More stories

  • in

    Grazing pressure on drylands

    Maestre and colleagues collected data using a standardized field survey at 98 sites across 25 countries and 6 continents, fitted linear mixed models to data from all sites and grazing pressure levels, and then applied a multimodel inference procedure to select the set of best-fitting models. The authors found interactions between grazing and biodiversity in almost half of the best-fitting models, where increasing grazing pressure had positive effects on ecosystem services in colder sites with high plant species richness. However, increases in grazing pressure at warmer sites with high rainfall seasonality and low plant species richness interacted with soil properties to either increase or reduce the delivery of multiple ecosystem services. The authors’ findings highlight how increasing herbivore richness could enhance ecosystem service delivery across contrasting environmental and biodiversity conditions, enhancing soil carbon storage and reducing the negative impacts of increased grazing pressure. More

  • in

    Building a living shoreline to help combat climate change

    I’m a conservation land manager at the Port of San Diego in California. My team and I aim to manage the tidelands around San Diego Bay, an area of more than 4,850 hectares, three-quarters of which is covered by water at high tide. At least 60% of the bay’s shoreline is ‘hardened’ — that is, it is edged with either a solid seawall or rip rap, piles of artificial boulders.To prevent erosion of the adjacent natural shoreline and restore wetlands, we’re participating in the San Diego Bay Native Oyster Living Shoreline project. As part of that, in December 2021, we placed 360 reef balls — depicted in this photograph from September this year — along 260 metres of shoreline to form the foundation of a native-oyster reef in the south bay. Here, I’m looking for oysters that have settled and are growing on the spheres.The reef balls are made out of ‘baycrete’, a concrete mixture made with local sand and the shells of farmed oysters. These attract wild oysters, which come to live there. We’re targeting the native Olympia oysters (Ostrea lurida), which can filter up to 190 litres of water per day. And sediment should accumulate behind the reef balls, encouraging the growth of eelgrass (Zostera marina). The grass is the foundation of the bay’s food chain.In a couple of years, native oysters will cover the reef balls, forming an artificial reef offshore. This reef will cause storm waves to break farther from the shoreline, protecting the adjacent salt marsh. Just inland from this area is a wetlands habitat refuge for the endangered California least tern (Sternula antillarum browni), and many birds are already hopping onto the reef balls and eating what’s living there.Living shorelines are an important part of sequestering carbon to combat climate change — both eelgrass and oysters store a lot of carbon. The reef balls are win–win–win. I often joke that we’re trying to save the planet one acre (0.4 hectares) at a time. More

  • in

    Impacts of soil nutrition on floral traits, pollinator attraction, and fitness in cucumbers (Cucumis sativus L.)

    Fichtner, K. & Schulze, E. D. The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia 92, 236–241 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodger, J. G. et al. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 7, eabd3524. https://doi.org/10.1126/sciadv.abd3524 (2021).Article 
    ADS 

    Google Scholar 
    de Groot, C. C., Marcelis, L. F. M., van den Boogaard, R., Kaiser, W. M. & Lambers, H. Interaction of nitrogen and phosphorus nutrition in determining growth. Plant Soil 248, 257–268 (2003).Article 

    Google Scholar 
    Wang, Z. & Li, S. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 27, 539–556 (2004).Article 
    CAS 

    Google Scholar 
    Razaq, M., Zhang, P. & Shen, H. L. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One 12, e0171321. https://doi.org/10.1371/journal.pone.0171321 (2017).Article 
    CAS 

    Google Scholar 
    Poulton, J. L., Bryla, D., Koide, R. T. & Stephenson, A. G. Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytol. 154, 255–264 (2002).Article 
    CAS 

    Google Scholar 
    Burkle, L. A. & Irwin, R. E. The effects of nutrient addition on floral characters and pollination in two subalpine plants, Ipomopsis aggregata and Linum lewisii. Plant Ecol. 203, 83–98 (2009).Article 

    Google Scholar 
    Burkle, L. A. & Irwin, R. E. Beyond biomass: measuring the effects of community-level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. J. Ecol. 98, 705–717 (2010).Article 

    Google Scholar 
    Hoover, S. E. R. et al. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol. Lett. 15, 227–234 (2012).Article 

    Google Scholar 
    Lau, T. C. & Stephenson, A. G. Effects of soil nitrogen on pollen production, pollen grain size, and pollen performance in Cucurbita pepo (Cucurbitaceae). Am. J. Bot. 80, 763–768 (1993).Article 
    CAS 

    Google Scholar 
    Lau, T. C. & Stephenson, A. Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (Cucurbitaceae). Sex. Plant Reprod. 7, 215–220 (1994).Article 

    Google Scholar 
    Atasay, A., Akgül, H., Uçgun, K. & Şan, B. Nitrogen fertilization affected the pollen production and quality in apple cultivars ‘Jerseymac’ and ‘Golden Delicious’. Acta Agric. Scand. Sect. B. Soil Plant Sci. 63, 460–465 (2013).
    Google Scholar 
    Shuel, R. W. Some aspects of the relation between nectar secretion and nitrogen, phosphorus, and potassium nutrition. Can. J. Plant Sci. 37, 220–236 (1957).Article 
    CAS 

    Google Scholar 
    Robacker, D. C., Flottum, P. K., Sammataro, D. & Erickson, E. H. Effects of climatic and edaphic factors on soybean flowers and on the subsequent attractiveness of the plants to honey bees. Field Crops Res. 6, 267–278 (1983).Article 

    Google Scholar 
    Dror, I., Yaron, B. & Berkowitz, B. The human impact on all soil-forming factors during the anthropocene. ACS Environ. Au 2, 11–19 (2022).Article 
    CAS 

    Google Scholar 
    David, T. I., Storkey, J. & Stevens, C. J. Understanding how changing soil nitrogen affects plant–pollinator interactions. Arthropod. Plant Interact. 13, 671–684 (2019).Article 

    Google Scholar 
    Russo, L., Buckley, Y. M., Hamilton, H., Kavanagh, M. & Stout, J. C. Low concentrations of fertilizer and herbicide alter plant growth and interactions with flower-visiting insects. Agric. Ecosyst. Environ. 304, 107141. https://doi.org/10.1016/j.agee.2020.107141 (2020).Article 
    CAS 

    Google Scholar 
    Akter, A. & Klečka, J. Water stress and nitrogen supply affect floral traits and pollination of the white mustard, Sinapis alba (Brassicaceae). PeerJ 10, e13009. https://doi.org/10.7717/peerj.13009 (2022).Article 
    CAS 

    Google Scholar 
    Wu, Y. et al. Soil water and nutrient availability interactively modify pollinator-mediated directional and correlational selection on floral display. New Phytol. https://doi.org/10.1111/nph.18537 (2022).Article 

    Google Scholar 
    Nicolson, S. W. Sweet solutions: nectar chemistry and quality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 2163. https://doi.org/10.1098/rstb.2021.0163 (2022).Article 
    CAS 

    Google Scholar 
    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).Article 

    Google Scholar 
    Cnaani, J., Thomson, J. D. & Papaj, D. R. Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology 112, 278–285 (2006).Article 

    Google Scholar 
    Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl. Acad. Sci. U. S. A. 113, E4035–E4042. https://doi.org/10.1073/pnas.1606101113 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Vaudo, A. D. et al. Pollen protein: lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 11, 132. https://doi.org/10.3390/insects11020132 (2020).Article 

    Google Scholar 
    Cardoza, Y. J., Harris, G. K. & Grozinger, C. M. Effects of soil quality enhancement on pollinator-plant interactions. Psyche 2012, 581458. https://doi.org/10.1155/2012/581458 (2012).Article 

    Google Scholar 
    Ceulemans, T., Hulsmans, E., Vanden Ende, W. & Honnay, O. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.. PLoS One 12, e0175160. https://doi.org/10.1371/journal.pone.0175160 (2017).Article 
    CAS 

