farmed Atlantic salmon: Application of a multivariate analysis. Aquaculture 243, 121–132 (2005).Article 

    Google Scholar 
    North, B. P. et al. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 255, 466–479 (2006).Article 

    Google Scholar 
    Spoolder, H., De Rosa, G., Hörning, B., Waiblinger, S. & Wemelsfelder, F. Integrating parameters to assess on-farm welfare. Anim. Welf. 12, 529–534 (2003).CAS 

    Google Scholar 
    Walker, J. K., Dale, A. R., D’Eath, R. B. & Wemelsfelder, F. Qualitative Behaviour Assessment of dogs in the shelter and home environment and relationship with quantitative behaviour assessment and physiological responses. Appl. Anim. Behav. Sci. 184, 97–108 (2016).Article 

    Google Scholar 
    Brscic, M. et al. Welfare assessment: Correlations and integration between a Qualitative Behavioural Assessment and a clinical health protocol applied in veal calves farms. Ital. J. Anim. Sci. 8, 601–603 (2009).Article 

    Google Scholar 
    Andreasen, S. N., Wemelsfelder, F., Sandøe, P. & Forkman, B. The correlation of Qualitative Behavior Assessments with Welfare Quality® protocol outcomes in on-farm welfare assessment of dairy cattle. Appl. Anim. Behav. Sci. 143, 9–17 (2013).Article 

    Google Scholar 
    Phythian, C. J., Michalopoulou, E., Cripps, P. J., Duncan, J. S. & Wemelsfelder, F. On-farm qualitative behaviour assessment in sheep: Repeated measurements across time, and association with physical indicators of flock health and welfare. Appl. Anim. Behav. Sci. 175, 23–31 (2016).Article 

    Google Scholar 
    Davis, M. W., Benoît, H. P., Breen, M., Kopp, D. & Depestele, J. Vitality Assessments. In ICES guidelines for estimating discard survival, ICES Cooperative Research Reports No. 351. 219 (International Council for the Exploration of the Sea, 2021). https://doi.org/10.17895/ices.pub.8006.Stoner, A. W. Assessing stress and predicting mortality in economically significant crustaceans. Rev. Fish. Sci. 20, 111–135 (2012).Article 

    Google Scholar 
    Humborstad, O.-B., Davis, M. W. & Løkkeborg, S. Reflex impairment as a measure of vitality and survival potential of Atlantic cod (Gadus morhua). Fish. Bull. 107, 395–402 (2009).
    Google Scholar 
    Campbell, M. D., Tolan, J., Strauss, R. & Diamond, S. L. Relating angling-dependent fish impairment to immediate release mortality of red snapper (Lutjanus campechanus). Fish. Res. 106, 64–70 (2010).Article 

    Google Scholar 
    Davis, M. W. Fish stress and mortality can be predicted using reflex impairment. Fish Fish. 11, 1–11 (2010).Article 

    Google Scholar 
    Barkley, A. S. & Cadrin, S. X. Discard mortality estimation of yellowtail flounder using reflex action mortality predictors. Trans. Am. Fish. Soc. 141, 638–644 (2012).Article 

    Google Scholar 
    Raby, G. D. et al. Validation of reflex indicators for measuring vitality and predicting the delayed mortality of wild coho salmon bycatch released from fishing gears. J. Appl. Ecol. 49, 90–98 (2012).Article 

    Google Scholar 
    LeDain, M. R. K. et al. Assisted recovery following prolonged submergence in fishing nets can be beneficial to turtles: An assessment with blood physiology and reflex impairment. Chelonian Conserv. Biol. 12, 172–177 (2013).Article 

    Google Scholar 
    Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018).Article 

    Google Scholar 
    Ben-Yami, M. Purse seining manual. (1994).Marçalo, A. et al. Mitigating slipping-related mortality from purse seine fisheries for small pelagic fish: Case studies from European Atlantic Waters. In The European Landing Obligation 297–318 (Springer, 2019).Chapter 

    Google Scholar 
    Digre, H., Tveit, G. M., Solvang-Garten, T., Eilertsen, A. & Aursand, I. G. Pumping of mackerel (Scomber scombrus) onboard purse seiners, the effect on mortality, catch damage and fillet quality. Fish. Res. 176, 65–75 (2016).Article 

    Google Scholar 
    Tenningen, M., Vold, A. & Olsen, R. E. The response of herring to high crowding densities in purse-seines: Survival and stress reaction. ICES J. Mar. Sci. 69, 1523–1531 (2012).Article 

    Google Scholar 
    Anders, N., Roth, B. & Breen, M. Physiological response and survival of Atlantic mackerel exposed to simulated purse seine crowding and release. Conserv. Physiol. 9, 25 (2021).Article 

    Google Scholar 
    Anders, N. et al. Effects on individual level behaviour in mackerel (Scomber scombrus) of sub-lethal capture related stressors: Crowding and hypoxia. PLoS One 14, e0213709 (2019).Article 
    CAS 

    Google Scholar 
    Marçalo, A. et al. Behavioural responses of sardines Sardina pilchardus to simulated purse-seine capture and slipping. J. Fish Biol. 83, 480–500 (2013).Article 

    Google Scholar 
    Anders, N., Eide, I., Lerfall, J., Roth, B. & Breen, M. Physiological and flesh quality consequences of pre-mortem crowding stress in Atlantic mackerel (Scomber scombrus). PLoS One 15, e0228454 (2020).Article 
    CAS 

    Google Scholar 
    Olsen, R. E., Oppedal, F., Tenningen, M. & Vold, A. Physiological response and mortality caused by scale loss in Atlantic herring. Fish. Res. 129–130, 21–27 (2012).Article 

    Google Scholar 
    Marçalo, A. et al. Fishing simulation experiments for predicting the effects of purse-seine capture on sardine (Sardina pilchardus). ICES J. Mar. Sci. 67, 334–344 (2010).Article 

    Google Scholar 
    Roth, B. & Skåra, T. Pre mortem capturing stress of Atlantic herring (Clupea harengus) in purse seine and subsequent effect on welfare and flesh quality. Fish. Res. 244, 106124 (2021).Article 

    Google Scholar 
    Marçalo, A. et al. Sardine (Sardina pilchardus) stress reactions to purse seine fishing. Mar. Biol. 149, 1509–1518 (2006).Article 

    Google Scholar 
    ICES. Working Group on Widely Distributed Stocks (WGWIDE). 1019 https://doi.org/10.17895/ices.pub.7475 (2020).Lockwood, S. J., Pawson, M. G. & Eaton, D. R. The effects of crowding on mackerel (Scomber scombrus L)— physical condition and mortality. Fish. Res. 2, 129–147 (1983).Article 

    Google Scholar 
    Huse, I. & Vold, A. Mortality of mackerel (Scomber scombrus L.) after pursing and slipping from a purse seine. Fish. Res. 20, 54–59 (2010).Article 

    Google Scholar 
    Sone, I., Skåra, T. & Olsen, S. H. Factors influencing post-mortem quality, safety and storage stability of mackerel species: A review. Eur. Food Res. Technol. 245, 775–791 (2019).Article 
    CAS 

    Google Scholar 
    Handegard, N. O. et al. Effects on schooling function in mackerel of sub-lethal capture related stressors: Crowding and hypoxia. PLoS One 12, e0190259 (2017).Article 

    Google Scholar 
    Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 40, 1769–1777 (2020).Article 

    Google Scholar 
    Koolhaas, J. M. et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 35, 1291–1301 (2011).Article 
    CAS 

    Google Scholar 
    Tenningen, M., Pobitzer, A., Handegard, N. O. & de Jong, K. Estimating purse seine volume during capture: Implications for fish densities and survival of released unwanted catches. ICES J. Mar. Sci. 76, 2481–2488 (2019).Article 

    Google Scholar 
    Fulton, T. W. The Rate of Growth of Fishes. 141–241 (1904).Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).Article 

    Google Scholar 
    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    Tenningen, M., Peña, H. & Macaulay, G. J. Estimates of net volume available for fish shoals during commercial mackerel (Scomber scombrus) purse seining. Fish. Res. 161, 244–251 (2015).Article 

    Google Scholar 
    Johnston, R., Jones, K. & Manley, D. Confounding and collinearity in regression analysis: A cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual. Quant. 52, 1957–1976 (2018).Article 

    Google Scholar 
    Burnham, K. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).Article 
    CAS 

    Google Scholar 
    Hartig, F. & Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (2022).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Speers-Roesch, B., Mandic, M., Groom, D. J. E. & Richards, J. G. Critical oxygen tensions as predictors of hypoxia tolerance and tissue metabolic responses during hypoxia exposure in fishes. J. Exp. Mar. Biol. Ecol. 449, 239–249 (2013).Article 
    CAS 

    Google Scholar 
    Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J. & Wilson, R. W. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit). Conserv. Physiol. 4, cow012 (2016).Article 

    Google Scholar 
    Domenici, P., Herbert, N. A., Lefrançois, C., Steffensen, J. F. & McKenzie, D. J. The Effect of Hypoxia on Fish Swimming Performance and Behaviour. In Swimming Physiology of Fish: Towards Using Exercise to Farm a Fit Fish in Sustainable Aquaculture (eds Palstra, A. P. & Planas, J. V.) 129–159 (Springer, 2013).Chapter 

    Google Scholar 
    Johnstone, A. D. F., Wardle, C. S. & Almatar, S. M. Routine respiration rates of Atlantic mackerel, Scomber scombrus L., and herring, Clupea harengus L., at low activity levels. J. Fish Biol. 42, 149–151 (1993).Article 

    Google Scholar 
    Peña, H., Macaulay, G. J., Ona, E., Vatnehol, S. & Holmin, A. J. Estimating individual fish school biomass using digital omnidirectional sonars, applied to mackerel and herring. ICES J. Mar. Sci. 78, 940–951 (2021).Article 

    Google Scholar 
    Kieffer, J. D. Limits to exhaustive exercise in fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126, 161–179 (2000).Article 
    CAS 

    Google Scholar 
    Wardle, C. S. & He, P. Burst swimming speeds of mackerel, Scomber scombrus L. J. Fish Biol. 32, 471–478 (1988).Article 

