More stories

  • in

    Precipitation and potential evapotranspiration determine the distribution patterns of threatened plant species in Sichuan Province, China

    Paudel, P. K., Sipos, J. & Brodie, J. F. Threatened species richness along a Himalayan elevational gradient: Quantifying the influences of human population density, range size, and geometric constraints. BMC Ecol. 18, 6. https://doi.org/10.1186/s12898-018-0162-3 (2018).Article 

    Google Scholar 
    Pan, K. Distribution of Coniferous Plants in Southwest China (Chengdu Cartographic Publishing House, 2021).
    Google Scholar 
    Zhang, Y.-B. & Ma, K.-P. Geographic distribution patterns and status assessment of threatened plants in China. Biol. Conserv. 17, 1783. https://doi.org/10.1007/s10531-008-9384-6 (2008).Article 

    Google Scholar 
    Shrestha, N., Xu, X., Meng, J. & Wang, Z. Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat. Commun. 12, 1632. https://doi.org/10.1038/s41467-021-21914-w (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Pandey, B. et al. Energy–water and seasonal variations in climate underlie the spatial distribution patterns of gymnosperm species richness in China. Ecol. Evol. 10, 9474–9485. https://doi.org/10.1002/ece3.6639 (2020).Article 

    Google Scholar 
    Gao, J. & Liu, Y. Climate stability is more important than water–energy variables in shaping the elevational variation in species richness. Ecol. Evol. 8, 6872–6879. https://doi.org/10.1002/ece3.4202 (2018).Article 

    Google Scholar 
    Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x (2001).Article 

    Google Scholar 
    Dakhil, M. A. et al. Richness patterns of endemic and threatened conifers in south-west China: Topographic-soil fertility explanation. Environ. Res. Lett. 16, 034017. https://doi.org/10.1088/1748-9326/abda6e (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Dakhil, M. A. et al. Potential risks to endemic conifer montane forests under climate change: Integrative approach for conservation prioritization in southwestern China. Landsc. Ecol. 36, 3137–3151. https://doi.org/10.1007/s10980-021-01309-4 (2021).Article 

    Google Scholar 
    Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993. https://doi.org/10.1038/s41467-020-14771-6 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Bhattarai, K. R. & Vetaas, O. R. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob. Ecol. Biogeogr. 12, 327–340. https://doi.org/10.1046/j.1466-822X.2003.00044.x (2003).Article 

    Google Scholar 
    Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x (2004).Article 

    Google Scholar 
    Vetaas, O. R., Paudel, K. P. & Christensen, M. Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. J. Biogeogr. 46, 1652–1663. https://doi.org/10.1111/jbi.13564 (2019).Article 

    Google Scholar 
    Pandey, B. et al. Distribution pattern of gymnosperms’ richness in Nepal: Effect of environmental constrains along elevational gradients. Plants 9, 625. https://doi.org/10.3390/plants9050625 (2020).Article 

    Google Scholar 
    Kluge, J. et al. Elevational seed plants richness patterns in Bhutan, Eastern Himalaya. J. Biogeogr. 44, 1711–1722. https://doi.org/10.1111/jbi.12955 (2017).Article 

    Google Scholar 
    Currie, D. J. Energy and large-scale patterns of animal- and plant- species richness. Am. Nat. 137, 27–49. https://doi.org/10.1086/285144 (1991).Article 

    Google Scholar 
    MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598. https://doi.org/10.2307/1932254 (1961).Article 

    Google Scholar 
    Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252. https://doi.org/10.1038/385252a0 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. P. Natl. Acad. Sci. USA 104, 5925–5930. https://doi.org/10.1073/pnas.0608361104 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Pausas, J. G. & Austin, M. P. Patterns of plant species richness in relation to different environments: An appraisal. J. Veg. Sci. 12, 153–166. https://doi.org/10.2307/3236601 (2001).Article 

    Google Scholar 
    Colwell, R. K. & Lees, D. C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76. https://doi.org/10.1016/S0169-5347(99)01767-X (2000).Article 
    CAS 

    Google Scholar 
    McCain, C. M. The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. J. Biogeogr. 31, 19–31. https://doi.org/10.1046/j.0305-0270.2003.00992.x (2004).Article 

    Google Scholar 
    Gao, D. et al. The mid-domain effect and habitat complexity applied to elevational gradients: Moss species richness in a temperate semihumid monsoon climate mountain of China. Ecol. Evol. 11, 7448–7460. https://doi.org/10.1002/ece3.7576 (2021).Article 

    Google Scholar 
    Wang, J.-H., Cai, Y.-F., Zhang, L., Xu, C.-K. & Zhang, S.-B. Species richness of the family Ericaceae along an elevational gradient in Yunnan, China. Forests 9, 511. https://doi.org/10.3390/f9090511 (2018).Article 

    Google Scholar 
    Xu, M. et al. The mid-domain effect of mountainous plants is determined by community life form and family flora on the Loess Plateau of China. Sci. Rep. 11, 10974. https://doi.org/10.1038/s41598-021-90561-4 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Sichuan Vegetation Cooperation Group. Vegetation in Sichuan (Sichuan People’s Publishing House, 1980).
    Google Scholar 
    Pan, K., Wu, N., Pan, K. & Chen, Q. A discussion on the issues of the re-construction of ecological shelter zone on the upper reaches of the Yangtze River. Acta Ecol. Sin. 24, 617–629. https://doi.org/10.3321/j.issn:1000-0933.2004.03.032 (2004).Article 

    Google Scholar 
    Jpl, N. A. S. A. NASA shuttle radar topography mission global 1 arc second. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (2013).Liu, Y. et al. Determinants of richness patterns differ between rare and common species: Implications for Gesneriaceae conservation in China. Divers. Distrib. 23, 235–246. https://doi.org/10.1111/ddi.12523 (2017).Article 

    Google Scholar 
    Liao, Z. et al. Climate change jointly with migration ability affect future range shifts of dominant fir species in Southwest China. Divers. Distrib. 26, 352–367. https://doi.org/10.1111/ddi.13018 (2020).Article 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digit. Repos. https://doi.org/10.5061/dryad.kd1d4 (2018).Running, S. W., Mu, Q. & Zhao, M. MODIS/terra net evapotranspiration 8-day L4 global 500m SIN grid V061. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD16A2.061 (2021).Mu H. et al. An Annual Global Terrestrial Human Footprint Dataset from 2000 to 2018https://doi.org/10.6084/m9.figshare.16571064.v5(2021).Zhang, D., Zhang, Y., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan Mountains, southwestern China. Biol. Conserv. 18, 699–716. https://doi.org/10.1007/s10531-008-9534-x (2009).Article 

    Google Scholar 
    Sun, L., Luo, J., Qian, L., Deng, T. & Sun, H. The relationship between elevation and seed-plant species richness in the Mt. Namjagbarwa region (Eastern Himalayas) and its underlying determinants. Glob. Ecol. Conserv. 23, e01053. https://doi.org/10.1016/j.gecco.2020.e01053 (2020).Article 

    Google Scholar 
    Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503. https://doi.org/10.1002/ece3.5027 (2019).Article 

