Precipitation and potential evapotranspiration determine the distribution patterns of threatened plant species in Sichuan Province, China
Paudel, P. K., Sipos, J. & Brodie, J. F. Threatened species richness along a Himalayan elevational gradient: Quantifying the influences of human population density, range size, and geometric constraints. BMC Ecol. 18, 6. https://doi.org/10.1186/s12898-018-0162-3 (2018).Article
Google Scholar
Pan, K. Distribution of Coniferous Plants in Southwest China (Chengdu Cartographic Publishing House, 2021).
Google Scholar
Zhang, Y.-B. & Ma, K.-P. Geographic distribution patterns and status assessment of threatened plants in China. Biol. Conserv. 17, 1783. https://doi.org/10.1007/s10531-008-9384-6 (2008).Article
Google Scholar
Shrestha, N., Xu, X., Meng, J. & Wang, Z. Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat. Commun. 12, 1632. https://doi.org/10.1038/s41467-021-21914-w (2021).Article
ADS
CAS
Google Scholar
Pandey, B. et al. Energy–water and seasonal variations in climate underlie the spatial distribution patterns of gymnosperm species richness in China. Ecol. Evol. 10, 9474–9485. https://doi.org/10.1002/ece3.6639 (2020).Article
Google Scholar
Gao, J. & Liu, Y. Climate stability is more important than water–energy variables in shaping the elevational variation in species richness. Ecol. Evol. 8, 6872–6879. https://doi.org/10.1002/ece3.4202 (2018).Article
Google Scholar
Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x (2001).Article
Google Scholar
Dakhil, M. A. et al. Richness patterns of endemic and threatened conifers in south-west China: Topographic-soil fertility explanation. Environ. Res. Lett. 16, 034017. https://doi.org/10.1088/1748-9326/abda6e (2021).Article
ADS
CAS
Google Scholar
Dakhil, M. A. et al. Potential risks to endemic conifer montane forests under climate change: Integrative approach for conservation prioritization in southwestern China. Landsc. Ecol. 36, 3137–3151. https://doi.org/10.1007/s10980-021-01309-4 (2021).Article
Google Scholar
Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993. https://doi.org/10.1038/s41467-020-14771-6 (2020).Article
ADS
CAS
Google Scholar
Bhattarai, K. R. & Vetaas, O. R. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob. Ecol. Biogeogr. 12, 327–340. https://doi.org/10.1046/j.1466-822X.2003.00044.x (2003).Article
Google Scholar
Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x (2004).Article
Google Scholar
Vetaas, O. R., Paudel, K. P. & Christensen, M. Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. J. Biogeogr. 46, 1652–1663. https://doi.org/10.1111/jbi.13564 (2019).Article
Google Scholar
Pandey, B. et al. Distribution pattern of gymnosperms’ richness in Nepal: Effect of environmental constrains along elevational gradients. Plants 9, 625. https://doi.org/10.3390/plants9050625 (2020).Article
Google Scholar
Kluge, J. et al. Elevational seed plants richness patterns in Bhutan, Eastern Himalaya. J. Biogeogr. 44, 1711–1722. https://doi.org/10.1111/jbi.12955 (2017).Article
Google Scholar
Currie, D. J. Energy and large-scale patterns of animal- and plant- species richness. Am. Nat. 137, 27–49. https://doi.org/10.1086/285144 (1991).Article
Google Scholar
MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598. https://doi.org/10.2307/1932254 (1961).Article
Google Scholar
Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252. https://doi.org/10.1038/385252a0 (1997).Article
ADS
CAS
Google Scholar
Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. P. Natl. Acad. Sci. USA 104, 5925–5930. https://doi.org/10.1073/pnas.0608361104 (2007).Article
ADS
CAS
Google Scholar
Pausas, J. G. & Austin, M. P. Patterns of plant species richness in relation to different environments: An appraisal. J. Veg. Sci. 12, 153–166. https://doi.org/10.2307/3236601 (2001).Article
Google Scholar
Colwell, R. K. & Lees, D. C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76. https://doi.org/10.1016/S0169-5347(99)01767-X (2000).Article
CAS
Google Scholar
McCain, C. M. The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. J. Biogeogr. 31, 19–31. https://doi.org/10.1046/j.0305-0270.2003.00992.x (2004).Article
Google Scholar
Gao, D. et al. The mid-domain effect and habitat complexity applied to elevational gradients: Moss species richness in a temperate semihumid monsoon climate mountain of China. Ecol. Evol. 11, 7448–7460. https://doi.org/10.1002/ece3.7576 (2021).Article
Google Scholar
Wang, J.-H., Cai, Y.-F., Zhang, L., Xu, C.-K. & Zhang, S.-B. Species richness of the family Ericaceae along an elevational gradient in Yunnan, China. Forests 9, 511. https://doi.org/10.3390/f9090511 (2018).Article
Google Scholar
Xu, M. et al. The mid-domain effect of mountainous plants is determined by community life form and family flora on the Loess Plateau of China. Sci. Rep. 11, 10974. https://doi.org/10.1038/s41598-021-90561-4 (2021).Article
ADS
CAS
Google Scholar
Sichuan Vegetation Cooperation Group. Vegetation in Sichuan (Sichuan People’s Publishing House, 1980).