    Google Scholar 
    Anders, N., Breen, M., Skåra, T., Roth, B. & Sone, I. Effects of capture-related stress and pre-freezing holding in refrigerated sea water (RSW) on the muscle quality and storage stability of Atlantic mackerel (Scomber scombrus) during subsequent frozen storage. Food Chem. https://doi.org/10.1016/j.foodchem.2022.134819 (2022).Article 

    Google Scholar 
    Sogn-Grundvåg, G., Zhang, D. & Iversen, A. Large buyers at a fish auction: The case of the Norwegian pelagic auction. Mar. Policy 104, 232–238 (2019).Article 

    Google Scholar 
    Breen, M. et al. Behaviour & Welfare of Mackerel & Herring During Capture in Purse Seine. 134 https://www.fhf.no/prosjekter/prosjektbasen/901350/ (2021). More

  • in

    Nations forge historic deal to save species: what’s in it and what’s missing

    National negotiators inked a deal to protect nature in the early hours of 19 December in Montreal.Credit: Julian Haber/UN Biodiversity (CC BY 2.0)

    Despite earlier signals of possible failure, countries around the world have cemented a deal to safeguard nature — and for the first time, the agreement sets quantitative biodiversity targets akin to the one that nations set seven years ago to limit global warming to 1.5–2 ºC above pre-industrial levels.In the early hours of 19 December, more than 190 countries eked out the deal, known as the Kunming-Montreal Global Biodiversity Framework, during the COP15 international biodiversity summit in Montreal, Canada. A key target it sets is for nations to protect and restore 30% of the world’s land and seas globally by 2030, while also respecting the rights of Indigenous peoples who depend on and steward much of Earth’s remaining biodiversity. Another target is for nations to reduce the extinction rate by 10-fold for all species by 2050.
    10 startling images of nature in crisis — and the struggle to save it
    Steven Guilbeault, the Canadian environment minister, described COP15 as the most significant biodiversity conference ever held. “We have taken a great step forward in history,” he said at a plenary session where the framework was adopted.At several points during the United Nations summit, which ran from 7–19 December, arguments over details threatened to derail a deal. In the final hours of negotiations, the Democratic Republic of the Congo (DRC) objected to how the framework would be funded. Nonetheless, Huang Runqiu, China’s environment minister and president of COP15, brought the gavel down on the agreement.Negotiators from several African countries, which are home to biodiversity hotspots but say they need funding to preserve those areas, thought that China’s presidency strong-armed the deal. Uganda called it “fraud”. A source who spoke to Nature from the African delegation, and who asked not to be named to maintain diplomacy, said the negotiating process was not equitable towards developing countries and that the deal will not enable significant progress towards stemming biodiversity loss. “It was a coup d’état,” they say. However, a legal expert for the Convention on Biological Diversity — the treaty within which the framework now sits — told COP15 attendees that the adoption of the framework is legitimate.Concerns and disappointmentsScientists and conservation groups have welcomed the deal, emphasizing that there has never been an international agreement to protect nature on this scale. Kina Murphy, an ecologist and chief scientist at the Campaign for Nature, a conservation group, says, “It’s a historic moment for biodiversity.”

    Huang Runqiu, China’s environment minister and president of COP15, brought the gavel down on the biodiversity deal, despite objections from representatives of the Democratic Republic of the Congo.Credit: Julian Haber/UN Biodiversity (CC BY 2.0)

    But some concerns and disappointments remain. For one, the deal lacks a mandatory requirement for companies to track and disclose their impact on biodiversity. “Voluntary action is not enough,” says Eva Zabey, executive director of Business for Nature, a global coalition of 330 businesses seeking such a requirement so that firms can compete on a level playing field. Nevertheless, it sends a powerful signal to industry that it will need to reduce negative impacts over time, says Andrew Deutz, an environmental law and finance specialist at the Nature Conservancy, a conservation group in Arlington, Virginia.In addition, the deal is weak on tackling the drivers of biodiversity loss, because it does not specifically call out the most ecologically damaging industries, such as commercial fishing and agriculture, or set precise targets for them to put biodiversity conservation at the centre of their operations, researchers say.
    Can the world save a million species from extinction?
    “I would have liked more ambition and precision in the targets” to address those drivers, says Sandra Diaz, an ecologist at the National University of Córdoba, in Argentina.The deal is not legally binding, but countries will have to demonstrate progress towards achieving the framework’s goals through national and global reviews. Countries failed to meet the previous Aichi Biodiversity Targets, which were set in 2010 and expired in 2020; scientists have suggested that this failure occurred because of a lack of an accountability mechanism.With the reviews included, the framework “is a very good start, with clear quantitative targets” that will allow us to understand progress and the reasons for success and failure, says Stuart Pimm, an ecologist at Duke University in Durham, North Carolina, and head of Saving Nature, a non-profit conservation organization.A long time comingScientists have estimated that one million species are under threat because of habitat loss, mainly through converting land for agriculture. And they have warned that this biodiversity loss could threaten the health of ecosystems on which humans depend for clean water and disease prevention, and called for a new international conservation effort.
    Crucial biodiversity summit will go ahead in Canada, not China: what scientists think
    The new agreement took 4 years to resolve, in part because of delays caused by the COVID-19 pandemic (the summit was supposed to take place in Kunming, China, in 2020), but also because of arguments over how to finance conservation efforts. Nations finally agreed that by 2030, funding for biodiversity from all public and private sources must rise to at least US$200 billion per year. This includes at least $30 billion per year, contributed from wealthy to low-income nations. These figures fall short of the approximately $700 billion that researchers say is needed to fully safeguard and restore nature, but represents a tripling of existing donations.Low- and middle-income countries (LMICs), including the DRC, had called for a brand-new, independent fund for biodiversity financing. Lee White, environment minister from Gabon, told Nature that biodiversity-rich LMICs have difficulty accessing the Global Environment Facility (GEF), the current fund held by the World Bank in Washington DC, and that it is slow to distribute funds.But France and the European Union strongly objected to a new fund, arguing it would take too long to set up. The framework instead compromises by establishing a trust fund by next year under the GEF. The final agreement also calls on the GEF to reform its process to address the concerns of LMICs.Progress without drastic changeAnother sticking point during negotiations was how to fairly and equitably share the benefits of ‘digital sequence information’ — genetic data collected from plants, animals and other organisms. Communities in biodiversity-rich regions where genetic material is collected have little control over the commercialization of the data, and no way to recoup financial or other benefits from them. But countries came to an agreement to set up a mechanism to share profits, the details of which will be worked out by the next international biodiversity summit, COP16, in 2024.Overall, the deal marks progress toward tackling biodiversity loss, but it is not the drastic change scientists say they were hoping for. “I am not so sure that it has enough teeth to curb the activities that do most of the harm,” Diaz says. More

  • in

    Environmentally driven phenotypic convergence and niche conservatism accompany speciation in hoary bats

    Orr, M. R. & Smith, T. B. Ecology and speciation. Trends Ecol. Evol. 13, 502–506 (1998).Article 
    CAS 

    Google Scholar 
    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).
    Google Scholar 
    Gillespie, R. G. Adaptive radiation: Convergence and non-equilibrium. Curr. Biol. 23, R71–R74 (2013).Article 
    CAS 

    Google Scholar 
    Price, T. Speciation in Birds (Roberts and Company Publishers, 2008).
    Google Scholar 
    Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).Article 

    Google Scholar 
    Jønsson, K. A. et al. Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas. Proc. Natl. Acad. Sci. 109, 6620–6625 (2012).Article 
    ADS 

    Google Scholar 
    Wiens, J. J. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).
    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche Conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Winger, B. M., Barker, F. K. & Ree, R. H. Temperate origins of long-distance seasonal migration in New World songbirds. Proc. Natl. Acad. Sci. 111, 12115–12120 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    Gómez, C., Tenorio, E. A., Montoya, P. & Cadena, C. D. Niche-tracking migrants and niche-switching residents: Evolution of climatic niches in New World warblers (Parulidae). Proc. R. Soc. B Biol. Sci. 283, 20152458 (2016).Article 

    Google Scholar 
    Menchaca, A., Arteaga, M. C., Medellin, R. A. & Jones, G. Conservation units and historical matrilineal structure in the tequila bat (Leptonycteris yerbabuenae). Glob. Ecol. Conserv. 23, e01164 (2020).Article 

    Google Scholar 
    Medellín, R. A. et al. Follow me: Foraging distances of Leptonycteris yerbabuenae (Chiroptera: Phyllostomidae) in Sonora determined by fluorescent powder. J. Mammal. 99, 306–311 (2018).Article 

    Google Scholar 
    Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).Article 
    CAS 

    Google Scholar 
    Martínez-Meyer, E., Peterson, A. T. & Hargrove, W. W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305–314 (2004).Article 

    Google Scholar 
    Soto-Centeno, J. A. & Steadman, D. W. Fossils reject climate change as the cause of extinction of Caribbean bats. Sci. Rep. 5, 7971 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).Book 

    Google Scholar 
    Hickerson, M. J. et al. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291–301 (2010).Article 
    CAS 

    Google Scholar 
    Pahad, G., Montgelard, C. & Jansen van Vuuren, B. Phylogeography and niche modelling: Reciprocal enlightenment. Mammalia 84, 10–25 (2019).Article 

    Google Scholar 
    Flanders, J. et al. Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: Contrasting results from mitochondrial and microsatellite data. Mol. Ecol. 18, 306–318 (2009).Article 
    CAS 

    Google Scholar 
    Machado, A. F. et al. Integrating phylogeography and ecological niche modelling to test diversification hypotheses using a Neotropical rodent. Evol. Ecol. 33, 111–148 (2019).Article 

    Google Scholar 
    Kalkvik, H. M., Stout, I. J., Doonan, T. J. & Parkinson, C. L. Investigating niche and lineage diversification in widely distributed taxa: Phylogeography and ecological niche modeling of the Peromyscus maniculatus species group. Ecography 35, 54–64 (2012).Article 