    Google Scholar 
    Krömer, T., Acebey, A., Kluge, J. & Kessler, M. Effects of altitude and climate in determining elevational plant species richness patterns: A case study from Los Tuxtlas, Mexico. Flora 208, 197–210. https://doi.org/10.1016/j.flora.2013.03.003 (2013).Article 

    Google Scholar 
    Pandey, B. et al. Contrasting gymnosperm diversity across an elevation gradient in the ecoregion of China: The role of temperature and productivity. Front. Ecol. Evol. 9, 1–7. https://doi.org/10.3389/fevo.2021.679439 (2021).Article 
    CAS 

    Google Scholar 
    Geng, S. et al. Diversity of vegetation composition enhances ecosystem stability along elevational gradients in the Taihang Mountains, China. Ecol. Indic. 104, 594–603. https://doi.org/10.1016/j.ecolind.2019.05.038 (2019).Article 

    Google Scholar 
    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, 1995).Book 

    Google Scholar 
    Zhang, S., Chen, W., Huang, J., Bi, Y. & Yang, X. Orchid species richness along elevational and environmental gradients in Yunnan, China. PLoS ONE https://doi.org/10.1371/journal.pone.0142621 (2015).Article 

    Google Scholar 
    Bertuzzo, E. et al. Geomorphic controls on elevational gradients of species richness. Proc. Natl. Acad. Sci. USA 113, 1737–1742. https://doi.org/10.1073/pnas.1518922113 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301. https://doi.org/10.1046/j.1466-822X.2002.00297.x (2002).Article 

    Google Scholar 
    Antonio, T. & Robert, Z. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).Panda, R. M., Behera, M. D., Roy, P. S. & Biradar, C. Energy determines broad pattern of plant distribution in Western Himalaya. Ecol. Evol. 7, 10850–10860. https://doi.org/10.1002/ece3.3569 (2017).Article 

    Google Scholar 
    Vetaas, O. R. & Ferrer-Castán, D. Patterns of woody plant species richness in the Iberian Peninsula: Environmental range and spatial scale. J. Biogeogr. 35, 1863–1878. https://doi.org/10.1111/j.1365-2699.2008.01931.x (2008).Article 

    Google Scholar 
    McCain, C. M. & Grytnes, J.-A. Encyclopedia of Life Sciences (ELS) (Wiley, 2010).
    Google Scholar 
    Tukiainen, H., Bailey, J. J., Field, R., Kangas, K. & Hjort, J. Combining geodiversity with climate and topography to account for threatened species richness. Conserv. Biol. 31, 364–375. https://doi.org/10.1111/cobi.12799 (2017).Article 

    Google Scholar 
    Zhang, Z., He, J.-S., Li, J. & Tang, Z. Distribution and conservation of threatened plants in China. Biol. Conserv. 192, 454–460. https://doi.org/10.1016/j.biocon.2015.10.019 (2015).Article 

    Google Scholar 
    Shrestha, N., Su, X., Xu, X. & Wang, Z. The drivers of high Rhododendron diversity in south-west China: Does seasonality matter?. J. Biogeogr. 45, 438–447. https://doi.org/10.1111/jbi.13136 (2017).Article 

    Google Scholar 
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117. https://doi.org/10.1890/03-8006 (2003).Article 

    Google Scholar 
    Bijlsma, R. & Loeschcke, V. Environmental stress, adaptation and evolution: An overview. J. Evol. Biol. 18, 744–749. https://doi.org/10.1111/j.1420-9101.2005.00962.x (2005).Article 
    CAS 

    Google Scholar 
    Feng, G., Mao, L., Sandel, B., Swenson, N. G. & Svenning, J. C. High plant endemism in China is partially linked to reduced glacial-interglacial climate change. J. Biogeogr. 43, 145–154. https://doi.org/10.1111/jbi.12613 (2016).Article 

    Google Scholar 
    Zhang, X., Wang, H., Wang, R., Wang, Y. & Liu, J. Relationships between plant species richness and environmental factors in nature reserves at different spatial scales. Pol. J. Environ. Stud. 26, 2375–2384. https://doi.org/10.15244/pjoes/69032 (2017).Article 

    Google Scholar 
    Mu, H. et al. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 9, 176. https://doi.org/10.1038/s41597-022-01284-8 (2022).Article 

    Google Scholar 
    Kadmon, R. & Benjamini, Y. Effects of productivity and disturbance on species richness: A neutral model. Am. Nat. 167, 939–946. https://doi.org/10.1086/504602 (2006).Article 

    Google Scholar 
    Olson, D. M. & Dinerstein, E. The global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224. https://doi.org/10.2307/3298564 (2002).Article 

    Google Scholar 
    Chéng, X. Y. Atlas of National Wildlife Conservation and Rare and Endangered Plants of Sichuan Province (Science Press, 2018).
    Google Scholar 
    Wu, Z. & Raven, P. Flora of China. Vol. 4 (Cycadaceae Through Fagaceae) (Science Press and Missouri Botanical Garden Press, 1999).
    Google Scholar 
    Sanders, N. J. Elevational gradients in ant species richness: Area, geometry, and Rapoport’s rule. Ecography 25, 25–32. https://doi.org/10.1034/j.1600-0587.2002.250104.x (2002).Article 

    Google Scholar 
    RangeModel: A Monte Carlo simulation tool for assessing geometric constraints on species richness. Version 5. User’s Guide and application (2006).Colwell, R. K. RangeModel: Tools for exploring and assessing geometric constraints on species richness (the mid-domain effect) along transects. Ecography 31, 4–7. https://doi.org/10.1111/j.2008.0906-7590.05347.x (2008).Article 

    Google Scholar 
    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 (2002).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122–170122. https://doi.org/10.1038/sdata.2017.122 (2017).Article 

    Google Scholar 
    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800. https://doi.org/10.1016/j.rse.2011.02.019 (2011).Article 
    ADS 

    Google Scholar 
    Zhang, Z. et al. Distribution and conservation of orchid species richness in China. Biol. Conserv. 181, 64–72. https://doi.org/10.1016/j.biocon.2014.10.026 (2015).Article 

    Google Scholar 
    D’Agostino, R. Goodness-of-Fit-Techniques (Routledge, 2017).Book 
    MATH 

    Google Scholar 
    Hilbe, J. M. Negative Binomial Regression (Cambridge University Press, 2011).Book 
    MATH 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar 
    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).Book 

    Google Scholar 
    Grace, J. B. & Pugesek, B. H. A structural equation model of plant species richness and its application to a coastal wetland. Am. Nat. 149, 436–460. https://doi.org/10.1086/285999 (1997).Article 

    Google Scholar 
    R Development Core Team. (R Foundation for Statistical Computing, 2019).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).Book 
    MATH 

    Google Scholar 
    Fox, J. et al. R Foundation for Statistical Computing Vol. 16 (2012).Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36. https://doi.org/10.18637/jss.v048.i02 (2012).Article 

    Google Scholar  More

  • in

    Permafrost in the Cretaceous supergreenhouse

    Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).Article 
    ADS 

    Google Scholar 
    Murton, J. B. What and where are periglacial landscapes? Permaf. Periglac. Process. 32, 186–212 (2021).Article 

    Google Scholar 
    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Reyes, F. & Lougheed, V. L. Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arct. Antarct. Alp. Res. 47, 35–48 (2015).Article 