Google Scholar
Pan, K., Wu, N., Pan, K. & Chen, Q. A discussion on the issues of the re-construction of ecological shelter zone on the upper reaches of the Yangtze River. Acta Ecol. Sin. 24, 617–629. https://doi.org/10.3321/j.issn:1000-0933.2004.03.032 (2004).Article
Google Scholar
Jpl, N. A. S. A. NASA shuttle radar topography mission global 1 arc second. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (2013).Liu, Y. et al. Determinants of richness patterns differ between rare and common species: Implications for Gesneriaceae conservation in China. Divers. Distrib. 23, 235–246. https://doi.org/10.1111/ddi.12523 (2017).Article
Google Scholar
Liao, Z. et al. Climate change jointly with migration ability affect future range shifts of dominant fir species in Southwest China. Divers. Distrib. 26, 352–367. https://doi.org/10.1111/ddi.13018 (2020).Article
Google Scholar
Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digit. Repos. https://doi.org/10.5061/dryad.kd1d4 (2018).Running, S. W., Mu, Q. & Zhao, M. MODIS/terra net evapotranspiration 8-day L4 global 500m SIN grid V061. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD16A2.061 (2021).Mu H. et al. An Annual Global Terrestrial Human Footprint Dataset from 2000 to 2018https://doi.org/10.6084/m9.figshare.16571064.v5(2021).Zhang, D., Zhang, Y., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan Mountains, southwestern China. Biol. Conserv. 18, 699–716. https://doi.org/10.1007/s10531-008-9534-x (2009).Article
Google Scholar
Sun, L., Luo, J., Qian, L., Deng, T. & Sun, H. The relationship between elevation and seed-plant species richness in the Mt. Namjagbarwa region (Eastern Himalayas) and its underlying determinants. Glob. Ecol. Conserv. 23, e01053. https://doi.org/10.1016/j.gecco.2020.e01053 (2020).Article
Google Scholar
Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503. https://doi.org/10.1002/ece3.5027 (2019).Article
Google Scholar
Krömer, T., Acebey, A., Kluge, J. & Kessler, M. Effects of altitude and climate in determining elevational plant species richness patterns: A case study from Los Tuxtlas, Mexico. Flora 208, 197–210. https://doi.org/10.1016/j.flora.2013.03.003 (2013).Article
Google Scholar
Pandey, B. et al. Contrasting gymnosperm diversity across an elevation gradient in the ecoregion of China: The role of temperature and productivity. Front. Ecol. Evol. 9, 1–7. https://doi.org/10.3389/fevo.2021.679439 (2021).Article
CAS
Google Scholar
Geng, S. et al. Diversity of vegetation composition enhances ecosystem stability along elevational gradients in the Taihang Mountains, China. Ecol. Indic. 104, 594–603. https://doi.org/10.1016/j.ecolind.2019.05.038 (2019).Article
Google Scholar
Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, 1995).Book
Google Scholar
Zhang, S., Chen, W., Huang, J., Bi, Y. & Yang, X. Orchid species richness along elevational and environmental gradients in Yunnan, China. PLoS ONE https://doi.org/10.1371/journal.pone.0142621 (2015).Article
Google Scholar
Bertuzzo, E. et al. Geomorphic controls on elevational gradients of species richness. Proc. Natl. Acad. Sci. USA 113, 1737–1742. https://doi.org/10.1073/pnas.1518922113 (2016).Article
ADS
CAS
Google Scholar
Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301. https://doi.org/10.1046/j.1466-822X.2002.00297.x (2002).Article
Google Scholar
Antonio, T. & Robert, Z. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).Panda, R. M., Behera, M. D., Roy, P. S. & Biradar, C. Energy determines broad pattern of plant distribution in Western Himalaya. Ecol. Evol. 7, 10850–10860. https://doi.org/10.1002/ece3.3569 (2017).Article
Google Scholar
Vetaas, O. R. & Ferrer-Castán, D. Patterns of woody plant species richness in the Iberian Peninsula: Environmental range and spatial scale. J. Biogeogr. 35, 1863–1878. https://doi.org/10.1111/j.1365-2699.2008.01931.x (2008).Article
Google Scholar
McCain, C. M. & Grytnes, J.-A. Encyclopedia of Life Sciences (ELS) (Wiley, 2010).