    Google Scholar 
    Wang, Y. et al. Ring distribution patterns—diversification or speciation? Comparative phylogeography of two small mammals in the mountains surrounding the Sichuan Basin. Mol. Ecol. 30, 2641–2658 (2021).Article 

    Google Scholar 
    Soto-Centeno, J. A., Barrow, L. N., Allen, J. M. & Reed, D. L. Reevaluation of a classic phylogeographic barrier: New techniques reveal the influence of microgeographic climate variation on population divergence. Ecol. Evol. 3, 1603–1613 (2013).Article 

    Google Scholar 
    Amador, L. I., Moyers Arévalo, R. L., Almeida, F. C., Catalano, S. A. & Giannini, N. P. Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. J. Mamm. Evol. 25, 37–70 (2018).Article 

    Google Scholar 
    Rojas, D., Warsi, O. M. & Dávalos, L. M. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant neotropical diversity. Syst. Biol. 65, 432–448 (2016).Article 

    Google Scholar 
    Shi, J. J. & Rabosky, D. L. Speciation dynamics during the global radiation of extant bats. Evolution 69, 1528–1545 (2015).Article 

    Google Scholar 
    Dumont, E. R. et al. Morphological innovation, diversification and invasion of a new adaptive zone. Proc. Biol. Sci. 279, 1797–1805 (2012).
    Google Scholar 
    Leiser-Miller, L. B. & Santana, S. E. Morphological diversity in the sensory system of phyllostomid bats: Implications for acoustic and dietary ecology. Funct. Ecol. 34, 1416–1427 (2020).Article 

    Google Scholar 
    Hedrick, B. P. & Dumont, E. R. Putting the leaf-nosed bats in context: A geometric morphometric analysis of three of the largest families of bats. J. Mammal. 99, 1042–1054 (2018).Article 

    Google Scholar 
    Clare, E. L. Cryptic species? Patterns of maternal and paternal gene flow in eight neotropical bats. PLoS One 6, e21460 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Chaverri, G. et al. Unveiling the hidden bat diversity of a neotropical montane forest. PLoS One 11, e0162712 (2016).Article 

    Google Scholar 
    Calahorra-Oliart, A., Ospina-Garcés, S. M. & León-Paniagua, L. Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): Do morphological data support molecular evidence?. J. Mammal. 102, 54–68 (2021).Article 

    Google Scholar 
    Lim, B. K., Loureiro, L. O. & Garbino, G. S. T. Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera, Phyllostomidae). Zookeys 918, 41–63 (2020).Article 

    Google Scholar 
    Loureiro, L. O., Engstrom, M., Lim, B., González, C. L. & Juste, J. Not all Molossus are created equal: Genetic variation in the mastiff bat reveals diversity masked by conservative morphology. Acta Chiropterologica 21, 51 (2019).Article 

    Google Scholar 
    Morales, A., Villalobos, F., Velazco, P. M., Simmons, N. B. & Piñero, D. Environmental niche drives genetic and morphometric structure in a widespread bat. J. Biogeogr. 43, 1057–1068 (2016).Article 

    Google Scholar 
    Hedrick, B. P. et al. Morphological diversification under high integration in a hyper diverse mammal clade. J. Mamm. Evol. 27, 563–575 (2020).Article 

    Google Scholar 
    Morales, A. E. & Carstens, B. C. Evidence that myotis lucifugus “subspecies” are five nonsister species, despite gene flow. Syst. Biol. 67, 756–769 (2018).Article 

    Google Scholar 
    Simmons, N. B. & Cirranello, A. L. Bat species of the world: A taxonomic and geographic database. https://batnames.org.Russell, A. L., Pinzari, C. A., Vonhof, M. J., Olival, K. J. & Bonaccorso, F. J. Two tickets to paradise: Multiple dispersal events in the founding of hoary bat populations in Hawai’i. PLoS One 10, 1–13 (2015).
    Google Scholar 
    Shump, K. A. & Shump, A. U. Lasiurus cinereus. Mamm. Species 185, 1–5 (1982).
    Google Scholar 
    Ziegler, A. C., Howarth, F. G. & Simmons, N. B. A second endemic land mammal for the Hawaiian Islands: A new genus and species of fossil bat (Chiroptera: Vespertilionidae). Am. Museum Novit. 1–52 (2016).Bonaccorso, F. J. & McGuire, L. P. Modeling the colonization of Hawaii by hoary bats (Lasiurus cinereus). In Bat Evolution, Ecology, and Conservation (eds Adams, R. A. & Pedersen, S. C.) 187–205 (Springer, 2013).Chapter 

    Google Scholar 
    Baird, A. B. et al. Molecular systematic revision of tree bats (Lasiurini): Doubling the native mammals of the Hawaiian Islands. J. Mammal. 96, 1255–1274 (2015).Article 

    Google Scholar 
    Jacobs, D. S. Morphological divergence in an insular bat, Lasiurus cinereus semotus. Funct. Ecol. 10, 622–630 (1996).Article 

    Google Scholar 
    Baird, A. B. et al. Nuclear and mtDNA phylogenetic analyses clarify the evolutionary history of two species of native Hawaiian bats and the taxonomy of Lasiurini (Mammalia: Chiroptera). PLoS One 12, e0186085 (2017).Article 

    Google Scholar 
    Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. U.S.A. 99, 803–808 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Gillespie, R. G. et al. Comparing adaptive radiations across space, time, and taxa. J. Hered. 111, 1–20 (2020).Article 

    Google Scholar 
    Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).Article 

    Google Scholar 
    Espíndola, A. et al. Identifying cryptic diversity with predictive phylogeography. Proc. R. Soc. B Biol. Sci. 283, 20161529 (2016).Article 

    Google Scholar 
    Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 1–14 (2010).Article 

    Google Scholar 
    Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A. & Moritz, C. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol. 27, 480–488 (2012).Article 

    Google Scholar 
    Solari, S., Sotero-Caio, C. G. & Baker, R. J. Advances in systematics of bats: Towards a consensus on species delimitation and classifications through integrative taxonomy. J. Mammal. 100, 838–851 (2018).Article 

    Google Scholar 
    Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).
    Google Scholar 
    Morales, A. E., De-la-Mora, M. & Piñero, D. Spatial and environmental factors predict skull variation and genetic structure in the cosmopolitan bat Tadarida brasiliensis. J. Biogeogr. 45, 1529–1540 (2018).Article 

    Google Scholar 
    Pavan, A. C. & Marroig, G. Integrating multiple evidences in taxonomy: Species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Mol. Phylogenet. Evol. 103, 184–198 (2016).Article 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).Article 
    CAS 

    Google Scholar 
    Robinson, D. & Foulds, L. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R., Moret, B. M. & Stamatakis, A. How many bootstrap replicates are necessary?. J. Comput. Biol. 17, 337–354 (2010).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article 
    CAS 

    Google Scholar 
    Kapli, P. et al. Multi-rate Poisson Tree Processes for single-locus species delimitation under Maximum Likelihood and Markov Chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).CAS 

    Google Scholar 
    Yang, Z. & Rannala, B. Unguided species delimitation using DNA sequence data from multiple loci. Mol. Biol. Evol. 31, 3125–3135 (2014).Article 
    CAS 

    Google Scholar 
    Flouri, T., Jiao, X., Rannala, B. & Yang, Z. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 35, 2585–2593 (2018).Article 
    CAS 

    Google Scholar 
    Van Buuren, S. & Groothuis-Oudshoorn, K. Multivariate imputation by chained equations. J. Stat. Softw. 45, 1–67 (2011).Article 

    Google Scholar 
    Penone, C. et al. Imputation of missing data in life-history trait datasets: Which approach performs the best?. Methods Ecol. Evol. 5, 961–970 (2014).Article 

    Google Scholar 
    Berner, D. Size correction in biology: How reliable are approaches based on (common) principal component analysis?. Oecologia 166, 961–971 (2011).Article 
    ADS 

    Google Scholar 
    Simmons, N. B. Order Chiroptera. In Mammal Species of the World: A Taxonomic and Geographic Reference (eds Wilson, D. E. & Reeder, D. M.) 312–529 (The John Hopkins University Press, 2005).
    Google Scholar 
    Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World. Vol. 9. Bats (Lynx Editions, 2019).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (2022).Kuhn, M. caret: Classification and Regression Training. R package version 6.0-86. https://CRAN.R-project.org/package=caret (2020).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Book 
    MATH 

    Google Scholar 
    Kuhn, M. & Johnson, K. Applied Predictive Modeling (Springer, 2013).Book 
    MATH 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling (2022).Barker, B. S., Rodríguez-Robles, J. A. & Cook, J. A. Climate as a driver of tropical insular diversity: Comparative phylogeography of two ecologically distinctive frogs in Puerto Rico. Ecography 38, 769–781 (2015).Article 

    Google Scholar 
    Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C. & Guisan, A. Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions. Glob. Ecol. Biogeogr. 26, 275–287 (2017).Article 

    Google Scholar 
    Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 05, 754–767 (2015).Article 

    Google Scholar 
    Izenman, A. J. Linear discriminant analysis. in Modern Multivariate Statistical Techniques 237–280 (2013).Lever, J., Krzywinski, M. & Altman, N. Points of significance: Principal component analysis. Nat. Methods 14, 641–642 (2017).Article 
    CAS 

    Google Scholar 
    Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).Article 

    Google Scholar 
    Di Cola, V. et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).Article 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).Article 

    Google Scholar 
    Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. 117, 23643–23651 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).
    Google Scholar  More

  • in

    Effects of diversity on thermal niche variation in bird communities under climate change

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).Article 

    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2, 121–124 (2012).Article 
    ADS 

    Google Scholar 
    Princé, K. & Zuckerberg, B. Climate change in our backyards: The reshuffling of North America’s winter bird communities. Glob. Change Biol. 21, 572–585 (2015).Article 
    ADS 

    Google Scholar 
    Brotons, L., Jiguet, F., Herando, S. & Lehikoinen, A. Bird communities and climate change. In Effects of Climate Change on Birds (eds Dunn, P. O. & Møller, A. P.) 221–235 (Oxford University Press, 2019).Chapter 

    Google Scholar 
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).Article 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B Biol. Sci. 275, 2743–2748 (2008).Article 