    Google Scholar 
    Fouché, J., Christiansen, C. T., Lafrenière, M. J., Grogan, P. & Lamoureux, S. F. Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nat. Commun. 11, 4500 (2020).Article 
    ADS 

    Google Scholar 
    Alley, N. F., Hore, S. B. & Frakes, L. A. Glaciations at high-latitude Southern Australia during the Early Cretaceous. Aust. J. Earth Sci. 67, 1045–1095 (2020).Article 
    ADS 

    Google Scholar 
    Hore, S. B., Hill, S. M. & Alley, N. F. Early Cretaceous glacial environment and paleosurface evolution within the Mount Painter Inlier, northern Flinders Ranges, South Australia. Aust. J. Earth Sci. 67, 1117–1160 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodríguez-López, J. P. et al. Glacial dropstones in the western Tethys during the late Aptian–early Albian cold snap: Palaeoclimate and palaeogeographic implications for the mid-Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 452, 11–27 (2016).Article 

    Google Scholar 
    Schneider, S. et al. Macrofauna and biostratigraphy of the Rollrock Section, northern Ellesmere Island, Canadian Arctic Islands e a comprehensive high latitude archive of the Jurassic–Cretaceous transition. Cret. Res. 114, 104508 (2020).Article 

    Google Scholar 
    Jeans, C. V. & Platten, I. M. The erratic rocks of the Upper Cretaceous Chalk of England: how did they get there, ice transport or other means? Acta Geol. Pol. 71, 287–304 (2021).
    Google Scholar 
    Wu, C. & Rodríguez-López, J. P. Cryospheric processes in Quaternary and Cretaceous hyper-arid oases. Sedimentology 68, 755–770 (2021).Article 

    Google Scholar 
    Grasby, S. E., McCune, G. E., Beauchamp, B. & Galloway, J. M. Lower Cretaceous cold snaps led to widespread glendonite occurrences in the Sverdrup Basin, Canadian High Arctic. GSA Bull. 129, 771–787 (2017).Article 
    CAS 

    Google Scholar 
    Galloway, J. M. et al. Finding the VOICE: organic carbon isotope chemostratigraphy of the Late Jurassic–Early Cretaceous of Arctic Canada. Geol. Mag. 1–15 https://doi.org/10.1017/S0016756819001316 (2019).Rogov, M. et al. Database of global glendonite and ikaite records throughout the Phanerozoic. Earth Syst. Sci. Data 13, 343–356 (2021).Article 
    ADS 

    Google Scholar 
    Price, G. D. The evidence and implications of polar ice during the Mesozoic. Earth–Sci. Rev. 48, 183–210 (1999).Article 
    ADS 

    Google Scholar 
    Savidge, R. A. Evidence of early glaciation of southeastern Beringia. Can. J. Earth Sci. 57, 199–226 (2020).Article 
    ADS 

    Google Scholar 
    Wang, Y. et al. Relict sand wedges suggest a high altitude and cold temperature during the Early Cretaceous in the Ordos Basin, North China. Int. Geol. Rev. https://doi.org/10.1080/00206814.2022.2081938 (2022).Nelson, D. A., Cottle, J. M., Bindeman, I. N. & Camacho, A. Ultra-depleted hydrogen isotopes in hydrated glass record Late Cretaceous glaciation in Antarctica. Nat. Commun. 13, 5209 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, W.-B. et al. Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous. Sci. Rep. 3, 2732 (2013).Article 

    Google Scholar 
    Gao, T. et al. Accelerating permafrost collapse on the eastern Tibetan Plateau. Environ. Res. Lett. 16, 054023 (2021).Article 
    ADS 

    Google Scholar 
    Huang, Y. B. The origin and evolution of the desert in southern Ordos in early Cretaceous: Constraint from Magnetostratigraphy of Zhidan Group and magnetic susceptibility of its sediment. Doctoral Dissertation. Lanzhou University (2010).Ma, J. Sedimentary Basin Analysis of the Cretaceous Ancient Desert in the Ordos Basin. Master’s thesis, China University of Geosciences (2020).Wu, C. H., Rodríguez-López, J. P. & Santosh, M. Plateau archives of lithosphere dynamics, cryosphere and paleoclimate: the formation of Cretaceous desert basins in east Asia. Geosci. Front. 13, 101454 (2022).Article 
    CAS 

    Google Scholar 
    Zhu, R. X., Chen, L., Wu, F. Y. & Liu, J. L. Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci. 54, 789–797 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodríguez-López, J. P., Clemmensen, L. B., Lancaster, N., Mountney, N. P. & Veiga, G. D. Archean to Recent aeolian sand systems and their preserved successions: current understanding and way forward. Sedimentology 61, 1487–1534 (2014).Article 

    Google Scholar 
    Murton, J. B. in Encyclopedia of Quaternary Science Vol. 3 (eds Elias, S. A. & Mock, C. J.) 436–451 (Elsevier, Amsterdam, 2013).Rodríguez-López, J. P., Van Vliet-Lanöe, B., López-Martínez, J. & Martín-García, R. Scouring by rafted ice and cryogenic pattern ground preserved in a Palaeoproterozoic equatorial proglacial lagoon succession, eastern India, Nuna supercontinent. Mar. Pet. Geol. 123, 104766 (2021).Article 

    Google Scholar 
    Murton, J. B., Worsley, P. & Gozdzik, J. Sand veins and wedges in cold aeolian environments. Quat. Sci. Rev. 19, 899–922 (2000).Article 
    ADS 

    Google Scholar 
    Kovács, J., Fábián, S. A., Schweitzer, F. & Varga, G. A relict sand-wedge polygon site in north-central Hungary. Permafr. Periglac. Process. 18, 379–384 (2007).Article 

    Google Scholar 
    Fábián, S. Á. et al. Distribution of relict permafrost features in the Pannonian Basin, Hungary. Boreas 43, 722–732 (2014).Article 

    Google Scholar 
    Williams, G. E. Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: principles and tests. Earth–Sci. Rev. 87, 61–93 (2008).Article 
    ADS 

    Google Scholar 
    Williams, G. E., Schmidt, P. W. & Young, G. M. Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: radically different climate system on the pre-Ediacaran Earth. Geosci. Front. 7, 555–571 (2016).Article 

    Google Scholar 
    Van Vliet-Lanoë, B. Deformations in the active layer related with ice/soil wedge growth and decay in present day Arctic. Paleoclimate implications. Ann. Soc. Géol. Nord. 13, 81–95 (2005).
    Google Scholar 
    Remillard, A. M. et al. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite wedge casts on the Magdalen Islands (eastern Canada). Boreas 44, 658–675 (2015).Article 

    Google Scholar 
    Murton, J. B. Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western Arctic Canada. Glob. Planet. Change 28, 175–192 (2001).Article 
    ADS 

    Google Scholar 
    Harris, C., Murton, J. B. & Davies, M. C. R. An analysis of mechanisms of ice-wedge casting based on geotechnical centrifuge modelling. Geomorphology 71, 328–343 (2005).Article 
    ADS 

    Google Scholar 
    Houmark-Nielsen, M. et al. Early and Middle Valdaian glaciations, ice-dammed lakes and periglacial interstadials in northwest Russia: new evidence from the Pyoza River area. Glob. Planet. Change 31, 215–237 (2001).Article 
    ADS 

