More stories

  • in

    Genetic diversity and structure in wild Robusta coffee (Coffea canephora A. Froehner) populations in Yangambi (DR Congo) and their relation to forest disturbance

    Aguilar R, Cristóbal-Pérez ED, Balvino-Olvera FJ, Aguilar-Aguilar MDJ, Aguirre-Acosta N, Ashworth L et al. (2019) Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecol Lett 22:1163–1173Article 

    Google Scholar 
    Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqcBarlow J, Lennow GD, Ferreira J, Berenguer E, Lees AC, Nally RM et al. (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535:144–147Article 
    CAS 

    Google Scholar 
    Barret SC, Eckert CG (1990) Current issues in plant reproductive ecology. Isr J Plant Sci 39:5–12
    Google Scholar 
    Bawa KS, Bullock SH, Perry DR, Coville RE, Grayum MH (1985) Reproductive biology of tropical lowland rain forest trees II. Pollination systems. Am J Bot 72:346–356Article 

    Google Scholar 
    Bello C, Galetti M, Pizo MA, Magnago LFS, Roch MF, Lima RA, et al. (2015) Defaunation affects carbon storage in tropical forests. Sci Adv 1:e1501105. https://doi.org/10.1126/sciadv.1501105Blouin MS (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol 18:503–511Article 

    Google Scholar 
    Born C, Kjellberg F, Chevallier M-H, Vignes H, Dikangadissi J-T, Sanguié J et al. (2008) Colonization processes and the maintenance of genetic diversity: insight from a pioneer rainforest tree, Aucoumea Klaineana. Proc R Soc B 275:2171–2179Article 

    Google Scholar 
    Braun M, Dantas L, Esposito T, Pedrosa-Harand A (2020) Strong genetic differentiation on a small geographic scale in the Neotropical rainforest understory tree Paypayrola blanchetiana (Violaceae). Tree Genet Genomes. https://doi.org/10.1007/s11295-020-01477-5Campbell AJ, Carvalheiro LG, Maués MM, Jaffé R, Giannini TC, Freitas MAB et al. (2018) Anthropogenic disturbance of tropical forests threatens pollination services to açai palm in the Amazon river delta. J Appl Ecol 55:1725–1736Article 

    Google Scholar 
    Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience https://doi.org/10.1186/s13742-015-0047-8Chiriboga-Arroyo F, Jansen M, Bardales-Lozano R, Ismail SA, Thomas E, Garcia M et al. (2021) Genetic threats to the Forest Giants of the Amazon: Habitat degradation effects on the socio-economically important Brazil nut tree (Bertholletia excelsa). Plants People Planet 3:194–210Article 

    Google Scholar 
    Cramer PJS, Wellman FL (1957) Review of literature of coffee research in Indonesia. SIC Editorial, Inter-American Institute of Agricultural SciencesCraparo ACW, Van Asten PJ, Läderach P, Jassogne LT, Grab SW (2015) Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agric Meteorol 207:1–10Article 

    Google Scholar 
    Cubry P, De Bellis F, Pot D, Musoli P, Leroy P (2013) Global analysis of Coffea canephora Pierre ex Froehner (Rubiaceae) from the Guineo-Congolese region reveals impacts from climatic refuges and migration effects. Genet Resour Crop Evol 60:483–501Article 

    Google Scholar 
    Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018) Classifying drivers of global forest loss. Science 361:1108–1111Article 
    CAS 

    Google Scholar 
    Da Silva JMC, Tabarelli M (2000) Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature 404:72–74Article 

    Google Scholar 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158Article 
    CAS 

    Google Scholar 
    Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS One. https://doi.org/10.1371/journal.pone.0047981Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M et al. (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184Article 
    CAS 

    Google Scholar 
    Depecker J, Asimonyio JA, Miteho R, Hatangi Y, Kambale J-L, Verleysen L, et al. (2022) The association between rainforest disturbance and recovery, tree community composition, and community traits in the Yangambi area in the Democratic Republic of the Congo. J Trop Ecol. https://doi.org/10.1017/S0266467422000347Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764Article 

    Google Scholar 
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bull 19:11–15
    Google Scholar 
    Edwards DP, Socolar JB, Mills SC, Burivalova Z, Koh LP, Wilcove DS (2019) Conservation of tropical forests in the Anthropocene. Curr Biol 29:R1008–R1020Article 
    CAS 

    Google Scholar 
    El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839Article 
    CAS 

    Google Scholar 
    Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. https://doi.org/10.1371/journal.pone.0019379Ernst C, Mayaux P, Verhegghen A, Bodart C, Christophe M, Defourny P (2013) National forest cover change in Congo Basin: deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 2005. Glob Chang Biol 19:1173–1187Article 

    Google Scholar 
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620Article 
    CAS 

    Google Scholar 
    FAO, UNEP (2020) The State of the World’s Forests 2020. In Forests, bio-diversity and people. FAO and UNEPFerrão RG, da Fonseca AFA, Ferrão MAG, De Mune LH (2019) Conilon Coffee: the Coffea canephora produced in Brazil. Incaper, Vitória-ES, Brasil
    Google Scholar 
    Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA et al. (2009) Prospects for tropical forest biodiversity in a human‐modified world. Ecol Lett 12:561–582Article 

    Google Scholar 
    García-Fernández C, Sánchez JA, Blanco G (2018) SNP-haplotypes: An accurate approach for parentage and relatedness inference in gilthead sea bream (Sparus aurata). Aquaculture 495:582–591Article 

    Google Scholar 
    Gomez C, Dussert S, Hamon P, Hamon S, De Kochko A, Poncert V (2009) Current genetic differentiation of Coffea canephora pierre ex a. Froehn in the guineo-Congolian african zone: Cumulative impact of ancient climatic changes and recent human activities. BMC Evol Biol 9:167Article 

    Google Scholar 
    Goudet J (2013) hierfstat: estimation and tests of hierarchical F-statistics. R Package version 0:04–10. http://CRAN.R-project.org/package=hierfstatHubbell SP, Foster RB (1986) Biology, chance and history and the structure of tropical rain forest tree communities. In: Diamond JM, Case TJ (eds) Community ecology. Harper and Row, New York, NY, p 314–329
    Google Scholar 
    ICO (2022) Coffee Market Report: August 2022. Donwloaded from International Coffee Organization https://www.ico.org/documents/cy2021-22/cmr-0822-e.pdfIsmail SA, Ghazoul J, Ravikanth G, Kushalappa CG, Uma Shaanker R, Kettle CJ (2017) Evaluating realized seed dispersal across fragmented tropical landscapes: A two‐fold approach using parentage analysis and the neighbourhood model. N Phytol 214:1307–1316Article 
    CAS 

    Google Scholar 
    Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405Article 
    CAS 

    Google Scholar 
    Jombart T, Collins C (2015) Analysing genome-wide SNP data using adegenet 2.0.0. https://adegenet.r-forge.r-project.org/files/tutorial-genomics.pdfJones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30Article 

    Google Scholar 
    Jones OR, Wang J (2012) A comparison of four methods for detecting weak genetic structures from maker data. Ecol Evol 2:1048–1055Article 

    Google Scholar 
    Kalinowski ST, Wagner AP, Taper ML (2006) ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579Article 
    CAS 

    Google Scholar 
    Kearsley E, Verbeeck H, Hufkens K, Van, de Perre F, doetterl S, Baert G et al. (2017) Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering. Ecol Evol 7:295–304Article 

    Google Scholar 
    Kier G, Mutke J, Dinerstein E, Ricketss TH, Küper W, Kreft H et al. (2005) Global patterns of plant diversity and floristic knowledge. J Biogeogr 32:1107–1116Article 

    Google Scholar 
    Kiwuka C, Goudsmit E, Tournebize R, Oliveir de Aquino S, Douma JC, Bellanger L et al. (2021) Genetic diversity of native and cultivated Ugandan Robusta coffee (Coffea canephora Pierre ex A. Froehner): Climate influences, breeding potential and diversity conservation. PLoS One 16:e0245965Article 
    CAS 

    Google Scholar 
    Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104:5925–5930Article 
    CAS 

    Google Scholar 
    Lachenaud P, Zhang D (2008) Genetic diversity and population structure in wild stands of cacao trees (Theobroma cacao L.) in French Guiana. Ann For Sci. https://doi.org/10.1051/forest:2008011Lashermes P, Combes MC, Ribas A, Cenci A, Mahé L, Etienne H (2010) Genetic and physical mapping of the SH3 region that confers resistance to leaf rust in coffee tree (Coffea arabica L.). Tree Genet Genomes 6:973–980Article 

    Google Scholar 
    Leroy T, Marraccini P, Dufour M, Montagnon C, Lashermes P, Sabau X et al. (2005) Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theor Appl Genet 111:1031–1041Article 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 14:2078–2079Article 