    Google Scholar 
    Lehikoinen, A. et al. Wintering bird communities are tracking climate change faster than breeding communities. J. Anim. Ecol. 90, 1085–1095 (2021).Article 

    Google Scholar 
    McNaughton, S. J. Diversity and stability of ecological communities: A comment on the role of empiricism in ecology. Am. Nat. 111, 515–525 (1977).Article 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science (80-. ) 294, 804–808 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).Article 

    Google Scholar 
    Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).Article 

    Google Scholar 
    Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean, ‘resilient’?. Trends Ecol. Evol. 30, 503–506 (2015).Article 

    Google Scholar 
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).Article 
    CAS 

    Google Scholar 
    Oksanen, J. et al. Community ecology package vegan, R package version 2.0-7 (2013).Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package (2014).García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl. Acad. Sci. U. S. A. 115, 8400–8405 (2018).Article 
    ADS 

    Google Scholar 
    De Boeck, H. J. et al. Patterns and drivers of biodiversity-stability relationships under climate extremes. J. Ecol. 106, 890–902 (2018).Article 

    Google Scholar 
    Fridley, J. D. et al. The invasion paradox: Reconciling pattern and process in species invasions. Ecology 88, 3–17 (2007).Article 
    CAS 

    Google Scholar 
    Elton, C. S. The Ecology of Invasions by Plants and Animals (Methuen, 1958).Book 

    Google Scholar 
    Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B Biol. Sci. 283, 20152013 (2016).Article 

    Google Scholar 
    Pellissier, V., Barnagaud, J. Y., Kissling, W. D., Şekercioǧlu, Ç. H. & Svenning, J. C. Niche packing and expansion account for species richness–productivity relationships in global bird assemblages. Glob. Ecol. Biogeogr. 27, 604–615 (2018).Article 

    Google Scholar 
    Schipper, A. M. et al. Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Glob. Change Biol. 22, 3948–3959 (2016).Article 
    ADS 

    Google Scholar 
    Jarzyna, M. A. & Jetz, W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 23, 2999–3011 (2017).Article 
    ADS 

    Google Scholar 
    Catano, C. P., Fristoe, T. S., LaManna, J. A. & Myers, J. A. Local species diversity, β-diversity and climate influence the regional stability of bird biomass across North America. Proc. R. Soc. B Biol. Sci. 287, 20192520 (2020).Article 

    Google Scholar 
    Wang, S. et al. An invariability-area relationship sheds new light on the spatial scaling of ecological stability. Nat. Commun. 8, 1–8 (2017).ADS 

    Google Scholar 
    Pimm, S. L. & Redfearn, A. The variability of population densities. Nature 334, 613–614 (1988).Article 
    ADS 

    Google Scholar 
    Santangeli, A. & Lehikoinen, A. Are winter and breeding bird communities able to track rapid climate change? Lessons from the high North. Divers. Distrib. 23, 308–316 (2017).Article 

    Google Scholar 
    Sauer, J. R. et al. The first 50 years of the North American Breeding Bird Survey. Condor 119, 576–593 (2017).Article 

    Google Scholar 
    Meehan, T. D., Michel, N. L. & Rue, H. Spatial modeling of Audubon Christmas Bird Counts reveals fine-scale patterns and drivers of relative abundance trends. Ecosphere 10, e020707 (2019).Article 
    ADS 

    Google Scholar 
    Meller, K., Piha, M., Vähätalo, A. V. & Lehikoinen, A. A positive relationship between spring temperature and productivity in 20 songbird species in the boreal zone. Oecologia 186, 883–893 (2018).Article 
    ADS 

    Google Scholar 
    Lefcheck, J. S. & Duffy, J. E. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96, 2973–2983 (2015).Article 

    Google Scholar 
    Alerstam, T. & Högstedt, G. Bird migration and reproduction in relation to habitats for survival and breeding. Scand. J. Ornithol. 13, 25–37 (1982).
    Google Scholar 
    Dingle, H. Migration: The Biology of Life on the Move (Oxford University Press, 1996).
    Google Scholar 
    Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017139 (2012).Article 
    ADS 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).Article 

    Google Scholar 
    Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).Article 

    Google Scholar 
    Thébault, E. & Loreau, M. Trophic interactions and the relationship between species diversity and ecosystem stability. Am. Nat. 166, E95–E114 (2005).Article 

    Google Scholar 
    Kokkoris, G. D., Jansen, V. A. A., Loreau, M. & Troumbis, A. Y. Variability in interaction strength and implications for biodiversity. J. Anim. Ecol. 71, 362–371 (2002).Article 

    Google Scholar 
    Vázquez, D. P. & Simberloff, D. Ecological specialization and susceptibility to disturbance: Conjectures and refutations. Am. Nat. 159, 606–623 (2002).Article 

    Google Scholar 
    Carvalheiro, L. G. et al. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol. Lett. 17, 1389–1399 (2014).Article 

    Google Scholar 
    Morris, R. J., Lewis, O. T. & Godfray, H. C. J. Experimental evidence for apparent competition in a tropical forest food web. Nature 428, 310–313 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Pace, M. L., Cole, J. J., Carpenter, S. R. & Kitchell, J. F. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483–488 (1999).Article 
    CAS 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science (80-. ) 345, 401–406 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Lindström, Å., Green, M., Paulson, G., Smith, H. G. & Devictor, V. Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography (Cop.) 36, 313–322 (2013).Article 

    Google Scholar 
    Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84, 943–954 (2015).Article 

    Google Scholar 
    Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl. Acad. Sci. 114, 12976–12981 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Pollock, H. S., Brawn, J. D. & Cheviron, Z. A. Heat tolerances of temperate and tropical birds and their implications for susceptibility to climate warming. Funct. Ecol. https://doi.org/10.1111/1365-2435.13693 (2020).Article 

    Google Scholar 
    Wu, J. X., Wilsey, C. B., Taylor, L. & Schuurman, G. W. Projected avifaunal responses to climate change across the U.S. National Park System. PLoS ONE 13, 1–18 (2018).
    Google Scholar 
    Root, T. Environmental factors associated with avian distributional boundaries. J. Biogeogr. 15, 489 (1988).Article 

    Google Scholar 
    Zuckerberg, B. et al. Climatic constraints on wintering bird distributions are modified by urbanization and weather. J. Anim. Ecol. 80, 403–413 (2011).Article 

    Google Scholar 
    Newton, I. The Migration Ecology of Birds (Academic Press Inc., 2008).
    Google Scholar 
    La Sorte, F. A., Johnston, A. & Ault, T. R. Global trends in the frequency and duration of temperature extremes. Clim. Change 166, 1–14 (2021).Article 
    ADS 

    Google Scholar 
    Faurby, S. & Araújo, M. B. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Change 8, 252–256 (2018).Article 
    ADS 

    Google Scholar 
    Jiguet, F., Brotons, L. & Devictor, V. Community responses to extreme climatic conditions. Curr. Zool. 57, 406–413 (2011).Article 

    Google Scholar 
    Tayleur, C. et al. Swedish birds are tracking temperature but not rainfall: Evidence from a decade of abundance changes. Glob. Ecol. Biogeogr. 24, 859–872 (2015).Article 

    Google Scholar 
    Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Fischer, J. et al. Functional richness and relative resilience of bird communities in regions with different land use intensities. Ecosystems 10, 964–974 (2007).Article 

    Google Scholar 
    Olivier, T., Thébault, E., Elias, M., Fontaine, B. & Fontaine, C. Urbanization and agricultural intensification destabilize animal communities differently than diversity loss. Nat. Commun. 11, 1–9 (2020).Article 
    ADS 

    Google Scholar 
    Michel, N. L. et al. Metrics for conservation success: Using the “Bird‐Friendliness Index” to evaluate grassland and aridland bird community resilience across the Northern Great Plains ecosystem. Divers. Distrib. 26, 1687–1702 (2020).National Audubon Society. The Christmas bird count historical results [online]. http://www.christmasbirdcount.org (2019).BirdLife International & NatureServe. Bird species distribution maps of the world. Version 4.0 (2015).Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the world (2020).BirdLife International. IUCN red list for birds. http://www.birdlife.org (2020).De Magalhães, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 22, 1770–1774 (2009).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).Article 

    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2019-2. http://www.iucnredlist.org (2019).Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386 (2019).Article 

    Google Scholar 
    MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Glob. Change Biol. 23, 4094–4105 (2017).Article 
    ADS 

    Google Scholar 
    Jiguet, F., Gadot, A. S., Julliard, R., Newson, S. E. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1672–1684 (2007).Article 
    ADS 

    Google Scholar 
    Julliard, R., Jiguet, F. & Couvet, D. Common birds facing global changes: What makes a species at risk?. Glob. Change Biol. 10, 148–154 (2004).Article 
    ADS 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Grimm, A. et al. Earlier breeding, lower success: Does the spatial scale of climatic conditions matter in a migratory passerine bird?. Ecol. Evol. 5, 5722–5734 (2015).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).Article 

    Google Scholar 
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article 

    Google Scholar 
    Barnagaud, J. Y. et al. Biogeographical, environmental and anthropogenic determinants of global patterns in bird taxonomic and trait turnover. Glob. Ecol. Biogeogr. 26, 1190–1200 (2017).Article 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects model (2019).Barton, K. MuMIn: Multi-model inference. R package (2020).R Core Team. R: A language and environment for statistical computing. Version 3.5.3. http://www.r-project.org/ (2019).Devictor, V. et al. Functional biotic homogenization of bird communities in disturbed landscapes. Glob. Ecol. Biogeogr. 17, 252–261 (2008).Article 

    Google Scholar 
    Neutel, A. M., Heesterbeek, J. A. P. & De Ruiter, P. C. Stability in real food webs: weak links in long loops. Science (80-. ) 296, 1120–1123 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Wallach, A. D. et al. Trophic cascades in 3D: Network analysis reveals how apex predators structure ecosystems. Methods Ecol. Evol. 8, 135–142 (2017).Article 

    Google Scholar  More

  • in

    Biodiversity stabilizes plant communities through statistical-averaging effects rather than compensatory dynamics

