More stories

  • in

    A regulatory hydrogenase gene cluster observed in the thioautotrophic symbiont of Bathymodiolus mussel in the East Pacific Rise

    Sogin, E. M., Leisch, N. & Dubilier, N. Chemosynthetic symbioses. Curr. Biol. 30, R1137–R1142 (2020).Article 
    CAS 

    Google Scholar 
    Dubilier, N., Bergin, C. & Lott, C. Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6, 725–740 (2008).Article 
    CAS 

    Google Scholar 
    Barry, J. P. et al. Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay Japan. Invertebr. Biol. 121, 47–54 (2002).Article 

    Google Scholar 
    Le Pennec, M., Donval, A. & Herry, A. Nutritional strategies of the hydrothermal ecosystem bivalves. Prog. Oceanogr. 24, 71–80 (1990).Article 
    ADS 

    Google Scholar 
    Rau, G. H. & Hedges, J. I. Carbon-13 depletion in a hydrothermal vent mussel: Suggestion of a chemosynthetic food source. Science 203, 648–649 (1979).Article 
    ADS 
    CAS 

    Google Scholar 
    Wentrup, C., Wendeberg, A., Schimak, M., Borowski, C. & Dubilier, N. Forever competent: Deep-sea bivalves are colonized by their chemosynthetic symbionts throughout their lifetime. Environ. Microbiol. 16, 3699–3713 (2014).Article 

    Google Scholar 
    Dattagupta, S., Bergquist, D., Szalai, E., Macko, S. & Fisher, C. Tissue carbon, nitrogen, and sulfur stable isotope turnover in transplanted Bathymodiolus childressi mussels: Relation to growth and physiological condition. Limnol. Oceanogr. 49, 1144–1151 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Ikuta, T. et al. Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population. ISME J. 10, 990–1001 (2016).Article 

    Google Scholar 
    Takishita, K. et al. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea Bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biol. Evol. 9, 1148–1160 (2017).Article 

    Google Scholar 
    Sayavedra, L. et al. Horizontal acquisition followed by expansion and diversification of toxin-related genes in deep-sea bivalve symbionts. BioRxiv 110, 330 (2019).
    Google Scholar 
    Ponnudurai, R. et al. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. ISME J. 11, 463–477 (2017).Article 
    CAS 

    Google Scholar 
    Ponnudurai, R. et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand Genom. Sci. 12, 1–9 (2017).
    Google Scholar 
    Kiel, S. The Vent and Seep Biota: Aspects from Microbes to Ecosystems Vol. 33 (Springer Science & Business Media, 2010).
    Google Scholar 
    Lorion, J. et al. Adaptive radiation of chemosymbiotic deep-sea mussels. Proc. R. Soc. B 280, 20131243 (2013).Article 

    Google Scholar 
    Nussbaumer, A. D., Fisher, C. R. & Bright, M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441, 345–348 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Gros, O., Liberge, M., Heddi, A., Khatchadourian, C. & Felbeck, H. Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl. Environ. Microbiol. 69, 6264–6267 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Won, Y.-J. et al. Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl. Environ. Microbiol. 69, 6785–6792 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Laming, S. R., Gaudron, S. M. & Duperron, S. Lifecycle ecology of deep-sea chemosymbiotic mussels: A review. Front. Mar. Sci. 5, 282 (2018).Article 

    Google Scholar 
    Laming, S. R., Duperron, S., Cunha, M. R. & Gaudron, S. M. Settled, symbiotic, then sexually mature: Adaptive developmental anatomy in the deep-sea, chemosymbiotic mussel Idas modiolaeformis. Mar. Biol. 161, 1319–1333 (2014).Article 

    Google Scholar 
    Salerno, J. L. et al. Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. Biol. Bull. 208, 145–155 (2005).Article 

    Google Scholar 
    Wentrup, C., Wendeberg, A., Huang, J. Y., Borowski, C. & Dubilier, N. Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deep-sea mussels. ISME J. 7, 1244–1247 (2013).Article 
    CAS 

    Google Scholar 
    Pennec, M. L. & Beninger, P. G. Ultrastructural characteristics of spermatogenesis in three species of deep-sea hydrothermal vent mytilids. Can. J. Zool. 75, 308–316 (1997).Article 

    Google Scholar 
    Eckelbarger, K. & Young, C. Ultrastructure of gametogenesis in a chemosynthetic mytilid bivalve (Bathymodiolus childressi) from a bathyal, methane seep environment (northern Gulf of Mexico). Mar. Biol. 135, 635–646 (1999).Article 

    Google Scholar 
    Ansorge, R. et al. Diversity matters: Deep-sea mussels harbor multiple symbiont strains. bioRxiv 99, 1039 (2019).
    Google Scholar 
    Petersen, J. M., Wentrup, C., Verna, C., Knittel, K. & Dubilier, N. Origins and evolutionary flexibility of chemosynthetic symbionts from deep-sea animals. Biol. Bull. 223, 123–137 (2012).Article 
    CAS 

    Google Scholar 
    Sayavedra, L. et al. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. Elife 4, e07966 (2015).Article 

    Google Scholar 
    Ansorge, R. et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat. Microbiol. 4, 2487–2497 (2019).Article 

    Google Scholar 
    Petersen, J. M. et al. Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476, 176–180 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Nakamura, K. & Takai, K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog. Earth Planet Sci. 1, 1–24 (2014).Article 
    ADS 

    Google Scholar 
    Perez, M. & Juniper, S. K. Insights into symbiont population structure among three vestimentiferan tubeworm host species at eastern Pacific spreading centers. Appl. Environ. Microbiol. 82, 5197–5205 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Wilbanks, E. G. et al. Metagenomic methylation patterns resolve bacterial genomes of unusual size and structural complexity. ISME J. https://doi.org/10.1038/s41396-022-01242-7 (2022).Article 

    Google Scholar 
    Rodriguez-Casariego, J. A., Cunning, R., Baker, A. C. & Eirin-Lopez, J. M. Symbiont shuffling induces differential DNA methylation responses to thermal stress in the coral Montastraea cavernosa. Mol. Ecol. 31, 588–602 (2022).Article 
    CAS 

    Google Scholar 
    Triant, D. A. & Whitehead, A. Simultaneous extraction of high-quality RNA and DNA from small tissue samples. J. Hered. 100, 246–250 (2009).Article 
    CAS 

    Google Scholar 
    Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).Article 
    CAS 

    Google Scholar 
    Wick, R. R. et al. Trycycler: Consensus long-read assemblies for bacterial genomes. Genome Biol. 22, 1–17 (2021).Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).Article 
    CAS 

    Google Scholar 
    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).Article 
    ADS 

    Google Scholar 
    Krawczyk, P. S., Lipinski, L. & Dziembowski, A. PlasFlow: Predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46, e35–e35 (2018).Article 

    Google Scholar 
    Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34, i142–i150 (2018).Article 
    CAS 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 

    Google Scholar 
    Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).Article 
    CAS 

    Google Scholar 
    Perez, M., Angers, B., Young, C. R. & Juniper, S. K. Shining light on a deep-sea bacterial symbiont population structure with CRISPR. Microbial. Genom. https://doi.org/10.1099/mgen.0.000625 (2021).Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 1–11 (2010).Article 

    Google Scholar 
    Nielsen, H. Protein Function Prediction 59–73 (Springer, 2017).Book 

    Google Scholar 
    Krogh, A., Larsson, B., Von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).Article 
    CAS 

    Google Scholar 
    Lagesen, K. et al. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100-31C08 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Chan, P. P. & Lowe, T. M. Gene Prediction 1–14 (Springer, 2019).
    Google Scholar 
    Griffiths-Jones, S. et al. Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).Article 
    CAS 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).Article 
    CAS 

    Google Scholar 
    Siguier, P., Pérochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).Article 
    CAS 

    Google Scholar 
    Bertelli, C. et al. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45, W30–W35 (2017).Article 
    CAS 

    Google Scholar 
    Arndt, D. et al. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).Article 
    CAS 

    Google Scholar 
    Roeselers, G. et al. Complete genome sequence of Candidatus Ruthia magnifica. Stand Genomic Sci. 3, 163–173 (2010).Article 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).Article 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 
    CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547 (2018).Article 
    CAS 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).Article 
    CAS 

    Google Scholar 
    Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).Article 
    CAS 

    Google Scholar 
    Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147 (2010).Article 
    ADS 

    Google Scholar 
    Tesler, G. GRIMM: Genome rearrangements web server. Bioinformatics 18, 492–493 (2002).Article 
    CAS 

    Google Scholar 
    Cabanettes, F. & Klopp, C. D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 
    CAS 

    Google Scholar 
    Gilchrist, C. L. & Chooi, Y.-H. Clinker & clustermap. js: Automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).Article 
    CAS 

    Google Scholar 
    Taboada, B., Estrada, K., Ciria, R. & Merino, E. Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34, 4118–4120 (2018).Article 
    CAS 

    Google Scholar 
    Søndergaard, D., Pedersen, C. N. & Greening, C. HydDB: A web tool for hydrogenase classification and analysis. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    NCBI Genome Browser. https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/. Accessed 12 March 2022.Mcmullin, E. R., Hourdez, S., Schaeffer, S. W. & Fisher, C. R. Review article phylogeny and biogeography of deep sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis. 34, 1–41 (2003).
    Google Scholar 
    Won, Y.-J., Jones, W. J. & Vrijenhoek, R. C. Absence of cospeciation between deep-sea mytilids and their thiotrophic endosymbionts. J. Shellfish Res. 27, 129–138 (2008).Article 

    Google Scholar 
    Miyazaki, J.-I., Martins, Ld. O., Fujita, Y., Matsumoto, H. & Fujiwara, Y. Evolutionary process of deep-sea Bathymodiolus mussels. PLoS ONE 5, e10363 (2010).Article 
    ADS 

    Google Scholar 
    Bright, M. & Bulgheresi, S. A complex journey: Transmission of microbial symbionts. Nat. Rev. Microbiol. 8, 218–230 (2010).Article 
    CAS 

    Google Scholar 
    Raggi, L., Schubotz, F., Hinrichs, K. U., Dubilier, N. & Petersen, J. M. Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the southern Gulf of Mexico. Environ. Microbiol. 15, 1969–1987 (2013).Article 
    CAS 

    Google Scholar 
    Goris, J. et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91 (2007).Article 
    CAS 

    Google Scholar 
    Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 1–14 (2013).Article 

    Google Scholar 
    Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. 102, 2567–2572 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Ho, P.-T. et al. Geographical structure of endosymbiotic bacteria hosted by Bathymodiolus mussels at eastern Pacific hydrothermal vents. BMC Evol. Biol. 17, 1–16 (2017).Article 

    Google Scholar 
    Romero Picazo, D. et al. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME J. 13, 2954–2968 (2019).Article 

    Google Scholar 
    Perez, M. & Juniper, S. K. Is the trophosome of Ridgeia piscesae monoclonal?. Symbiosis 74, 55–65 (2018).Article 
    CAS 

    Google Scholar 
    Polzin, J., Arevalo, P., Nussbaumer, T., Polz, M. F. & Bright, M. Polyclonal symbiont populations in hydrothermal vent tubeworms and the environment. Proc. R. Soc. B 286, 20181281 (2019).Article 
    CAS 