    Google Scholar 
    Li YL, Liu JX (2018) StructureSelector: A web‐based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Resour 18:176–177Article 

    Google Scholar 
    Makelele IA, Verheyen K, Boeckx P, Ntaboba LC, Bazirake BM, Ewango C et al. (2021) Afrotropical secondary forests exhibit fast diversity and functional recovery, but slow compositional and carbon recovery after shifting cultivation. J Veg Sci 32:1–13Article 

    Google Scholar 
    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12Article 

    Google Scholar 
    Mateu-Andrés I, De Paco L (2006) Genetic diversity and the reproductive system in related species of Antirrhinum. Ann Bot 98:1053–1060Article 

    Google Scholar 
    Mayr E (1954) Change of genetic environment and evolution. In: Huxley A, Hardy AC, Ford EB (eds) Evolution as a process. Allen and Unwin, London, p 157–180
    Google Scholar 
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. (2010) The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303Article 
    CAS 

    Google Scholar 
    Merot-L’anthoene V, Tournebize R, Darracq O, Rattina V, Lepelley M, Bellanger L et al. (2019) Development and evaluation of a genome-wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L. Plant Biotechnol J 17:1418–1430Article 

    Google Scholar 
    Musoli P, Cubry P, Aluka P, Billot C, Dufour M, De Bellis F et al. (2009) Genetic differentiation of wild and cultivated populations: diversity of Coffea canephora Pierre in Uganda. Genome 52:634–646Article 
    CAS 

    Google Scholar 
    Neushulz EL, Mueller T, Schleuning M, Böhning-Gaese K (2016) Pollination and seed dispersal are the most threatened processes of plant regeneration. Sci Rep 6:1–6
    Google Scholar 
    Norden N, Chazdon RL, Chao A, Jiang YH, Vilchez-Alvarado B (2009) Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecol Lett 12:385–394Article 

    Google Scholar 
    Nowak MD, Davis AP, Anthony F, Yoder AD (2011) Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae). PLoS One. https://doi.org/10.1371/journal.pone.0021019Nyakaana S (2007) Microgeographical genetic structure of forest robusta coffee (Coffea canephora, Pierre), in Kibale National Park, Uganda. Afr J Ecol 45:71–75Article 

    Google Scholar 
    Oberleitner F, Egger C, Oberdorfer S, Dullinger S, Wanek W, Hietz P (2021) Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica. Ecol Manag 479:118580Article 

    Google Scholar 
    Olsson O, Nuñez-Iturri G, Smith HG, Ottosson U, Effium EO (2019) Competition, seed dispersal and hunting: what drives germination and seedling survival in an Afrotropical forest? AoB Plants https://doi.org/10.1093/aobpla/plz018Oryem-Origa H (1999) Fruit and seed ecology of wild Robusta coffee (Coffea canephora Froehner) in Kibale National Park. Uganda Afr J Ecol 37:439–448Article 

    Google Scholar 
    Peakall R, Smouse RPP (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539Article 
    CAS 

    Google Scholar 
    Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys Publishers, Kerkwere
    Google Scholar 
    Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. https://doi.org/10.3835/plantgenome2012.05.0005Poorter L, Craven D, Jakovac CC, van der Sande MT, Amissah L, Bongers F et al. (2021) Multidimensional tropical forest recovery. Science 374:1370–1376Article 
    CAS 

    Google Scholar 
    Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589Article 

    Google Scholar 
    RStudio Team (2016) RStudio: Integrated Development for RSasaki N, Putz FE (2009) Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv Lett 2:226–232Article 

    Google Scholar 
    Sezen UU, Chazdon RL, Holsinger KE (2007) Multigenerational genetic analysis of tropical secondary regeneration in a canopy palm. Ecology 88:3065–3075Article 

    Google Scholar 
    Schaumont D, Veeckman E, Van der Jeugt F, Haegeman A, van Glabeke S, Bawin Y et al. (2022) Stack Mapping Anchor Points (SMAP): a versatile suite of tools for read-backed haplotyping. Preprint at bioRxiv https://doi.org/10.1101/2022.03.10.483555Shapiro AC, Grantham HS, Aguilar-Amuchastegui N, Murray NJ, Gond V, Bonfils D, et al. (2021) Forest condition in the Congo Basin for the assessment of ecosystem conservation status. Ecol Indic. https://doi.org/10.1016/j.ecolind.2020.107268Silva MDC, Várzea V, Guerra-Guimarães L, Azinheira HG, Fernandez D, Petitot AS et al. (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18:119–147Article 
    CAS 

    Google Scholar 
    Theim TJ, Shirk RY, Givnish TJ (2014) Spatial genetic structure in four understorey Psychotria species (Rubiaceae) and implications for tropical forest diversity. Am J Bot 101:1189–1199Article 

    Google Scholar 
    Torti SD, Coley PD, Kursar TA (2001) Causes and consequences of monodominance in tropical lowland forests. Am Nat 157:141–153Article 
    CAS 

    Google Scholar 
    Tyukavina A, Hansen MC, Potapov P, Parker D, Okpa C, Stehman SV, et al. (2018) Congo Basin forest loss dominated by increasing smallholder clearing. Sci Adv. https://doi.org/10.1126/sciadv.aat2993Vanden Abeele S, Janssens SB, Asimonyio Anio J, Bawin Y, Depecker J, Kambale B et al. (2021) Genetic diversity of wild and cultivated Coffea canephora in northeastern DR Congo and the implications for conservation. Am J Bot 108:2425–2434Article 

    Google Scholar 
    Vandepitte K, Gristina AS, De Hert K, Meekers T, Roldán-Ruiz I, Honnay O (2012) Recolonization after habitat restoration leads to decreased genetic variation in populations of a terrestrial orchid. Mol Ecol 21:4206–4215Article 
    CAS 

    Google Scholar 
    Van Vliet N, Muhindo J, Kbale Nyumu J, Mushagalusa O, Nasi R (2018) Mammal depletion processes as evidenced from spatially explicit and temporal local ecological knowledge. Trop Conserv Sci 11:1–16
    Google Scholar 
    Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935Article 
    CAS 

    Google Scholar 
    Vranckx G, Jacquemyn H, Muys B, Honnay O (2012) Meta‐analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol 26:228–237Article 

    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CAS 

    Google Scholar 
    Wellman FL (1961) Coffee. Botany, cultivation, and utilization. Leonard Hill, London
    Google Scholar 
    Widmer A, Lexer C (2001) Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol Evol 16:267–269Article 
    CAS 

    Google Scholar 
    Wright S (1932) The role of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the sixth international congress of genetics. pp 356–366.Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End read merger. Bioinformatics 30:614–620Article 
    CAS 

    Google Scholar  More

  • in

    Image dataset for benchmarking automated fish detection and classification algorithms

    Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Chang. 3, 254–258, https://doi.org/10.1038/nclimate1691 (2013).Article 
    ADS 

    Google Scholar 
    Cheung, W. W. L., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368, https://doi.org/10.1038/nature12156 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Hilborn, R. et al. Global status of groundfish stocks. Fish Fish. 00, 1–18, https://doi.org/10.1111/faf.12560 (2021).Article 

    Google Scholar 
    Aguzzi, J. et al. Challenges to the assessment of benthic populations and biodiversity as a result of rhythmic behaviour: video solutions from cabled observatories. Oceanography and Marine Biology: An Annual Review 50, 233–284 (2012).
    Google Scholar 
    Aguzzi, J. et al. Coastal observatories for monitoring of fish behaviour and their responses to environmental changes. Reviews in fish biology and fisheries 25, 463–483, https://doi.org/10.1007/s11160-015-9387-9 (2015).Article 

    Google Scholar 
    Doya, C. et al. Diel behavioral rhythms in sablefish (Anoplopoma fimbria) and other benthic species, as recorded by the Deep-sea cabled observatories in Barkley canyon (NEPTUNE-Canada). Journal of Marine Systems 130, 69–78, https://doi.org/10.1016/j.jmarsys.2013.04.003 (2014).Article 
    ADS 

    Google Scholar 
    Aguzzi, J. et al. Ecological video monitoring of Marine Protected Areas by underwater cabled surveillance cameras. Marine Policy 119, 104052, https://doi.org/10.1016/j.marpol.2020.104052 (2020).Article 

    Google Scholar 
    Milligan, R. J. et al. Evidence for seasonal cycles in deep‐sea fish abundances: A great migration in the deep SE Atlantic? Journal of Animal Ecology 89, 1593–1603, https://doi.org/10.1111/1365-2656.13215 (2020).Article 