    Google Scholar 
    Murton, J. B. & Kolstrup, E. Ice-wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking? Prog. Phys. Geogr. 27, 155–170 (2003).Article 

    Google Scholar 
    Harry, D. G. & Gozdzik, J. S. Ice wedges: growth, thaw transformation, and palaeoenvironmental significance. J. Quat. Sci. 3, 39–55 (1988).Article 

    Google Scholar 
    Wolfe, S. A., Morse, P. D., Neudorf, C. M., Kokelj, S. V., Lian, O. B. & O’Neill, H. B. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications. Geomorphology 308, 215–229 (2018).Article 
    ADS 

    Google Scholar 
    Murton, J. B. & Bateman, M. D. Syngenetic sand veins and anti-syngenetic sand wedges, Tuktoyaktuk Coastlands, western Arctic Canada. Permafr. Periglac. Process. 18, 33–47 (2007).Article 

    Google Scholar 
    Obu, J., Westermann, S., Kääb, A., & Bartsch, A. Ground Temperature Map, 2000–2016, Northern Hemisphere Permafrost (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, 2018)Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth–Sci. Rev. 193, 299–316 (2019).Article 
    ADS 

    Google Scholar 
    Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 131–202 (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2019).Mackay, J. R. The origin of hummocks, western arctic coast, Canada. Can. J. Earth Sci. 17, 996–1006 (1980).Article 
    ADS 

    Google Scholar 
    Kokelj, S. V., Burn, C. R. & Tarnocai, C. The structure and dynamics of earth hummocks in the subarctic forest near Inuvik, Northwest Territories, Canada. Arct. Antarct. Alp. Res. 39, 99–109 (2007).Article 

    Google Scholar 
    Rodríguez-López, J. P., Meléndez, N., de Boer, P. L., Soria, A. R. & Liesa, C. L. Spatial variability of multicontrolled aeolian supersurfaces in central-erg and marine erg-margin systems. Aeolian Res. 11, 141–154 (2013).Article 
    ADS 

    Google Scholar 
    Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12, 1181–1198 (2016).Article 

    Google Scholar 
    Cheng, G., Bai, Y. & Sun, Y. Paleomagnetic study on the tectonic evolution of the Ordos Block, North China. Seismol. Geol. 10, 81–87 (1988).
    Google Scholar 
    Zheng, Z. et al. The apparent polar wander path for the North China Block since the Jurassic. Geophys. J. Int. 104, 29–40 (1991).Article 
    ADS 

    Google Scholar 
    Malinverno, A., Hildebrandt, J., Tominaga, M. & Channell, J. E. T. M-sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints. J. Geophys. Res. 117, B06104 (2012).ADS 

    Google Scholar 
    Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P. Climate response to orbital forcing across the Oligocene–Miocene boundary. Science 292, 274–278 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M. et al. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany. Earth Planet. Sci. Lett. 441, 10–25 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Westall, F. The nature of fossil bacteria: a guide to the search for extraterrestial live. J. Geophys. Res. 104, 437–16,451 (1999).
    Google Scholar 
    Yang, H., Chen, Z.-Q. & Papineau, D. Cyanobacterial spheroids and other biosignatures from microdigitate stromatolites of Mesoproterozoic Wumishan Formation in Jixian, North China. Precambrian Res. 368, 106496 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Kremer, B., Kazmierczak, J., Łukomska-Kowalczyk, M. & Kempe, S. Calcification and silicification: fossilization potential of cyanobacteria from stromatolites of Niuafo’ou’s caldera lakes (Tonga) and implications for the early fossil record. Astrobiology 12, 535–548 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Astafieva M. M. et al. Fossil Bacteria and Other Microorganisms in Terrestrial Rocks and Astromaterials (Paleontological Institute Russian Academy of Science, Moscow, 2011).Rozanov, A. Y. & Zavarzin, G. A. Bacterial paleontology. Vestn. Akad. Med. Nauk 67, 241–245 (1997).
    Google Scholar 
    Perez-Mon, C., Stierli, B., Plötze, M. & Frey, B. Fast and persistent responses of alpine permafrost microbial communities to in situ warming. Sci. Total Environ. 807, 150–720 (2022).Article 

    Google Scholar 
    Rivkina, E. et al. Earth’s perennially frozen environments as a model of cryogenic planet ecosystems. Permafr. Periglac. Process. 29, 246–256 (2018).Article 

    Google Scholar 
    Vishnivetskaya, T. A. et al. Insights into community of photosynthetic microorganisms from permafrost. FEMS Microbiol. Ecol. 96, fiaa229 (2020).Article 
    CAS 

    Google Scholar 
    Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Choe, Y. H. et al. Comparing rock-inhabiting microbial communities in different rock types from a high arctic polar desert. FEMS Microbiol. Ecol. 94, fiy070 (2018).ADS 

    Google Scholar 
    Wu, X. et al. Comparative metagenomics of the active layer and permafrost from low-carbon soil in the Canadian High Arctic. Environ. Sci. Technol. 55, 12683–12693 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Vickers, M. L. et al. The duration and magnitude of Cretaceous cold events: evidence from the northern high latitudes. Geol. Soc. Am. Bull. 131, 1979–1994 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Lehmann, J. in Ammonoid Palaeobiology: From Macroevolution to Palaeogeography (eds Klug, C. De Baets, K., Kruta I. & Mapes, R. H.) 403–429 (Springer, Amsterdam, 2015).Keller, M. A. & Macquaker, J. H. S. in Studies by the U.S. Geological Survey in Alaska: US Geological Survey Professional Paper 1814-B Vol. 15 (ed Dumoulin, J. A.) 1–35 (US Geological Survey, US Department of The Interior, Reston, 2015).Cavalheiro, L. et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event. Nat. Commun. 12, 5411 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    McArthur, J. M. et al. Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, d18O, d13C, 87Sr/86Sr): the Early Cretaceous (Berriasian, Valanginian, Hauterivian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 391–430 (2007).Article 

    Google Scholar 
    Lini, A., Weissert, H. & Erba, E. The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova 4, 374–384 (1992).Article 
    ADS 

    Google Scholar 
    Li, X. et al. Carbon isotope signatures of pedogenic carbonates from SE China: rapid atmospheric pCO2 changes during middle–late Early Cretaceous time. Geol. Mag. 151, 830–849 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    O’Brien, Ch. L. et al. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth–Sci. Rev. 172, 224–247 (2017).Article 
    ADS 

    Google Scholar 
    Price, G. D. et al. A high-resolution Belemnite geochemical analysis of early Cretaceous (Valanginian–Hauterivian) environmental and climatic perturbations. Geochem. Geophys. Geosyst. 19, 3832–3843 (2018).Article 
    CAS 

    Google Scholar 
    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Van der Kolk, D. A., Whalen, M. T., Wartes, M. A., Newberry, R. J. & McCarthy, P. in Arctic to the Cordillera: Unlocking the Potential. American Association of Petroleum Geologists Pacific Section Meeting, May 8–11, Anchorage, AK, USA, Search and Discovery Article 90125 (American Association of Petroleum Geologists, 2011).Walter Anthony, K. M. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).Article 
    ADS 