    Google Scholar 
    Russo, L., Vaudo, A. D., Fisher, C. J., Grozinger, C. M. & Shea, K. Bee community preference for an invasive thistle associated with higher pollen protein content. Oecologia 190, 901–912 (2019).Article 
    ADS 

    Google Scholar 
    Russo, L., Keller, J., Vaudo, A. D., Grozinger, C. M. & Shea, K. Warming increases pollen lipid concentration in an invasive thistle, with minor effects on the associated floral-visitor community. Insects 11, 20. https://doi.org/10.3390/insects11010020 (2019).Article 

    Google Scholar 
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).Article 
    CAS 

    Google Scholar 
    Carisey, N. & Bauce, E. Does nutrition-related stress carry over to spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) progeny?. Bull. Entomol. Res. 92, 101–108 (2002).Article 
    CAS 

    Google Scholar 
    Zhang, G. & Han, X. N: P stoichiometry in Ficus racemosa and its mutualistic pollinator. J. Plant Ecol. 3, 123–130 (2010).Article 

    Google Scholar 
    Visanuvimol, L. & Bertram, S. M. How dietary phosphorus availability during development influences condition and life history traits of the cricket Acheta domesticas. J. Insect Sci. 11, 63. https://doi.org/10.1673/031.011.6301 (2011).Article 

    Google Scholar 
    Dovrat, G., Meron, E., Shachak, M., Golodets, C. & Osem, Y. Plant size is related to biomass partitioning and stress resistance in water-limited annual plant communities. J. Arid Environ. 165, 1–9 (2019).Article 
    ADS 

    Google Scholar 
    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).Article 
    CAS 

    Google Scholar 
    Tao, L. & Hunter, M. D. Does anthropogenic nitrogen deposition induce phosphorus limitation in herbivorous insects?. Glob. Chang. Biol. 18, 1843–1853 (2012).Article 
    ADS 

    Google Scholar 
    Tognetti, P. M. et al. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proc. Natl. Acad. Sci. 118(28), e2023718118. https://doi.org/10.1073/pnas.2023718118 (2021).Article 
    CAS 

    Google Scholar 
    Leghari, S. J. et al. Role of nitrogen for plant growth and development: a review. Adv. Environ. Biol. 10, 209–218 (2016).
    Google Scholar 
    Carvalheiro, L. G. et al. Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography 43, 209–221 (2020).Article 

    Google Scholar 
    Lefcheck, J. S. Piecewisesem: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Roulston, T. H., Cane, J. H. & Buchmann, S. L. What governs protein content of pollen: Pollinator preferences, pollen–pistil interactions, or phylogeny?. Ecol. Monogr. 70, 617–643 (2000).
    Google Scholar 
    Pacini, E. & Hesse, M. Pollenkitt—its composition, forms and functions. Flora 200, 399–415 (2005).Article 

    Google Scholar 
    Vaudo, A. D. et al. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients. J. Exp. Biol. 219, 3962–3970 (2016).CAS 

    Google Scholar 
    Vaudo, A. D., Farrell, L. M., Patch, H. M., Grozinger, C. M. & Tooker, J. F. Consistent pollen nutritional intake drives bumble bee (Bombus impatiens) colony growth and reproduction across different habitats. Ecol. Evol. 8, 5765–5776 (2018).Article 

    Google Scholar 
    Treanore, E. D., Vaudo, A. D., Grozinger, C. M. & Fleischer, S. J. Examining the nutritional value and effects of different floral resources in pumpkin agroecosystems on Bombus impatiens worker physiology. Apidologie 50, 542–552 (2019).Article 

    Google Scholar 
    Baker, H. G. & Baker, I. The predictive value of nectar chemistry to the recognition of pollinator types. Israel J. Bot. 39, 157–166 (1990).CAS 

    Google Scholar 
    Thomson, J. D. Pollen transport and deposition by bumble bees in Erythronium: influences of floral nectar and bee grooming. J. Ecol. 74, 329–341 (1986).Article 

    Google Scholar 
    Gonzalez, M. V., Coque, M. & Herrero, M. Influence of pollination systems on fruit set and fruit quality in kiwifruit (Actinidia deliciosa). Ann. Appl. Biol. 132, 349–355 (1998).Article 

    Google Scholar 
    Morandin, L. A., Laverty, T. M. & Kevan, P. G. Effect of bumble bee (Hymenoptera: Apidae) pollination intensity on the quality of greenhouse tomatoes. J. Econ. Entomol. 94, 172–179 (2001).Article 
    CAS 

    Google Scholar 
    Karron, J. D., Mitchell, R. J. & Bell, J. M. Multiple pollinator visits to Mimulus ringens (Phrymaceae) flowers increase mate number and seed set within fruits. Am. J. Bot. 93, 1306–1312 (2006).Article 

    Google Scholar 
    Kiatoko, N., Raina, S. K., Muli, E. & Mueke, J. Enhancement of fruit quality in Capsicum annum through pollination by Hypotrigona gribodoi in Kakamega Western Kenya. Entomol. Sci. 17, 106–110 (2014).Article 

    Google Scholar 
    Abrol, D. P., Gorka, A. K., Ansari, M. J., Al-Ghamdi, A. & Al-Kahtani, S. Impact of insect pollinators on yield and fruit quality of strawberry. Saudi J. Biol. Sci. 26, 524–530 (2019).Article 

    Google Scholar 
    Osman, M. A., Raju, P. S. & Peacock, J. M. The effect of soil temperature, moisture and nitrogen on Striga asiatica (L.) Kuntze seed germination, viability and emergence on sorghum (Sorghum bicolor L. Moench) roots under field conditions. Plant Soil 131, 265–273 (1991).Article 
    CAS 

    Google Scholar 
    Rose, T. J. & Raymond, C. A. Seed phosphorus effects on rice seedling vigour in soils differing in phosphorus status. Agronomy 10(12), 1919. https://doi.org/10.3390/agronomy10121919 (2020).Article 
    CAS 

    Google Scholar 
    Cavatorta, J. et al. ‘Marketmore 97’: a monoecious slicing cucumber inbred with multiple disease and insect resistances. HortScience 42, 707–709 (2007).Article 

    Google Scholar 
    Friedman, J. The evolution of annual and perennial plant life histories: ecological correlates and genetic mechanisms. Annu. Rev. Ecol. Evol. Syst. 51, 461–481 (2020).Article 

    Google Scholar 
    Alzate-Marin, A. L. et al. Warming and elevated CO2 induces changes in the reproductive dynamics of a tropical plant species. Sci. Total Environ. 768, 144899. https://doi.org/10.1016/j.scitotenv.2020.144899 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Mu, J. et al. Domesticated honey bees evolutionarily reduce flower nectar volume in a Tibetan lotus. Ecology 95, 3161–3172 (2014).Article 

    Google Scholar 
    Cruden, R. W. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31, 32–46 (1977).
    Google Scholar 
    Costa, C. M. & Yang, S. Counting pollen grains using readily available, free image processing and analysis software. Ann. Bot. 104, 1005–1010 (2009).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 

    Google Scholar 
    Vaudo, A. D., Patch, H. M., Mortensen, D. A., Grozinger, C. M. & Tooker, J. F. Bumble bees exhibit daily behavioral patterns in pollen foraging. Arthropod. Plant. Interact. 8, 273–283 (2014).
    Google Scholar  More

  • in

    Reproductive performance and sex ratio adjustment of the wild boar (Sus scrofa) in South Korea

    Estes, J. A. Predators and ecosystem management. Wildl. Soc. Bull. 24, 390–396 (1996).
    Google Scholar 
    Licht, D. S., Millspaugh, J. J., Kunkel, K. E., Kochanny, C. O. & Peterson, R. O. Using small populations of wolves for ecosystem restoration and stewardship. Bioscience 60, 147–153 (2010).Article 