    Google Scholar 
    Hutchingson, G. E. Concluding remarks. Cold Spring Harbor Symp. 22, 415–427, https://doi.org/10.1101/SQB.1957.022.01.039 (1957).Article 

    Google Scholar 
    Hut, R. A., Kronfeld-Schor, N., Van Der Vinne, V. & De la Iglesia, H. In search of a temporal niche: environmental factors. Progress in brain research 199, 281–304, https://doi.org/10.1016/B978-0-444-59427-3.00017-4 (2012).Article 

    Google Scholar 
    Aguzzi, J. et al. The hierarchic treatment of marine ecological information from spatial networks of benthic platforms. Sensors 20, 1751, https://doi.org/10.3390/s20061751 (2020).Article 
    ADS 

    Google Scholar 
    Danovaro, R. et al. A new international ecosystem-based strategy for the global deep ocean. Science 355, 452–454, https://doi.org/10.1126/science.aah7178 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Aguzzi, J. et al. The potential of video imagery from worldwide cabled observatory networks to provide information supporting fish-stock and biodiversity assessment. ICES Journal of Marine Science 77, 2396–2410, https://doi.org/10.1093/icesjms/fsaa169 (2020).Article 

    Google Scholar 
    Aguzzi, J. et al. New high-tech flexible networks for the monitoring of deep-sea ecosystems. Environmental science and technology 53, 6616–6631, https://doi.org/10.1021/acs.est.9b00409 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Rountree, R. A. et al. Towards an optimal design for ecosystem-level ocean observatories. In Oceanography and Marine Biology. Taylor and Francis, pp. 79–106 (2020).Aguzzi, J. et al. Developing technological synergies between deep-sea and space research. Elementa: Science of the Anthropocene 10, 00064, https://doi.org/10.1525/elementa.2021.00064 (2022).Article 

    Google Scholar 
    Aguzzi, J. et al. Multiparametric monitoring of fish activity rhythms in an Atlantic coastal cabled observatory. Journal of Marine Systems 212, 103424, https://doi.org/10.1016/j.jmarsys.2020.103424 (2020).Article 

    Google Scholar 
    Matabos et al. Expert, Crowd, Students or Algorithm: who holds the key to deep-sea imagery ‘big data’ processing? Methods in Ecology and Evolution 8, 996–1004, https://doi.org/10.1111/2041-210X.12746 (2017).Article 

    Google Scholar 
    Zuazo, A. et al. An automated pipeline for image processing and data treatment to track activity rhythms of Paragorgia arborea in relation to hydrographic conditions. Sensors 20, 6281, https://doi.org/10.3390/s20216281 (2020).Article 
    ADS 

    Google Scholar 
    Dibattista, J. D. et al. Community-based citizen science projects can support the distributional monitoring of fishes. Aquatic Conservation: Marine and Freshwater Ecosystems 31, 3580–3593, https://doi.org/10.1002/aqc.3726 (2021).Article 

    Google Scholar 
    Malde, K., Handegard, N. O., Eikvil, L. & Salberg, A. B. Machine intelligence and the data-driven future of marine science. ICES Journal of Marine Science 77, 1274–1285, https://doi.org/10.1093/icesjms/fsz057 (2020).Article 

    Google Scholar 
    European Marine Board. Big Data in Marine Science. European Marine Broad Advencing Seas & Ocean Science. https://www.marineboard.eu/publications/big-data-marine-science (2020).Aguzzi, J. et al. The new SEAfloor OBservatory (OBSEA) for remote and long-term coastal ecosystem monitoring. Sensors-Basel 11, 5850–5872, https://doi.org/10.3390/s110605850 (2011).Article 
    ADS 

    Google Scholar 
    Del Rio, J. et al. Obsea: a decadal balance for a cabled observatory deployment. IEEE Access 8, 33163–33177, https://doi.org/10.1109/ACCESS.2020.2973771 (2020).Article 

    Google Scholar 
    Condal, F. et al. Seasonal rhythm in a Mediterranean coastal fish community as monitored by a cabled observatory. Marine Biology 159, 2809–2817, https://doi.org/10.1007/s00227-012-2041-3 (2012).Article 

    Google Scholar 
    Naylor, E. Chronobiology of marine organisms (Cambridge University Press, 2010).Weis, J. S., Smith, G., Zhou, T., Santiago-Bass, C. & Weis, P. Effects of contaminants on behavior: biochemical mechanisms and ecological consequences: killifish from a contaminated site are slow to capture prey and escape predators; altered neurotransmitters and thyroid may be responsible for this behavior, which may produce population changes in the fish and their major prey, the grass shrimp. Bioscience 51, 209–217 https://doi.org/10.1641/0006-3568(2001)051[0209:EOCOBB]2.0.CO;2 (2001).Bellido, J. M. et al. Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. In Essential Fish Habitat Mapping in the Mediterranean. Springer Netherlands, 171–184 https://doi.org/10.1007/978-1-4020-9141-4_13 (2008).Brander, K. Impacts of climate change on fisheries. Journal of Marine Systems 79, 389–402, https://doi.org/10.1016/j.jmarsys.2008.12.015 (2010).Article 
    ADS 

    Google Scholar 
    Viehman, H. A. & Zydlewski, G. B. Multi-scale temporal patterns in fish presence in a high-velocity tidal channel. PLoS One 12, e0176405, https://doi.org/10.1371/journal.pone.0176405 (2017).Article 
    CAS 

    Google Scholar 
    Van Der Walt, K. A., Porri, F., Potts, W. M., Duncan, M. I. & James, N. C. Thermal tolerance, safety margins and vulnerability of coastal species: Projected impact of climate change induced cold water variability in a temperate African region. Marine Environmental Research 169, 105346, https://doi.org/10.1016/j.marenvres.2021.105346 (2021).Article 
    CAS 

    Google Scholar 
    Marini, S. et al. Tracking fish abundance by underwater image recognition. Scientific reports 8, 1–12, https://doi.org/10.1038/s41598-018-32089-8 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Sbragaglia, V. et al. Annual rhythms of temporal niche partitioning in the Sparidae family are correlated to different environmental variables. Scientific reports 9, 1–11, https://doi.org/10.1038/s41598-018-37954-0 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Francescangeli, M. et al. Long-Term Monitoring of Diel and Seasonal Rhythm of Dentex dentex at an Artificial Reef. Frontier in Marine Science 9, 1–17, https://doi.org/10.3389/fmars.2022.801033 (2022).Article 

    Google Scholar 
    Knausgård, K. M. et al. Temperate fish detection and classification: a deep learning based approach. Applied Intelligence 52, 6988–7001, https://doi.org/10.1007/s10489-020-02154-9 (2022).Article 

    Google Scholar 
    Wu, J. et al. Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise. ACM Computing Surveys (CSUR) 53, 1–35, https://doi.org/10.1145/3379504 (2020).Article 

    Google Scholar 
    He J., Mao R., Shao Z. & Zhu F. Incremental Learning in Online Scenario. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 13923–13932 https://doi.org/10.1109/CVPR42600.2020.01394 (2020).Zhou, D. W., Yang, Y., & Zhan, D. C. Learning to Classify with Incremental New Class. In IEEE Transactions on Neural Networks and Learning Systems https://doi.org/10.1109/TNNLS.2021.3104882 (2021).Hashmani, M. A., Jameel, S. M., Alhussain, H., Rehman, M. & Budiman, A. Accuracy performance degradation in image classification models due to concept drift. International Journal of Advanced Computer Science and Applications 10, 422–425, https://doi.org/10.14569/ijacsa.2019.0100552 (2019).Article 

    Google Scholar 
    Langenkämper, D., van Kevelaer, R., Purser, A. & Nattkemper, T. W. Gear-Induced Concept Drift in Marine Images and Its Effect on Deep Learning Classification. Front. Mar. Sci. 7, 506, https://doi.org/10.3389/fmars.2020.00506 (2020).Article 

    Google Scholar 
    Kloster, M., Langenkämper, D., Zurowietz, M., Beszteri, B. & Nattkemper, T. W. Deep learning-based diatom taxonomy on virtual slides. Scientific Reports 10, 1–13, https://doi.org/10.1038/s41598-020-71165-w (2020).Article 
    CAS 

    Google Scholar 
    Ottaviani, E. et al. Assessing the image concept drift at the OBSEA coastal underwater cabled observatory. Frontiers in Marine Science 9, 1–13, https://doi.org/10.3389/fmars.2022.840088 (2022).Article 

    Google Scholar 
    Katija, K. et al. FathomNet: A global image database for enabling artificial intelligence in the ocean. Scientific reports 12, 1–14, https://doi.org/10.1038/s41598-022-19939-2 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence 14, 1137–1145 (1995).
    Google Scholar 
    Tharwat, A. Classification assessment methods. Applied Computing and Informatics 17, 168–192, https://doi.org/10.1016/j.aci.2018.08.003 (2018).Article 