    Google Scholar 
    Russell, S. L. & Cavanaugh, C. M. Intrahost genetic diversity of bacterial symbionts exhibits evidence of mixed infections and recombinant haplotypes. Mol. Biol. Evol. 34, 2747–2761 (2017).Article 
    CAS 

    Google Scholar 
    Breusing, C., Genetti, M., Russell, S. L., Corbett-Detig, R. B. & Beinart, R. A. Horizontal transmission enables flexible associations with locally adapted symbiont strains in deep-sea hydrothermal vent symbioses. Proc. Natl. Acad. Sci. 119, e2115608119 (2022).Article 
    CAS 

    Google Scholar 
    Lan, Y. et al. Endosymbiont population genomics sheds light on transmission mode, partner specificity, and stability of the scaly-foot snail holobiont. ISME J. https://doi.org/10.1038/s41396-022-01261-4 (2022).Article 

    Google Scholar 
    Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc. Natl. Acad. Sci. 110, 330–335 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fritsch, J. et al. Rubredoxin-related maturation factor guarantees metal cofactor integrity during aerobic biosynthesis of membrane-bound [NiFe] hydrogenase. J. Biol. Chem. 289, 7982–7993 (2014).Article 
    CAS 

    Google Scholar 
    Petersen, J. M. et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat. Microbiol. 2, 1–11 (2016).Article 

    Google Scholar 
    Nakagawa, S. et al. Allying with armored snails: The complete genome of gammaproteobacterial endosymbiont. ISME J. 8, 40–51 (2014).Article 
    CAS 

    Google Scholar 
    Vignais, P. M., Billoud, B. & Meyer, J. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25, 455–501 (2001).Article 
    CAS 

    Google Scholar 
    Perez, M. et al. Divergent paths in the evolutionary history of maternally transmitted clam symbionts. Proc. R. Soc. B 289, 20212137 (2022).Article 
    CAS 

    Google Scholar 
    Li, S. et al. N 4-cytosine DNA methylation is involved in the maintenance of genomic stability in Deinococcus radiodurans. Front. Microbiol. 10, 1905 (2019).Article 

    Google Scholar 
    Casadesús, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).Article 

    Google Scholar 
    De Oliveira, A. L., Srivastava, A., Espada-Hinojosa, S. & Bright, M. The complete and closed genome of the facultative generalist Candidatus Endoriftia persephone from deep-sea hydrothermal vents. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13668 (2022).Article 

    Google Scholar 
    Ponnudurai, R. et al. Comparative proteomics of related symbiotic mussel species reveals high variability of host–symbiont interactions. ISME J. 14, 649–656 (2020).Article 
    CAS 

    Google Scholar 
    Yu, N. Y. et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).Article 
    CAS 

    Google Scholar  More

  • in

    Dung beetles prefer used land over natural greenspace in urban landscape

    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    McDonald, R. I., Marcotullio, P. J. & Güneralp, B. Urbanization and global trends in biodiversity and ecosystem services. in Urbanization, Biodiversity and Ecosystem Services: Challenges And Opportunities, 31–52 (Springer, 2013).McDonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).Article 

    Google Scholar 
    Müller, N., Ignatieva, M., Nilon, C. H., Werner, P. & Zipperer, W. C. Patterns and trends in urban biodiversity and landscape design. In Urbanization, Biodiversity and Ecosystem Services: Challenges And Opportunities, 123–174 (Springer, 2013).Lahr, E. C., Dunn, R. R. & Frank, S. D. Getting ahead of the curve: Cities as surrogates for global change. Proc. R. Soc. B. 285, 20180643 (2018).Article 

    Google Scholar 
    Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion?. Biol. Invasions. 19, 3489–3503 (2017).Article 

    Google Scholar 
    Thompson, K. A., Rieseberg, L. H. & Schluter, D. Speciation and the city. Trends Ecol. Evol. 33, 815–826 (2018).Article 

    Google Scholar 
    Borden, J. B. & Flory, S. L. Urban evolution of invasive species. Front. Ecol. Environ. 19, 184–191 (2021).Article 

    Google Scholar 
    Melliger, R. L., Braschler, B., Rusterholz, H. P. & Baur, B. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders. PLoS ONE 13, e0199245 (2018).Article 

    Google Scholar 
    McKinney, M. L. Urbanization, biodiversity, and conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience 52, 883–890 (2002).Article 

    Google Scholar 
    Roshnath, R. & Sinu, P. A. Nesting tree characteristics of heronry birds of urban ecosystems in peninsular India: Implications for habitat management. Curr. Zool. 63, 599–605 (2017).Article 

    Google Scholar 
    Roshnath, R., Athira, K. & Sinu, P. A. Does predation pressure drive heronry birds to nest in the urban landscape?. J. Asia Pac. Biodivers. 12, 311–315 (2019).Article 

    Google Scholar 
    Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).Article 

    Google Scholar 
    Saari, S. et al. Urbanization is not associated with increased abundance or decreased richness of terrestrial animals-dissecting the literature through meta-analysis. Urban Ecosyst. 19, 1251–1264 (2016).Article 

    Google Scholar 
    Lessard, J. P. & Buddle, C. M. The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson Nature Reserve. Quebec. Can. Entomol. 137, 215–225 (2005).Article 

    Google Scholar 
    Uno, S., Cotton, J. & Philpott, S. M. Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst. 13, 425–441 (2010).Article 

    Google Scholar 
    Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).Article 
    ADS 

    Google Scholar 
    Baldock, K. C. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B. 282, 20142849 (2015).Article 

    Google Scholar 
    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).Article 

    Google Scholar 
    Rocha, E. A. & Fellowes, M. D. Urbanisation alters ecological interactions: Ant mutualists increase and specialist insect predators decrease on an urban gradient. Sci. Rep. 10, 1–8 (2020).Article 
    ADS 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).Article 

    Google Scholar 
    Carvalho, R. L. et al. Understanding what bioindicators are actually indicating: Linking disturbance responses to ecological traits of dung beetles and ants. Ecol. Indic. 108, 105764 (2020).Article 

    Google Scholar 
    Asha, G., Manoj, K., Megha, P. P. & Sinu, P. A. Spatiotemporal effects on dung beetle activities in island forests-home garden matrix in a tropical village landscape. Sci. Rep. 11, 1–13 (2021).Article 

    Google Scholar 
    Correa, C. M. A., da Silva, P. G., Ferreira, K. R. & Puker, A. Residential sites increase species loss and cause high temporal changes in functional diversity of dung beetles in an urbanized Brazilian Cerrado landscape. J. Insect Conserv. 25, 417–428 (2021).Article 

    Google Scholar 
    Correa, C. M. A., Ferreira, K. R., Puker, A., Audino, L. D. & Korasaki, V. Greenspace sites conserve taxonomic and functional diversity of dung beetles in an urbanized landscape in the Brazilian Cerrado. Urban Ecosyst. 24, 1023–1034 (2021).Article 

    Google Scholar 
    Beiroz, W. et al. Spatial and temporal shifts in functional and taxonomic diversity of dung beetle in a human-modified tropical forest landscape. Ecol. Indic. 95, 418–526 (2018).Article 

    Google Scholar 
    Fuzessy, L. F. et al. Identifying the anthropogenic drivers of declines in tropical dung beetle communities and functions. Biol. Conserv. 256, 109063 (2021).Article 

    Google Scholar 
    Barragan, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE 6, e17976 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Salomão, R. P. et al. Urbanization effects on dung beetle assemblages in a tropical city. Ecol. Indic. 103, 665–675 (2019).Article 

    Google Scholar 
    Filgueiras, B. K. C., Liberal, C. N., Aguiar, C. D. M., Hernández, M. I. M. & Iannuzzi, L. Attractivity of omnivore, carnivore and herbivore mammalian dung to Scarabaeinae (Coleoptera: Scarabaeidae) in a tropical Atlantic rainforest remnant. Rev. Bras. Entomol. 53, 422–427 (2009).Article 

    Google Scholar 
    Ramírez-Restrepo, L. & Halffter, G. Copro-necrophagous beetles (Coleoptera: Scarabaeinae) in urban areas: A global review. Urban Ecosyst. 19, 1179–1195 (2016).Article 

    Google Scholar 
    Krell, F. T. et al. Human influence on the dung fauna in Afrotropical grasslands (Insecta: Coleoptera). In African Biodiversity: Molecules Organisms Ecosystems (eds Huber, B. A. et al.) 133–139 (Springer, 2005).Chapter 

    Google Scholar 
    Jiménez-Ferbans, L., Mendieta-Otálora, W., García, H. & Amat-García, G. Notes on dung beetles (Coleoptera: Scarabaeinae) in dry environments of the Santa Marta region, Colombia. Acta Biol. Colomb. 13, 203–208 (2008).
    Google Scholar 
    Costa, F. C. et al. What is the importance of open habitat in a predominantly closed forest area to the dung beetle (Coleoptera, Scarabaeinae) assemblage?. Rev. Bras. Entomol. 57, 329–334 (2013).Article 

    Google Scholar 
    Korasaki, V., Lopes, J., Gardner, B. G. & Louzada, J. Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity. Insect Sci. 20, 393–406 (2013).Article 

    Google Scholar 
    Audino, L., Louzada, J. & Comita, L. Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity?. Biol. Conserv. 169, 248–257 (2014).Article 

    Google Scholar 
    Gómez-Cifuentez, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic Forest of Argentina. J. Insect. Conserv. 21, 147–156 (2017).Article 

    Google Scholar 
    Gómez-Cifuentes, A., Gómez, V. C. G., Moreno, C. E. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: The role of microclimate and soil conditions. Basic Appl. Ecol. 34, 64–74 (2019).Article 

    Google Scholar 
    Magnano, L. F. S. et al. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J. Ecol. 102, 475–485 (2014).Article 

    Google Scholar 
    GiménezGómez, V. C., Verdú, J. R., Casanoves, F. & Zurita, G. A. Functional responses to anthropogenic disturbance and the importance of selected traits: a study case using dung beetles. Ecol. Entomol. 1, 1–12 (2022).
    Google Scholar 
    Lobo, J. M. Decline of roller dung beetle (Scarabaeinae) populations in the Iberian Peninsula during the 20th century. Biol. Conserv. 97, 43–50 (2001).Article 

    Google Scholar 
    Ballullaya, U. P. et al. Stakeholder motivation for the conservation of sacred groves in south India: An analysis of environmentalperceptions of rural and urban neighbourhood communities. Land Use Policy 89, 104213 (2019).Article 

    Google Scholar 
    Lowman, M. D. & Sinu, P. A. Can the spiritual values of forests inspire effective conservation?. Bioscience 67, 688–690 (2017).Article 

    Google Scholar 
    Bhagwat, S. A., Kushalappa, C. G., Williams, P. H. & Brown, N. D. The role of informal protected areas in maintaining biodiversity in the Western Ghats of India. Ecol. Soc 10, 108 (2005).Article 

    Google Scholar 
    Rajesh, T. P., Prashanth Ballullaya, U., Unni, A. P., Parvathy, S. & Sinu, P. A. Interactive effects of urbanization and year on invasive and native ant diversity of sacred groves of South India. Urban Ecosyst. 23, 1335–1348 (2020).Article 