    Google Scholar 
    Schwartz, C. C., Swenson, J. E. & Miller, S. D. Large carnivores, moose, and humans: A changing paradigm of predator management in the 21st century. Alces J. Devot. Biol. Manag. Moose 39, 41–63 (2003).
    Google Scholar 
    Valente, A. M., Acevedo, P., Figueiredo, A. M., Fonseca, C. & Torres, R. T. Overabundant wild ungulate populations in Europe: Management with consideration of socio-ecological consequences. Mammal Rev. 50, 353–366 (2020).Article 

    Google Scholar 
    Lee, S. D. & Miller-Rushing, A. J. Degradation, urbanization, and restoration: A review of the challenges and future of conservation on the Korean Peninsula. Biol. Cons. 176, 262–276 (2014).Article 

    Google Scholar 
    Kodera, Y. Habitat selection of Japanese wild boar in Iwami district, Shimane Prefecture, western Japan. Wildl. Conserv. Jpn. 6, 119–129 (2001).
    Google Scholar 
    Ohashi, H. et al. Differences in the activity pattern of the wild boar Sus scrofa related to human disturbance. Eur. J. Wildl. Res. 59, 167–177 (2013).Article 

    Google Scholar 
    Ministry of Environment Republic of Korea. Management Plan of Pest Wild Boars. (Sejong, 2010).National Institute of Biological Resources. Analysis of Hunting Effect on Pest Animals and its Monitoring Techniques. (Incheon, 2017).Lee, S. M. & Lee, E. J. Diet of the wild boar (Sus scrofa): Implications for management in forest-agricultural and urban environments in South Korea. PeerJ 7, e7835 (2019).Article 

    Google Scholar 
    Bieber, C. & Ruf, T. Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 42, 1203–1213 (2005).Article 

    Google Scholar 
    Brogi, R. et al. Capital-income breeding in wild boar: A comparison between two sexes. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Frauendorf, M., Gethöffer, F., Siebert, U. & Keuling, O. The influence of environmental and physiological factors on the litter size of wild boar (Sus scrofa) in an agriculture dominated area in Germany. Sci. Total Environ. 541, 877–882 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Massei, G., Genov, P. V. & Staines, B. W. Diet, food availability and reproduction of wild boar in a Mediterranean coastal area. Acta Theriol. 41, 307–320 (1996).Article 

    Google Scholar 
    Sabrina, S., Jean-Michel, G., Carole, T., Serge, B. & Eric, B. Pulsed resources and climate-induced variation in the reproductive traits of wild boar under high hunting pressure. J. Anim. Ecol. 78, 1278–1290 (2009).Article 

    Google Scholar 
    Fonseca, C. et al. Reproduction in the wild boar (Sus scrofa Linnaeus, 1758) populations of Portugal. Galemys 16, 53–65 (2004).
    Google Scholar 
    Morreti, M. Birth distribution, structure and dynamics of a hunted mountain populatin of wild boars (Sus scrofa L.), Ticino, Switzerland. J. Mt. Ecol. 3, 192–196 (1995).
    Google Scholar 
    Rosell, C., Navas, F. & Romero, S. Reproduction of wild boar in a cropland and coastal wetland area: Implications for management. Anim. Biodivers. Conserv. 35, 209–217 (2012).Article 

    Google Scholar 
    Cellina, S. Effects of supplemental feeding on the body condition and reproductive state of wild boar Sus scrofa in Luxembourg PhD Dissertation thesis, University of Sussex, (2008).Gamelon, M. et al. High hunting pressure selects for earlier birth date: Wild boar as a case study. Evol. Int. J. Org. Evol. 65, 3100–3112 (2011).Article 

    Google Scholar 
    Gethöffer, F., Sodeikat, G. & Pohlmeyer, K. Reproductive parameters of wild boar (Sus scrofa) in three different parts of Germany. Eur. J. Wildl. Res. 53, 287–297 (2007).Article 

    Google Scholar 
    Fonseca, C., Da Silva, A., Alves, J., Vingada, J. & Soares, A. Reproductive performance of wild boar females in Portugal. Eur. J. Wildl. Res. 57, 363–371 (2011).Article 

    Google Scholar 
    Gaillard, J.-M., Brandt, S. & Jullien, J.-M. Body weight effect on reproduction of young wild boar (Sus scrofa) females: A comparative analysis. Folia Zool. (Brno) 42, 204–212 (1993).
    Google Scholar 
    Poteaux, C. et al. Socio-genetic structure and mating system of a wild boar population. J. Zool. 278, 116–125 (2009).Article 

    Google Scholar 
    Spitz, F., Valet, G. & Lehr Brisbin, I. Jr. Variation in body mass of wild boars from southern France. J. Mammal. 79, 251–259 (1998).Article 

    Google Scholar 
    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).Article 
    ADS 
    CAS 

    Google Scholar 
    Clutton-Brock, T. H., Albon, S. & Guinness, F. Parental investment in male and female offspring in polygynous mammals. Nature 289, 487–489 (1981).Article 
    ADS 

    Google Scholar 
    Hewison, A. M. & Gaillard, J.-M. Successful sons or advantaged daughters? The Trivers-Willard model and sex-biased maternal investment in ungulates. Trends Ecol. Evol. 14, 229–234 (1999).Article 
    CAS 

    Google Scholar 
    Clutton-Brock, T. H. & Iason, G. R. Sex ratio variation in mammals. Q. Rev. Biol. 61, 339–374 (1986).Article 
    CAS 

    Google Scholar 
    Fernández-Llario, P. & Mateos-Quesada, P. Body size and reproductive parameters in the wild boar Sus scrofa. Acta Theriol. 43, 439–444 (1998).Article 

    Google Scholar 
    Meikle, D. B., Drickamer, L. C., Vessey, S. H., Rosenthal, T. L. & Fitzgerald, K. S. Maternal dominance rank and secondary sex ratio in domestic swine. Anim. Behav. 46, 79–85 (1993).Article 

    Google Scholar 
    Servanty, S., Gaillard, J.-M., Allainé, D., Brandt, S. & Baubet, E. Litter size and fetal sex ratio adjustment in a highly polytocous species: The wild boar. Behav. Ecol. 18, 427–432 (2007).Article 

    Google Scholar 
    Mendl, M., Zanella, A. J., Broom, D. M. & Whittemore, C. T. Maternal social status and birth sex ratio in domestic pigs: An analysis of mechanisms. Anim. Behav. 50, 1361–1370 (1995).Article 

    Google Scholar 
    Cameron, E. Z. Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: Evidence for a mechanism. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 1723–1728 (2004).Article 

    Google Scholar 
    Clutton-Brock, T., Albon, S. & Guinness, F. Maternal dominance, breeding success and birth sex ratios in red deer. Nature 308, 358–360 (1984).Article 
    ADS 

    Google Scholar 
    Maillard, D. & Fournier, P. Timing and synchrony of births in the wild boar (Sus scrofa Linnaeus, 1758) in a Mediterranean habitat: The effect of food availability. Galemys 16, 67–74 (2004).
    Google Scholar 
    Bywater, K. A., Apollonio, M., Cappai, N. & Stephens, P. A. Litter size and latitude in a large mammal: the wild boar Sus scrofa. Mammal Rev. 40, 212–220 (2010).
    Google Scholar 
    Orłowska, L., Rembacz, W. & Florek, C. Carcass weight, condition and reproduction of wild boars harvested in north-western Poland. Pest Manag. Sci. 69, 367–370 (2013).Article 

    Google Scholar 
    Carranza, J. Sexual selection for male body mass and the evolution of litter size in mammals. Am. Nat. 148, 81–100 (1996).Article 

    Google Scholar 
    FernáNdez-Llario, P., Carranza, J. & Mateos-Quesada, P. Sex allocation in a polygynous mammal with large litters: The wild boar. Anim. Behav. 58, 1079–1084 (1999).Article 