    Empirical dataWe applied our theory to two datasets (Table 1): the plant survey dataset and the biodiversity-manipulated experiment dataset. The plant survey dataset contains nine sites of long-term grassland experiments across the United States (see also Hallett et al.10, and Zhao et al.23). Five of nine sites are from the Long Term Ecological Research (LTER) network (see Table 1). Plant abundances were measured either as biomass or as percent cover. In percent-cover cases, summed values can exceed 100% due to vertically overlapping canopies. All sites were sampled annually and were spatially replicated. We only used data of the plant survey dataset from unmanipulated control plots. Methods for data collection were constant over time.The biodiversity-manipulated experimental dataset comprises two long-term grassland experiments, BigBio and BioCON, at the Cedar Creek Ecosystem Science Reserve. Both experiments directly manipulated plant species number (1, 2, 4, 8, 16 for BigBio; and 1, 4, 9, 16 for BioCON). BioCON also contains different treatment levels for nitrogen and atmospheric CO2, but here only data from the ambient CO2 and ambient N treatments were used. We excluded plots with only one species. BigBio comprises 125 plots over 17 years, and BioCON comprises 59 plots over 22 years (Table 1).TheoryLet xi(t) denote the biomass of species i = 1, …, S at time t = 1, …, t and let μi = mean (xi (t)), σi = ({{mbox{sd}}})(xi (t)), and ({v}_{i}={sigma }_{i}^{2}) be the mean, standard deviation and variance of species i, computed through time. Let vij = cov (({x}_{i}left(tright),, {x}_{j}left(tright))) be the covariance, through time, of the dynamics of species i and j. Let xtot (left(tright)={sum }_{i}{x}_{i}(t)), ({mu }_{{{mbox{tot}}}}={sum }_{i}{mu }_{i}), ({v}_{{{mbox{tot}}}}={sum }_{i,j}{v}_{{ij}}), and ({{{{{{rm{sigma }}}}}}}_{{{{{{rm{tot}}}}}}}=sqrt{{v}_{{{{{{rm{tot}}}}}}}}). When population time series are uncorrelated, ({v}_{{{{{{rm{tot}}}}}}}={sum }_{i}{v}_{i}).As defined previously10,15, community stability is the inverse coefficient of variation of ({x}_{{{mbox{tot}}}}left(tright)), ({S}_{{{{{{rm{com}}}}}}}={mu }_{{{{{{rm{tot}}}}}}}/{sigma }_{{{{{{rm{tot}}}}}}}). Population stability is the inverse of weighted-average population variability9, ({sum }_{i}frac{{mu }_{i}}{{mu }_{{{{{{rm{tot}}}}}}}}{{CV}}_{i}={sum }_{i}frac{{mu }_{i}}{{mu }_{{{{{{rm{tot}}}}}}}}frac{{sigma }_{i}}{{mu }_{i}}={sum }_{i}frac{{sigma }_{i}}{{mu }_{{{{{{rm{tot}}}}}}}}), i.e, ({S}_{{pop}}={mu }_{{{{{{rm{tot}}}}}}}/{sum }_{i}{sigma }_{i}). The ratio of community stability over population stability is the Loreau-de Mazancourt asynchrony index14, Φ = ({sum }_{i}{sigma }_{i}/{sigma }_{{{{{{rm{tot}}}}}}}), so that$${S}_{{{{{{rm{com}}}}}}}=varPhi {S}_{{{{{{rm{pop}}}}}}}.$$
    (1)
    Now we suppose a hypothetical community with the same species-level variances and means as the original community but with species covariances equal to zero. Then, (1) becomes Scom_ip = (SAE)Spop, where ({S}_{{{{{{rm{com}}}}}}_{{{{{rm{ip}}}}}}}=frac{{mu }_{{{{{{rm{tot}}}}}}}}{sqrt{{sum }_{i}{v}_{i}}}=frac{{mu }_{{{{{{rm{tot}}}}}}}}{sqrt{{sum }_{i}{sigma }_{i}^{2}}}) is the value of community stability in the case of uncorrelated or independent populations and SAE is the component of Φ due to statistical averaging (here, “ip” stands for “independent populations”). The equation Scom_ip = (SAE)Spop can be interpreted as a definition of SAE. We then have$$SAE=frac{{S}_{{{{{{rm{com}}}}}}_{{{{{rm{ip}}}}}}}}{{S}_{{{{{{rm{pop}}}}}}}}=frac{{sum }_{i}{sigma }_{i}}{sqrt{{sum }_{i}{sigma }_{i}^{2}}}.$$
    (2)
    The compensatory effect is then the rest of Φ, i.e.,$$CPE=frac{{S}_{{{{{{rm{com}}}}}}}}{{S}_{{{{{{rm{pop}}}}}}}times SAE}=frac{{sum }_{i}{sigma }_{i}}{{sigma }_{{{{{{rm{tot}}}}}}}left({sum }_{i}{sigma }_{i}/sqrt{{sum }_{i}{sigma }_{i}^{2}}right)}=frac{sqrt{{sum }_{i}{sigma }_{i}^{2}}}{{sigma }_{{{{{{rm{tot}}}}}}}}.$$
    (3)
    Considering the classic variance ratio ({{{{{rm{varphi }}}}}}=frac{{V}_{{{{{{rm{tot}}}}}}}}{{sum }_{i}{V}_{i}}=frac{{sigma }_{{{{{{rm{tot}}}}}}}^{2}}{{sum }_{i}{sigma }_{i}^{2}}), our CPE is (1/sqrt{varphi }). Values CPE  > 1 (respectively, More

  • in

    The effects of temperature stress and population origin on the thermal sensitivity of Lymantria dispar L. (Lepidoptera: Erebidae) larvae