    Google Scholar 
    Asha, G., Navya, K. K., Rajesh, T. P. & Sinu, P. A. Roller dung beetles of dung piles suggest habitats are alike, but that of guarding pitfall traps suggest habitats are different. J. Trop. Ecol. 37, 209–213 (2021).Article 

    Google Scholar 
    Arrow, G. J. The Fauna Of British India Including Ceylon And Burma, Coleoptera: Lamellicornia (Coprinae) (Taylor and Francis, 1931).
    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and extrapolation for species diversity. R package version 2.0.20. http://chao.stat.nthu.edu.tw/wordpress/software-download/ (2020).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (2020).Hartig, F. & Hartig, M. F. Package ‘DHARMa’. R package (2017).Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.1.1. https://CRAN.R-project.org/package=gplots (2020).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2021).Venugopal, K. S., Thomas, S. K. & Flemming, A. T. Diversity and community structure of dung beetles (Coleoptera: Scarabaeinae) associated with semi-urban fragmented agricultural land in the Malabar coast in southern India. J. Threat. Taxa. 4, 2685–2692 (2012).Article 

    Google Scholar 
    Sabu, T. K. & Nithya, S. Comparison of the arboreal dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) of the wet and dry forests of the western Ghats. India. Coleopt. Bull. 70, 144–148 (2016).Article 

    Google Scholar 
    Sabu, T. K., Vinod, K. V. & Vineesh, P. J. Guild structure, diversity and succession of dung beetles associated with Indian elephant dung in South Western Ghats forests. J. Insect Sci. 6, 6–17 (2006).Article 

    Google Scholar 
    Rodrigues, M. M., Uchôa, M. A. & Ide, S. Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil. Braz. J. Biol. 73, 211–220 (2013).Article 
    CAS 

    Google Scholar 
    Rios-Diaz, C. L. et al. Sheep herding in small grasslands promotes dung beetle diversity in a mountain forest landscape. J. Insect. Conserv. 25, 13–26 (2020).Article 

    Google Scholar 
    Carrión-Paladines, V. et al. Effects of land-use change on the community structure of the dung beetle (Scarabaeinae) in an altered ecosystem in Southern Ecuador. Insects. 12, 306 (2021).Article 

    Google Scholar 
    Gómez, V. C. G., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 1–14 (2020).ADS 

    Google Scholar 
    Slade, E. M., Mann, D. J., Villanueva, J. F. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1094–1104 (2007).Article 

    Google Scholar 
    Vinod, K. V. & Sabu, T. K. Species composition and community structure of dung beetles attracted to dung of gaur and elephant in the moist forests of South Western Ghats. J. Insect. Sci. 7, 1–14 (2007).Article 
    CAS 

    Google Scholar 
    Milotić, T. et al. Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. J. Biogeogr. 46, 70–82 (2019).Article 

    Google Scholar 
    Braga, R. F., Korasaki, V., Andresen, E. & Louzada, J. Dung beetle community and functions along a habitat-disturbance gradient in the amazon: A rapid assessment of ecological functions associated to biodiversity. PLoS ONE 8, e57786 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94, 180–189 (2013).Article 

    Google Scholar 
    Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139–150 (2008).Article 

    Google Scholar  More

  • in

    Effects of aspect on phenology of Larix gmelinii forest in Northeast China

    La Sorte, F. A., Johnston, A. & Ault, T. R. Global trends in the frequency and duration of temperature extremes. Clim. Change 166, 1–2 (2021).Article 
    ADS 

    Google Scholar 
    Hansen, J., Sato, M., Ruedy, R., Lo, K. & Medina-Elizade, M. Global temperature change. Proc. Natl. Acad. Sci. U.S.A. 103(39), 14288–14293 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Borchert, R., Robertson, K., Schwartz, M. D. & Williams-Linera, G. Phenology of temperate trees in tropical climates. Int. J. Biometeorol. 50, 57–65 (2005).Article 
    ADS 

    Google Scholar 
    Misra, G., Sarah, A. & Menzel, A. Ground and satellite phenology in alpine forests are becoming more heterogeneous across higher elevations with warming. Agric. For. Meteorol. 303, 108383 (2021).Article 
    ADS 

    Google Scholar 
    Zuo, Z., Xiao, D. & Qiong, H. Role of the warming trend in global land surface air temperature variations. Sci. China Earth Sci. 6, 866–871 (2021).Article 
    ADS 

    Google Scholar 
    Ling, Y. et al. Assessing the accuracy of forest phenological extraction from sentinel-1 C-band backscatter measurements in deciduous and coniferous forests. Remote Sens. 14(3), 674 (2022).Article 
    ADS 

    Google Scholar 
    Zhang, H., Yuan, W., Liu, S., Dong, W. & Fu, Y. Sensitivity of flowering phenology to changing temperature in China. J. Geophys. Res. Biogeosci. 120(8), 1658–1665 (2015).Article 

    Google Scholar 
    Cho, J. G. et al. Apple phenology occurs earlier across South Korea with higher temperatures and increased precipitation. Int. J. Biometeorol. 65, 265–276 (2020).Article 

    Google Scholar 
    Li, C. et al. Response of vegetation phenology to the interaction of temperature and precipitation changes in Qilian mountains. Remote Sens. 14(5), 1248 (2022).Article 
    ADS 

    Google Scholar 
    Berra, E. F. & Gaulton, R. Remote sensing of temperate and boreal forest phenology: A review of progress, challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics. For. Ecol. Manage. 480, 118663 (2021).Article 

    Google Scholar 
    Zhang, Y. & Li, M. A new method for monitoring start of season (SOS) of forest based on multisource remote sensing. Int. J. Appl. Earth Obs. Geoinf. 104, 102556 (2021).
    Google Scholar 
    Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84(3), 471–475 (2003).Article 
    ADS 

    Google Scholar 
    Thapa, S., Garcia Millan, V. E. & Eklundh, L. Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, PhenoCam) and Satellite (MODIS, Sentinel-2) remote sensing. Remote Sens. 13, 1597 (2021).Article 
    ADS 

    Google Scholar 
    Bórnez, K., Descals, A., Verger, A. & Peñuelas, J. Land surface phenology from VEGETATION and PROBA-V data: Assessment over deciduous forests. Int. J. Appl. Earth Observ. Geoinf. 84, 101974 (2020).
    Google Scholar 
    Yu, L., Yan, Z. & Zhang, S. Forest phenology shifts in response to climate change over China–Mongolia–Russia international economic corridor. Forests 11, 757 (2020).Article 

    Google Scholar 
    Lara, C. et al. Climatic regulation of vegetation phenology in protected areas along Western South America. Remote Sens. 13, 2590 (2021).Article 
    ADS 

    Google Scholar 
    Silveira, E. M. O. et al. Forest phenoclusters for Argentina based on vegetation phenology and climate. Ecol. Appl. 32, 2526 (2022).Article 

    Google Scholar 
    Tatalovich, Z., Wilson, J. P. & Cockburn, M. A comparison of thiessen polygon, kriging, and spline models of potential UV exposure. Cartogr. Geogr. Inf. Sci. 33, 217–231 (2006).Article 

    Google Scholar 
    Choubin, B. et al. Spatiotemporal dynamics assessment of snow cover to infer snowline elevation mobility in the mountainous regions. Cold Reg. Sci. Technol. 167, 102870 (2019).Article 

    Google Scholar 
    Rojas, R., Flexas, J. & Coopman, R. E. Particularities of the highest elevation treeline in the world: Polylepis tarapacana Phil. as a model to study ecophysiological adaptations to extreme environments. Flora 292, 152076 (2022).Article 

    Google Scholar 
    Du, J. et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 269–270, 71–77 (2019).Article 
    ADS 

    Google Scholar 
    Du, J. et al. Daily minimum temperature and precipitation control on spring phenology in arid-mountain ecosystems in China. Int. J. Climatol. 40, 2568–2579 (2020).Article 

    Google Scholar 
    He, Z. et al. Impacts of recent climate extremes on spring phenology in arid-mountain ecosystems in China. Agric. For. Meteorol. 260–261, 31–40 (2018).Article 
    ADS 

    Google Scholar 
    He, Z. et al. Assessing temperature sensitivity of subalpine shrub phenology in semi-arid mountain regions of China. Agric. For. Meteorol. 213, 42–52 (2015).Article 
    ADS 

    Google Scholar 
    Mu, C., Lu, H., Wang, B., Bao, X. & Cui, W. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii–Carex schmidtii forested wetlands in Daxing’anling, northeast China. For. Ecol. Manage. 293, 140–148 (2013).Article 

    Google Scholar 
    Hu, T. et al. Effects of fire on soil respiration and its components in a Dahurian larch (Larix gmelinii) forest in northeast China: Implications for forest ecosystem carbon cycling. Geoderma 402, 115273 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Nyikadzino, B., Chitakira, M. & Muchuru, S. Rainfall and runoff trend analysis in the Limpopo river basin using the Mann Kendall statistic. Phys. Chem. Earth 117, 102870 (2020).Article 

    Google Scholar 
    Gocic, M. & Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Change 100, 172–182 (2013).Article 
    ADS 

    Google Scholar 
    Fang, Y. et al. Changing contribution rate of heavy rainfall to the rainy season precipitation in Northeast China and its possible causes. Atmos. Res. 197, 437–445 (2017).Article 

    Google Scholar 
    Piao, S. et al. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Change Biol. 17, 3228–3239 (2011).Article 
    ADS 

    Google Scholar 
    Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G. & Scheifinger, H. Changes in European spring phenology. Int. J. Climatol. 22, 1727–1738 (2002).Article 

    Google Scholar 
    Liang, L., Henebry, G. M., Liu, L., Zhang, X. & Hsu, L. C. Trends in land surface phenology across the conterminous United States (1982–2016) analyzed by NEON domains. Ecol. Appl. 31, e02323 (2021).Article 

    Google Scholar 
    Fu, Y. H. et al. Decreasing control of precipitation on grassland spring phenology in temperate China. Glob. Ecol. Biogeogr. 30, 490–499 (2020).Article 

    Google Scholar 
    Aze, T. Unraveling ecological signals from a global warming event of the past. Proc. Natl. Acad. Sci. U.S.A. 119, e2201495119 (2022).Article 

    Google Scholar 
    Menzel, A., Estrella, N. & Testka, A. Temperature response rates from long-term phenological records. Climate Res. 30, 21–28 (2005).Article 
    ADS 

    Google Scholar 
    Wang, H., Liu, D., Lin, H., Montenegro, A. & Zhu, X. NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan plateau. Int. J. Climatol. 35, 687–698 (2015).Article 

    Google Scholar 
    Lesica, P. & Kittelson, P. M. Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland. J. Arid Environ. 74, 1013–1017 (2010).Article 
    ADS 

    Google Scholar 
    Shen, M., Piao, S., Cong, N., Zhang, G. & Jassens, I. A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).Article 
    ADS 

    Google Scholar 
    Li, Z. et al. Spatio-temporal responses of cropland phenophases to climate change in Northeast China. J. Geog. Sci. 22, 29–45 (2012).Article 
    CAS 