    Google Scholar 
    McBride, G. The” teat order” and communication in young pigs. Animal Behaviour (1963).McBride, G., James, J. & Hodgens, N. Social behaviour of domestic animals. IV. Growing pigs. Anim. Sci. 6, 129–139 (1964).Article 

    Google Scholar 
    McBride, G., James, J. & Wyeth, G. Social behaviour of domestic animals VII. Variation in weaning weight in pigs. Anim. Sci. 7, 67–74 (1965).Article 

    Google Scholar 
    Geochang County. Geochang Statistical yearbook. (Geochang, 2015).Seoul Metropolitan Government. Seoul Statistical Yearbook. (Seoul, 2017).Animal and Plant Quarantine Agency and Ministry of Food and Drug Safety. Institutional Animal Care and Use Committee Standard Operation Guideline. (Gimcheon, 2020).Magnell, O. & Carter, R. The chronology of tooth development in wild boar – A guide to age determination of linear enamel hypoplasia in prehistoric and medieval pigs. Verterrinarija Ir Zootechnika. T. 40, 43–48 (2007).
    Google Scholar 
    Oroian, T. E., Oroian, R. G., Pasca, I., Oroian, E. & Covrig, I. Methods of age estimation by dentition in Sus scrofa ferus sp. Bull. UASVM Anim. Sci. Biotechnol. 67, 1–2 (2010).
    Google Scholar 
    Vericad, R. Fetal age, conception and birth period estimation on wild boar (Sus scrofa) in West Pyrenees. in Actas del XV Congresso Int. Fauna Cinegética y Silvestre. (Trujillo, 1983).Rosell, C., Fernández-Llario, P. & Herrero, J. The wild boar (Sus scrofa Linnaeus, 1758). Galemys 13, 1–25 (2001).
    Google Scholar 
    R core team. R: A language and environment for statistical computing v. 3.6.0 (Austria, 2019). More

  • in

    Thermal physiology integrated species distribution model predicts profound habitat fragmentation for estuarine fish with ocean warming

    Reygondeau, G. & Beaugrand, G. Future climate-driven shifts in distribution of Calanus finmarchicus. Glob. Change Biol. 17, 756–766 (2011).Article 
    ADS 

    Google Scholar 
    Grieve, B. D., Hare, J. A. & Saba, V. S. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. Sci. Rep. 7, 6264 (2017).Article 
    ADS 

    Google Scholar 
    Bosso, L. et al. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions 24, 3169–3187 (2022).Article 

    Google Scholar 
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).Article 

    Google Scholar 
    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).Article 

    Google Scholar 
    Kaschner, K., Watson, R., Trites, A. W. & Pauly, D. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar. Ecol. Prog. Ser. 316, 285–310 (2006).Article 
    ADS 

    Google Scholar 
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    Buckley, L. B. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am. Nat. 171, E1–E19 (2008).Article 

    Google Scholar 
    Kolbe, J. J., Kearney, M. & Shine, R. Modeling the consequences of thermal trait variation for the cane toad invasion of Australia. Ecol. Appl. 20, 2273–2285 (2010).Article 

    Google Scholar 
    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).Article 

    Google Scholar 
    Somero, G. N., Lockwood, B. L. & Tomanek, L. Biochemical Adaptation: Response to Environmental Challenges, From Life’s Origins to the Anthropocene (Sinauer Associates, 2017).
    Google Scholar 
    Kuo, E. S. & Sanford, E. Geographic variation in the upper thermal limits of an intertidal snail: Implications for climate envelope models. Mar. Ecol. Prog. Ser. 388, 137–146 (2009).Article 
    ADS 

    Google Scholar 
    Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).Article 

    Google Scholar 
    Gamliel, I. et al. Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography 43, 1090–1106 (2020).Article 

    Google Scholar 
    Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3, 203–213 (2010).Article 

    Google Scholar 
    Buckley, L. B., Waaser, S. A., MacLean, H. J. & Fox, R. Does including physiology improve species distribution model predictions of responses to recent climate change?. Ecology 92, 2214–2221 (2011).Article 

    Google Scholar 
    Fry, F. E. J. Effects of the environment on animal activity. Pub. Ontario Fish. Lab. No. 68. Toronto Studies Biol. Ser. 55, 1–52 (1947).
    Google Scholar 
    Brett, J. R. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Am Zoologist 11, 99–113 (1971).Article 

    Google Scholar 
    Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).Article 
    ADS 

    Google Scholar 
    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).Article 

    Google Scholar 
    Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30–32 (2012).Article 
    ADS 

    Google Scholar 
    Pörtner, H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).Article 
    ADS 

    Google Scholar 
    Pörtner, H.-O. Oxygen-and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).Article 

    Google Scholar 
    Clark, T. D., Sandblom, E. & Jutfelt, F. Response to Farrell and to Pörtner and Giomi. J. Exp. Biol. 216, 4495–4497 (2013).Article 

    Google Scholar 
    Farrell, A. P. Aerobic scope and its optimum temperature: Clarifying their usefulness and limitations: Correspondence on J. Exp. Biol. 216, 2771–2782. J. Exp. Biol. 216, 4493–4494 (2013).Article 

    Google Scholar 
    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Clarke, A. Is there a universal temperature dependence of metabolism?. Funct. Ecol. 18, 252–256 (2004).Article 

    Google Scholar 
    Clarke, A. & Fraser, K. P. P. Why does metabolism scale with temperature?. Funct. Ecol. 18, 243–251 (2004).Article 

    Google Scholar 
    Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).Article 
    CAS 

    Google Scholar 
    Dhillon, R. S. & Schulte, P. M. Intraspecific variation in the thermal plasticity of mitochondria in killifish. J. Exp. Biol. 214, 3639–3648 (2011).Article 
    CAS 

    Google Scholar 
    Fangue, N. A., Podrabsky, J. E., Crawshaw, L. I. & Schulte, P. M. Countergradient variation in temperature preference in populations of killifish Fundulus heteroclitus. Physiol. Biochem. Zool. 82, 776–786 (2009).Article 

    Google Scholar 
    Healy, T. M. & Schulte, P. M. Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Physiol. Biochem. Zool. 85, 107–119 (2012).Article 
    CAS 

    Google Scholar 
    Chust, G. et al. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J. Mar. Sci. 71, 241–253 (2014).Article 

    Google Scholar 
    Norin, T., Malte, H. & Clark, T. D. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J. Exp. Biol. 217, 244–251 (2014).
    Google Scholar 
    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).Article 

    Google Scholar 
    Raffel, T. R. et al. Disease and thermal acclimation in a more variable and unpredictable climate. Nat. Clim. Change 3, 146–151 (2013).Article 
    ADS 

    Google Scholar 
    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19, 1372–1385 (2016).Article 

    Google Scholar 
    Dahlke, F. T. et al. Northern cod species face spawning habitat losses if global warming exceeds 1.5°C. Sci. Adv. 4, 8821 (2018).Article 
    ADS 

    Google Scholar 
    Pörtner, H.-O. & Giomi, F. Nothing in experimental biology makes sense except in the light of ecology and evolution: Correspondence on J. Exp. Biol. 2771-2782. J. Exp. Biol. 216, 4494–4495 (2013).Article 

    Google Scholar 
    Pörtner, H.-O. How and how not to investigate the oxygen and capacity limitation of thermal tolerance (OCLTT) and aerobic scope: Remarks on the article by Gräns et al. J. Exp. Biol. 217, 4432–4433 (2014).Article 

    Google Scholar 
    Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).Article 
    CAS 

    Google Scholar 
    Killen, S. S., Atkinson, D. & Glazier, D. S. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol. Lett. 13, 184–193 (2010).Article 

    Google Scholar 
    Norin, T. & Gamperl, A. K. Metabolic scaling of individuals vs. populations: Evidence for variation in scaling exponents at different hierarchical levels. Funct. Ecol. 32, 379–388 (2018).Article 