    Google Scholar 
    Qi, C., Diao, J. & Qiu, L. On estimating model in feature selection with cross-validation. IEEE Access 7, 33454–33463, https://doi.org/10.1109/ACCESS.2019.2892062 (2019).Article 

    Google Scholar 
    Lopez-Vazquez, V. et al. Video image enhancement and machine learning pipeline for underwater animal detection and classification at cabled observatories. Sensors 20, 726, https://doi.org/10.3390/s20030726 (2020).Article 
    ADS 

    Google Scholar 
    Francescangeli, M. et al. Underwater camera photos with manual tagging of fish species at OBSEA seafloor observatory from 2013 to 2014. PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.946149 (2022).Marini, S. Source code for: simoneMarinIsmar/Image-Tagging-tool: Image Tagging (v1.0). Zenodo https://doi.org/10.5281/zenodo.6566282 (2022).Froese, R. & Pauly, D. FishBase. www.fishbase.org (2019).Martinez Padro, E. et al. CTD data acquired at the OBSEA seafloor observatory from 2013 to 2014. PANGAEA https://doi.org/10.1594/PANGAEA.946015 (2022).Martinez Padro, E. et al. Meteorological data from a weather station at Vilanova i la Geltrú (Catalonia, Spain) from 2013 to 2014. PANGAEA https://doi.org/10.1594/PANGAEA.945911 (2022).Martinez Padro, E. et al. Meteorological data from a weather station at Sant Pere de Ribes (Catalonia, Spain) from 2013 to 2014. PANGAEA https://doi.org/10.1594/PANGAEA.945906 (2022).Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788 https://doi.org/10.1109/CVPR.2016.91 (2016).Marrable, D. et al. Accelerating species recognition and labelling of fish from underwater video with machine-assisted deep learning. Frontiers in Marine Science 9, 944582, https://doi.org/10.3389/fmars.2022.944582 (2022).Article 

    Google Scholar 
    Zabala, M., García-Rubies, A., & Corbera, J. Els peixos de les illes Medes i del litoral català: guia per observar-los al seu ambient (Centre d’Estudis Marins de Badalona, 1992).Corbera, J., Sabatés, A., & García-Rubies, A. Peces de mar de la península ibérica (Ed. Planeta, 1996).Mercader, L., Lloris, D., & Rucabado, J. Tots els peixos del mar Català: Diagnosis i claus d’identificació (Institut d’Estudis Catalans, 2001).Aguzzi, J. et al. Daily activity rhythms in temperate coastal fishes: insights from cabled observatory video monitoring. Marine Ecology Progress Series 486, 223–236, https://doi.org/10.3354/meps10399 (2013).Article 
    ADS 

    Google Scholar 
    Campos‐Candela, A. et al. A camera‐based method for estimating absolute density in animals displaying home range behaviour. Journal of Animal Ecology 87, 825–837, https://doi.org/10.1111/1365-2656.12787 (2018).Article 

    Google Scholar 
    Jang, J. & Yoon, S. Feature concentration for supervised and semisupervised learning with unbalanced datasets in visual inspection. IEEE Transactions on Industrial Electronics 68, 7620–7630, https://doi.org/10.1109/TIE.2020.3003622 (2020).Article 

    Google Scholar 
    Zhang, J. et al. Adaptive Vertical Federated Learning on Unbalanced Features. IEEE Transactions on Parallel and Distributed Systems 33, 4006–4018, https://doi.org/10.1109/TPDS.2022.3178443 (2022).Article 

    Google Scholar 
    Lin, C. H., Lin, C. S., Chou, P. Y. & Hsu, C. C. An Efficient Data Augmentation Network for Out-of-Distribution Image Detection. IEEE Access 9, 35313–35323, https://doi.org/10.1109/ACCESS.2021.3062187 (2021).Article 

    Google Scholar 
    Lu, Y., Chen, D., Olaniyi, E. & Huang, Y. Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review. Computers and Electronics in Agriculture 200, 107208, https://doi.org/10.1016/j.compag.2022.107208 (2022).Article 

    Google Scholar 
    Waqas, N., Safie, S. I., Kadir, K. A., Khan, S. & Khel, M. H. K. DEEPFAKE Image Synthesis for Data Augmentation. IEEE Access 10, 80847–80857, https://doi.org/10.1109/ACCESS.2022.3193668 (2022).Article 

    Google Scholar  More

  • in

    Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 1–13 (2019).
    Google Scholar 
    Lovelock, C. E. & Duarte, C. M. Dimensions of Blue Carbon and emerging perspectives. Biol. Lett. 15, 20180781 (2019).Article 

    Google Scholar 
    Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat Rev Earth Environ 2, 826–839 (2021).Al‐Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Chang. Biol. 26, 2988–3005 (2020).Article 
    ADS 

    Google Scholar 
    Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. https://doi.org/10.1038/s41561-021-00715-2 (2021).Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science (80-) 331, 50–50 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 4, eaao4985 (2018).Article 
    ADS 

    Google Scholar 
    Rosentreter, J. A., Al‐Haj, A. N., Fulweiler, R. W. & Williamson, P. Methane and nitrous oxide emissions complicate coastal blue carbon assessments. Glob. Biogeochem. Cycles 35, e2020GB006858 (2021).Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Snelgrove, P. V. R. et al. Global carbon cycling on a heterogeneous seafloor. Trends Ecol. Evol. 33, 96–105 (2018).Article 

    Google Scholar 
    Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Barnes, R. O. & Goldberg, E. D. Methane production and consumption in anoxic marine sediments. Geology 4, 297 (1976).Article 
    ADS 
    CAS 

    Google Scholar 
    Reeburgh, W. S. Rates of biogeochemical processes in anoxic sediments. Annu. Rev. Earth Planet. Sci. 11, 269–298 (1983).Article 
    ADS 
    CAS 

    Google Scholar 
    Wallenius, A. J., Dalcin Martins, P., Slomp, C. P. & Jetten, M. S. M. Anthropogenic and environmental constraints on the microbial methane cycle in coastal sediments. Front. Microbiol. 12, 631621 (2021).Tokoro, T. et al. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation. Glob. Chang. Biol. 20, 1873–1884 (2014).Article 
    ADS 

    Google Scholar 
    Gallagher, J. B., Shelamoff, V. & Layton, C. Seaweed ecosystems may not mitigate CO2 emissions. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsac011 (2022).Oremland, R. S. & Taylor, B. F. Sulfate reduction and methanogenesis in marine sediments. Geochim. Cosmochim. Acta 42, 209–214 (1978).Article 
    ADS 
    CAS 

    Google Scholar 
    Egger, M., Riedinger, N., Mogollón, J. M. & Jørgensen, B. B. Global diffusive fluxes of methane in marine sediments. Nat. Geosci. 11, 421–425 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Weber, T., Wiseman, N. A. & Kock, A. Global ocean methane emissions dominated by shallow coastal waters. Nat. Commun. 10, 1–10 (2019).Article 

    Google Scholar 
    Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).Article 

    Google Scholar 
    Neubauer, S. C. Global warming potential is not an ecosystem property. Ecosystems https://doi.org/10.1007/s10021-021-00631-x (2021).Howard, J., Hoyt, S., Isensee, K., Telszewski, M. & Pidgeon, E. Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. 1–181 (2014). https://unesdoc.unesco.org/ark:/48223/pf0000372868.Berg, P., Huettel, M., Glud, R. N., Reimers, C. E. & Attard, K. M. Aquatic eddy covariance: the method and its contributions to defining oxygen and carbon fluxes in marine environments. Ann. Rev. Mar. Sci. 14, 431–455 (2022).Article 

    Google Scholar 
    Tokoro, T., Watanabe, K., Tada, K. & Kuwae, T. Air–water CO2 flux in shallow coastal waters: theory, methods, and empirical studies. in Blue Carbon in Shallow Coastal Ecosystems 153–184 (Springer Singapore, 2019).Saintilan, N., Rogers, K., Mazumder, D. & Woodroffe, C. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuar. Coast. Shelf Sci. 128, 84–92 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Ollivier, Q. R., Maher, D. T., Pitfield, C. & Macreadie, P. I. Net drawdown of greenhouse gases (CO2, CH4 and N2O) by a temperate australian seagrass meadow. Estuaries Coasts https://doi.org/10.1007/s12237-022-01068-8 (2022).Maher, D. T. et al. Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales. Environ. Sci. Technol. 47, 12938–12945 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring–neap–spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Maher, D. T., Cowley, K., Santos, I. R., Macklin, P. & Eyre, B. D. Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: Insights from automated in situ radioactive and stable isotope measurements. Mar. Chem. 168, 69–79 (2015).Article 
    CAS 