    Google Scholar 
    Badeck, F. W. et al. Responses of spring phenolgy to climate change. New Phytol. 162, 295–309 (2004).Article 

    Google Scholar 
    Peng, H., Xia, H., Chen, H., Zhi, P. & Xu, Z. Spatial variation characteristics of vegetation phenology and its influencing factors in the subtropical monsoon climate region of southern China. PLoS ONE 16, e0250825 (2021).Article 
    CAS 

    Google Scholar 
    Zhang, J. et al. NIRv and SIF better estimate phenology than NDVI and EVI: Effects of spring and autumn phenology on ecosystem production of planted forests. Agric. For. Meteorol. 315, 108819 (2022).Article 
    ADS 

    Google Scholar 
    Yu, X., Zhuang, D., Hou, X. & Chen, H. Forest phenological patterns of Northeast China inferred from MODIS data. J. Geog. Sci. 15, 239–246 (2005).Article 

    Google Scholar 
    Chen, X. & Xu, L. Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int. J. Biometeorol. 56, 695–706 (2012).Article 
    ADS 

    Google Scholar 
    Ma, X., Bai, H., He, Y. & Li, S. The vegetation RSP of Qinling Mountains based on the NDVI and the response of temperature to it. Appl. Mech. Mater. 700, 394–399 (2014).Article 

    Google Scholar  More

  • in

    Seasonal range fidelity of a megaherbivore in response to environmental change

    Richard, E., Said, S., Hamann, J. L. & Gaillard, J. M. Daily, seasonal and annual variations in individual home range overlap of two sympatric spacies of deer. Can. J. Zool. 92, 853–859 (2014).Article 

    Google Scholar 
    Sorensen, A. A., Stenhouse, G. B., Bourbonnais, M. L. & Nelson, T. A. Effects of habitat quality and anthropogenic disturbance on grizzly bear (Ursus arctos horribilis) home-range fidelity. Can. J. Zool. 93, 857–865 (2015).Article 

    Google Scholar 
    van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).Article 

    Google Scholar 
    Naidoo, R., Du, P., Weaver, G. S. L. C., Jago, M. & Wegmann, M. Factors affecting intraspecific variation in home range size of a large African herbivore. Landsc. Ecol. 27, 1523–1534 (2012).Article 

    Google Scholar 
    Bose, S. et al. Implications of fidelity and philopatry for the population structure of female black-tailed deer. Behav. Ecol. 28, 983–990 (2017).Article 

    Google Scholar 
    Northrup, J. M., Anderson, C. R. Jr. & Wittemyer, G. Environmental dynamics and anthropogenic development alter philopatry and space-use in a North American cervid. Divers. Distrib. 22, 547–557 (2016).Article 

    Google Scholar 
    Passadore, C., Möller, L., Diaz-aguirre, F. & Parra, G. J. High site fidelity and restricted ranging patterns in southern Australian bottlenose dolphins. Ecol. Evol. 8, 242–256 (2018).Article 

    Google Scholar 
    Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B Biol. Sci. 365, 2289–2301 (2010).Article 

    Google Scholar 
    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).Article 

    Google Scholar 
    Morrison, T. A. et al. Drivers of site fidelity in ungulates. J. Anim. Ecol. 00, 1–12 (2021).
    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).Article 

    Google Scholar 
    Barraquand, F. & Benhamou, S. Animal movements in heterogeneous landscapes: Identifying profitable places and homogeneous movement bouts. Ecology 89, 3336–3348 (2008).Article 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments: From individual behaviors to population distributions. Oikos 117, 654–664 (2008).Article 

    Google Scholar 
    Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. H. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88, 450–460 (2019).
    Google Scholar 
    Shakeri, Y. N., White, K. S. & Waite, J. N. Staying close to home: Ecological constraints on space use and range fidelity in a mountain ungulate. Ecol. Evol. 11, 11051–11064 (2021).Article 

    Google Scholar 
    Damuth, J. Home range, home range overlap, and species energy use among herbivorous mammals. Biol. J. Linn. Soc. 15, 185–193 (1981).Article 

    Google Scholar 
    Lindstedt, S. L., Miller, B. J. & Buskirk, S. W. Home range, time, and body size in mammals. Ecol. Soc. Am. 67, 413–418 (1986).
    Google Scholar 
    Ofstad, E. G., Herfindal, I., Solberg, E. J. & Sæther, B. E. Home ranges, habitat and body mass: Simple correlates of home range size in ungulates. Proc. R. Soc. B Biol. Sci. 283, 20161234 (2016).Article 

    Google Scholar 
    Gehr, B. et al. Stay home, stay safe—Site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J. Anim. Ecol. 89, 1329–1339 (2020).Article 

    Google Scholar 
    Sach, F., Dierenfeld, E. S., Langley-Evans, S. C., Watts, M. J. & Yon, L. African savanna elephants (Loxodonta africana) as an example of a herbivore making movement choices based on nutritional needs. PeerJ 7, 1–27 (2019).Article 

    Google Scholar 
    Pretorius, Y. et al. Diet selection of African elephant over time shows changing optimization currency. Oikos 121, 2110–2120 (2012).Article 

    Google Scholar 
    Chamaillé-Jammes, S., Valeix, M. & Fritz, H. Managing heterogeneity in elephant distribution: Interactions between elephant population density and surface-water availability. J. Appl. Ecol. 44, 625–633 (2007).Article 

    Google Scholar 
    Purdon, A. & van Aarde, R. J. Water provisioning in Kruger National Park alters elephant spatial utilisation patterns. J. Arid Environ. 141, 45–51 (2017).Article 
    ADS 

    Google Scholar 
    Shannon, G., Matthews, W. S., Page, B. R., Parker, G. E. & Smith, R. J. The affects of artificial water availability on large herbivore ranging patterns in savanna habitats: A new approach based on modelling elephant path distributions. Divers. Distrib. 15, 776–783 (2009).Article 

    Google Scholar 
    Kos, M. et al. Seasonal diet changes in elephant and impala in mopane woodland. Eur. J. Wildl. Res. 58, 279–287 (2012).Article 

    Google Scholar 
    Shannon, G., Mackey, R. L. & Slotow, R. Diet selection and seasonal dietary switch of a large sexually dimorphic herbivore. Acta Oecologica 46, 48–55 (2013).Article 
    ADS 

    Google Scholar 
    Loarie, S. R., van Aarde, R. J. & Pimm, S. L. Elephant seasonal vegetation preferences across dry and wet savannas. Biol. Conserv. 142, 3099–3107 (2009).Article 

    Google Scholar 
    Scogings, P. F. et al. Seasonal variations in nutrients and secondary metabolites in semi-arid savannas depend on year and species. J. Arid Environ. 114, 54–61 (2015).Article 
    ADS 

    Google Scholar 
    Birkett, P. J., Vanak, A. T., Muggeo, V. M. R., Ferreira, S. M. & Slotow, R. Animal perception of seasonal thresholds: Changes in elephant movement in relation to rainfall patterns. PLoS ONE 7, 1–8 (2012).Article 

    Google Scholar 
    Cushman, S. A., Chase, M. & Griffin, C. Elephants in space and time. Oikos 109, 331–341 (2005).Article 

    Google Scholar 
    Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 1–12 (2014).Article 

    Google Scholar 
    Purdon, A., Mole, M. A., Chase, M. J. & van Aarde, R. J. Partial migration in savanna elephant populations distributed across southern Africa. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Shannon, G., Page, B. R., Duffy, K. J. & Slotow, R. The ranging behaviour of a large sexually dimorphic herbivore in response to seasonal and annual environmental variation. Austral Ecol. 35, 731–742 (2010).Article 

    Google Scholar 
    Tsalyuk, M., Kilian, W., Reineking, B. & Getz, W. M. Temporal variation in resource selection of African elephants follows long-term variability in resource availability. Ecol. Monogr. 89, 1–19 (2019).Article 

    Google Scholar 
    Thaker, M., Prins, H. H. T., Slotow, R., Vanak, A. T. & Gupte, P. R. Fine-scale tracking of ambient temperature and movement reveals shuttling behavior of elephants to water. Front. Ecol. Evol. 7, 1–12 (2019).Article 

    Google Scholar 
    Govender, N., Trollope, W. S. W. & Van Wilgen, B. W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 43, 748–758 (2006).Article 

    Google Scholar 
    MacFadyen, S., Hui, C., Verburg, P. H. & Van Teeffelen, A. J. A. Spatiotemporal distribution dynamics of elephants in response to density, rainfall, rivers and fire in Kruger National Park, South Africa. Divers. Distrib. 25, 880–894 (2019).Article 

    Google Scholar 
    Edwards, M. A., Nagy, J. A. & Derocher, A. E. Low site fidelity and home range drift in a wide-ranging, large Arctic omnivore. Anim. Behav. 77, 23–28 (2009).Article 

    Google Scholar 
    Switzer, P. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7, 533–555 (1993).Article 

    Google Scholar 
    Kranstauber, B., Kays, R., Lapoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).Article 

    Google Scholar 
    Kranstauber, B., Smolla, M. & Safi, K. Similarity in spatial utilization distributions measured by the earth mover’s distance. Methods Ecol. Evol. 8, 155–160 (2017).Article 

    Google Scholar 
    Wartmann, F., Juarez, C. & Fernandez-duque, E. Size, site fidelity, and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of Northern Argentina. Int. J. Primatol. 35, 919–939 (2014).Article 

    Google Scholar 
    Pringle, R. M. Elephants as agents of habitat creation for small vertebrates at the patch scale. Ecology 89, 26–33 (2008).Article 

    Google Scholar 
    Valeix, M. et al. Elephant-induced structural changes in the vegetation and habitat selection by large herbivores in an African savanna. Biol. Conserv. 144, 902–912 (2011).Article 

    Google Scholar 
    Coverdale, T. C. et al. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology 97, 3219–3230 (2016).Article 

    Google Scholar 
    Gertenbach, W. Rainfall patterns in the Kruger National Park. Koedoe 23, 35–43 (1980).Article 

    Google Scholar 
    Venter, F. J., Scholes, R. J. & Eckhardt, H. C. The abiotic template and its associated vegetation pattern. In The Kruger Experience (eds du Toit, J. T. et al.) 83–129 (Island Press, 2003).
    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. The influence of increasing population size and vegetation productivity on elephant distribution in the Kruger National Park. Austral Ecol. 34, 329–342 (2009).Article 

    Google Scholar 
    Ferreira, S. M., Greaver, C. & Simms, C. Elephant population growth in Kruger National Park, South Africa, under a landscape management approach. Koedoe 59, 1–6 (2017).Article 

    Google Scholar 
    Brownrigg, R. Package ‘Maps’: Draw Geographical Maps (2022).Kranstauber, B. & Smolla, M. Move: Visualizing and analyzing animal track data. R package version 2.1.0 (2013).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. URL https://www.R-project.org/ (2017).Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movement using Brownian bridges. Ecology 88, 2354–2363 (2007).Article 

    Google Scholar 
    Wato, Y. A. et al. Movement patterns of African elephants (Loxodonta africana) in a semi-arid savanna suggest that they have information on the location of dispersed water sources. Front. Ecol. Evol. 6, 1–8 (2018).Article 