    Google Scholar 
    Jayasundara, N., Kozal, J. S., Arnold, M. C., Chan, S. S. L. & Giulio, R. T. D. High-throughput tissue bioenergetics analysis reveals identical metabolic allometric scaling for teleost hearts and whole organisms. PLoS ONE 10, e0137710 (2015).Article 

    Google Scholar 
    Kinnison, M. T., Unwin, M. J. & Quinn, T. P. Migratory costs and contemporary evolution of reproductive allocation in male chinook salmon. J. Evol. Biol. 16, 1257–1269 (2003).Article 
    CAS 

    Google Scholar 
    Clarke, A. & Johnston, N. M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 893–905 (1999).Article 

    Google Scholar 
    Duvernell, D. D., Lindmeier, J. B., Faust, K. E. & Whitehead, A. Relative influences of historical and contemporary forces shaping the distribution of genetic variation in the Atlantic killifish, Fundulus heteroclitus. Mol. Ecol. 17, 1344–1360 (2008).Article 

    Google Scholar 
    Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A. & Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 7, 1–14 (2020).Article 

    Google Scholar 
    Franke, R. Scattered data interpolation: Tests of some methods. Math. Comput. 38, 181–200 (1982).MathSciNet 
    MATH 

    Google Scholar 
    Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, 15. https://doi.org/10.1029/2012GL051106 (2012).Article 

    Google Scholar 
    Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species (Worldwide Web Electronic Publication, 2019).
    Google Scholar 
    Jayasundara, N. Ecological significance of mitochondrial toxicants. Toxicology 391, 64–74 (2017).Article 
    CAS 

    Google Scholar 
    Beers, J. M. & Jayasundara, N. Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures?. J. Exp. Biol. 218, 1834–1845 (2015).Article 

    Google Scholar 
    Lear, K. O. et al. Thermal performance responses in free-ranging elasmobranchs depend on habitat use and body size. Oecologia 191, 829–842 (2019).Article 
    ADS 

    Google Scholar 
    Good, S. et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 12, 720 (2020).Article 
    ADS 

    Google Scholar 
    Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).
    Google Scholar 
    Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecol. Model. 221, 467–478 (2010).Article 

    Google Scholar 
    Pawlowicz, R. M_Map: A Mapping Package for MATLAB, Version 1.4 m. Computer Software, UBC EOAS. https://www.eoas.ubc.ca/rich/map.html (2020).Schulzweida, U., Kornblueh, L. & Quast, R. CDO User’s Guide. Climate Data Operators, Version 1, (2006).Nychka, D., Furrer, R., Paige, J. & Sain, S. Fields: Tools for Spatial Data. R Package Version 11.6. (2017).Chen, Z., Farrell, A. P., Matala, A. & Narum, S. R. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Mol. Ecol. 27, 659–674 (2018).Article 

    Google Scholar 
    da Silva, C. R. B., Riginos, C. & Wilson, R. S. An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. J. Comp. Physiol. B. 189, 385–398 (2019).Article 

    Google Scholar 
    Slesinger, E. et al. The effect of ocean warming on black sea bass (Centropristis striata) aerobic scope and hypoxia tolerance. PLoS ONE 14, e0218390 (2019).Article 
    CAS 

    Google Scholar 
    Moffett, E. R., Fryxell, D. C., Palkovacs, E. P., Kinnison, M. T. & Simon, K. S. Local adaptation reduces the metabolic cost of environmental warming. Ecology 99, 2318–2326 (2018).Article 

    Google Scholar 
    Turker, H. The effect of water temperature on standard and routine metabolic rate in two different sizes of Nile tilapia. Kafkas Universitesi Veteriner Fakultesi Dergisi 17, 575–580 (2011).
    Google Scholar 
    Hvas, M., Folkedal, O., Imsland, A. & Oppedal, F. The effect of thermal acclimation on aerobic scope and critical swimming speed in Atlantic salmon, Salmo salar. J. Exp. Biol. 220, 2757–2764 (2017).
    Google Scholar 
    Ohlberger, J., Mehner, T., Staaks, G. & Hölker, F. Intraspecific temperature dependence of the scaling of metabolic rate with body mass in fishes and its ecological implications. Oikos 121, 245–251 (2012).Article 

    Google Scholar 
    Kunz, K. L. et al. New encounters in Arctic waters: A comparison of metabolism and performance of polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua) under ocean acidification and warming. Polar Biol. 39, 1137–1153 (2016).Article 

    Google Scholar 
    Norin, T., Bailey, J. A. & Gamperl, A. K. Thermal biology and swimming performance of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). PeerJ 7, e7784 (2019).Article 

    Google Scholar 
    Nowell, L. B. et al. Swimming energetics and thermal ecology of adult bonefish (Albula vulpes): A combined laboratory and field study in Eleuthera, The Bahamas. Environ. Biol. Fishes 98, 2133–2146 (2015).Article 

    Google Scholar 
    Pang, X., Yuan, X.-Z., Cao, Z.-D., Zhang, Y.-G. & Fu, S.-J. The effect of temperature on repeat swimming performance in juvenile qingbo (Spinibarbus sinensis). Fish Physiol. Biochem. 41, 19–29 (2015).Article 
    CAS 

    Google Scholar 
    Schwieterman, G. D. et al. Metabolic Rates and Hypoxia Tolerences of clearnose skate (Rostaraja eglanteria), summer flounder (Paralichthys dentatus), and thorny skate (Amblyraja radiata). Biology 8, 56 (2019).Article 
    CAS 

    Google Scholar 
    Xie, H. et al. Effects of acute temperature change and temperature acclimation on the respiratory metabolism of the snakehead. Turk. J. Fish. Aquat. Sci. 17, 535–542 (2017).Article 

    Google Scholar  More

  • in

    Ant milk: The mysterious fluid that helps them thrive

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Pronounced differences in heart rate and metabolism distinguish daily torpor and short-term hibernation in two bat species

    Lyman, C. P., Willis, J. S., Malan, A. & Wang, L. C. H. Hibernation and Torpor in Mammals and Birds (Academic Press, 1982).
    Google Scholar 
    Boyles, J. G. et al. A global heterothermic continuum in mammals. Glob. Ecol. Biogeogr. 22, 1029–1039. https://doi.org/10.1111/geb.12077 (2013).Article 

    Google Scholar 
    Geiser, F. Ecological Physiology of Daily Torpor and Hibernation (Springer, 2021). https://doi.org/10.1007/978-3-030-75525-6.Book 

    Google Scholar 
    Buck, C. L. & Barnes, B. M. Effects of ambient temperature on metabolic rate, respiratory quotient and torpor in an arctic hibernator. Am. J. Physiol. Reg. Integr. Comp. Physiol 279, R255–R262. https://doi.org/10.1152/ajpregu.2000.279.1.R255 (2000).Article 
    CAS 

    Google Scholar 
    Ortmann, S. & Heldmaier, G. Regulation of body temperature and energy requirements of hibernating Alpine marmots (Marmota marmota). Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R698–R704. https://doi.org/10.1152/ajpregu.2000.278.3.R698 (2000).Article 
    CAS 

    Google Scholar 
    Swoap, S. J. & Gutilla, M. J. Cardiovascular changes during daily torpor in the laboratory mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol 297, R769–R774. https://doi.org/10.1152/ajpregu.00131.2009 (2009).Article 
    CAS 

    Google Scholar 
    Kirsch, R., Ouarour, A. & Pévet, P. Daily torpor in the Djungarian hamster (Phodopus sungorus): photoperiodic regulation, characteristics and circadian organization. J. Comp. Physiol. A 168, 121–128. https://doi.org/10.1007/BF00217110 (1991).Article 
    CAS 

    Google Scholar 
    Nowack, J., Stawski, C. & Geiser, F. More functions of torpor and their roles in a changing world. J. Comp. Physiol. (B) 187, 889–897. https://doi.org/10.1007/s00360-017-1100-y (2017).Article 