    Google Scholar 
    Cheng, F. et al. Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene palaeoclimate analogue. Nat. Commun. 13, 1329 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Brouillette, M. How microbes in permafrost could trigger a massive carbon bomb. Nature 591, 360–362 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Murton, J. B. in Climate Change, Observed Impacts on Planet Earth, 3rd edn (ed Letcher, T.) 281–326 (Elsevier, Amsterdam, 2021).Schnyder, J., Ruffell, A., Deconinck, J. F. & Baudin, F. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, UK). Palaeogeogr. Palaeoclimatol. Palaeoecol. 229, 303–320 (2006).Article 

    Google Scholar 
    Li, M. et al. Astrochronology of the Anisian stage (Middle Triassic) at the guandao reference section, south china. Earth Planet. Sci. Lett. 482, 591–606 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M. et al. Palaeoclimate proxies for cyclostratigraphy: comparative analysis using a Lower Triassic marine section in South China. Earth–Sci. Rev. 189, 125–146 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, M., Hinnov, L. & Kump, L. Acycle: time–series analysis software for palaeoclimate research and education. Comput. Geosci. 127, 12–22 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Laskar, J. et al. A long–term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).Article 
    ADS 

    Google Scholar  More

  • in

    Evaluation of the current understanding of the impact of climate change on coral physiology after three decades of experimental research

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).Article 
    CAS 

    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).Article 
    CAS 

    Google Scholar 
    Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, 129–138 (1997).Article 

    Google Scholar 
    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 
    Scheufen, T., Krämer, W. E., Iglesias-Prieto, R. & Enríquez, S. Seasonal variation modulates coral sensibility to heat-stress and explains annual changes in coral productivity. Sci. Rep. 7, 4937 (2017).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 
    CAS 

    Google Scholar 
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).Article 

    Google Scholar 
    Warner, M. E., Fitt, W. K. & Schmidt, G. W. The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ. 19, 291–299 (1996).Article 

    Google Scholar 
    Iglesias-Prieto, R. Temperature-dependent inactivation of photosystem II in symbiotic dinoflagellates. in Proceedings of the 8th International Coral Reef Symposium (eds. Lessios, H. A. & MacIntyre, I. G.) Vol. 2, 1313–1318 (1997).Takahashi, S., Nakamura, T., Sakamizu, M., van Woesik, R. & Yamasaki, H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45, 251–255 (2004).Article 
    CAS 

    Google Scholar 
    Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl Acad. Sci. USA 96, 8007–8012 (1999).Article 
    CAS 

    Google Scholar 
    Scheufen, T., Iglesias-Prieto, R. & Enríquez, S. Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front. Mar. Sci. 4, 309 (2017).Gómez-Campo, K., Enríquez, S. & Iglesias-Prieto, R. A road map for the development of the bleached coral phenotype. Front. Mar. Sci. 9, 806491 (2022).Dahlhoff, E. A. & Somero, G. N. Effects of temperature on mitochondria from abalone (genus Haliotis): adaptive plasticity and its limits. J. Exp. Biol. 185, 151–168 (1993).Article 

    Google Scholar 
    Kajiwara, K., Nagai, A. & Ueno, S. Examination of the effect of temperature, light intensity and zooxanthellae concentration on calcification and photosynthesis of scleractinian coral Acropora pulchra. J. Sch. Mar. Sci. Technol. 40, 95–103 (1995).
    Google Scholar 
    Rodolfo-Metalpa, R., Huot, Y. & Ferrier-Pagès, C. Photosynthetic response of the Mediterranean zooxanthellate coral Cladocora caespitosa to the natural range of light and temperature. J. Exp. Biol. 211, 1579–1586 (2008).Article 
    CAS 

    Google Scholar 
    Marshall, A. T. & Clode, P. Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23, 218–224 (2004).Article 

    Google Scholar 
    Kleypas, J. A., Buddemeier, R. W. & Gattuso, J.-P. The future of coral reefs in an age of global change. Int. J. Earth Sci. 90, 426–437 (2001).Article 
    CAS 

    Google Scholar 
    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).Article 
    CAS 

    Google Scholar 
    Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).Article 
    CAS 

    Google Scholar 
    Vasquez-Elizondo, R. M. & Enríquez, S. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Sci. Rep. 6, 19030 (2016).Article 
    CAS 

    Google Scholar 
    Anthony, K. R., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).Article 
    CAS 

    Google Scholar 
    Gattuso, J.-P., Allemand, D. & Frankignoulle, M. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry. Am. Zool. 39, 160–183 (1999).Article 
    CAS 

    Google Scholar 
    Langdon, C. & Aktinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. 110, https://doi.org/10.1029/2004JC002576 (2005).Iglesias-Rodriguez, M. D. et al. Phytoplankton calcification in a high-CO2 world. Science 320, 336–340 (2008).Article 
    CAS 

    Google Scholar 
    Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).Article 

    Google Scholar 
    Kleypas, J. A. et al. Impact of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Case Guide for Future Research Vol. 88 (2005).Comeau, S., Cornwall, C. E., DeCarlo, T. M., Krieger, E. & McCulloch, M. T. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Glob. Change Biol. 24, 4857–4868 (2018).Article 

    Google Scholar 
    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).Article 

    Google Scholar 
    Hoadley, K. D., Pettay, D. T., Dodge, D. & Warner, M. E. Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts. Coral Reefs 35, 529–542 (2016).Article 

    Google Scholar 
    Langdon, C., Albright, R., Baker, A. & Jones, P. Two threatened Caribbean coral species have contrasting responses to combined temperature and acidification stress. Limnol. Oceanogr. 63, 2450–2464 (2018).Article 
    CAS 

    Google Scholar 
    Agostini, S. et al. The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis. C. R. Biol. 336, 384–391 (2013).Article 
    CAS 

    Google Scholar 
    Reynaud, S. et al. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob. Change Biol. 9, 1660–1668 (2003).Article 

    Google Scholar 
    Klein, S. G. et al. Projecting coral responses to intensifying marine heatwaves under ocean acidification. Glob. Change Biol. 28, 1753–1765 (2022).Article 
    CAS 

    Google Scholar 
    Colombo-Pallotta, M. F., Rodríguez-Román, A. & Iglesias-Prieto, R. Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29, 899–907 (2010).Article 

    Google Scholar 
    Holcomb, M., Tambutte, E., Allemand, D. & Tambutte, S. Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen. PeerJ 2, e375 (2014).Article 

    Google Scholar 
    Herfort, L., Thake, B. & Taubner, I. Bicarbonate stimulation of calcification and photosynthesis in two hermatypic corals. J. Phycol. 44, 91–98 (2008).Article 
    CAS 

    Google Scholar 
    Tremblay, P., Fine, M., Maguer, J. F., Grover, R. & Ferrier-Pagès, C. Photosynthate translocation increases in response to low seawater pH in a coral–dinoflagellate symbiosis. Biogeosciences 10, 3997–4007 (2013).Article 

    Google Scholar 
    Briggs, A. A. & Carpenter, R. C. Contrasting responses of photosynthesis and photochemical efficiency to ocean acidification under different light environments in a calcifying alga. Sci. Rep. 9, 3986 (2019).Suggett, D. J. et al. Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs 32, 327–337 (2013).Article 