    Google Scholar 
    Polansky, L., Kilian, W. & Wittemyer, G. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models. Proc. R. Soc. B Biol. Sci. 282, 1–7 (2015).
    Google Scholar 
    Archibald, S. & Scholes, R. J. Leaf green-up in a semi-arid African savanna–separating tree and grass responses to environmental cues. J. Veg. Sci. 18, 583–594 (2007).
    Google Scholar 
    Majozi, N. P. et al. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa. Hydrol. Earth Syst. Sci. 21, 3401–3415 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1, 1–14 (2013).Article 

    Google Scholar 
    Didan, K. MOD13Q1 MODIS/terra vegetation indices 16-day L3 global 250m SIN Grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Redfern, J. V., Grant, C. C., Gaylard, A. & Getz, W. M. Surface water availability and the management of herbivore distributions in an African savanna ecosystem. J. Arid Environ. 63, 406–424 (2005).Article 
    ADS 

    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. Elephant spatial use in wet and dry savannas of southern Africa. J. Zool. 278, 189–205 (2009).Article 

    Google Scholar 
    Goldenberg, S. Z., Douglas-Hamilton, I. & Wittemyer, G. Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality. Proc. R. Soc. B Biol. Sci. 285, 1–8 (2018).
    Google Scholar 
    Woolley, L.-A. et al. Population and individual elephant response to a catastrophic fire in Pilanesberg National Park. PLoS ONE 3, 1–10 (2008).Article 

    Google Scholar 
    Eby, S. L., Anderson, T. M., Mayemba, E. P. & Ritchie, M. E. The effect of fire on habitat selection of mammalian herbivores: The role of body size and vegetation characteristics. J. Anim. Ecol. 83, 1196–1205 (2014).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).van Moorter, B. et al. Memory keeps you at home: A mechanistic model for home range emergence. Oikos 118, 641–652 (2009).Article 

    Google Scholar 
    Guldemond, R. A. R., Purdon, A. & van Aarde, R. J. A systematic review of elephant impact across Africa. PLoS ONE 12, 1–12 (2017).Article 

    Google Scholar 
    Abraham, J. O., Goldberg, E. R., Botha, J. & Staver, A. C. Heterogeneity in African savanna elephant distributions and their impacts on trees in Kruger National Park, South Africa. Ecol. Evol. 11, 5624–5634 (2021).Article 

    Google Scholar 
    Wall, J., Douglas-Hamilton, I. & Vollrath, F. Elephants avoid costly mountaineering. Curr. Biol. 16, 527–529 (2006).Article 

    Google Scholar 
    Presotto, A., Fayrer-Hosken, R., Curry, C. & Madden, M. Spatial mapping shows that some African elephants use cognitive maps to navigate the core but not the periphery of their home ranges. Anim. Cogn. 22, 251–263 (2019).Article 

    Google Scholar 
    Landman, M., Schoeman, D. S., Hall-Martin, A. J. & Kerley, G. I. H. Understanding long-term variations in an elephant piosphere effect to manage impacts. PLoS ONE 7, 1–11 (2012).Article 

    Google Scholar 
    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).Article 

    Google Scholar 
    Hamm, M. & Drossel, B. Habitat heterogeneity hypothesis and edge effects in model metacommunities. J. Theor. Biol. 426, 40–48 (2017).Article 
    ADS 

    Google Scholar 
    Katayama, N. et al. Landscape heterogeneity-biodiversity relationship: Effect of range size. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).Article 

    Google Scholar 
    O’Connor, T. G., Goodman, P. S. & Clegg, B. A functional hypothesis of the threat of local extirpation of woody plant species by elephant in Africa. Biol. Conserv. 136, 329–345 (2007).Article 

    Google Scholar 
    Codron, J. et al. Elephant (Loxodonta africana) diets in Kruger National Park, South Africa: Spatial and landscape differences. J. Mammal. 87, 27–34 (2006).Article 

    Google Scholar 
    Mduma, S. A. R., Sinclair, A. R. E. & Hilborn, R. Food regulates the Serengeti wildebeest: A 40-year record. J. Anim. Ecol. 68, 1101–1122 (1999).Article 

    Google Scholar 
    Ogutu, J. O. & Owen-Smith, N. ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol. Lett. 6, 412–419 (2003).Article 

    Google Scholar 
    Codron, J. et al. Landscape-scale feeding patterns of African elephant inferred from carbon isotope analysis of feces. Oecologia 165, 89–99 (2011).Article 
    ADS 

    Google Scholar 
    Woolley, L.-A., Millspaugh, J. J., Woods, R. J., Page, B. R. & Slotow, R. Intraspecific strategic responses of African elephants to temporal variation in forage quality. J. Wildl. Manag. 73, 827–835 (2009).Article 

    Google Scholar 
    Dube, K. & Nhamo, G. Evidence and impact of climate change on South African national parks. Potential implications for tourism in the Kruger National Park. Environ. Dev. 33, 1–11 (2020).Article 

    Google Scholar 
    Tshipa, A. et al. Partial migration links local surface-water management to large-scale elephant conservation in the world’s largest transfrontier conservation area. Biol. Conserv. 215, 46–50 (2017).Article 

    Google Scholar 
    Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science (80-.) 375, 1–12 (2022).Article 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science (80-.) 348, 1222–1232 (2015).Article 
    CAS 

    Google Scholar 
    Mpakairi, K. S., Ndaimani, H., Tagwireyi, P., Zvidzai, M. & Madiri, T. H. Futuristic climate change scenario predicts a shrinking habitat for the African elephant (Loxodonta africana): Evidence from Hwange National Park, Zimbabwe. Eur. J. Wildl. Res. 66, 1–10 (2020).Article 

    Google Scholar 
    Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).Article 

    Google Scholar 
    Asner, G. P., Vaughn, N., Smit, I. P. J. & Levick, S. Ecosystem-scale effects of megafauna in African savannas. Ecography (Cop.) 39, 240–252 (2016).Article 

    Google Scholar 
    Shannon, G. et al. Relative impacts of elephant and fire on large trees in a savanna ecosystem. Ecosystems 14, 1372–1381 (2011).Article 

    Google Scholar 
    Mole, M. A., DÁraujo, S. R., van Aarde, R. J., Mitchell, D. & Fuller, A. Coping with heat: Behavioural and physiological responses of savanna elephants in their natural habitat. Conserv. Physiol. 4, 1–11 (2016).Article 

    Google Scholar 
    Ncongwane, K. P., Botai, J. O., Sivakumar, V., Botai, C. M. & Adeola, A. M. Characteristics and long-term trends of heat stress for South Africa. Sustainability 13, 1–20 (2021).Article 

    Google Scholar 
    Lagendijk, G., Mackey, R. L., Page, B. R. & Slotow, R. The effects of herbivory by a mega- and mesoherbivore on tree recruitment in sand forest, South Africa. PLoS ONE 6, 1–9 (2011).Article 

    Google Scholar 
    Wells, H. B. M. et al. Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species’ traits. J. Anim. Ecol. 90, 2510–2522 (2021).Article 

    Google Scholar 
    Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: Effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).Article 

    Google Scholar 
    Fležar, U. et al. Simulated elephant-induced habitat changes can create dynamic landscapes of fear. Biol. Conserv. 237, 267–279 (2019).Article 

    Google Scholar 
    Brennan, A. et al. Characterizing multispecies connectivity across a transfrontier conservation landscape. J. Appl. Ecol. 57, 1700–1710 (2020).Article 

    Google Scholar 
    Roever, C. L., van Aarde, R. J. & Leggett, K. Functional connectivity within conservation networks: Delineating corridors for African elephants. Biol. Conserv. 157, 128–135 (2013).Article 

    Google Scholar 
    Green, S. E., Davidson, Z., Kaaria, T. & Doncaster, C. P. Do wildlife corridors link or extend habitat? Insights from elephant use of a Kenyan wildlife corridor. Afr. J. Ecol. 56, 860–871 (2018).Article 

    Google Scholar  More

  • in

    2-D sex images elicit mate copying in fruit flies

    Bovet, D. & Vauclair, J. Picture recognition in animals and humans. Behav. Brain. Res. 109, 143–165 (2000).Article 
    CAS 

    Google Scholar 
    Anonymous. Tinder for Orangutans. Dublin Zoo. https://www.dublinzoo.ie/news/tinder-for-orangutans (2020).Henley, J. “Tinder for Orangutans”: Dutch zoo to let female choose mate on a tablet. The Guardian. https://www.theguardian.com/environment/2017/jan/31/tinder-for-orangutans-dutch-zoo-to-let-female-choose-mate-on-a-tablet (2017).Gierszewski, S. et al. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II validation. Curr. Zool. 6, 65–74 (2017).Article 

    Google Scholar 
    Dolins, F. L., Klimowicz, C., Kelley, J. & Menzel, C. R. Using virtual reality to investigate comparative spatial cognitive abilities in chimpanzees and humans. Am. J. Primat. 76, 496–513 (2014).Article 

    Google Scholar 
    Faria, J. J. et al. A novel method for investigating the collective behaviour of fish: Introducing ‘Robofish’. Behav. Ecol. Sociobiol. 64, 1211–1218 (2010).Article 

    Google Scholar 
    Kozak, E. C. & Uetz, G. W. Male courtship signal modality and female mate preference in the wolf spider Schizocosa ocreata: results of digital multimodal playback studies. Curr. Zool. 65, 705–711 (2019).Article 

    Google Scholar 
    Loukola, O. J., Perry, C. J., Coscos, L. & Chittka, L. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355, 833–836 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    MacLaren, R. D. Evidence of an emerging female preference for an artificial male trait and the potential for spread via mate choice copying in Poecilia latipinna. Ethology 125, 575–586 (2019).
    Google Scholar 
    Rönkä, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654–1663 (2020).Article 

    Google Scholar 
    Rosenthal, G. G., Rand, A. S. & Ryan, M. J. The vocal sac as a visual cue in anuran communication: An experimental analysis using video playback. Anim. Behav. 68, 55–58 (2004).Article 

    Google Scholar 
    Thurley, K. & Ayaz, A. Virtual reality systems for rodents. Curr. Zool. 63, 109–119 (2017).Article 

    Google Scholar 
    Ware, E. L., Saunders, D. R. & Troje, N. F. Social interactivity in pigeon courtship behavior. Curr. Zool. 63, 85–95 (2017).Article 

    Google Scholar 
    Wang, D. et al. The influence of model quality on self-other mate choice copying. Pers. Ind. Diff. 17, 110481 (2021).Article 

    Google Scholar 
    Gray, J. R., Pawlowski, V. & Willis, M. A. A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space. J. Neurosci. Meth. 120, 211–223 (2002).Article 

    Google Scholar 
    Strauss, R., Schuster, S. & Götz, K. G. Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 1281–1296 (1997).Article 
    CAS 

    Google Scholar 
    Kemppainen, J. et al. Binocular mirror-symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision. PNAS 119, e2109717119 (2022).Article 
    CAS 