    Google Scholar 
    Nowack, J., Levesque, D. L., Reher, S. & Dausmann, K. H. Variable climates lead to varying phenotypes: “Weird” mammalian torpor and lessons from non-holarctic species. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00060 (2020).Article 

    Google Scholar 
    Hoelzl, F. et al. How to spend the summer? Free-living dormice (Glis glis) can hibernate for 11 months in non-reproductive years. J. Comp. Physiol. B 185, 931–939. https://doi.org/10.1007/s00360-015-0929-1 (2015).Article 

    Google Scholar 
    Geiser, F. Seasonal expression of avian and mammalian daily torpor and hibernation: not a simple summer-winter affair. F. Phys. 11, 436. https://doi.org/10.3389/fphys.2020.00436 (2020).Article 

    Google Scholar 
    Jonasson, K. A. & Willis, C. K. R. Hibernation energetics of free-ranging little brown bats. J. Exp. Biol. 215, 2141–2149. https://doi.org/10.1242/jeb.066514 (2012).Article 

    Google Scholar 
    Dietz, M., Kalko, E. K. V. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. B. 176(3), 223–231. https://doi.org/10.1007/s00360-005-0043-x (2006).Article 

    Google Scholar 
    Kobbe, S., Ganzhorn, J. U. & Dausmann, K. H. Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). J. Comp. Physiol. B 181, 165–173. https://doi.org/10.1007/s00360-010-0507-5 (2011).Article 

    Google Scholar 
    Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926. https://doi.org/10.1111/brv.12137 (2015).Article 

    Google Scholar 
    Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Storey, K. B. & Storey, J. M. Metabolic rate depression: the biochemistry of mammalian hibernation. Adv. Clin. Chem. 52, 77–108 (2010).Article 
    CAS 

    Google Scholar 
    Stawski, C., Willis, C. K. R. & Geiser, F. The importance of temporal heterothermy in bats. J. Zool. 292, 86–100. https://doi.org/10.1111/jzo.12105 (2014).Article 

    Google Scholar 
    Bondarenco, A., Körtner, G. & Geiser, F. Some like it cold: summer torpor by freetail bats in the Australian arid zone. J. Comp. Physiol. (B) 183, 1113–1122. https://doi.org/10.1007/s00360-013-0779-7 (2013).Article 

    Google Scholar 
    O’Mara, M. T. et al. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats. R. Soc. Open Sci. 4, 171359. https://doi.org/10.1098/rsos.171359 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Reher, S., Ehlers, J., Rabarison, H. & Dausmann, K. H. Short and hyperthermic torpor responses in the Malagasy bat Macronycteris commersoni reveal a broader hypometabolic scope in heterotherms. J. Comp. Physiol. B https://doi.org/10.1007/s00360-018-1171-4 (2018).Article 

    Google Scholar 
    Geiser, F. et al. Hibernation and daily torpor in Australian and New Zealand bats: Does the climate zone matter?. Aust. J. Zool https://doi.org/10.1071/ZO20025 (2020).Article 

    Google Scholar 
    Stawski, C., Turbill, C. & Geiser, F. Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). J. Comp. Physiol. (B) 179, 284–292. https://doi.org/10.1007/s00360-008-0328-y (2009).Article 

    Google Scholar 
    Levin, E. et al. Subtropical mouse-tailed bats use geothermally heated caves for winter hibernation. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142781. https://doi.org/10.1098/rspb.2014.2781 (2015).Article 

    Google Scholar 
    Bartholomew, G. A., Dawson, W. R. & Lasiewski, R. C. Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea. Z. Vergl. Physiol. 70, 196–209 (1970).Article 

    Google Scholar 
    Bartels, W., Law, B. S. & Geiser, F. Daily torpor and energetics in a tropical mammal, the northern blossom-bat Macroglossus minimus (Megachiroptera). J. Comp. Physiol. (B) 168, 233–239. https://doi.org/10.1007/s003600050141 (1998).Article 
    CAS 

    Google Scholar 
    Geiser, F., Coburn, D. K., Körtner, G. & Law, B. S. Thermoregulation, energy metabolism, and torpor in blossom-bats, Syconycteris australis (Megachiroptera). J. Zool. 239, 538–590. https://doi.org/10.1111/j.1469-7998.1996.tb05944.x (1996).Article 

    Google Scholar 
    Geiser, F. & Coburn, D. K. Field metabolic rates and water uptake in the blossom-bat Syconycteris australis (Megachiroptera). J. Comp. Physiol. (B) 169, 133–138. https://doi.org/10.1007/s003600050203 (1999).Article 
    CAS 

    Google Scholar 
    Turbill, C. Roosting and thermoregulatory behaviour of male Gould’s long-eared bats, Nyctophilus gouldi: energetic benefits of thermally unstable tree roosts. Aust. J. Zool. 54, 57–60. https://doi.org/10.1071/ZO05068 (2006).Article 

    Google Scholar 
    Currie, S. E. No effect of season on the electrocardiogram of long-eared bats (Nyctophilus gouldi) during torpor. J. Comp. Physiol. B 188, 695–705. https://doi.org/10.1007/s00360-018-1158-1 (2018).Article 

    Google Scholar 
    Stawski, C. & Geiser, F. Do season and distribution affect thermal energetics of a hibernating bat endemic to the tropics and subtropics?. Am. J. Physiol. Regul. Integr. Comp. Physiol 301, R542–R547. https://doi.org/10.1152/ajpregu.00792.2010 (2011).Article 
    CAS 

    Google Scholar 
    Currie, S. E., Stawski, C. & Geiser, F. Cold-hearted bats: uncoupling of heart rate and metabolism during torpor at subzero temperatures. J. Exp. Biol. https://doi.org/10.1242/jeb.170894 (2018).Article 

    Google Scholar 
    Churchill, S. Australian Bats 2nd edn. (Allen and Unwin, 2008).
    Google Scholar 
    Geiser, F., Law, B. S. & Körtner, G. Daily torpor in relation to photoperiod in a subtropical blossom-bat, Syconycteris australis (Megachiroptera). J. Therm. Biol. 30, 574–579. https://doi.org/10.1016/j.jtherbio.2005.08.002 (2005).Article 

    Google Scholar 
    Coburn, D. K. & Geiser, F. Seasonal changes in energetics and torpor patterns in the subtropical blossom-bat Syconycteris australis (Megachiroptera). Oecologia 113, 467–473 (1998).Article 
    ADS 

    Google Scholar 
    Dietz, M. & Kalko, E. K. V. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. (B) 176, 223–231. https://doi.org/10.1007/s00360-005-0043-x (2006).Article 

    Google Scholar 
    Andrews, M. T. Advances in molecular biology of hibernation in mammals. BioEssays 29, 431–440. https://doi.org/10.1002/bies.20560 (2007).Article 
    CAS 

    Google Scholar 
    Twente, J. W. & Twente, J. Autonomic regulation of hibernation by Citellus and Eptesicus. In Strategies in Cold: Natural Torpidity and Thermogenesis (eds Wang, L. C. H. & Hudson, J. W.) 327–373 (Academic Press, 1978).Chapter 

    Google Scholar 
    Davis, W. H. & Reite, O. B. Responses of bats from temperate regions to changes in ambient temperature. Biol. Bull. 132, 320–328 (1967).Article 
    CAS 

    Google Scholar 
    Alston, J. M., Dillon, M. E., Keinath, D. A., Abernethy, I. M. & Goheen, J. R. Daily torpor reduces the energetic consequences of microhabitat selection for a widespread bat. Ecology 103, e3677. https://doi.org/10.1002/ecy.3677 (2022).Article 

    Google Scholar 
    Humphries, M. M., Thomas, D. W. & Speakman, J. R. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313–316. https://doi.org/10.1038/nature00828 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Heller, H. C. Hibernation: neural aspects. Annu. Rev. Physiol. 41, 305–321. https://doi.org/10.1038/nature00828 (1979).Article 
    CAS 

    Google Scholar 
    McKechnie, A. E. & Wolf, B. O. The energetics of the rewarming phase of avian torpor. In Life in the Cold: Evolution, Mechanisms, Adaptation and Application (eds Barnes, B. M. & Carey, H. V.) 265–267 (University of Alaska, 2004).