    In the autumn (November), L. dispar egg masses were collected at two sites: unpolluted and polluted forest. The first was a mixed oak forest at Kosmaj Mountain, 40 km south-east of Belgrade (coordinates 44°27′56″N 20°33′56″E). These woods are regarded as unpolluted because they are far from direct pollution and are part of the system of protected green areas around Belgrade, where the construction of industrial facilities and traffic infrastructure with potential negative effects on the environment is prohibited by legal regulations. The second site was Lipovica Forest (coordinates 44°38′11″N 20°24′12″E), with mixed Quercus frainetto and Quercus cerris trees, considered a polluted forest since it is located along the border of State Road 22, one of the most frequently used IB-class roads in Serbia.Collected egg masses were kept in a refrigerator at 4 °C until spring (March) when 200 eggs for each experimental group were set for hatching. After hatching in transparent Petri dishes (V = 200 mL), 10 first instar larvae were transferred and reared together at 23 °C with a 12:12 h light: dark photoperiod and relative humidity of 60%, until the third larval instar. Then, five 3rd instar larvae were reared together in the same Petri dish. After molting into the 4th instar, each larva was kept individually until the third day of the 5th instar, when they were sacrificed. Larvae were fed on an artificial diet designed for L. dispar42, and food was replaced every 48 h. Each experimental group contained between 50 and 60 larvae (Fig. 7).Figure 7A schematic figure of the experimental treatments.Full size imageThe optimal temperature for L. dispar larval development is 23 °C, and the control group was reared at this temperature. The highest summer temperature (2007–2010) measured in Serbian Quercus forests at a similar elevation was 28.4 °C, and the lowest 19.6 °C, while the average summer temperature was 26.3 °C43. Thus, we established variable temperature regimens that included brief (24 h) and daily (72 h) exposures to 28 °C. The control group of larvae were reared through the whole experiment on optimal 23 °C. Results of Huey et al.44 indicate that short term (daily) exposure to higher temperatures during development can increase both optimal temperature and maximal growth rate at the optimum, an example of beneficial thermal acclimation. In our previous research we found that induced thermotolerance modifies the activity of detoxifying enzymes in larvae originating from the polluted forest. We exposed L. dispar larvae in several experimental groups to that regime at 4th larval instar, with intention of analyze the effects of induce thermotolerance on observed parameters (ALP, ACP, hsp 70) in 5th instar larvae reared on optimal or elevated temperature28.At sacrifice on the third day of the 5th instar, the caterpillar midguts were dissected out on ice (n = 8–11 larval midguts per group for each enzyme assay). Midgut from single larvae was weighed and homogenized in insect physiological saline, as insect fluids have buffer values similar to vertebrates45. Homogenization was performed in ice-cold 0.15 M NaCl (final tissue concentration was 100 mg/mL in each sample), for 3 intervals of 10 s with a 15 s pause between them, at 5000 rpm, using Ultra Turrax homogenizer (IKA-Werke, Staufen, Germany). The homogenates were centrifuged for 10 min at 10,000 g at 4 ℃, and supernatants were used for enzyme assays and NATIVE gel electrophoresis. This protocol ensured that supernatants would contain cytosol and lysosomes.On the third day of the 5th instar, larval brain tissues were dissected out on ice and weighed. Pooled brain tissue (n = 30 brain tissues per experimental group) was diluted with 0.9% NaCl (1:9/w:V) and homogenized on ice at 5000 rpm during three 10 s intervals, separated by 15 s pauses (MHX/E Xenox homogenizer, Germany). Homogenates were centrifuged at 25,000 g for 10 min at 4 °C in an Eppendorf 5417R centrifuge (Germany). The supernatants were used for Western blotting and indirect non-competitive enzyme-linked immunosorbent assay (ELISA). Protein concentrations samples were determined using BSA as the standard46.A modified method by Nemec and Socha47 was used to determine the activity of ALP. The reaction mixture contained 0.1 M Tris HCl buffer pH 8.6, 5 mM MgCl2, midgut homogenate, and 5 mM p-nitrophenyl phosphate. During 30 min of incubation time at 30 ℃, the hydrolytic release of p-nitrophenol from p-nitrophenyl phosphate (pNPP) occurred under alkaline conditions.The reaction was stopped with 0.5 M NaOH, and the absorbance of p-nitrophenol was measured at 405 nm. Blank and non-catalytic probes were included. One unit of enzyme activity was defined as the amount of enzyme that released 1 mmol of p-nitrophenol per minute under the assay conditions.The same modified method of Nemec and Socha47 was employed to determine ACP activity, but under acidic conditions (0.1 M citrate buffer pH 5.6 was found optimal for L. dispar ACP), with a prolonged incubation time of 60 min. One unit of enzyme activity was defined as the amount of enzyme that released 1 μmol of p-nitrophenol per minute per mg of total protein. Total ACP activity determined in the midgut samples came from lysosomal ACP that ended up in the cytosol and non-lysosomal ACP, typically localized in the cytosol.Lysosomal ACP were detected indirectly48, under the same conditions, in a mixture containing the specific enzyme inhibitor NaF (50 mM). The absorbance determined at 405 nm is proportional to the activity of the non-lysosomal fraction of total ACP. The activity of the lysosomal fraction was obtained by subtracting not inhibited non-lysosomal acid phosphatases from the total phosphatase activity. Specific activities of ACP are given in mU per mg of total protein.A modified method by Allen et al.49 was used to detect ALP isoforms after native PAGE. Using 12% polyacrylamide gel, 10 μg protein aliquots per well were separated at 100 V and 4 ℃. The ALP isoform activity was visualized by soaking the gel in an incubation mixture consisting of 0.13% α-naphthyl phosphate, 100 mM Tris–HCl buffer (pH 8.6), and 0.1% Fast Blue B. The gels were incubated at room temperature until bands appeared.For ACP phosphatase detection, the same method of Allen et al.49 was also modified. After electrophoresis, the gel was washed with deionized water and equilibrated in 100 mM acetate buffer (pH 5.2) at 30 ℃. The nitrocellulose membrane was pre-soaked in 0.13% α-naphthyl phosphate dissolved in the same acetate buffer for 50 min at room temperature. The gel was covered with the membrane and incubated in a moist chamber for 60 min at 30 ℃. The membrane was soaked in 0.3% Fast Blue B stain dissolved in acetate buffer until bands became visible.Gels were scanned with a CanoScan LiDE 120 (Japan). The intensities of enzyme bands in the regions of ALP and ACP activities were analyzed using the ImageJ 1.42q software (U. S. National Institutes of Health, Bethesda, Maryland, USA).An indirect non-competitive ELISA was used to quantify the concentration of hsp70 in L. dispar brain tissue. Samples were diluted with carbonate-bicarbonate buffer (pH 9.6) and coated on a microplate (15 μg of tissue/well) (Multiwell immunoplate, NAXISORP, Thermo Scientific, Denmark) overnight at 4 °C, in the dark. The indirect non-competitive ELISA for L. dispar hsp70 was performed according to general practice: samples were first incubated with monoclonal anti-Hsp70 mouse IgG1 (dilution 1:5000) (clone BRM-22, Sigma Aldrich, USA) for 12 h at 4 °C, and then for 2 h at 25 °C with secondary anti-mouse IgG1 (gamma-chain)-HRP conjugate (dilution 1:5000) antibodies (Sigma Aldrich, USA). Chromogenic substrate 3, 3’, 5, 5’-Tetramethylbenzidine (TMB) was used as a visualizing reagent. Absorption was measured on a microplate reader (LKB 5060-006, Austria) at 450 nm. To enable statistically valid comparisons of experimental groups across multiple microplates, each microplate contained serial dilutions of standard hsp70 (recombinant hsp70, 50 ng/mL), used for the hsp70 standard curve, and homogenized brain tissues pulled by each treatment that were loaded on the microplates in a matched design, ensuring that each data point represented the mean of three replicates from each experimental group.Western blots were used to detect the presence of heat-shock protein 70 isoforms. Brain tissue homogenates were separated by SDS PAGE electrophoresis on 12% gels, according to Laemmli50. Protein transfer from the gel to the nitrocellulose membrane (Amersham Prothron, Premium 0.45 mm NC, GE Healthcare Life Sciences, UK) was left overnight at 40 V and 4 °C. Monoclonal anti-hsp70 mouse IgG1 (1:5000 dilution, clone BRM-22, Sigma Aldrich) and secondary mouse anti-mouse Hsp70 horseradish peroxidase conjugate antiserum (1:10,000 dilution, Sigma-Aldrich) were used for detection of hsp70 expression patterns in L. dispar larval brain tissue. Bands were visualized using chemiluminescence (ECL kit, Amersham).This study identified the hsp70 concentration in brain tissue and specific activities of total ACP and ALP in the larval midgut as the most promising biomarkers, which are sensitive and have consistent responses to thermal stress. These three biomarkers were combined into an IBR analysis according to Beliaeff and Burgeot51. The value of each biomarker (Xi) was standardized by the formula Yi = (Xi − mean)/SD, where Yi is the standardized biomarker response, and mean and SD were obtained from all values of the selected parameters. The next step was describing Zi as Zi = Yi or Zi = − Yi, depending on whether the temperature treatment caused induction or inhibition of the selected biomarkers. After finding the minimum value of Zi for each biomarker (min), the scores (Si) were computed as Si = Zi + |min|. Scores for biomarkers were used as the radius coordinates of the studied biomarker in the star plots. Star plot areas for the three-biomarker assembly, positioned in successive clockwise order—Hsp70, total ACP, and ALP, were obtained from the following formulas: ({A}_{i}=frac{{S}_{i}}{2*mathrm{sin}beta }left({S}_{i}*mathrm{cos}beta + {S}_{i+1}*mathrm{sin}beta right)), (beta = {mathrm{tan}}^{-1}left(frac{{S}_{i+1}*mathrm{sin}alpha }{{S}_{i}-{S}_{i+1}*mathrm{cos}alpha }right)),(alpha =2pi /n) radians (n is the number of biomarkers). The IBR values were calculated as follows:(IBR= sum_{i=1}^{n}{A}_{i}), where Ai is the area represented by two consecutive biomarkers on the star plot. Excel software (Microsoft, USA) was used to calculate IBR values and generate star plots.Statistical analyses were conducted in GraphPad Prism 6 (GraphPad Software, Inc., USA). Mean values ± standard errors of mean values (SEM) were calculated for the activity of enzymes, larval midgut mass, and the hsp70 concentration in brain tissue. D’Agostino-Pearson omnibus and Shapiro–Wilk tests were used to check the normality of data distribution. The effects of thermal treatments and their interaction on the variance of analyzed biomarkers in larvae from the polluted and the unpolluted forest were tested using two-way ANOVA with thermal treatments as fixed factors. For all comparisons, the level of significance was set at p  More

  • in

    Predicting potential global distribution and risk regions for potato cyst nematodes (Globodera rostochiensis and Globodera pallida)

    Evans, K., Franco, J. & De Scurrah, M. M. Distribution of species of potato cyst-nematodes in South America. Nematologica 21, 365–369. https://doi.org/10.1163/187529275×00103 (1975).Article 

    Google Scholar 
    Plantard, O. et al. Origin and genetic diversity of Western European populations of the potato cyst nematode (Globodera pallida) inferred from mitochondrial sequences and microsatellite loci. Mol. Ecol. 17, 2208–2218. https://doi.org/10.1111/j.1365-294X.2008.03718.x (2008).Article 
    CAS 

    Google Scholar 
    Price, J. A., Coyne, D., Blok, V. C. & Jones, J. T. Potato cyst nematodes Globodera rostochiensis and G. pallida. Mol. Plant Pathol. 22, 495–507. https://doi.org/10.1111/mpp.13047 (2021).Article 
    CAS 

    Google Scholar 
    CABI. Globodera rostochiensis (yellow potato cyst nematode). https://www.cabi.org/isc/datasheet/27034 (2021).CABI. Globodera pallida (white potato cyst nematode). https://www.cabi.org/isc/datasheet/27033 (2021).Ruthes, A. C. & Dahlin, P. The impact of management strategies on the development and status of potato cyst nematode populations in Switzerland: An overview from 1958 to present. Plant Dis. 106, 1096–1104. https://doi.org/10.1094/pdis-04-21-0800-sr (2021).Article 

    Google Scholar 
    Minnis, S. T. et al. Potato cyst nematodes in England and Wales—Occurrence and distribution. Ann. Appl. Biol. 140, 187–195. https://doi.org/10.1111/j.1744-7348.2002.tb00172.x (2002).Article 

    Google Scholar 
    Djebroune, A. et al. Integrative morphometric and molecular approach to update the impact and distribution of potato cyst nematodes Globodera rostochiensis and Globodera pallida (Tylenchida: Heteroderidae) in Algeria. Pathogens 10, 216. https://doi.org/10.3390/pathogens10020216 (2021).Article 

    Google Scholar 
    Vallejo, D. et al. Occurrence and molecular characterization of cyst nematode species (Globodera spp.) associated with potato crops in Colombia. PLoS One 16, e0241256. https://doi.org/10.1371/journal.pone.0241256 (2021).Article 
    CAS 

    Google Scholar 
    Hajjaji, A., Mhand, R. A., Rhallabi, N. & Mellouki, F. First report of morphological and molecular characterization of Moroccan populations of Globodera pallida. J. Nematol. 53, e2021-07. https://doi.org/10.21307/jofnem-2021-007 (2021).Article 
    CAS 

    Google Scholar 
    Camacho, M. J. et al. Potato cyst nematodes: Geographical distribution, phylogenetic relationships and integrated pest management outcomes in Portugal. Front. Plant Sci. 11, 9. https://doi.org/10.3389/fpls.2020.606178 (2020).Article 

    Google Scholar 
    Handayani, N. D. et al. Distribution, DNA barcoding and genetic diversity of potato cyst nematodes in Indonesia. Eur. J. Plant Pathol. 158, 363–380. https://doi.org/10.1007/s10658-020-02078-7 (2020).Article 
    CAS 

    Google Scholar 
    Bairwa, A. et al. Morphological and molecular characterization of potato cyst nematode populations from the Nilgiris. Indian J. Agric. Sci. 90, 273–278 (2020).Article 
    CAS 

    Google Scholar 
    Mburu, H. et al. Potato cyst nematodes: A new threat to potato production in East Africa. Front. Plant Sci. 11, 13. https://doi.org/10.3389/fpls.2020.00670 (2020).Article 