    Google Scholar 
    Bowers, R. I., Place, S. S., Todd, P. M., Penke, L. & Asendorpf, J. B. Generalization in mate-choice copying in humans. Behav. Ecol. 23, 112–124 (2012).Article 

    Google Scholar 
    Pruett-Jones, S. Independent versus nonindependent mate choice: do females copy each other? Am. Nat. 140, 1000–1006 (1992).Article 
    CAS 

    Google Scholar 
    Dagaeff, A.-C., Pocheville, A., Nöbel, S., Isabel, G. & Danchin, E. Drosophila mate copying correlates with atmospheric pressure in a speed learning situation. Anim. Behav. 121, 163–174 (2016).Article 

    Google Scholar 
    Mery, F. et al. Public versus personal information for mate copying in an invertebrate. Curr. Biol. 19, 730–734 (2009).Article 
    CAS 

    Google Scholar 
    Danchin, E. et al. Cultural flies: Conformist social learning in fruitflies predicts long-lasting mate-choice traditions. Science 362, 1025–1030 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Monier, M., Nöbel, S., Isabel, G. & Danchin, E. Effects of a sex ratio gradient on female mate-copying and choosiness in Drosophila melanogaster. Curr. Zool. 64, 251–258 (2018).Article 

    Google Scholar 
    Monier, M., Nöbel, S., Danchin, E. & Isabel, G. Dopamine and serotonin are both required for mate-copying in Drosophila melanogaster. Front. Behav. Neurosci. 12, 334 (2019).Article 

    Google Scholar 
    Nöbel, S., Allain, M., Isabel, G. & Danchin, E. Mate copying in Drosophila melanogaster males. Anim. Behav. 141, 9–15 (2018).Article 

    Google Scholar 
    Nöbel, S., Danchin, E. & Isabel, G. Mate-copying for a costly variant in Drosophila melanogaster females. Behav. Ecol. 29, 1150–1156 (2018).Article 

    Google Scholar 
    Dukas, R. Natural history of social and sexual behavior in fruit flies. Sci. rep. 10, 1–11 (2020).Article 

    Google Scholar 
    Chouinard-Thuly, L. et al. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr. Zool. 63, 5–19 (2017).Article 

    Google Scholar 
    Nöbel, S. et al. Female fruit flies copy the acceptance, but not the rejection, of a mate. Behav. Ecol. 33, 1018–1024 (2022)Article 

    Google Scholar 
    Bretman, A., Westmancoat, J. D., Gage, M. J. G. & Chapman, T. Males use multiple, redundant cues to detect mating rivals. Curr. Biol. 21, 617–622 (2011).Article 
    CAS 

    Google Scholar 
    Greenspan, R. J. & Ferveur, J. F. Courtship in drosophila. Ann. Rev. Gen. 34, 205 (2000).Article 
    CAS 

    Google Scholar 
    Grillet, M., Dartevelle, L. & Ferveur, J. F. A Drosophila male pheromone affects female sexual receptivity. Proc. Roy. Soc. B. 273, 315–323 (2006).Article 
    CAS 

    Google Scholar 
    Borst, A. Drosophila’s view on insect vision. Curr. Biol. 19, R36–R47 (2009).Article 
    CAS 

    Google Scholar 
    Paulk, A., Millard, S. & van Swinderen, B. Vision in Drosophila: Seeing the world through a model´s eye. Ann. Rev. Entomol. 58, 313–332 (2013).Article 
    CAS 

    Google Scholar 
    Antony, C. & Jallon, J. M. The chemical basis for sex recognition in Drosophila melanogaster. J. Insect. Physiol. 28, 873–880 (1982).Article 
    CAS 

    Google Scholar 
    Keesey, I. W. et al. Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J. Chem. Ecol. 42, 739–747 (2016).Article 
    CAS 

    Google Scholar 
    Talyn, B. C. & Bowse, H. B. The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Anim. Behav. 68, 1165–1180 (2004).Article 

    Google Scholar 
    von Schilcher, F. The function of pulse song and sine song in the courtship of Drosophila melanogaster. Anim. Behav. 24, 622–6251976 (1976).Article 

    Google Scholar 
    McGregor, P. K. et al. Design of playback experiments: The Thornbridge hall NATO ARW consensus. In Playback and Studies of Animal Communication (ed. McGregor, P.) 1–9 (Plenum Press, New York, 1992).Chapter 

    Google Scholar 
    Richmond, J. The three Rs. In The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals (eds Hubrecht, R. & Kirkwood, J.) 5–22 (Wiley-Blackwell, Hoboken, 2002).
    Google Scholar 
    Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen & Co Ltd, 1959).
    Google Scholar 
    Schlupp, I., Ryan, M. & Waschulewski, M. Female preferences for naturally-occurring novel male traits. Behaviour 136, 519–527 (1999).Article 

    Google Scholar 
    Witte, K. & Klink, K. No pre-existing bias in sailfin molly females, Poecilia latipinna, for a sword in males. Behaviour 142, 283–303 (2005).Article 

    Google Scholar 
    Gerlai, R. Animated images in the analysis of zebrafish behavior. Curr. Zool. 63, 35–44 (2017).Article 

    Google Scholar 
    Ioannou, C. C., Guttal, V. & Couzin, I. D. Predatory fish select for coordinated collective motion in virtual prey. Science 337, 1212–1215 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Little, A. C., Jones, B. C. & DeBruine, L. M. Preferences for variation in masculinity in real male faces change across the menstrual cycle: Women prefer more masculine faces when they are more fertile. Pers. Ind. Diff. 45, 478–482 (2008).Article 

    Google Scholar 
    Little, A. C., Jones, B. C. & DeBruine, L. M. Facial attractiveness: Evolutionary based research. Phil. Trans. R. Soc. B. 366, 1638–1659 (2011).Article 

    Google Scholar 
    Morrison, E. R., Clark, A. P., Tiddeman, B. P. & Penton-Voak, I. S. Manipulating shape cues in dynamic human faces: Sexual dimorphism is preferred in female but not male faces. Ethology 116, 1234–1243 (2010).Article 

    Google Scholar 
    Kacsoh, B. Z., Bozler, J., Ramaswami, M. & Bosco, G. Social communication of predator-induced changes in Drosophila behavior and germ line physiology. eLife. 4, e07423 (2015).Article 

    Google Scholar 
    Caruana, N. & Seymour, K. Objects that induce face pareidolia are prioritized by the visual system. Brit. J. Psychol. 113, 496–507 (2022).Article 

    Google Scholar 
    Agrawal, S., Safarik, S. & Dickinson, M. The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster. J. Exp. Biol. 217, 2796–2805 (2014).
    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (Austria, Vienna, 2021).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression 2nd edn. (Sage Publishing, London, 2001).
    Google Scholar  More

  • in

    Simultaneous invasion decouples zebra mussels and water clarity

    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).Article 
    CAS 

    Google Scholar 
    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).Article 

    Google Scholar 
    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invadsional meltdown? Biol. Invasions 1, 21–32 (1999).Article 

    Google Scholar 
    Montgomery, W. I., Lundy, M. G. & Reid, N. ‘Invasional meltdown’: evidence for unexpected conseuences and cumulative impacts of multispecies invasions. Biol. Invasions 14, 1111–1115 (2012).Article 

    Google Scholar 
    Jackson, M. C. Interactions among multiple invasive animals. Ecology 96, 2035–2041 (2015).Article 
    CAS 

    Google Scholar 
    Braga, R. R. et al. Invasional meltdown: an experimental test and a framework to distinguish synergistic, additive, and antagonistic effects. Hydrobiologia 847, 1603–1618 (2020).Article 

    Google Scholar 
    Crooks, K. R. & Soulé, M. E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566 (1999).Article 
    CAS 

    Google Scholar 
    Klemmer, A. J., Wissinger, S. A., Greig, H. S. & Ostrofsky, M. L. Nonlinear effects of consumer density on multiple ecosystem processes. J. Anim. Ecol. 81, 779–780 (2012).Article 

    Google Scholar 
    De Meester, L., Vanoverbeke, J., Kilsdonk, L. J. & Urban, M. C. Evolving perspectives on monopolization and priority effects. Trends Ecol. Evol. 31, 136–146 (2016).Article 

    Google Scholar 
    Vitousek, P. M., D’Antonio, C. M., Loope, L. L. & Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996).
    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).Article 
    CAS 

    Google Scholar 
    Liebig, J. et al. Bythotrephes longimanus: U.S. Geological Survey, Nonindigenous Aquatic Species Database (2021). Available at: https://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=162.Benson, A.J. et al. Dreissena polymorpha (Pallas, 1771): U.S. Geological Survey, Nonindigenous Aquatic Species Database (2021). Available at: https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=5Stewart, T. J., Johannsson, O. E., Holeck, K., Sprules, W. G. & O’Gorman, R. The Lake Ontario zooplankton community before (1987-1991) and after (2001-2005) invasion-induced ecosystem change. J. Gt. Lakes Res. 36, 596–605 (2010).Article 

    Google Scholar 
    Strecker, A. L. et al. Direct and indirect effects of an invasive planktonic predator on pelagic food webs. Limnol. Oceanogr. 56, 179–192 (2011).Article 

    Google Scholar 
    Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746, 97–112 (2015).Article 
    CAS 

    Google Scholar 
    Kerfoot, W. C. et al. A plague of waterfleas (Bythotrephes): impacts on microcrustacean community structure, seasonal biomass, and secondary production in a large inland-lake complex. Biol. Invasions 18, 1121–1145 (2016).Article 

    Google Scholar 
    Strayer, D. et al. Long-term variability and density dependence in Hudson River Dreissena populations. Freshw. Biol. 65, 474–489 (2019).Article 

    Google Scholar 
    Fang, X., Stefan, H. G., Jiang, L., Jacobson, P. C. & Pereira D. L. Projected impacts of climatic changes on cisco oxythermal habitat in Minnesota lakes and management strategies in Handbook of Climate Change mitigation and Adaptation (eds. Chen, W.-Y., Suzuki, T. & Lackner, M.) 657-722 (Springer, 2015).Stefan, H. G., Hondzo, M., Fang, X., Eaton, J. G. & McCormick, J. H. Simulated long-term temperature and dissolved oxygen characteristics of lakes in the north-central United States and associated fish habitat limits. Limnol. Oceanogr. 41, 1124–1135 (1996).Article 

    Google Scholar 
    Jacobson, P. C., Jones, T. S., Rivers, P. & Pereira, D. L. Field estimation of a lethal oxythermal niche boundary for adult ciscoes in Minnesota lakes. T. Am. Fish. Soc. 137, 1464–1474 (2008).Article 

    Google Scholar 
    Hecky, R. E. et al. The nearshore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can. J. Fish. Aquat. Sci. 61, 1285–1293 (2004).Article 
    CAS 

    Google Scholar 
    Sousa, R., Gutiérrez, J. L. & Aldridge, D. C. Non-indigenous invasive bivalves as ecosystem engineers. Biol. Invasions 11, 2367–2385 (2009).Article 

    Google Scholar 
    Higgins, S. N. & Vander Zanden, M. J. What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol. Monogr. 80, 179–196 (2010).Article 