    Google Scholar 
    Geiser, F. & Baudinette, R. V. The relationship between body mass and rate of rewarming from hibernation and daily torpor in mammals. J. Exp. Biol. 151, 349–359. https://doi.org/10.1242/jeb.151.1.349 (1990).Article 
    CAS 

    Google Scholar 
    Voigt, C. C., Kelm, D. H. & visser, G. H.,. Field metabolic rates of phytophagous bats: do pollination strategies of plants make life of nectar-feeders spin faster?. J. Comp. Physiol. (B) 176, 213–222. https://doi.org/10.1007/s00360-005-0042-y (2006).Article 

    Google Scholar 
    Bullen, R. D., McKenzie, N. L., Bullen, K. E. & Williams, M. R. Bat heart mass: correlation with foraging niche and roost preference. Aust. J. Zool. 57, 399–408. https://doi.org/10.1071/ZO09053 (2009).Article 

    Google Scholar 
    Law, B. S. Climatic limitation of the southern distribution of the common blossom bat Syconycteris australis in New South Wales. Aust. J. Ecol. 19, 366–374. https://doi.org/10.1111/j.1442-9993.1994.tb00502.x (1994).Article 

    Google Scholar 
    Bonaccorso, F. J. & McNab, B. K. Plasticity of energetics in blossom bats (Pteropodidae): impact on distribution. J. Mammal. 78, 1073–1088. https://doi.org/10.2307/1383050 (1997).Article 

    Google Scholar 
    Geiser, F. & Brigham, R. M. Torpor, thermal biology and energetics in Australian long-eared bats (Nyctophilus). J. Comp. Physiol. (B) 170, 153–162. https://doi.org/10.1007/s003600050270 (2000).Article 
    CAS 

    Google Scholar 
    Withers, P. C. Metabolic, respiratory and haematological adjustments of the little pocket mouse to circadian torpor cycles. Respir. Physiol. 31, 295–307. https://doi.org/10.1016/0034-5687(77)90073-1 (1977).Article 
    CAS 

    Google Scholar 
    Bartholomew, G. A. & Tucker, V. A. Control of changes in body temperature, metabolism and circulation by the Agamid lizard, Amphibolurus barbatus. Physiol. Zool. 36, 199–218 (1963).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259. https://doi.org/10.1111/j.2041-210X.2011.00153.x (2012).Article 

    Google Scholar 
    Halsey, L. G. et al. Flexibility, variability and constraint in energy management patterns across vertebrate taxa revealed by long-term heart rate measurements. Funct. Ecol. 33, 260–272. https://doi.org/10.1111/1365-2435.13264 (2019).Article 

    Google Scholar  More

  • in

    Anthrax hotspot mapping in Kenya support establishing a sustainable two-phase elimination program targeting less than 6% of the country landmass