    Google Scholar 
    Attard, K. M. et al. Seasonal metabolism and carbon export potential of a key coastal habitat: The perennial canopy-forming macroalga Fucus vesiculosus. Limnol. Oceanogr. 64, 149–164 (2019).Article 
    ADS 

    Google Scholar 
    Attard, K. M. et al. Seasonal ecosystem metabolism across shallow benthic habitats measured by aquatic eddy covariance. Limnol. Oceanogr. Lett. 4, 79–86 (2019).Article 

    Google Scholar 
    Trevathan-Tackett, S. M. et al. Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 96, 3043–3057 (2015).Article 

    Google Scholar 
    Pessarrodona, A. et al. Global seaweed productivity. Sci. Adv. 8, eabn2465 (2022).Machado, L., Magnusson, M., Paul, N. A., de Nys, R. & Tomkins, N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 9, e85289 (2014).Article 
    ADS 

    Google Scholar 
    Hansson, G. Methane production from marine, green macro-algae. Resour. Conserv. 8, 185–194 (1983).Article 
    CAS 

    Google Scholar 
    Björk, M., Rosenqvist, G., Gröndahl, F. & Bonaglia, S. Methane emissions from macrophyte beach wrack on Baltic seashores. Ambio 52, 171–181 (2023).Article 

    Google Scholar 
    Lundevall-Zara, M., Lundevall-Zara, E. & Brüchert, V. Sea-air exchange of methane in shallow inshore areas of the Baltic sea. Front. Mar. Sci. 8, 1–20 (2021).Article 

    Google Scholar 
    Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Roth, F. et al. High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems. Glob. Chang. Biol. https://doi.org/10.1111/gcb.16177 (2022).Koweek, D. A. et al. A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability. Biogeosciences 14, 31–44 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Watanabe, K. et al. Macroalgal metabolism and lateral carbon flows can create significant carbon sinks. Biogeosciences 17, 2425–2440 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Möller, P., Pihl, L. & Rosenberg, R. Benthic faunal energy flow and biological interaction in some shallow marine soft bottom habitats. Mar. Ecol. Prog. Ser. 27, 109–121 (1985).Article 
    ADS 

    Google Scholar 
    Frigstad, H. et al. Blue Carbon – Climate Adaptation, CO2 Uptake And Sequestration Of Carbon In Nordic Blue Forests – Results From The Nordic Blue Carbon Project. (Nordic Council of Ministers, 2021).Ikawa, H. & Oechel, W. C. Temporal variations in air-sea CO 2 exchange near large kelp beds near San Diego, California. J. Geophys. Res. Ocean. 120, 50–63 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).Article 
    CAS 

    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Oreska, M. P. J. et al. The greenhouse gas offset potential from seagrass restoration. Sci. Rep. 10, 1–15 (2020).Article 

    Google Scholar 
    Asplund, M. E. et al. Methane emissions from nordic seagrass meadow sediments. Front. Mar. Sci. 8, 811533 (2022).Article 

    Google Scholar 
    Schorn, S., Ahmerkamp, S., Bullock, E., Weber, M. & Lott, C. Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proc. Natl Acad. Sci. USA. https://doi.org/10.1073/pnas.2106628119/-/DCSupplemental.Published (2022).Koebsch, F., Glatzel, S. & Jurasinski, G. Vegetation controls methane emissions in a coastal brackish fen. Wetl. Ecol. Manag. 21, 323–337 (2013).Article 
    CAS 

    Google Scholar 
    Sansone, F. J. & Martens, C. S. Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science (80-). 211, 707–709 (1981).Article 
    ADS 
    CAS 

    Google Scholar 
    Egger, M. et al. Rapid sediment accumulation results in high methane effluxes from coastal sediments. PLoS ONE 11, e0161609 (2016).Article 

    Google Scholar 
    Hamdan, L. J. & Wickland, K. P. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate. Limnol. Oceanogr. 61, S3–S12 (2016).Article 
    ADS 

    Google Scholar 
    Cai, M. et al. Metatranscriptomics reveals different features of methanogenic archaea among global vegetated coastal ecosystems. Sci. Total Environ. 802, 149848 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science (80-). 350, 434–438 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, C.-J., Pan, J., Liu, Y., Duan, C.-H. & Li, M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome 8, 94 (2020).Article 
    CAS 

    Google Scholar 
    Hilt, S., Grossart, H., McGinnis, D. F. & Keppler, F. Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems. Limnol. Oceanogr. https://doi.org/10.1002/lno.12095 (2022).Söllinger, A. & Urich, T. Methylotrophic methanogens everywhere — physiology and ecology of novel players in global methane cycling. Biochem. Soc. Trans. 47, 1895–1907 (2019).Article 

    Google Scholar 
    Karl, D. M. et al. Aerobic production of methane in the sea. Nat. Geosci. 1, 473–478 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    McGenity, T. J. & Sorokin, D. Y. Handbook of Hydrocarbon and Lipid Microbiology. p. 665–680 (Springer, 2010).Murray, B. C., Pendleton, L., Jenkins, W. A. & Sifleet, S. Green Payments for Blue Carbon Economic Incentives for Protecting Threatened Coastal Habitats (Nicholas Institute for Environmental Policy Solutions, 2011).Kuwae, T., Watanabe, A., Yoshihara, S., Suehiro, F. & Sugimura, Y. Implementation of blue carbon offset crediting for seagrass meadows, macroalgal beds, and macroalgae farming in Japan. Mar. Policy 138, 104996 (2022).Article 

    Google Scholar 
    Medvedev, I. P., Rabinovich, A. B. & Kulikov, E. A. Tides in three enclosed basins: the Baltic, Black, and Caspian Seas. Front. Mar. Sci. 3, 46 (2016).Article 

    Google Scholar 
    Haugen, D. A. Workshop on Micrometeorology (American Meteorological Society, 1973).Weiss, R. F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203–215 (1974).Article 
    CAS 

    Google Scholar 
    Wiesenburg, D. A. & Guinasso, N. L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J. Chem. Eng. Data 24, 356–360 (1979).Article 
    CAS 

    Google Scholar 
    Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014).Article 

    Google Scholar 
    Gülzow, W. et al. One year of continuous measurements constraining methane emissions from the Baltic Sea to the atmosphere using a ship of opportunity. Biogeosciences 10, 81–99 (2013).Article 
    ADS 

    Google Scholar 
    Jähne, B. et al. On the parameters influencing air-water gas exchange. J. Geophys. Res. 92, 1937 (1987).Article 
    ADS 

    Google Scholar 
    Bonaglia, S. et al. Meiofauna improve oxygenation and accelerate sulfide removal in the seasonally hypoxic seabed. Mar. Environ. Res. 159, 104968 (2020).Article 
    CAS 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).Article 
    CAS 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).Article 

    Google Scholar 
    St John, J. SeqPrep. https://github.com/jstjohn/SeqPrep (2011).Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2021).Andrews, S. FastQC: A Quality Control Tool For High Throughput Sequence Data (2010).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596 (2012).Article 

    Google Scholar 
    Robertson, C. E. et al. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29, 3100–3101 (2013).Article 
    CAS 

    Google Scholar 
    Coolen, M. J. L. et al. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org. Geochem. 35, 1151–1167 (2004).Article 
    CAS 

    Google Scholar 
    Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only anova procedures. in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 143–146 (ACM, 2011).Hammer, Ø., Harper, D. & Ryan, P. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001). More

  • in

    Bee species perform distinct foraging behaviors that are best described by different movement models