Google Scholar
Tukiainen, H., Bailey, J. J., Field, R., Kangas, K. & Hjort, J. Combining geodiversity with climate and topography to account for threatened species richness. Conserv. Biol. 31, 364–375. https://doi.org/10.1111/cobi.12799 (2017).Article
Google Scholar
Zhang, Z., He, J.-S., Li, J. & Tang, Z. Distribution and conservation of threatened plants in China. Biol. Conserv. 192, 454–460. https://doi.org/10.1016/j.biocon.2015.10.019 (2015).Article
Google Scholar
Shrestha, N., Su, X., Xu, X. & Wang, Z. The drivers of high Rhododendron diversity in south-west China: Does seasonality matter?. J. Biogeogr. 45, 438–447. https://doi.org/10.1111/jbi.13136 (2017).Article
Google Scholar
Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117. https://doi.org/10.1890/03-8006 (2003).Article
Google Scholar
Bijlsma, R. & Loeschcke, V. Environmental stress, adaptation and evolution: An overview. J. Evol. Biol. 18, 744–749. https://doi.org/10.1111/j.1420-9101.2005.00962.x (2005).Article
CAS
Google Scholar
Feng, G., Mao, L., Sandel, B., Swenson, N. G. & Svenning, J. C. High plant endemism in China is partially linked to reduced glacial-interglacial climate change. J. Biogeogr. 43, 145–154. https://doi.org/10.1111/jbi.12613 (2016).Article
Google Scholar
Zhang, X., Wang, H., Wang, R., Wang, Y. & Liu, J. Relationships between plant species richness and environmental factors in nature reserves at different spatial scales. Pol. J. Environ. Stud. 26, 2375–2384. https://doi.org/10.15244/pjoes/69032 (2017).Article
Google Scholar
Mu, H. et al. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 9, 176. https://doi.org/10.1038/s41597-022-01284-8 (2022).Article
Google Scholar
Kadmon, R. & Benjamini, Y. Effects of productivity and disturbance on species richness: A neutral model. Am. Nat. 167, 939–946. https://doi.org/10.1086/504602 (2006).Article
Google Scholar
Olson, D. M. & Dinerstein, E. The global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224. https://doi.org/10.2307/3298564 (2002).Article
Google Scholar
Chéng, X. Y. Atlas of National Wildlife Conservation and Rare and Endangered Plants of Sichuan Province (Science Press, 2018).
Google Scholar
Wu, Z. & Raven, P. Flora of China. Vol. 4 (Cycadaceae Through Fagaceae) (Science Press and Missouri Botanical Garden Press, 1999).
Google Scholar
Sanders, N. J. Elevational gradients in ant species richness: Area, geometry, and Rapoport’s rule. Ecography 25, 25–32. https://doi.org/10.1034/j.1600-0587.2002.250104.x (2002).Article
Google Scholar
RangeModel: A Monte Carlo simulation tool for assessing geometric constraints on species richness. Version 5. User’s Guide and application (2006).Colwell, R. K. RangeModel: Tools for exploring and assessing geometric constraints on species richness (the mid-domain effect) along transects. Ecography 31, 4–7. https://doi.org/10.1111/j.2008.0906-7590.05347.x (2008).Article
Google Scholar
Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 (2002).Article
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122–170122. https://doi.org/10.1038/sdata.2017.122 (2017).Article
Google Scholar
Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800. https://doi.org/10.1016/j.rse.2011.02.019 (2011).Article
ADS
Google Scholar
Zhang, Z. et al. Distribution and conservation of orchid species richness in China. Biol. Conserv. 181, 64–72. https://doi.org/10.1016/j.biocon.2014.10.026 (2015).Article
Google Scholar
D’Agostino, R. Goodness-of-Fit-Techniques (Routledge, 2017).Book
MATH
Google Scholar
Hilbe, J. M. Negative Binomial Regression (Cambridge University Press, 2011).Book
MATH
Google Scholar
Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH
Google Scholar
Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).Book
Google Scholar
Grace, J. B. & Pugesek, B. H. A structural equation model of plant species richness and its application to a coastal wetland. Am. Nat. 149, 436–460. https://doi.org/10.1086/285999 (1997).Article
Google Scholar
R Development Core Team. (R Foundation for Statistical Computing, 2019).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).Book
MATH
Google Scholar
Fox, J. et al. R Foundation for Statistical Computing Vol. 16 (2012).Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36. https://doi.org/10.18637/jss.v048.i02 (2012).Article
Google Scholar More