    Google Scholar 
    Altas, A., Evlice, E., Ozer, G., Dababat, A. & Imren, M. Identification, distribution and genetic diversity of Globodera rostochiensis (Wollenweber, 1923) Skarbilovich, 1959 (Tylenchida: Heteroderidae) populations in Turkey. Turk. Entomol. Derg. Turk. J. Entomol. 44, 385–397. https://doi.org/10.16970/entoted.740223 (2020).Article 

    Google Scholar 
    Dandurand, L.-M., Zasada, I. A., Wang, X. & Mimee, B. Current status of potato cyst nematodes in North America. Annu. Rev. Phytopathol. 57, 117–133. https://doi.org/10.1146/annurev-phyto-082718-100254 (2019).Article 
    CAS 

    Google Scholar 
    Blacket, M. J. et al. Molecular assessment of the introduction and spread of potato cyst nematode, Globodera rostochiensis, in Victoria, Australia. Phytopathology 109, 659–669. https://doi.org/10.1094/phyto-06-18-0206-r (2019).Article 
    CAS 

    Google Scholar 
    Sullivan, M. J., Inserra, R. N., Franco, J., Moreno-Leheude, I. & Greco, N. Potato cyst nematodes: Plant host status and their regulatory impact. Nematropica 37, 193–201 (2007).
    Google Scholar 
    Hodda, M. & Cook, D. C. Economic impact from unrestricted spread of potato cyst nematodes in Australia. Phytopathology 99, 1387–1393. https://doi.org/10.1094/phyto-99-12-1387 (2009).Article 
    CAS 

    Google Scholar 
    Koirala, S., Watson, P., McIntosh, C. S. & Dandurand, L. M. Economic impact of Globodera pallida on the Idaho economy. Am. J. Potato Res. 97, 214–220. https://doi.org/10.1007/s12230-020-09768-2 (2020).Article 

    Google Scholar 
    Trudgill, D. L., Elliott, M. J., Evans, K. & Phillips, M. S. The white potato cyst nematode (Globodera pallida)—A critical analysis of the threat in Britain. Ann. Appl. Biol. 143, 73–80. https://doi.org/10.1111/j.1744-7348.2003.tb00271.x (2003).Article 

    Google Scholar 
    Duan, Y. X. Plant Nematology (Science Press, 2011).
    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007 (2007).Article 
    ADS 

    Google Scholar 
    Li, J. Suitable Risk Assessment for Six Potential Invasive Nematodes in China, Master thesis (Jilin Agriculture University, 2008).
    Google Scholar 
    Contina, J. B., Dandurand, L. M. & Knudsen, G. R. A spatiotemporal analysis and dispersal patterns of the potato cyst nematode Globodera pallida in Idaho. Phytopathology 110, 379–392. https://doi.org/10.1094/phyto-04-19-0113-r (2020).Article 
    CAS 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models with Applications in R (Cambridge University Press, 2017). https://doi.org/10.1017/9781139028271.Book 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning 83. https://doi.org/10.1145/1015330.1015412 (Association for Computing Machinery, 2004).Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).Article 

    Google Scholar 
    Wan, J. et al. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling. J. Integr. Agric. 19, 2072–2082. https://doi.org/10.1016/S2095-3119(19)62840-6 (2020).Article 
    CAS 

    Google Scholar 
    Midmore, D. J. Potato production in the tropics. In The Potato Crop: The Scientific Basis for Improvement 728–793 (Springer Netherlands, 1992).Chapter 

    Google Scholar 
    Naika, S., de Jeude, J. V. L., de Goffau, M., Hilmi, M. & van Dam, B. Cultivation of Tomato: Production, Processing and Marketing (Digigrafi, 2005).
    Google Scholar 
    Chapman, M. A. Eggplant breeding and improvement for future climates. In Genomic Designing of Climate-Smart Vegetable Crops 257–276 (Springer, 2020).Chapter 

    Google Scholar 
    Management, D. o. C. List of National Agricultural Plant Quarantine Pests Distribution Administrative Areas. https://www.moa.gov.cn/nybgb/2019/201906/201907/t20190701_6320036.htm (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2021).Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).Article 

    Google Scholar 
    Foot, M. A. The Ecology of Globodera pallida (Stone) Mulvey & Stone (Nematoda, Heteroderidae) at Pukekohe, New Zealand, Doctoral thesis (The University of Auckland, 1978).
    Google Scholar 
    Phillips, S. J., Dudík, M., & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.1) [Internet]. http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 24-10-2020.Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).Article 

    Google Scholar 
    Wan, J., Wang, R., Ren, Y. & McKirdy, S. Potential distribution and the risks of Bactericera cockerelli and its associated plant pathogen Candidatus Liberibacter solanacearum for global potato production. Insects 11, 298. https://doi.org/10.3390/insects11050298 (2020).Article 

    Google Scholar 
    Cobos, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281. https://doi.org/10.7717/peerj.6281 (2019).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 30-10-2020.Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008 (2008).Article 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. https://doi.org/10.1890/10-1171.1 (2011).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10 (Version 10.4.1) (Environmental Systems Research Institute). Accessed 24-10-2020.Kong, W., Li, X. & Zou, H. Optimizing MaxEnt model in the prediction of species distribution. J. Appl. Ecol. 30, 2116–2128. https://doi.org/10.13287/j.1001-9332.201906.029 (2019).Article 

    Google Scholar 
    Fischer, G. et al. Global Agro-ecological Zones (GAEZ v3.0). http://pure.iiasa.ac.at/id/eprint/13290/ (2012).Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).Article 

    Google Scholar 
    da Silva, J. C. P., de Medeiros, F. H. V. & Campos, V. P. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Sci. Technol. 28, 423–445. https://doi.org/10.1080/09583157.2018.1460316 (2018).Article 

    Google Scholar 
    Kim, E., Seo, Y., Kim, Y. S., Park, Y. & Kim, Y. H. Effects of soil textures on infectivity of root-knot nematodes on carrot. Plant Pathol. J. 33, 66–74. https://doi.org/10.5423/ppj.Oa.07.2016.0155 (2017).Article 
    CAS 

    Google Scholar 
    Duyck, P.-F. et al. Niche partitioning based on soil type and climate at the landscape scale in a community of plant-feeding nematodes. Soil Biol. Biochem. 44, 49–55. https://doi.org/10.1016/j.soilbio.2011.09.014 (2012).Article 
    CAS 

    Google Scholar 
    Stanton, J. C., Pearson, R. G., Horning, N., Ersts, P. & ReşitAkçakaya, H. Combining static and dynamic variables in species distribution models under climate change. Methods Ecol. Evol. 3, 349–357. https://doi.org/10.1111/j.2041-210X.2011.00157.x (2012).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).Article 
    MathSciNet 

    Google Scholar 
    Din, A. U. et al. The impact of COVID-19 on the food supply chain and the role of e-commerce for food purchasing. Sustainability 14, 3074. https://doi.org/10.3390/su14053074 (2022).Article 
    CAS 

    Google Scholar 
    Lang, T. & McKee, M. The reinvasion of Ukraine threatens global food supplies. BMJ https://doi.org/10.1136/bmj.o676,o676,10.1136/bmj.o676 (2022).Article 

    Google Scholar 
    Hijmans, R. J. Global distribution of the potato crop. Am. J. Potato Res. 78, 403–412. https://doi.org/10.1007/bf02896371 (2001).Article 

    Google Scholar 
    Motti, R. The Solanaceae family: Botanical features and diversity. In The Wild Solanums Genomes 1–9 (Springer International Publishing, 2021).
    Google Scholar 
    Chytrý, M. et al. Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Glob. Ecol. Biogeogr. 21, 75–87. https://doi.org/10.1111/j.1466-8238.2010.00573.x (2012).Article 

    Google Scholar 
    Lin, W., Cheng, X. & Xu, R. Impact of different economic factors on biological invasions on the global scale. PLoS One 6, e18797. https://doi.org/10.1371/journal.pone.0018797 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Jones, L. M. et al. Climate change is predicted to alter the current pest status of Globodera pallida and G. rostochiensis in the United Kingdom. Glob. Change Biol. 23, 4497–4507. https://doi.org/10.1111/gcb.13676 (2017).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Kaczmarek, A., MacKenzie, K., Kettle, H. & Blok, V. C. Influence of soil temperature on Globodera rostochiensis and Globodera pallida. Phytopathol. Mediterr. 53, 396–405. https://doi.org/10.14601/Phytopathol_Mediterr-13512 (2014).Article 
    CAS 

    Google Scholar 
    Hearne, R., Lettice, E. P. & Jones, P. W. Interspecific and intraspecific competition in the potato cyst nematodes Globodera pallida and G. rostochiensis. Nematology 19, 463–475. https://doi.org/10.1163/15685411-00003061 (2017).Article 
    CAS 

    Google Scholar 
    Skelsey, P., Kettle, H., Mackenzie, K. & Blok, V. Potential impacts of climate change on the threat of potato cyst nematode species in Great Britain. Plant. Pathol. 67, 909–919. https://doi.org/10.1111/ppa.12807 (2018).Article 

    Google Scholar 
    Carlton, J. & Ruiz, G. M. Invasive Species: Vectors and Management Strategies (Island Press, 2003).
    Google Scholar 
    Singh, S. K., Paini, D. R., Ash, G. J. & Hodda, M. Prioritising plant-parasitic nematode species biosecurity risks using self organising maps. Biol. Invasions 16, 1515–1530. https://doi.org/10.1007/s10530-013-0588-7 (2014).Article 

    Google Scholar 
    Jiang, D., Chen, S., Hao, M. M., Fu, J. Y. & Ding, F. Y. Mapping the Potential global codling moth (Cydia pomonella L.) distribution based on a machine learning method. Sci. Rep. 8, 8. https://doi.org/10.1038/s41598-018-31478-3 (2018).Article 
    CAS 

    Google Scholar 
    Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66. https://doi.org/10.1016/j.tree.2012.07.013 (2013).Article 

    Google Scholar 
    Ravichandra, N. Nematodes of quarantine importance. In Horticultural Nematology 369–385 (Springer, 2014).
    Google Scholar  More