    Google Scholar 
    IPCC. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 747–845 (2007).IPCC. Climate change 2021: The physical science basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).Wall, C. B., Fan, T. Y. & Edmunds, P. J. Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum. Coral Reefs 33, 119–130 (2014).Article 

    Google Scholar 
    Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Rodgers, K. S. & Mackenzie, F. T. Decreased abundance of crustose coralline algae due to ocean acidification. Nat. Geosci. 1, 114–117 (2008).Article 
    CAS 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018). e6.Article 
    CAS 

    Google Scholar 
    Kemp, D. W. et al. Spatially distinct and regionally endemic Symbiodinium assemblages in the threatened Caribbean reef-building coral Orbicella faveolata. Coral Reefs 34, 535–547 (2015).Article 

    Google Scholar 
    Enríquez, S., Méndez, E. R., Hoegh-Guldberg, O. & Iglesias-Prieto, R. Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proc. Biol. Sci. 284, 20161667 (2017).Enríquez, S., Méndez, E. R. & Iglesias-Prieto, R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr. 50, 1025–1032 (2005).Article 

    Google Scholar 
    Skirving, W. et al. Remote sensing of coral bleaching using temperature and light: progress towards an operational algorithm. Remote Sens 10, 18 (2017).Article 

    Google Scholar 
    Warner, M. E., LaJeunesse, T. C., Robison, J. D. & Thur, R. M. The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: Potential implications for coral bleaching. Limnol. Oceanogr. 51, 1887–1897 (2006).Article 

    Google Scholar 
    Krämer, W., Caamaño-Ricken, I., Richter, C. & Bischof, K. Dynamic regulation of photoprotection determines thermal tolerance of two phylotypes of Symbiodinium clade A at two photon flux densities. Photochem. Photobio. 88, 398–413 (2012).Article 

    Google Scholar 
    Wall, C. B., Mason, R. A. B., Ellis, W. R., Cunning, R. & Gates, R. D. Elevated pCO2 affects tissue biomass composition, but not calcification, in a reef coral under two light regimes. R. Soc. Open Sci. 4, 170683 (2017).Article 
    CAS 

    Google Scholar 
    Baghdasarian, G. et al. Effects of temperature and pCO2 on population regulation of Symbiodinium spp. in a tropical reef coral. Biol. Bull. 232, 123–139 (2017).Article 

    Google Scholar 
    Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. R. Soc. B Biol. Sci. 285, 20181168 (2018).Article 

    Google Scholar 
    DeCarlo, T. M., Comeau, S., Cornwall, C. E. & McCulloch, M. T. Coral resistance to ocean acidification linked to increased calcium at the site of calcification. Proc. R. Soc. B Biol. Sci. 285, 20180564 (2018).Article 

    Google Scholar 
    Davies, S. W., Marchetti, A., Ries, J. B. & Castillo, K. D. Thermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coral. Front. Mar. Sci. 3, 112 (2016).Article 

    Google Scholar 
    Hernansanz-Agustín, P. & Enríquez, J. A. Generation of reactive oxygen species by mitochondria. Antioxidants 10, 415 (2021).Article 

    Google Scholar 
    Acín-Pérez, R. et al. ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 19, 1020–1033 (2014).Article 

    Google Scholar 
    Burris, J. E., Porter, J. W. & Laing, W. A. Effects of carbon dioxide concentration on coral photosynthesis. Mar. Biol. 75, 113–116 (1983).Article 
    CAS 

    Google Scholar 
    Muscatine, L., Falkowski, P. G., Dubinsky, Z., Cook, P. A. & McCloskey, L. R. The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc. R. Soc. Lond. B Biol. Sci. 236, 311–324 (1989).Article 

    Google Scholar 
    Goiran, C., Al-Moghrabi, S., Allemand, D. & Jaubert, J. Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association I. Photosynthetic performances of symbionts and dependence on sea water bicarbonate. J. Exp. Mar. Biol. Ecol. 199, 207–225 (1996).Article 
    CAS 

    Google Scholar 
    Buxton, L., Badger, M. & Ralph, P. Effects of moderate heat stress and dissolved inorganic carbon concentration on photosynthesis and respiration of Symbiodinium sp. (Dinophyceae) in culture and in symbiosis. J. Phycol. 45, 357–365 (2009).Article 
    CAS 

    Google Scholar 
    Lin, Z., Wang, L., Chen, M. & Chen, J. The acute transcriptomic response of coral-algae interactions to pH fluctuation. Mar. Genomics 42, 32–40 (2018).Article 

    Google Scholar 
    Ziegler, M. et al. Integrating environmental variability to broaden the research on coral responses to future ocean conditions. Glob. Change Biol. 27, 5532–5546 (2021).Article 
    CAS 

    Google Scholar 
    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl Acad. Sci. 118, e2015265118 (2021).Article 
    CAS 

    Google Scholar 
    Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359, 908–911 (2018).Article 
    CAS 

    Google Scholar 
    Cyronak, T. & Eyre, B. D. The synergistic effects of ocean acidification and organic metabolism on calcium carbonate (CaCO3) dissolution in coral reef sediments. Mar. Chem. 183, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976 (2014).Article 
    CAS 

    Google Scholar 
    Bedwell-Ivers, H. E. et al. The role of in hospite zooxanthellae photophysiology and reef chemistry on elevated pCO2 effects in two branching Caribbean corals: Acropora cervicornis and Porites divaricata. ICES J. Mar. Sci. 74, 1103–1112 (2016).Article 

    Google Scholar 
    Pierrot, D., Lewis, E. & Wallace, D. W. R. MS excel program developed for CO2 system calculations (2006).Cayabyab, N. M. & Enríquez, S. Leaf photoacclimatory responses of the tropical seagrass Thalassia testudinum under mesocosm conditions: a mechanistic scaling-up study. N. Phytol. 176, 108–123 (2007).Article 

    Google Scholar 
    Smith, S. V. & Kinsey, D. W. In Coral Reefs: Research Methods (eds. Stoddart, D. R. & Johannes, R. E.) 469–484 (UNESCO, 1978).Yao, W. & Byrne, R. H. Simplified seawater alkalinity analysis—application to the potentiometric titration of the total alkalinity and carbonate content in sea water. Deep Sea Res. Part Oceanogr. Res. Pap. 45, 1383–1392 (1998).Article 
    CAS 

    Google Scholar 
    Vasquez-Elizondo, R. M. et al. Absorptance determinations on multicellular tissues. Photosynth. Res. 132, 311–324 (2017).Article 
    CAS 

    Google Scholar 
    Whitaker, J. R. & Granum, P. E. An absolute method for protein determination based on the difference in absorbance at 235 and 280 nm. Anal. Biochem. 109, 156–159 (1980).Article 
    CAS 

    Google Scholar 
    Iglesias-Prieto, R., Matta, J. L., Robins, W. A. & Trench, R. K. Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl Acad. Sci. USA 89, 10302–10305 (1992).Article 
    CAS 

    Google Scholar 
    Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).Article 
    CAS 

    Google Scholar  More

  • in

    Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique

    IPCC. Summary for Policymakers. In (Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press (2018).Malhi, Y. et al. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B Biol. Sci. 375(1794), 20190104. https://doi.org/10.1098/rstb.2019.0104 (2020).Article 
    CAS 