    Google Scholar 
    Mayer, C. M. et al. Benthification of Freshwater Lakes: Exotic Mussels Turning Ecosystems Upside Down in Quagga and Zebra Mussels: Biology, Impacts, and Control, 2nd ed. (eds. Nalepa, T. F. & Schloesser D. W.) 575-586 (CRC Press, 2014).Lehman, J. T. & Cárcres, C. E. Food-web responses to species invasion by a predatory invertebrate: Bythotrephes in Lake Michigan. Limnol. Oceanogr. 38, 879–891 (1993).Article 

    Google Scholar 
    Bunnell, D. B., Keeler, K. M., Puchala, E. A., Davis, B. M. & Pothoven, S. A. Comparing seasonal dynamics of the Lake Huron zooplankton community between 1983-1984 and 2007 and revisiting the impact of Bythotrephes planktivory. J. Gt. Lakes Res. 38, 451–462 (2012).Article 

    Google Scholar 
    Pawlowski, M. B., Branstrator, D. K., Hrabik, T. R. & Sterner, R. W. Changes in the cladoceran community of Lake Superior and thee role of Bythotrephes longimanus. J. Gt. Lakes Res. 43, 1101–1110 (2017).Article 

    Google Scholar 
    Hoffman, J. C., Smith, M. E. & Lehman, J. T. Perch or plankton: top-down control of Daphnia by yellow perch (Perca flavescens) or Bythotrephes cederstroemi in an inland lake? Freshw. Biol. 46, 759–775 (2001).Article 

    Google Scholar 
    Bunnell, D. B., Davis, B. M., Warner, D. M., Chriscinske, M. A. & Roseman, E. F. Planktivory in the changing Lake Huron zooplankton community: Bythotrephes consumption exceeds that of Mysis and fish. Freshw. Biol. 56, 1281–1296 (2011).Article 

    Google Scholar 
    Merkle, C. & De Stasio, B. Bythotrephes longimanus in shallow, nearshore waters: interactions with Leptodora kindtii, impacts on zooplankton, and implications for secondary dispersal from southern Green Bay, Lake Michigan. J. Gt. Lakes Res. 44, 934–942 (2018).Article 

    Google Scholar 
    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. USA 113, 4081–4085 (2016).Article 
    CAS 

    Google Scholar 
    Lehman, J. T. Algal biomass unaltered by food-web changes in Lake Michigan. Nature 332, 537–538 (1988).Article 

    Google Scholar 
    Wahlström, E. & Westman, E. Planktivory by the predacious cladoceran Bythotrephes longimanus: effects on zooplankton size structure and density. Can. J. Fish. Aquat. Sci. 56, 1865–1872 (1999).Article 

    Google Scholar 
    Strecker, A. L. & Arnott, S. E. Invasive predator, Bythotrephes, has varied effects on ecosystem function in freshwater lakes. Ecosystems 11, 490–503 (2008).Article 

    Google Scholar 
    Benke, A. C. Concepts and patterns of invertebrate production in running waters. Verh. Int. Theor. Angew. Limnol. 25, 15–38 (1993).
    Google Scholar 
    Jones, T. & Montz, G. Population increase and associated effects of zebra mussels Dreissena polymorpha in Lake Mille Lacs, Minnesota, U.S.A. Bioinvasion Rec. 9, 772–792 (2020).Article 

    Google Scholar 
    Strayer, D. L. & Malcom, H. M. Long-term demography of a zebra mussel (Dreissena polymorpha) population. Freshw. Biol. 51, 117–130 (2006).Article 

    Google Scholar 
    Geisler, M. E., Rennie, M. D., Gillis, D. M. & Higgins, S. N. A predictive model for water clarity following dreissenid invasion. Biol. Invasions 18, 1989–2006 (2016).Article 

    Google Scholar 
    Barbiero, R. P. & Tuchman, M. L. Long-term dreissenid impacts on water clarity in Lake Erie. J. Gt. Lakes Res. 30, 557–565 (2004).Article 

    Google Scholar 
    Fishman, D. B., Adlerstein, S. A., Vanderploeg, H. A., Fahnenstiel, G. L. & Scavia, D. Causes of phytoplankton changes in Saginaw Bay, Lake Huron, during the zebra mussel invasion. J. Gt. Lakes Res. 35, 482–495 (2009).Article 

    Google Scholar 
    Zhang, H., Culver, D. A. & Boegman, L. Dreissenids in Lake Erie: an algal filter or a fertilizer? Aquat. Invasions 6, 175–194 (2011).Article 

    Google Scholar 
    Higgins, S. N., Vander Zanden, M. J., Joppa, L. N. & Vadeboncoeur, Y. The effect of dreissenid invasions on chlorophyll and the chlorophyll: total phosphorus ration in north-temperate lakes. Can. J. Fish. Aquat. Sci. 68, 319–329 (2011).Article 
    CAS 

    Google Scholar 
    Lehman, J. T. & Branstrator, D. K. A model for growth, development, and diet selection by the invertebrate predator Bythotrephes cederstroemi. J. Gt. Lakes Res. 21, 610–619 (1995).Article 

    Google Scholar 
    Azan, S. S. E., Arnott, S. E. & Yan, N. D. A review of the effects of Bythotrephes longimanus and calcium decline on zooplankton communities – can interactive effects be predicted? Environ. Rev. 23, 395–413 (2015).Article 
    CAS 

    Google Scholar 
    Pangle, K. L., Peacor, S. D. & Johannsson, O. E. Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate. Ecology 88, 402–412 (2007).Article 

    Google Scholar 
    Cross, T. K. & Jacobson, P. C. Landscape factors influencing lake phosphorus concentrations across Minnesota. Lake Reserv Manag 29, 1–12 (2013).Article 
    CAS 

    Google Scholar 
    McQueen, D. J., Johannes, M. R. S., Post, J. R., Stewart, T. J. & Lean, D. R. S. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol. Monogr. 59, 289–309 (1989).Article 

    Google Scholar 
    Mills, E. L. et al. Lake Ontario: food web dynamics in a changing ecosystem (1970-2000). Can. J. Fish. Aquat. Sci. 60, 471–490 (2003).Article 

    Google Scholar 
    Lehman, J. T. Causes and consequences of cladoceran dynamics in Lake Michigan: implications of species invasion by. Bythotrephes. J. Gt. Lakes Res. 17, 437–445 (1991).Article 

    Google Scholar 
    Yan, N. D. et al. Long-term trends in zooplankton of Dorset, Ontario, lakes: the probable interactive effects of changes in pH, total phosphorus, dissolved organic carbon, and predators. Can. J. Fish. Aquat. Sci. 65, 862–877 (2008).Article 
    CAS 

    Google Scholar 
    Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).Article 
    CAS 

    Google Scholar 
    Rennie, M. D., Evans, D. O. & Young, J. D. Increased dependence on nearshore benthic resources in the Lake Simcoe ecosystem after dreissenid invasion. Inland Waters 3, 297–310 (2013).Article 

    Google Scholar 
    Goto, D., Dunlop, E. S., Young, J. D. & Jackson, D. A. Shifting trophic control of fishery-ecosystem dynamics following biological invasions. Ecol. Appl. 30, e02190 (2020).Article 

    Google Scholar 
    Hansen, G. J. A. et al. Walleye growth declines following zebra mussel and Bythotrephes invasion. Biol. Invasions 22, 1481–1495 (2020).Article 

    Google Scholar 
    Yan, N. & Pawson, T. Changes in the crustacean zooplankton community of Harp Lake, Canada, following invasion by. Bythotrephes cederstrœmi. Freshw. Biol. 37, 409–425 (1997).Article 

    Google Scholar 
    Bourdeau, P. E., Bach, M. T. & Peacor, S. D. Predator presence dramatically reduces copepod abundance through condition-mediated non-consumptive effects. Freshw. Biol. 61, 1020–1031 (2016).Article 
    CAS 

    Google Scholar 
    Lehman, J. R. Ecological principles affecting community structure and secondary production by zooplankton in marine and freshwater environments. Limnol. Oceanogr. 33, 931–945 (1988).
    Google Scholar 
    Walsh, J. R., Lathrop, R. C., & Vander Zanden, M.J.Invasive invertebrate predator, Bythotrephes longimanus, reverses trophic cascade in a north-temperate lake. Limnol. Oceanogr. 62, 2498–2509 (2017).Article 

    Google Scholar 
    Underwood, A. J. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecol. Appl. 4, 3–15 (1994).Article 

    Google Scholar 
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).Article 
    CAS 

    Google Scholar 
    Strayer, D. L., Eviner, V. T., Jeschke, J. M. & Pace, M. L. Understanding the long-term effects of species invasions. Trends Ecol. Evol. 21, 645–651 (2006).Article 

    Google Scholar 
    Magnuson, J. J. Long-term ecological research and the invisible present. BioScience 40, 495–501 (1990).Article 

    Google Scholar 
    Doak, D. F. et al. Understanding and predicting ecological dynamics: are major surprises inevitable? Ecology 89, 952–961 (2008).Article 

    Google Scholar 
    Hansen, G. J. A., Gaeta, J. W., Hansen, J. F. & Carpenter, S. R. Learning to manage and managing to learn: sustaining freshwater recreational fisheries in a changing environment. Fisheries 40, 56–64 (2015).Article 

    Google Scholar 
    Dumont, H. J., Van De Velde, I. & Dumont, S. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19, 75–97 (1975).Article 

    Google Scholar 
    Culver, D. A., Boucherle, M. M., Bean, D. J. & Fletcher, J. W. Biomass of freshwater crustacean zooplankton from length-weight regressions. Can. J. Fish. Aquat. Sci. 42, 1380–1390 (1985).Article 

    Google Scholar 
    Manly, B. F. J. Randomization, bootstrap and Monet Carlo methods in biology, 3rd ed. (Chapman and Hall/CRC, 2007).Arar, E. J. Method 446.0. In vitro determination of chlorophylls a, b, c1 + c2 and pheopigments in marine and freshwater algae by visible spectrophotometry, revision 1.2. (U.S. Environmental Protection Agency, 1997).O’Dell, J. W. Method 365.1 Determination of phosphorus by semi-automated colorimetry, revision 2.0. (U.S. Environmental Agency, 1993).Helsel, D. R. & Hirsch, R. M. Statistical methods in water resources (U. S. Geological Survey, 2002).Minnesota Pollution Control Agency (MPCA). Surface water data. https://webapp.pca.state.mn.us/wqd/surface-water (MPCA, 2021).Read, J. S. et al. Data release: Process-based predictions of lake water temperature in the Midwest US: U.S. Geological Survey data release, https://doi.org/10.5066/P9CA6XP8 (USGS, 2021).Hothorn, T., Hornik, K., van de Wiel, M. A. & Zeileis, A. Lego system for conditional inference. Am. Stat. 60, 257–263 (2006).Article 

    Google Scholar 
    Dewitz, J. National Land Cover Database (NLCD) 2016 Products: U.S. Geological Survey data release, https://doi.org/10.5066/P96HHBIE (USGS, 2019).Use of Fishes in Research Committee. Guidelines for the use of fishes in research. (American Fisheries Society, 2014)Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876 (2019).Article 