    Data sourcesThis study builds on two datasets; 666 livestock anthrax outbreaks collected over 60 years (1957–2017) by the Kenya Directorate of Veterinary Services (KDVS), and 13 reported anthrax outbreaks we investigated between 2017 and 201811,13. These datasets were combined with data from targeted active anthrax surveillance we conducted in 2019–2020 (see below) to define anthrax suitable areas in Kenya, including hotspots, and subsequently assessed effectiveness of livestock vaccination as a control strategy.Targeted active surveillance-collected anthrax data, 2019–2020Active anthrax surveillance was conducted for 12 months between 2019 and 2020 in randomly selected areas to ensure representation of all AEZs of the country. AEZs are land units defined based on the patterns of soil, landforms and climatic characteristics. Kenya has seven AEZs that include agro-alpine, high potential, medium potential, semi-arid, arid, very-arid and desert. In 2013, Kenya devolved governance into 47 semi-autonomous counties that are subdivided into 290 subcounties which are in turn divided into 1450 administrative wards, the smallest administrative units in the country. Using a geographic map that condensed Kenya into five AEZs; agro-alpine, high potential, medium potential, semi-arid, and arid/very arid zones, we randomly selected 4 administrative sub-counties from each AEZ (N = 20). To increase geographic spread of the study and enhance detection of anthrax outbreaks, we surveilled the larger administrative county (consisting of 20 to 45 administrative wards) where the randomly selected sub-counties were located. As shown in Fig. S1, we ultimately carried out the active anthrax surveillance in 18 counties, containing 523 administrative wards, the latter being used for measuring spatial association (see below).We conducted the surveillance between April 2019 and June 2020, through 523 animal health practitioners (AHPs), one in each ward, after intensive training to identify anthrax using a standard case definition, and to collect and electronically transmit the data weekly using telephone-based short messaging system (SMS) to a central server hosted by KDVS. Regarding case definition, any livestock death classified as anthrax through clinical or laboratory diagnosis was considered an anthrax event. Using standard guidelines issued by the KDVS, a clinical diagnosis was made by the AHPs across the country as an acute cattle, sheep or goat disease characterized by sudden death with or without bleeding from natural orifices, accompanied by absence of rigor mortis. Further, if the carcass was accidentally opened, failure of blood to clot and/or the presence of splenomegaly were included. In pigs, symptoms included swelling of the face and neck with oedema. A laboratory confirmed anthrax was diagnosed using Gram and methylene blue stains followed by identification of the capsule and typical rod-shaped B. anthracis in clinical specimens that the AHPs submitted to the central or regional veterinary investigation laboratories in Kenya. One case of anthrax in either species was considered an outbreak.During the surveillance, the programmed server sent prompting texts directly to the AHPs’ cell phones every Friday of each week for the 52 weeks. The AHPs interacted with the platform by responding to prompting questions sent via SMS to their telephones. Data were securely stored in an online encrypted platform which was subsequently downloaded into Ms Excel for analysis. This surveillance detected 119 anthrax outbreaks, whose partial data were used to model effects of climate change on future anthrax distribution in Kenya14. Here, we integrated these active surveillance data with other datasets to conduct detailed ENM and kernel-smoothed density mapping with a goal of refining suitable anthrax areas including crystalizing hotspots in the country.Anthrax outbreak incidence per livestock population by countyWe knew the total number of livestock per county and wards by species for the active surveillance period. The counties represented the level of disease management including vaccine distribution while the wards within counties represented the modeling unit for targeting control. Therefore, we estimated the outbreak incidence as the total number of outbreaks per livestock species per 100,000 head of that species.Ecological niche modeling and validationWe used boosted regression tree (BRT) algorithm as previously published13. In those studies, we estimated the geographic distribution of anthrax in southern Kenya using 69 spatially unique outbreak points (thinned from the 86 outbreaks in the records) and 18 environmental variables resampled to 250 m resolution. In this study, the final experiments were run with a learning rate (lr) = 0.001, bagging fraction (br) = 5, and maximum tree = 2500. We then mapped anthrax suitability as the mean output of the 100 experiments and the lower 2.5% and upper 97.5% mapped as confidence intervals. We determined variable contribution and derived partial dependence as previously described13. As BRTs are a random walk and each experiment randomly resamples training and test data, it was necessary to repeat those outputs along with the map predictions.Here, our goal was to evaluate the BRT models built with records data from 2011 to 2017 data and use the predict function to calculate model accuracy metrics using the 2017–2020 outbreaks as presence points and the sub-counties reporting zero outbreaks during the 2019–2020 active surveillance period as absence points. The model of southern Kenya was projected onto all of Kenya using climate variables clipped to the whole of Kenya. We tested the BRT models in two ways; first, evaluating 2011–2017 data models with holdout data using a random resampling and multi-modeling approach. Here, we report the area under curve (AUC) for each of the original training/testing split into the 69 historical points and the 2017–2020 data serving as independent data, the latter representing true model validation. Second, to determine the total percentage of surveillance data predicted and map areas of anthrax suitability to compare with kernel density estimates (see below), we produced a dichotomized map using the Youden index cutoff17 following Otieno et al.14.Outbreak concentrations from kernel density estimation (KDE)To describe the spatial concentration of reported outbreaks, we calculated descriptive spatial statistics, including the spatial mean, standard distance, and standard deviational ellipse of outbreak locations from the prospective surveillance dataset following Blackburn et al.18 These spatial statistics help to differentiate the geographic focus (spatial mean) and dispersion of outbreak reports from year to year and across the sampling period. We then conducted kernel density estimation (KDE) to visualize the concentration of anthrax outbreaks per square kilometer per year and across the study period18. We used the spatstat package for all KDE analyses using the quadratic kernel function19:$$fleft( x right) = frac{1}{{nh^{2} }} mathop sum limits_{i = 1}^{n} Kleft( {frac{{x – X_{i} }}{h}} right)$$where h is the bandwidth, x-Xi is the distance to each anthrax outbreak i. Finally, K is the quadratic kernel function, defined as:$$Kleft( x right) = frac{3}{4}left( {1 – x^{2} } right), left| x right| le 1$$$$Kleft( x right) = 0,x > 1$$This function was employed to estimate anthrax outbreak concentration across space using each outbreak weighted as one. We calculated the bandwidth (kernel) using hopt that uses the sample size (number of outbreaks) and the standard distance to estimate bandwidth. Finally, we estimated bandwidth for each year and then averaged them to apply the same fixed bandwidth for each year under study in Q-GIS version 3.1.8. The resulting outputs were map surfaces representing the spatial concentrations of outbreaks across the country per 1 km2 for each study year and all study years combined. For this study, we used the cutoff criteria of Nelson and Boots19 to identify outbreak hotspots as areas with density values in the upper 25%, 10%, and 5% of outbreak concentrations. The analyses identified these areas by year (2017–2020) and for all surveillance years combined.Local spatial clustering at the ward levelAnthrax outbreak incidence per livestock speciesThe ENM and KDE-derived maps provide a first estimate of potential risk and outbreak concentration, respectively. We were also interested in estimating anthrax outbreak intensity relative to livestock populations at a local level. For the active surveillance period, we knew the total number of outbreaks per ward (the smallest administrative spatial unit) by livestock species. For this two-year period, we estimated the ward-level outbreak incidence as the total number of outbreaks per livestock species per 10,000 head of that species. To estimate livestock population per ward, we extracted the values in the raster file of the areal weighted gridded livestock of the world data using the zonal statistic routine in Q-GIS version 3.1.8, into the polygon consisting of all pixels per ward as the total population19,20. We calculated outbreak incidence as the number of outbreaks per ward cattle population per 10,000 cattle for each administrative ward. We limited this analysis to those 18 counties participating in the active surveillance study (Fig. S1), as we could appropriately assume any ward with no reports was a ‘true zero’ for the estimation. Given that most reported outbreaks were in domestic cattle (see results below), we here report those results involving cattle alone. Given the overall high number of wards and the high number of wards without outbreaks, we performed the empirical Bayes smoothing and spatial Bayes smoothing routines in GeoDa version 1.12.1.161 to reduce the variance in anthrax incidence estimates20,21. To evaluate smoothing routine performance, we box plotted rates per ward and selected the method with the greatest reduction in outliers21. Smoothed rates were mapped as choropleth map in Q-GIS version 3.1.8 using the four equal area bins.Spatial cluster analysisWe used Local Moran’s I16 to test for spatial cluster of livestock anthrax in cattle using the smoothed outbreak incidence estimates. The Local Moran’s I statistic tests whether individual wards are part of spatial cluster, like incidence estimates surrounded by similar estimate (high-high or low-low) or spatial outliers where wards with significantly high or low estimates are surrounded by dissimilar values (high-low or low–high). The local Moran’s I is written as16:$$I_{i} = Z_{i} sum W_{ij} Z_{j}$$where Ii is the statistic for a ward i, Zi is the difference between the incidence at i and the mean anthrax incidence rate for all of wards in the study, Zj is the difference between anthrax risk at ward j and the mean for all wards. Wij is the weights matrix. In this study, the 1st order queen contiguity was employed. Here, Wij equals 1/n if a ward shared a boundary or vertex and 0 if not. For this study, Local Moran’s I was performed on the wards using 999 permutations and p = 0.05 using GeoDa version 1.12.1.161.Assessing effectiveness of cattle vaccination in burden hotspotsAs a first estimate of how we might scale up livestock anthrax vaccination efforts in Kenya, we slightly adjusted a simple published anthrax outbreak simulation model in a cattle population. For this study we applied an early mathematical approach of Funiss and Hahn22 to simulate anthrax at the ward level. While other recent models are available23,24, these are difficult to parameterize or require time series data we could not derive with the surveillance approach in this study. Like the more recent models, Funiss and Hahn22 assumed anthrax transmission was driven by cattle accessing spore-contaminated environments. Here the proportion of infected cattle each day depended on the population of susceptible animals in the population and probability of getting infected. This probability depends on environmental contamination (“a”), and a fraction of anthrax carcasses in the environment on a day (“f,”). Each day, the newly infected cattle are transferred to an incubation period vector, “d,” waiting to die following a probability “p”. In this model, all infected animals, “n,” die following the incubation periods given by the vector, “p”, in which pi is the probability of a cow dying i days after the infection. Following death, the cattle are transferred to a carcass state, providing a direct infection source to the susceptible cattle via environmental contamination. Environmental contamination “a,” is therefore defined as the number of spores ingested by an animal in a day. This environmental contamination depends on spores from carcasses and an assumed spore decay rate γ22.The complete set of difference equations with a daily time step is given by:$${text{S}}_{(t + 1)} = {text{S}}_{(t)} – {text{ S}}_{(t)} *left( {{1} – {text{e}}^{{ – left( {{text{a}}_{t} + gamma {text{f}}_{{{text{t}} + 1}} } right)}} } right)$$$${text{I}}_{(t + 1)} = {text{I}}_{(t)} + {text{ S}}_{(t)} *left( {{1} – {text{e}}^{{ – left( {{text{a}}_{{text{t}}} + gamma {text{f}}_{{{text{t}} + {1}}} } right)}} } right)$$where the expression (left( {{1} – {text{e}}^{{ – left( {{text{a}}_{t} + gamma {text{f}}_{{{text{t}} + 1}} } right)}} } right)) denotes the probability of an animal becoming infected and at + γft+1 is the mean number of spores ingested by a cow in a day. The equation for environmental contamination, a, is given by:$${text{a}}_{t + 1} {-}{text{a}}_{{text{t}}} = alpha {text{a}}_{{text{t}}} + beta {text{c}}_{{{text{t}} + {1}}}$$The newly infected animals die after a certain number of days. The distribution of incubation periods is given by the vector, p. On each day, the new cases are placed in a due-to-die vector, d, and when they die, they are subsequently moved down one step to fresh carcasses, ft. The fresh carcasses provide a direct source of infection to the susceptible cattle via the ‘fresh carcass term’, γ. These carcasses decay or are scavenged or disposed by man. The equation expressing the disseminating carcasses, c, is:$${text{C}}_{t + 1} – {text{c}}_{t} = {text{f}}_{t + 1} – delta {text{c}}_{t}$$The model parameters variables are provided in Table 1 and are similar to those used by Funiss and Hahn22 to generate a standard run. We ran the model for one year and extrapolated to cattle population in the identified hotspot wards.Table 1 Model parameters and variables.Full size table More