    Plant species and pollinatorsMedicago sativa L. (Fabaceae), also called alfalfa or lucerne, is a perennial legume with flowers arranged in a cluster or raceme. It is a self-compatible plant with fairly high outcrossing rate (5.3–30%)46, and it requires insect visits for seed production47. No plant material was collected for this study. Honey bees, Apis mellifera, and alfalfa leafcutting bees, Megachile rotundata, are used as managed pollinators in alfalfa seed-production fields in the USA while bumble bees are commonly used in alfalfa breeding47.Experimental design and pollinator observationsFive 11 m × 11 m patches of M. sativa plants were set up in an east–west linear arrangement at the West Madison Agricultural Research Station in Madison, Wisconsin, USA. Within each patch, we transplanted 169 young plants grown from seeds in the greenhouse, each placed 90 cm apart. These plants grew and, at flowering, a plant had an average of 30.65 ± 16.4 stems per plant, with 4.93 ± 3.41 racemes per stem, and 7.53 ± 2.44 open flowers per raceme.A honey bee hive was placed approximately 100 m from the patches and a bumble bee hive was set up at the center of the southern edge of the patches. For leafcutting bees, a 60 × 30 × 7.6 cm bee board was set up in each of two boxes placed 1/3 and 2/3 along the southern edge of the patches and a half gallon of bees was released at periodic intervals throughout the alfalfa flowering season.Over two consecutive summers, observers followed bees foraging in the alfalfa patches, marked each raceme visited in succession within a foraging bout with a numbered clip, and recorded the number of flowers visited per raceme. After a bee had left a patch, observers went back to the marked racemes and measured the distance and direction traveled between consecutive racemes. Directions were recorded as one of the cardinal directions: North (N), South (S), East (E) or West (W), or inter-cardinal directions: Northeast (NE), Southeast (SE), Northwest (NW) and Southwest (SW). The frequency distributions of distances and directions traveled between two successive racemes are presented for each bee species each year in Figs. 1 (distances) and 2 (directions). The low pollinator abundance permitted observers to follow individual bees foraging in a patch. Little interference among bee species was observed in the patches.Figure 1Frequency distributions for distances traveled between consecutive racemes (cm) for each bee species each year.Full size imageFigure 2Frequency distributions of directions traveled between consecutive racemes for each bee species each year.Full size imageModel for the distance traveled between consecutive racemesWe first determined whether a statistical model best described the distance traveled between consecutive racemes (Modeled Distance), and examined whether the model differed among bee species. We used mixed effect linear models (proc Mixed in SAS 9.3)48 to identify the model that best described the distance traveled by pollinators between consecutive racemes. The model included loge distance as a linear function of loge flower number and bee species as fixed effects. The distance traveled between consecutive racemes and the number of flowers visited per raceme were log transformed prior to analyses in order to improve the models’ residuals. In addition, we included patch and foraging bout as random effects in the model. A foraging bout includes the racemes visited in succession from the time a bee is spotted in a patch to the time it leaves that patch. We used foraging bout instead of individual bee as the random effect because bees were not individually marked in this study. Moreover, to take into consideration the potential correlation between successive observations within a foraging bout, we added clip to the model. Clip 1 represents the first and second racemes visited in the foraging bout; clip 2, the second and third, and so on. Clip was added to the model either as a random effect or as a repeated measure with an AR(1) structure. The combination of random clip and random foraging bout creates a model that is sometimes called the “compound symmetry” model. The AR(1) structure represents correlations that decline exponentially as the gap between measurements increases such that measurements closer together in time are more strongly correlated than measurements further apart. Because we expected bees to visit flowers at close proximity when resources are abundant, we chose this correlation structure as a good potential descriptor of the way distances might be correlated within foraging bouts. We started with a full model which included loge flower number, bee species, patch, foraging bout, and clip either as a random effect or as a repeated measure with an AR(1) structure. We then removed variables and compared models by inspecting AIC values and the p values for each term in the model. We considered both low AIC and statistically significant (p  More

  • in

    Prediction of tide level based on variable weight combination of LightGBM and CNN-BiGRU model

    LightGBMBefore explaining LightGBM23, it is necessary to introduce XGBoost24, which is also based on the gradient boosting decision tree (GBDT) algorithm30. XGBoost integrates multiple classification and regression trees (CART) to compensate for the lack of prediction accuracy of a single CART. It is an improved boosting algorithm based on GBDT, which is popular due to its high processing speed, high regression accuracy and ability to process large-scale data31. However, XGBoost uses a presorted algorithm to find data segmentation points, which takes up considerable memory in the calculation and seriously affects cache optimization.LightGBM is improved based on XGBoost. It uses a histogram algorithm to find the best data segmentation point, which occupies less memory and has a lower complexity of data segmentation. The flow of the histogram algorithm to find the optimal segmentation point is shown in Fig. 3.Figure 3Histogram algorithm.Full size imageMoreover, LightGBM abandons the levelwise decision tree growth strategy used by most GBDT tools and uses the leafwise algorithm with depth limitations. This leaf-by-leaf growth strategy can reduce more errors and obtain better accuracy. Decision trees in boosting algorithms may grow too deep while training, leading to model overfitting. Therefore, LightGBM adds a maximum depth limit to the leafwise growth strategy to prevent this from happening and maintains its high computational efficiency. To summarize, LightGBM can be better and faster used in industrial practice and is also very suitable as the base model in our tide level prediction task. The layer-by-layer growth strategy and leaf-by-leaf growth strategy are shown in Fig. 4.Figure 4Two GBDT growth strategies.Full size imageCNN-BiGRUConvolutional neural networkA convolutional neural network (CNN) is a deep feedforward neural network with the characteristics of local connection and weight sharing. It was first used in the field of computer vision and achieved great success32,33. In recent years, CNNs have also been widely used in time series processing. For example, Bai et al.34 proposed a temporal convolutional network (TCN) based on a convolutional neural network and residual connections, which is not worse than recurrent neural networks such as LSTM in some time series analysis tasks. At present, a convolutional neural network is generally composed of convolution layers, pooling layers and a fully connected layer. Its network structure is shown in Fig. 5. The pooling layer is usually added after the convolution layers. The maximum pooling layer can retain the strong features in the data after the convolution operation, eliminate the weak features to reduce the number of parameters in a network and avoid overfitting of the model.Figure 5Schematic diagram of a convolutional neural network.Full size imageBidirectional GRUIn previous attempts at tide level prediction by scholars, bidirectional long short-term memory networks35 have achieved good prediction results. However, in our subsequent experiments, the bidirectional gated recurrent unit achieved higher prediction accuracy than BiLSTM, so we used the BiGRU network for subsequent prediction tasks.The GRU network36 adds a gating mechanism to control information updating in a recurrent neural network. Different from the mechanism in LSTM, GRU consists of only two gates called the update gate ({z}_{t}) and the reset door ({r}_{t}).The recurrent unit structure of the GRU network is shown in Fig. 6.Figure 6Recurrent unit structure of the GRU network.Full size imageEach unit of GRU is calculated as follows:$${z}_{t}= sigma ({W}_{z}{x}_{t}+{U}_{z}{h}_{t-1}+{b}_{z})$$
    (7)
    $${r}_{t}= sigma ({W}_{r}{x}_{t}+{U}_{r}{h}_{t-1}+{b}_{r})$$
    (8)
    $${widetilde{h}}_{t}=tanh({W}_{h}{x}_{t}+{U}_{h}left({r}_{t}odot {h}_{t-1}right)+{b}_{h})$$
    (9)
    $${h}_{t}={z}_{t}odot {h}_{t-1}+left(1-{z}_{t}right)odot {widetilde{h}}_{t}$$
    (10)
    In the above formula, ({z}_{t}) represents the update gate, which controls how much information is retained from the previous state ({h}_{t-1}) (without nonlinear transformation) when calculating the current state ({h}_{t}). Meanwhile, it also controls how much information will be accepted by ({h}_{t}) from the candidate states ({widetilde{h}}_{t}). ({r}_{t}) represents the reset gate, which is used to ensure whether the calculation of the candidate state ({widetilde{h}}_{t}) depends on the previous state ({h}_{t-1}). (upsigma ) is the standard sigmoid activation function; (tanh(cdot )) is the hyperbolic tangent activation function; and (odot ) indicates the Hadamard product. The weight matrices of the update gate, reset gate, and ({widetilde{h}}_{t}) calculation layer are expressed as ({W}_{z},{W}_{r},{W}_{h}); the coefficient matrices of the update gate, reset gate, and ({widetilde{h}}_{t}) calculation layer are expressed as ({U}_{z},{U}_{r},{U}_{h}); and the offset vectors of the update gate, reset gate, and ({widetilde{h}}_{t}) calculation layer are expressed as ({b}_{z},{b}_{r},{b}_{h}).A bidirectional gated recurrent unit network37 is a combination of two GRUs whose information propagating directions are reversed, and it has independent parameters in each, which makes it able to fit both forward and backward data at first and then join up the results from two directions. BiGRU can capture sequence patterns that may be ignored by unidirectional GRU. The structure of BiGRU is shown in Fig. 7.Figure 7The structure of BiGRU.Full size imageTaking the BiGRU’s forward hidden state vector at time (t) as ({h}_{t}^{(1)}) and taking the BiGRU’s backward hidden state vector at time (t) as ({h}_{t}^{(2)}), (upsigma ) indicates the standard sigmoid activation function, and (oplus ) indicates a vector splicing operation. We can calculate the output ({y}_{t}) of a BiGRU network as follows:$${h}_{t}={h}_{t}^{(1)}oplus {h}_{t}^{(2)}$$
    (11)
    $${y}_{t}=sigma ({h}_{t} )$$
    (12)
    CNN-BiGRU prediction modelBecause CNN has significant advantages in extracting useful features from a picture or a sequence and BiGRU is good at processing time series, we combine CNN and BiGRU to build the CNN-BiGRU model. The model can be mainly divided into an input layer, a convolution layer, a BiGRU network layer, a dropout layer, a fully connected layer and an output layer. The CNN layer and BiGRU layer are the core structures of the model. The function of the dropout layer is to avoid model overfitting. The CNN layer consists of two one-dimensional convolution (Conv1D) layers and a one-dimensional maximum pooling (MaxPooling1D) layer. The input of BiGRU is the output sequence of the CNN layer, and the BiGRU network is set as a one-hidden-layer structure. The structure of the CNN-BiGRU combination model is shown in Fig. 8.Figure 8The structure of CNN-BiGRU.Full size imageVariable weight combination modelWhen we analyze and predict relatively stationary tide level time series, LightGBM can perform well. However, due to environmental factors such as air pressure, wind force and terrain in reality, most tide level observation sequences are sometimes not relatively stationary, which requires that our tide level prediction model be reasonably able to “extrapolate” based on the sample observations, that is, be capable of generating values that are not in the sample. LightGBM is a tree-based model, which leads to our prediction results being between the maximum and minimum values of sequences. Therefore, LightGBM will not be able to accurately predict the situation or tidal change trend that did not appear in previous observations. However, the CNN-BiGRU model, which is a kind of neural network, has no such problem in theory and will be able to find the trend information that may be hidden in the tide level series. Therefore, we consider providing an appropriate weight for a single base model to build a combination model to improve the accuracy of the tide level prediction task.Principle of the residual weight combination model and improved variable weight combination modelTo improve the prediction accuracy of the combination model, a simple and effective idea is to determine the base models’ weights in the combination model according to the error between the prediction value and the real value. This method is also called the residual weight method, and its calculation formulas for determining the weights are:$$gleft({x}_{t}right)= sum_{i=1}^{m}{omega }_{i}left(t-1right){f}_{i}({x}_{t})$$
    (13)
    $${omega }_{i}left(t-1right)=frac{frac{1}{overline{{varphi }_{i}}left(t-1right)}}{sum_{i=1}^{m}frac{1}{overline{{varphi }_{i}}left(t-1right)}}$$
    (14)
    $$sum_{i=1}^{m}{omega }_{i}left(t-1right)=1,{omega }_{i}left(t-1right)ge 0$$
    (15)