  • in

    Reproductive performance and sex ratio adjustment of the wild boar (Sus scrofa) in South Korea

    Estes, J. A. Predators and ecosystem management. Wildl. Soc. Bull. 24, 390–396 (1996).
    Google Scholar 
    Licht, D. S., Millspaugh, J. J., Kunkel, K. E., Kochanny, C. O. & Peterson, R. O. Using small populations of wolves for ecosystem restoration and stewardship. Bioscience 60, 147–153 (2010).Article 

    Google Scholar 
    Schwartz, C. C., Swenson, J. E. & Miller, S. D. Large carnivores, moose, and humans: A changing paradigm of predator management in the 21st century. Alces J. Devot. Biol. Manag. Moose 39, 41–63 (2003).
    Google Scholar 
    Valente, A. M., Acevedo, P., Figueiredo, A. M., Fonseca, C. & Torres, R. T. Overabundant wild ungulate populations in Europe: Management with consideration of socio-ecological consequences. Mammal Rev. 50, 353–366 (2020).Article 

    Google Scholar 
    Lee, S. D. & Miller-Rushing, A. J. Degradation, urbanization, and restoration: A review of the challenges and future of conservation on the Korean Peninsula. Biol. Cons. 176, 262–276 (2014).Article 

    Google Scholar 
    Kodera, Y. Habitat selection of Japanese wild boar in Iwami district, Shimane Prefecture, western Japan. Wildl. Conserv. Jpn. 6, 119–129 (2001).
    Google Scholar 
    Ohashi, H. et al. Differences in the activity pattern of the wild boar Sus scrofa related to human disturbance. Eur. J. Wildl. Res. 59, 167–177 (2013).Article 

    Google Scholar 
    Ministry of Environment Republic of Korea. Management Plan of Pest Wild Boars. (Sejong, 2010).National Institute of Biological Resources. Analysis of Hunting Effect on Pest Animals and its Monitoring Techniques. (Incheon, 2017).Lee, S. M. & Lee, E. J. Diet of the wild boar (Sus scrofa): Implications for management in forest-agricultural and urban environments in South Korea. PeerJ 7, e7835 (2019).Article 

    Google Scholar 
    Bieber, C. & Ruf, T. Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 42, 1203–1213 (2005).Article 

    Google Scholar 
    Brogi, R. et al. Capital-income breeding in wild boar: A comparison between two sexes. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Frauendorf, M., Gethöffer, F., Siebert, U. & Keuling, O. The influence of environmental and physiological factors on the litter size of wild boar (Sus scrofa) in an agriculture dominated area in Germany. Sci. Total Environ. 541, 877–882 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Massei, G., Genov, P. V. & Staines, B. W. Diet, food availability and reproduction of wild boar in a Mediterranean coastal area. Acta Theriol. 41, 307–320 (1996).Article 

    Google Scholar 
    Sabrina, S., Jean-Michel, G., Carole, T., Serge, B. & Eric, B. Pulsed resources and climate-induced variation in the reproductive traits of wild boar under high hunting pressure. J. Anim. Ecol. 78, 1278–1290 (2009).Article 

    Google Scholar 
    Fonseca, C. et al. Reproduction in the wild boar (Sus scrofa Linnaeus, 1758) populations of Portugal. Galemys 16, 53–65 (2004).
    Google Scholar 
    Morreti, M. Birth distribution, structure and dynamics of a hunted mountain populatin of wild boars (Sus scrofa L.), Ticino, Switzerland. J. Mt. Ecol. 3, 192–196 (1995).
    Google Scholar 
    Rosell, C., Navas, F. & Romero, S. Reproduction of wild boar in a cropland and coastal wetland area: Implications for management. Anim. Biodivers. Conserv. 35, 209–217 (2012).Article 

    Google Scholar 
    Cellina, S. Effects of supplemental feeding on the body condition and reproductive state of wild boar Sus scrofa in Luxembourg PhD Dissertation thesis, University of Sussex, (2008).Gamelon, M. et al. High hunting pressure selects for earlier birth date: Wild boar as a case study. Evol. Int. J. Org. Evol. 65, 3100–3112 (2011).Article 

    Google Scholar 
    Gethöffer, F., Sodeikat, G. & Pohlmeyer, K. Reproductive parameters of wild boar (Sus scrofa) in three different parts of Germany. Eur. J. Wildl. Res. 53, 287–297 (2007).Article 

    Google Scholar 
    Fonseca, C., Da Silva, A., Alves, J., Vingada, J. & Soares, A. Reproductive performance of wild boar females in Portugal. Eur. J. Wildl. Res. 57, 363–371 (2011).Article 

    Google Scholar 
    Gaillard, J.-M., Brandt, S. & Jullien, J.-M. Body weight effect on reproduction of young wild boar (Sus scrofa) females: A comparative analysis. Folia Zool. (Brno) 42, 204–212 (1993).
    Google Scholar 
    Poteaux, C. et al. Socio-genetic structure and mating system of a wild boar population. J. Zool. 278, 116–125 (2009).Article 

    Google Scholar 
    Spitz, F., Valet, G. & Lehr Brisbin, I. Jr. Variation in body mass of wild boars from southern France. J. Mammal. 79, 251–259 (1998).Article 

    Google Scholar 
    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).Article 
    ADS 
    CAS 

    Google Scholar 
    Clutton-Brock, T. H., Albon, S. & Guinness, F. Parental investment in male and female offspring in polygynous mammals. Nature 289, 487–489 (1981).Article 
    ADS 

    Google Scholar 
    Hewison, A. M. & Gaillard, J.-M. Successful sons or advantaged daughters? The Trivers-Willard model and sex-biased maternal investment in ungulates. Trends Ecol. Evol. 14, 229–234 (1999).Article 
    CAS 

    Google Scholar 
    Clutton-Brock, T. H. & Iason, G. R. Sex ratio variation in mammals. Q. Rev. Biol. 61, 339–374 (1986).Article 
    CAS 

    Google Scholar 
    Fernández-Llario, P. & Mateos-Quesada, P. Body size and reproductive parameters in the wild boar Sus scrofa. Acta Theriol. 43, 439–444 (1998).Article 

    Google Scholar 
    Meikle, D. B., Drickamer, L. C., Vessey, S. H., Rosenthal, T. L. & Fitzgerald, K. S. Maternal dominance rank and secondary sex ratio in domestic swine. Anim. Behav. 46, 79–85 (1993).Article 

    Google Scholar 
    Servanty, S., Gaillard, J.-M., Allainé, D., Brandt, S. & Baubet, E. Litter size and fetal sex ratio adjustment in a highly polytocous species: The wild boar. Behav. Ecol. 18, 427–432 (2007).Article 

    Google Scholar 
    Mendl, M., Zanella, A. J., Broom, D. M. & Whittemore, C. T. Maternal social status and birth sex ratio in domestic pigs: An analysis of mechanisms. Anim. Behav. 50, 1361–1370 (1995).Article 

    Google Scholar 
    Cameron, E. Z. Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: Evidence for a mechanism. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 1723–1728 (2004).Article 

    Google Scholar 
    Clutton-Brock, T., Albon, S. & Guinness, F. Maternal dominance, breeding success and birth sex ratios in red deer. Nature 308, 358–360 (1984).Article 
    ADS 

    Google Scholar 
    Maillard, D. & Fournier, P. Timing and synchrony of births in the wild boar (Sus scrofa Linnaeus, 1758) in a Mediterranean habitat: The effect of food availability. Galemys 16, 67–74 (2004).
    Google Scholar 
    Bywater, K. A., Apollonio, M., Cappai, N. & Stephens, P. A. Litter size and latitude in a large mammal: the wild boar Sus scrofa. Mammal Rev. 40, 212–220 (2010).
    Google Scholar 
    Orłowska, L., Rembacz, W. & Florek, C. Carcass weight, condition and reproduction of wild boars harvested in north-western Poland. Pest Manag. Sci. 69, 367–370 (2013).Article 

    Google Scholar 
    Carranza, J. Sexual selection for male body mass and the evolution of litter size in mammals. Am. Nat. 148, 81–100 (1996).Article 

    Google Scholar 
    FernáNdez-Llario, P., Carranza, J. & Mateos-Quesada, P. Sex allocation in a polygynous mammal with large litters: The wild boar. Anim. Behav. 58, 1079–1084 (1999).Article 

    Google Scholar 
    McBride, G. The” teat order” and communication in young pigs. Animal Behaviour (1963).McBride, G., James, J. & Hodgens, N. Social behaviour of domestic animals. IV. Growing pigs. Anim. Sci. 6, 129–139 (1964).Article 

    Google Scholar 
    McBride, G., James, J. & Wyeth, G. Social behaviour of domestic animals VII. Variation in weaning weight in pigs. Anim. Sci. 7, 67–74 (1965).Article 

    Google Scholar 
    Geochang County. Geochang Statistical yearbook. (Geochang, 2015).Seoul Metropolitan Government. Seoul Statistical Yearbook. (Seoul, 2017).Animal and Plant Quarantine Agency and Ministry of Food and Drug Safety. Institutional Animal Care and Use Committee Standard Operation Guideline. (Gimcheon, 2020).Magnell, O. & Carter, R. The chronology of tooth development in wild boar – A guide to age determination of linear enamel hypoplasia in prehistoric and medieval pigs. Verterrinarija Ir Zootechnika. T. 40, 43–48 (2007).
    Google Scholar 
    Oroian, T. E., Oroian, R. G., Pasca, I., Oroian, E. & Covrig, I. Methods of age estimation by dentition in Sus scrofa ferus sp. Bull. UASVM Anim. Sci. Biotechnol. 67, 1–2 (2010).
    Google Scholar 
    Vericad, R. Fetal age, conception and birth period estimation on wild boar (Sus scrofa) in West Pyrenees. in Actas del XV Congresso Int. Fauna Cinegética y Silvestre. (Trujillo, 1983).Rosell, C., Fernández-Llario, P. & Herrero, J. The wild boar (Sus scrofa Linnaeus, 1758). Galemys 13, 1–25 (2001).
    Google Scholar 
    R core team. R: A language and environment for statistical computing v. 3.6.0 (Austria, 2019). More