    Google Scholar 
    Minnesota Geospatial Commons. DNR Hydrology Dataset. (2022). Available at: https://gisdata.mn.gov/dataset/water-dnr-hydrography.Minnesota Geospatial Commons. Lake Bathymetric Outlines, Contours, and DEM. (2021). Available at: https://gisdata.mn.gov/dataset/water-lake-bathymetry.ESRI ArcGIS Desktop: Release 10.6. Redlands, CA: Environmental Systems Research Institute (2018).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2011).Article 

    Google Scholar 
    Guerrero, F. & Rodríguez, V. Secondary production of a congeneric species assemblage of Acartia (Copepoda: Calanoida): a calculation based on the size-frequency distribution. Sci. Mar. 58, 161–167 (1994).
    Google Scholar 
    Cross, W. F. et al. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon. Ecol. Appl. 21, 2016–2033 (2011).Article 

    Google Scholar 
    Gillooly, J. F. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22, 241–251 (2000).Article 

    Google Scholar 
    Benke, A. C. & Huryn, A. D. Secondary production and quantitative food webs in Methods in Stream Ecology, Volume 2: ecosystem function (eds. Lamberti, G.A. & Hauer, F. R.) 235-254 (Academic Press, 2017).Wu, L. & Culver, D. A. Zooplankton grazing and phytoplankton abundance: an assessment before and after invasion of Dreissena polymorpha. J. Gt. Lakes Res. 17, 425–436 (1991).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (Vienna, Austria, 2020). Accessible at: https://www.R-project.org/Minnesota Geospatial Commons. State Boundary. (2013). Available at: https://gisdata.mn.gov/dataset/bdry-state-of-minnesota.United States Geological Survey. North America Political Boundaries. (2006). Available at: https://www.sciencebase.gov/catalog/item/4fb555ebe4b04cb937751db9. More

  • in

    Laboratory and semi-field efficacy evaluation of permethrin–piperonyl butoxide treated blankets against pyrethroid-resistant malaria vectors

    All methods were performed in accordance with the relevant guidelines and regulations.Study siteThe laboratory experiments on regeneration and wash resistance were conducted at the KCMUCo-PAMVERC Insecticide Testing Facility; while experimental hut study was carried out at Harusini, the facility’s field site located at Mabogini village (S03˚22.764’ E03˚720.793’), adjacent to Lower Moshi rice irrigation scheme in north-eastern Tanzania. The dominant vector at this site is An. arabiensis with moderate level of resistance to pyrethroids conferred by both oxidase and esterase activities32. In this study, pyrethroid-resistant laboratory reared An. gambiae Muleba-Kis mosquitoes were released into the huts for the release-recapture experiment.Test systemsNon-blood fed, 2–5 day old females of susceptible An. gambiae s.s. Kisumu strain and pyrethroid resistant An. gambiae s.s Muleba-Kis strain were used for the evaluation of efficacy in the laboratory (phase I). The Muleba-Kis strain has been colonized for more than 8 years and it is resistant to permethrin with fixed L1014S kdr frequency and metabolic resistance through increased oxidase activity has also been reported21. Only An. gambiae s.s Muleba-Kis were used in release-recapture experiments. The Kisumu strain is fully susceptible to insecticides and free of any detectable insecticide resistance mechanisms. The strain originated from Kisumu, Kenya and has been colonized for many years in laboratory. At the KCMUCo-PAMVERC Moshi insectary, the adult Kisumu strain mosquitoes are reared at a temperature of 24–27 °C, 75 ± 10% relative humidity (RH) and maintained under a dark:light regime of 12:12 h. The Muleba-Kis mosquitoes used for the release-recapture experiments were reared in the field insectary under ambient temperature and relative humidity and treated as previously explained21. The susceptibility status of these colonies is checked every three months using WHO susceptibility test33 and, CDC bottle bioassay test34. The colonies are regularly genotyped for kdr mutations using TaqMan assays35. To maintain the resistance of Muleba-Kis, larvae are frequently selected with alpha-cypermethrin.Regeneration timeTo determine the regeneration time of the insecticide-treated blankets, blankets were cut into 25 × 25 cm pieces and tested before washing and then washed and dried three times consecutively following WHO recommended procedures for LLINs36. The pieces were then re-tested after one, two, three, six and seven days post-washing using WHO cylinders against susceptible An. gambiae s.s (Kisumu).Graphs for 24-h mortality and 60 min knock down (KD) correlating to insecticide bioavailability, as measured by 3 min exposure in cylinder bioassays, were established before and after washing blanket pieces three times consecutively in a day, and tested within a maximum of seven days post-washing. The time in days required to reach initial mortality or 60 min KD plateau is the period required for full regeneration of insecticide-treated blanket.Wash resistanceWHO cylinder bioassays36 were used to assess the wash resistance for the blanket pieces washed 0, 5, 10, 15 and 20 times at the intervals equivalent to the regeneration time. Four pieces cut from 4 permethrin and 4 untreated blankets were used as positive and negative control respectively, against 4 pieces cut from 4 PBO–permethrin blankets.Bioassay proceduresFive, non-blood fed, 2–5 day old An. gambiae Kisumu or An. gambiae Muleba-Kis mosquitoes were exposed for 3 min or 30 min to blanket pieces in WHO cylinder. Bioassays were carried out at 27 ± 2 °C and 75 ± 10% RH. Knock-down was scored after 60 min post-exposure and mortality after 24 h. Fifty mosquitoes (5 mosquitoes per cylinder) were used on each 25 × 25 cm piece of blanket sample. After exposure, the mosquitoes were held for 24 h with access to 10% glucose solution in the paper cups covered with a net material. Mosquitoes exposed to untreated blanket were referred as a negative control.WHO tunnel test methodBlanket pieces which recorded ≤ 80% mortality in cylinder bioassay were tested in the tunnel assay using WHO guidelines. The tunnel was made of an acrylic square cylinder (25 cm in height, 25 cm in width, and 60 cm in length) divided into two sections using a blanket-covered frame fitted into a slot across the tunnel. During the assays a guinea pig was held in a small wooden cage (as a bait) in one of the sections and 50, non-blood fed, female An. gambiae Kisumu or An. gambiae Muleba-Kis aged 5–8 days were released in the other section at dusk and left overnight (13 h) for experimentation at 27 ± 2 °C and 75 ± 10% RH. The blanket surface was deliberately holed (nine 1-cm holes) to allow mosquitoes to contact the blanket material and penetrate to the baited chamber. Treated blankets were tested concurrently together with an untreated blanket. Scoring for the numbers of mosquitoes found alive or dead, fed or unfed, in each section were done in the morning. Mosquitoes found alive were removed and held in paper cups with labels corresponding to each tunnel sections under controlled conditions (25–27 °C and 75–85% RH) and fed on 10% glucose solution to monitor for delayed mortality post exposurely. Outcomes recorded were: mosquito penetration, blood feeding and mortality.Washing of blankets and whole nets for hut trialBlankets and whole nets were separately washed following WHOPES guidelines. In brief, each blanket/net was washed in Savon de Marseilles soap solution (2 g/L) for 10 min: 3 min stirring, 4 min soaking, then another 3 min stirring. This was followed by 2 rinse cycles of the same duration with water only. The water pH was 6 for all washes. The mean water hardness was within the WHOPES limit of ≤ 89 ppm. All nets used in the experimental hut study were cut with holes (4 cm × 4 cm) to simulate the conditions of a torn net. While nets were washed 20 times as per guidelines, blankets were only washed 10 times. To simulate a situation in emergence situations where washing is less frequent due to water scarcity30,31.Experimental hut trial:experimental hut designExperimental hut study was done in Lower Moshi using typical East African experimental huts design as described in the WHOPES35. Huts were constructed with brick walls and featured with cement plaster on the inside and a ceiling board, a metal iron sheet roof, open eaves with window and veranda traps on each side and window traps. Slight modifications from the original structure were made by installing metal eave baffles on two sides. The baffles allow mosquito entry but prevent exits. The window traps were used to collect mosquitoes that tend to exit the huts.Test item labelling, washing and perforatingBoth blankets and LLINs for the trial were distinctively labelled with fabric labels that withstand washes. For wash resistance, the blankets and nets were separately washed according to a protocol adapted from the standard WHO washing procedure36 at the interval equivalent to the regeneration time established in the laboratory for blanket and LLIN respectively. Before testing in the experimental huts, all nets were deliberately holed i.e. 30 holes measuring 4 × 4 cm were made in each net, 9 holes in each of the long side panels, and 6 holes at each short side (head- and foot-side panels) to enhance blood-feeding on the control arm.Test items packagingEach blanket and net were sealed in a plastic bag and then packed in the large plastic container. Each container was labelled for a single treatment to avoid cross contamination between test items.Experimental hut decontaminationA cone assay with 10 susceptible mosquitoes was performed on one wall per hut to rule out any contamination of the wall surface. Only huts with 24 h mortality of susceptible mosquitoes  More

  • in

    Author Correction: The hidden land use cost of upscaling cover crops

    Correction to: Communications Biology https://doi.org/10.1038/s42003-020-1022-1, published online 11 June 2020.In the original version of the Perspective, a unit conversion error affected calculations for cereal rye, triticale, barley, and oats. Further, berseem clover yield estimates were mistranscribed from the original source. These mistakes led to errors in Supplementary Data 1, Figure 2 and in the presentation of the data in the text.Supplementary Data 1 has now been replaced with a file containing the correct numbers.Figure 2 has been corrected:Original figure 2New figure 2The Abstract stated: “In this Perspective, we estimate land use requirements to supply the United States maize production area with cover crop seed, finding that across 18 cover crops, on average 3.8% (median 2.0%) of current production area would be required, with the popular cover crops rye and hairy vetch requiring as much as 4.5% and 11.9%, respectively”.The text should read: “In this Perspective, we estimate land use requirements to supply the United States maize production area with cover crop seed, finding that across 18 cover crops, on average 2.4% (median 2.1%) of current production area would be required, with the popular cover crops rye and hairy vetch requiring as much as 4.8% and 11.9%, respectively”.In the 1st paragraph of the right hand column on page 2, the text said: “(…), we find that the land requirements for production of cover crop seed would be on average 1.4 million hectares (median 746,000 ha), which is equivalent to 3.8% (median 2.0%) of the U.S. maize farmland. Rye (Secale cereale L.) – a midrange seed yielding cover crop and one of the most commonly used in the corn belt, would require as much as 1,661,000 hectares (4.5% of maize farmland), (…)”The text should read: “(…) we find that the land requirements for production of cover crop seed would be on average 892,526 hectares (median 774,417 ha), which is equivalent to 2.4% (median 2.1%) of the U.S. maize farmland. Rye (Secale cereale L.) – a midrange seed yielding cover crop and one of the most commonly used in the corn belt, would require as much as 1,779,770 hectares (4.8% of maize farmland), (…)”On page 3, second paragraph the text said: “Cover cropping the entire U.S. maize area would require the equivalent of as much as 18% (rye) to 49% (hairy vetch) (…)”The text should read: “Cover cropping the entire U.S. maize area would require the equivalent of as much as 19% (rye) to 49% (hairy vetch) (…)”This errors have now been corrected in the Perspective Article. More