    where ({omega }_{i}left(t-1right)) denotes the weight of the (i) th model at the moment (t-1), ({f}_{i}left({x}_{t}right)) denotes the prediction value of the (i) th model at the moment (t), (gleft({x}_{t}right)) denotes the prediction value of the combination model at the moment (t), and (overline{{varphi }_{i}}left(t-1right)) is the square sum of the predictive errors of the (i) th model at the moment (t-1).Our LightGBM-CNN-BiGRU (combination model) is based on the improved residual weight method. We call it the variable weight combination model. We use the weights calculated by formula (9) and formula (11) to calculate a series of new weights. The new weights from formula (11) will take the residual weight changes in (d) time steps into consideration by averaging the old weights in (d) time steps to improve the stability of the residual weight method.$${omega }_{j}left(tright)=frac{1}{d}sum_{k=1}^{d}{omega }_{i}left(t-kright)left(d=4right)$$
    (16)
    After obtaining a series of weights through formula (9) and formula (11), we take the absolute value of the error between the prediction value and the true value of each combination model at the moment of (t) as ({delta }_{i,t}) and ({delta }_{j,t}), respectively:$${delta }_{i,t}=mid sum_{i=1}^{m}{omega }_{i}left(tright){f}_{i}left({x}_{t}right)-{y}_{t}mid $$
    (17)
    $${delta }_{j,t}=mid sum_{i=1}^{m}{omega }_{j}left(tright){f}_{i}left({x}_{t}right)-{y}_{t}mid $$
    (18)
    Comparing ({delta }_{i,t}) and ({delta }_{j,t}), if ({delta }_{i,t} >{delta }_{j,t}), the combination model uses the new weight ({omega }_{j}left(tright)) in place of the original weight ({omega }_{i}left(tright)). Otherwise, the weight of the combination model remains unchanged.Parameter optimization of the combination modelBecause the LightGBM-CNN-BiGRU (combination model) is a variable weight combination of the prediction results from two base models, the performance of the combination model can be directly improved by separately optimizing the super parameters of the two base models. We mainly use the grid search algorithm and K-fold cross validation method to optimize the parameters. The grid search algorithm is a method to improve the performance of a certain model by iterating over a given set of parameters. With the help of the K-fold cross validation method, we can calculate the performance score of the LightGBM model on the training set and easily optimize its superparameters. The final parameters of the LightGBM model are set to num_leaves = 26, learning_rate = 0.05, and n_estimators = 46.For the CNN-BiGRU network, we mainly improve the prediction accuracy of the model by adjusting the size and number of hidden layers in the BiGRU structure and prevent the model from overfitting by changing the dropout ratio and tracking the validation loss of the network while training.The LightGBM and CNN-BiGRU variable weight combination modelThe workflow of our tide level prediction model is shown in Fig. 9. It mainly includes data preprocessing; training, optimization and prediction of the base models; construction of a variable weight combination prediction model; and evaluation and analysis of the combination model’s performance.

    (1)

    Data preprocessing: The quality of the data directly determines the upper limit of the prediction and generalization ability of a certain machine learning model. Standard, clean and continuous data are conducive to model training. The data used in this study are from the Irish National Tide Gauge Network, and all of them are subject to quality control. We filled in a small number of missing values and normalized the data to speed up the model training.

    (2)

    Construction and optimization of base models: We divide the dataset into a training set, a validation set and a test set according to the proportion of 7:1:2 and train the LightGBM model and CNN-BiGRU model with data on the training set. We optimize the parameters and monitor whether the model has been overfitted by tracking the validation loss of the network while training. Finally, we put the data into two base models for training and then obtain the prediction results of a single base model.

    (3)

    Construction of the variable weight combination model. Based on the prediction results of two single base models obtained in step (2), we calculate the weight of each base model according to the principle of the improved variable weight combination method and then obtain the prediction results of the variable weight combination model.

    (4)

    Model evaluation and analysis: According to the indexes of the model evaluation, the variable weight combination model is compared with other basic models to analyze its prediction performance after being improved.

    Figure 9Prediction flow of the LightGBM-CNN-BiGRU variable weight combination model.Full size image More

  • in

    A watershed moment for healthy watersheds

    Patterson, J. et al. Nat. Sustain. 4, 841–850 (2021).Article 

    Google Scholar 
    Reid, A. J. et al. Biol. Rev. 94, 849–873 (2019).Article 

    Google Scholar 
    Vollmer, D. & Harrison, I. J. Environ. Res. Lett. 16, 011005 (2021).Article 

    Google Scholar 
    Zeitoun, M. et al. Glob. Environ. Change 39, 143–154 (2016).Article 

    Google Scholar 
    Bezerra, M. O. et al. Environ. Manage. 69, 815–834 (2022).Article 

    Google Scholar 
    Souter, N. J. et al. Water 12, 788 (2020).Article 
    CAS 

    Google Scholar 
    Akhmouch, A., Clavreul, D. & Glas, P. Water Int. 43, 5–12 (2018).Article 

    Google Scholar 
    Andersson, E. Ambio 51, 1–8 (2022).Article 

    Google Scholar 
    Huntington, H. P. et al. Nat. Sustain. 4, 672–679 (2021).Article 

    Google Scholar 
    Soames Job, R. F. Am. J. Public Health 78, 163–167 (1988).Article 
    CAS 

    Google Scholar 
    Poff, N. L. et al. Nat. Clim. Change 6, 25–34 (2016).Article 

    Google Scholar 
    Diaz-Kope, L. & Miller-Stevens, K. Public Works Management and Policy 20, 29–48 (2015).Article 

    Google Scholar 
    OECD Financing a Water Secure Future (OECD Publishing, 2022).Cardascia, S. Financing Water Infrastructure and Landscape Approaches in Asia and the Pacific. Background Paper for 5th Roundtable on Financing Water (OECD Publishing, 2019).Schlager, E. & Blomquist, W. Embracing Watershed Politics (University Press of Colorado, 2008).Wehn, U., Collins, K., Anema, K., Basco-Carrera, L. & Lerebours, A. Water Int. 43, 34–59 (2018).Article 

    Google Scholar 
    Shaad, K., Souter, N. J., Vollmer, D., Regan, H. M. & Bezerra, M. O. Environ. Manage. 69, 752–767 (2022).Article 