    Google Scholar 
    McElwee, P. Climate change and biodiversity loss. Curr. Hist. 120(829), 295–300. https://doi.org/10.1525/curh.2021.120.829.295 (2021).Article 

    Google Scholar 
    Dickinson, M. G., Orme, C. D. L., Suttle, K. B. & Mace, G. M. Separating sensitivity from exposure in assessing extinction risk from climate change. Sci. Rep. 4(1), 6898. https://doi.org/10.1038/srep06898 (2015).Article 
    CAS 

    Google Scholar 
    UNFCCC (United Nations Framework Convention on Climate Change). Global Warming Potentials http://unfccc.int/ghg_data/items/3825.php (2014).BelhadjSlimen, I., Chniter, M., Najar, T. & Ghram, A. Meta-analysis of some physiologic, metabolic and oxidative responses of sheep exposed to environmental heat stress. Livestock Sci. 229, 179–187. https://doi.org/10.1016/j.livsci.2019.09.026 (2019).Article 

    Google Scholar 
    Wojtas, K., Cwynar, P. & Kołacz, R. Effect of thermal stress on physiological and blood parameters in merino sheep. Bull. Vet. Inst. Pulawy 58(2), 283–288. https://doi.org/10.2478/bvip-2014-0043 (2014).Article 

    Google Scholar 
    Gavojdian, D., Cziszter, L. T., Budai, C. & Kusza, S. Effects of behavioral reactivity on production and reproduction traits in Dorper sheep breed. J. Vet. Behav. 10(4), 365–368. https://doi.org/10.1016/j.jveb.2015.03.012 (2015).Article 

    Google Scholar 
    Mehaba, N., Coloma-Garcia, W., Such, X., Caja, G. & Salama, A. A. K. Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes. J. Dairy Sci. 104(1), 1099–1110. https://doi.org/10.3168/jds.2020-18943 (2021).Article 
    CAS 

    Google Scholar 
    Ramón, M., Díaz, C., Pérez-Guzman, M. D. & Carabaño, M. J. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep. J. Dairy Sci. 99(7), 5764–6577. https://doi.org/10.3168/jds.2016-10909 (2016).Article 
    CAS 

    Google Scholar 
    Mahjoubi, E. et al. The effect of cyclical and severe heat stress on growth performance and metabolism in Afshari lambs1. J. Anim. Sci. 93(4), 1632–1640. https://doi.org/10.2527/jas.2014-8641 (2015).Article 
    CAS 

    Google Scholar 
    dos Hamilton, T. R. S. et al. Evaluation of lasting effects of heat stress on sperm profile and oxidative status of ram semen and epididymal sperm. Oxid. Med. Cell. Longev. 1–12, 2016. https://doi.org/10.1155/2016/1687657 (2016).Article 
    CAS 

    Google Scholar 
    Romo-Barron, C. B. et al. Impact of heat stress on the reproductive performance and physiology of ewes: A systematic review and meta-analyses. Int. J. Biometeorol. 63(7), 949–962. https://doi.org/10.1007/s00484-019-01707-z (2019).Article 
    ADS 

    Google Scholar 
    Caroprese, M. et al. Glucocorticoid effects on sheep peripheral blood mononuclear cell proliferation and cytokine production under in vitro hyperthermia. J. Dairy Sci. 101(9), 8544–8551. https://doi.org/10.3168/jds.2018-14471 (2018).Article 
    CAS 

    Google Scholar 
    Marcone, G., Kaart, T., Piirsalu, P. & Arney, D. R. Panting scores as a measure of heat stress evaluation in sheep with access and with no access to shade. Appl. Anim. Behav. Sci. 240, 105350. https://doi.org/10.1016/j.applanim.2021.105350 (2021).Article 

    Google Scholar 
    Van Wettere, W. H. E. J. et al. Review of the impact of heat stress on reproductive performance of sheep. J. Anim. Sci. Biotechnol. 12(1), 26. https://doi.org/10.1186/s40104-020-00537-z (2021).Article 

    Google Scholar 
    Belhadj Slimen, I., Najar, T., Ghram, A. & Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 100(3), 401–412. https://doi.org/10.1111/jpn.12379 (2016).Article 
    CAS 

    Google Scholar 
    Guo, Z., Gao, S., Ouyang, J., Ma, L. & Bu, D. Impacts of heat stress-induced oxidative stress on the milk protein biosynthesis of dairy cows. Animals 11(3), 726. https://doi.org/10.3390/ani11030726 (2021).Article 

    Google Scholar 
    Liu, Z. et al. Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep. 7(1), 961. https://doi.org/10.1038/s41598-017-01120-9 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Krishnan, G. et al. Mitigation of the heat stress impact in Livestock reproduction. In Theriogenology (InTech, 2017).
    Google Scholar 
    Robertson, S. & Friend, M. Strategies to ameliorate heat stress effects on sheep reproduction. In Climate Change and Livestock Production: Recent Advances and Future Perspectives 175–183 (Springer, 2021). https://doi.org/10.1007/978-981-16-9836-1_15.Chapter 

    Google Scholar 
    Sawyer, G. & Narayan, E. J. A review on the influence of climate change on sheep reproduction. In Comparative Endocrinology of Animals (Intech Open, 2019). https://doi.org/10.5772/intechopen.86799.Chapter 

    Google Scholar 
    Maurya, V. P., Sejian, V., Kumar, D. & Naqvi, S. M. K. Biological ability of Malpura rams to counter heat stress challenges and its consequences on production performance in a semi-arid tropical environment. Biol. Rhythm. Res. 49(3), 479–493. https://doi.org/10.1080/09291016.2017.1381451 (2018).Article 

    Google Scholar 
    Shahat, A. M., Rizzoto, G. & Kastelic, J. P. Amelioration of heat stress-induced damage to testes and sperm quality. Theriogenology 158, 84–96. https://doi.org/10.1016/j.theriogenology.2020.08.034 (2020).Article 
    CAS 

    Google Scholar 
    Singh, K. M. et al. Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell Stress Chaperones 22(5), 675–684. https://doi.org/10.1007/s12192-017-0770-4 (2017).Article 
    CAS 

    Google Scholar 
    Kim, E.-S. et al. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116(3), 255–264. https://doi.org/10.1038/hdy.2015.94 (2016).Article 
    CAS 

    Google Scholar 
    do Paim, T. P., Alves dos Santos, C., de Faria, D. A., Paiva, S. R. & McManus, C. Genomic selection signatures in Brazilian sheep breeds reared in a tropical environment. Livestock Sci. 258, 104865. https://doi.org/10.1016/j.livsci.2022.104865 (2022).Article 

    Google Scholar 
    Kusza, S. et al. Kompetitive Allele Specific PCR (KASPTM) genotyping of 48 polymorphisms at different caprine loci in French Alpine and Saanen goat breeds and their association with milk composition. PeerJ 6, e4416. https://doi.org/10.7717/peerj.4416 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Technical note: Development and application of KASP assays for rapid screening of 8 genetic defects in Holstein cattle. J. Dairy Sci. 103(1), 619–624. https://doi.org/10.3168/jds.2019-16345 (2020).Article 
    CAS 