    Google Scholar  More

  • in

    Forest conservation in Indigenous territories and protected areas in the Brazilian Amazon

    Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).Article 

    Google Scholar 
    Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).Article 

    Google Scholar 
    Jenkins, C., Pimm, S. & Joppa, L. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).Article 
    CAS 

    Google Scholar 
    Nogueira, E., Yanai, A., de Vasconcelos, S., de Alencastro, G. & Fearnside, P. Brazil’s Amazonian protected areas as a bulwark against regional climate change. Reg. Environ. Change 18, 573–579 (2018).Article 

    Google Scholar 
    Ochoa-Quintero, J., Gardner, T., Rosa, I., Ferraz, S. & Sutherland, W. Thresholds of species loss in Amazonian deforestation frontier landscapes. Conserv. Biol. 29, 440–451 (2015).Article 

    Google Scholar 
    Cabral, A., Saito, C., Pereira, H. & Laques, A. Deforestation pattern dynamics in protected areas of the Brazilian Legal Amazon using remote sensing data. Appl. Geogr. 100, 101–115 (2018).Article 

    Google Scholar 
    Nepstad, D. et al. Inhibition of Amazon deforestation and fire by parks and Indigenous lands. Conserv. Biol. 20, 65–73 (2006).Article 
    CAS 

    Google Scholar 
    Ricketts, T. et al. Indigenous lands, protected areas, and slowing climate change. PLoS Biol. 8, e1000331 (2010).Article 

    Google Scholar 
    Herrera, D., Pfaff, A. & Robalino, J. Impacts of protected areas vary with the level of government: comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 116, 14916–14925 (2019).Article 
    CAS 

    Google Scholar 
    Jusys, T. Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon. PLoS ONE 13, e0195900 (2018).Article 

    Google Scholar 
    Matricardi, E. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article 
    CAS 

    Google Scholar 
    Silva, C. et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 7, 269 (2020).Article 

    Google Scholar 
    Laurance, W. et al. The future of the Brazilian Amazon. Science 291, 438–439 (2001).Article 
    CAS 

    Google Scholar 
    Laurance, W. et al. Development of the Brazilian Amazon. Response. Science 292, 1652–1654 (2001).
    Google Scholar 
    Silveira, J. Development of the Brazilian Amazon. Science 292, 1651–1654 (2001).Article 
    CAS 

    Google Scholar 
    Kauano, É., Silva, J., Diniz, J. & Michalski, F. Do protected areas hamper economic development of the Amazon region? An analysis of the relationship between protected areas and the economic growth of Brazilian Amazon municipalities. Land Use Policy 92, 104473 (2020).Article 

    Google Scholar 
    Silveira, F., Ferreira, M., Perillo, L., Carmo, F. & Neves, F. Brazil’s protected areas under threat. Science 361, 459–459 (2018).Article 
    CAS 

    Google Scholar 
    Begotti, R. & Peres, C. Brazil’s indigenous lands under threat. Science 363, 592–592 (2019).Article 

    Google Scholar 
    Fearnside, P. Deforestation of the Brazilian Amazon. Oxford Research Encyclopedias: Environmental Science (Oxford Univ. Press, 2017); https://doi.org/10.1093/acrefore/9780199389414.013.102Ferreira, J. et al. Brazil’s environmental leadership at risk. Science 346, 706–707 (2014).Article 
    CAS 

    Google Scholar 
    Villén-Pérez, S., Anaya-Valenzuela, L., Conrado da Cruz, D. & Fearnside, P. Mining threatens isolated indigenous peoples in the Brazilian Amazon. Glob. Environ. Change 72, 102398 (2022).Article 

    Google Scholar 
    Tollefson, J. Illegal mining in the Amazon hits record high amid Indigenous protests. Nature 598, 15–16 (2021).Article 
    CAS 

    Google Scholar 
    Silva, C. et al. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 5, 144–145 (2021).Article 

    Google Scholar 
    Vale, M. et al. The COVID-19 pandemic as an opportunity to weaken environmental protection in Brazil. Biol. Conserv. 255, 108994 (2021).Article 

    Google Scholar 
    Charlier, P. & Varison, L. Is COVID-19 being used as a weapon against Indigenous Peoples in Brazil? Lancet 396, 1069–1070 (2020).Article 
    CAS 

    Google Scholar 
    Davidson, E. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).Article 
    CAS 

    Google Scholar 
    Ferrante, L. & Fearnside, P. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).Article 

    Google Scholar 
    PRODES Legal Amazon Deforestation Monitoring System (INPE, 2020); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodesHansen, M. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 
    CAS 

    Google Scholar 
    Qin, Y. et al. Annual dynamics of forest areas in South America during 2007–2010 at 50 m spatial resolution. Remote Sens. Environ. 201, 73–87 (2017).Article 

    Google Scholar 
    Collection 6 of the Annual Land Use Land Cover Maps of Brazil (MapBiomas Project, accessed 10 July 2022); https://mapbiomas.org/enTree Cover Loss (Global Forest Watch, 2021); https://www.globalforestwatch.org/map/?modalMeta=tree_cover_lossFuller, C., Ondei, S., Brook, B. & Buettel, J. Protected-area planning in the Brazilian Amazon should prioritize additionality and permanence, not leakage mitigation. Biol. Conserv. 248, 108673 (2020).Article 

    Google Scholar 
    Nolte, C., Agrawal, A., Silvius, K. & Soares, B. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).Article 
    CAS 

    Google Scholar 
    Tesfaw, A. et al. Land-use and land-cover change shape the sustainability and impacts of protected areas. Proc. Natl Acad. Sci. USA 115, 2084–2089 (2018).Article 
    CAS 

    Google Scholar 
    OECD Environmental Performance Reviews: Brazil (OECD, 2015).Campos-Silva, J. et al. Sustainable-use protected areas catalyze enhanced livelihoods in rural Amazonia. Proc. Natl Acad. Sci. USA 118, e2105480118 (2021).Article 
    CAS 

    Google Scholar 
    Fearnside, P., Nogueira, E. & Yanai, A. Maintaining carbon stocks in extractive reserves in Brazilian Amazonia. Desenvolv. Meio. Ambie. 48, 446–476 (2018).
    Google Scholar 
    Nelson, A. & Chomitz, K. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).Article 
    CAS 

    Google Scholar 
    BenYishay, A., Heuser, S., Runfola, D. & Trichler, R. Indigenous land rights and deforestation: evidence from the Brazilian Amazon. J. Environ. Econ. Manag. 86, 29–47 (2017).Article 

    Google Scholar 
    Bonilla-Mejía, L. & Higuera-Mendieta, I. Protected areas under weak institutions: evidence from Colombia. World Dev. 122, 585–596 (2019).Article 

    Google Scholar 
    Baragwanath, K. & Bayi, E. Collective property rights reduce deforestation in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 117, 20495–20502 (2020).Article 
    CAS 

    Google Scholar 
    Mangonnet, J., Kopas, J. & Urpelainen, J. Playing politics with environmental protection: the political economy of designating protected areas. J. Politics 84, 1453–1468 (2022).Article 

    Google Scholar 
    Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).Article 
    CAS 

    Google Scholar 
    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).Article 
    CAS 

    Google Scholar 
    West, T. & Fearnside, P. Brazil’s conservation reform and the reduction of deforestation in Amazonia. Land Use Policy 100, 105072 (2021).Article 

    Google Scholar 
    Soares-Filho, B. et al. Cracking Brazil’s forest code. Science 344, 363–364 (2014).Article 
    CAS 

    Google Scholar 
    Ferrante, L. & Fearnside, P. Military forces and COVID-19 as smokescreens for Amazon destruction and violation of indigenous rights. J. Geogr. Soc. 151, 258–263 (2020).
    Google Scholar 
    Jiménez-Muñoz, J. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).Article 

    Google Scholar 
    Ferrante, L. & Fearnside, P. The Amazon’s road to deforestation. Science 369, 634–634 (2020).Article 

    Google Scholar 
    Feng, X. et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 597, 516–521 (2021).Article 
    CAS 

    Google Scholar 
    Aragão, L. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).Article 

    Google Scholar 
    Silva, J., Barbosa, L., Topf, J., Vieira, I. & Scarano, F. Minimum costs to conserve 80% of the Brazilian Amazon. Perspect. Ecol. Conserv. 20, 216–222 (2022).
    Google Scholar 
    Lovejoy, T. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).Article 

    Google Scholar 
    Xiao, X., Biradar, C., Czarnecki, C., Alabi, T. & Keller, M. A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia. Remote Sens. 1, 355–374 (2009).Article 

    Google Scholar 
    Natural Protected Areas and Indigenous Territories Maps in Brazil (RAISG, 2018); https://www.amazoniasocioambiental.org/en/ More