    Google Scholar 
    Chaari, A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int. J. Biol. Macromol. 131, 396–411. https://doi.org/10.1016/j.ijbiomac.2019.02.148 (2019).Article 
    CAS 

    Google Scholar 
    Tripathy, K., Sodhi, M., Kataria, R. S., Chopra, M. & Mukesh, M. In silico analysis of HSP70 gene family in bovine genome. Biochem. Genet. 59(1), 134–158. https://doi.org/10.1007/s10528-020-09994-7 (2021).Article 
    CAS 

    Google Scholar 
    Rehman, S. et al. Genomic identification, evolution and sequence analysis of the heat-shock protein gene family in buffalo. Genes 11(11), 1388. https://doi.org/10.3390/genes11111388 (2020).Article 
    CAS 

    Google Scholar 
    Huo, C. et al. Chronic heat stress negatively affects the immune functions of both spleens and intestinal mucosal system in pigs through the inhibition of apoptosis. Microbial Pathog. 136, 103672. https://doi.org/10.1016/j.micpath.2019.103672 (2019).Article 
    CAS 

    Google Scholar 
    Morange, M. HSFs in development. In Molecular Chaperones in Health and Disease 153–169 (Springer, 2006). https://doi.org/10.1007/3-540-29717-0_7.Chapter 

    Google Scholar 
    Hoter, A., El-Sabban, M. & Naim, H. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci. 19(9), 2560. https://doi.org/10.3390/ijms19092560 (2018).Article 
    CAS 

    Google Scholar 
    Vanselow, J., Vernunft, A., Koczan, D., Spitschak, M. & Kuhla, B. Exposure of lactating dairy cows to acute pre-ovulatory heat stress affects granulosa cell-specific gene expression profiles in dominant follicles. PLoS One 11(8), e0160600. https://doi.org/10.1371/journal.pone.0160600 (2016).Article 
    CAS 

    Google Scholar 
    Joy, A. et al. Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals 10(5), 86. https://doi.org/10.3390/ani10050867 (2020).Article 

    Google Scholar 
    Saravanan, K. A. et al. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics 113(3), 955–963. https://doi.org/10.1016/j.ygeno.2021.02.009 (2021).Article 
    CAS 

    Google Scholar 
    Singh, A. K., Upadhyay, R. C., Malakar, D., Kumar, S. & Singh, S. V. Effect of thermal stress on HSP70 expression in dermal fibroblast of zebu (Tharparkar) and crossbred (Karan-Fries) cattle. J. Therm. Biol 43, 46–53. https://doi.org/10.1016/j.jtherbio.2014.04.006 (2014).Article 
    CAS 

    Google Scholar 
    Verma, N., Gupta, I. D., Verma, A., Kumar, R. & Das, R. Novel SNPs in HSPB8 gene and their association with heat tolerance traits in Sahiwal indigenous cattle. Trop. Anim. Health Prod. 48(1), 175–180. https://doi.org/10.1007/s11250-015-0938-9 (2016).Article 

    Google Scholar 
    Al-Thuwaini, T. M., Al-Shuhaib, M. B. S. & Hussein, Z. M. A novel T177P missense variant in the HSPA8 gene associated with the low tolerance of Awassi sheep to heat stress. Trop. Anim. Health Prod. 52(5), 2405–2416. https://doi.org/10.1007/s11250-020-02267-w (2020).Article 

    Google Scholar 
    Onasanya, G. O. et al. Heterozygous single-nucleotide polymorphism genotypes at heat shock protein 70 gene potentially influence thermo-tolerance among four Zebu breeds of Nigeria. Front. Genet. https://doi.org/10.3389/fgene.2021.642213 (2021).Article 

    Google Scholar 
    Pascal, C. Researches regarding quality of sheep skins obtained from Karakul from Botosani sheep. Biotechnol. Anim. Husband. 27(3), 1123–1130. https://doi.org/10.2298/BAH1103123P (2011).Article 

    Google Scholar 
    Kevorkian, S. E. M., Zǎuleţ, M., Manea, M. A., Georgescu, S. E. & Costache, M. Analysis of the ORF region of the prion protein gene in the Botosani Karakul sheep breed from Romania. Turk. J. Vet. Anim. Sci. 35(2), 105–109. https://doi.org/10.3906/vet-0909-124 (2011).Article 
    CAS 

    Google Scholar 
    Kusza, S. et al. Mitochondrial DNA variability in Gyimesi Racka and Turcana sheep breeds. Acta Biochim. Pol. 62(2), 273–280. https://doi.org/10.18388/abp.2015_978 (2015).Article 
    CAS 

    Google Scholar 
    Gavojdian, D. et al. Effects of using indigenous heritage sheep breeds in organic and low-input production systems on production efficiency and animal welfare in Romania. Landbauforschung Volkenrode 66(4), 290–297. https://doi.org/10.3220/LBF1483607712000 (2016).Article 

    Google Scholar 
    Gavojdian, D. et al. Reproduction efficiency and health traits in Dorper, White Dorper, and Tsigai sheep breeds under temperate European conditions. Asian Australas. J. Anim. Sci. 28(4), 599–603. https://doi.org/10.5713/ajas.14.0659 (2015).Article 
    CAS 

    Google Scholar 
    Kusza, S. et al. The genetic variability of Hungarian Tsigai sheep. Archiv Tierzuch 53(3), 309–317 (2010).
    Google Scholar 
    Kusza, S. et al. Study of genetic differences among Slovak Tsigai populations using microsatellite markers. Czeh J. Anim. Sci. 54(10), 468–474. https://doi.org/10.17221/1670-CJAS (2009).Article 
    CAS 

    Google Scholar 
    Marcos-Carcavilla, A. et al. Polymorphisms in the HSP90AA1 5′ flanking region are associated with scrapie incubation period in sheep. Cell Stress Chaperones 15(4), 343–349. https://doi.org/10.1007/s12192-009-0149-2 (2010).Article 
    CAS 

    Google Scholar 
    Salces-Ortiz, J. et al. Looking for adaptive footprints in the HSP90AA1 ovine gene. BMC Evol. Biol. 15(1), 7. https://doi.org/10.1186/s12862-015-0280-x (2015).Article 
    CAS 

    Google Scholar 
    Toscano, J. H. B. et al. Innate immune responses associated with resistance against Haemonchus contortus in Morada Nova Sheep. J. Immunol. Res. 2019, 1–10. https://doi.org/10.1155/2019/3562672 (2019).Article 
    CAS 

    Google Scholar 
    Estrada-Reyes, Z. M. et al. Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genom. 20(1), 735. https://doi.org/10.1186/s12864-019-6150-y (2019).Article 
    CAS 

    Google Scholar 
    Caroprese, M., Bradford, B. J. & Rhoads, R. P. Editorial: Impact of climate change on immune responses in agricultural animals. Front. Vet. Sci. https://doi.org/10.3389/fvets.2021.732203 (2021).Article 

    Google Scholar 
    FAO/IAEA. Agriculture biotechnology laboratory—handbook of laboratory exercises. Seibersdorf: IAEA Laboratories, 18 (2004).Zsolnai, A. & Orbán, L. Accelerated separation of random complex DNA patterns in gels: Comparing the performance of discontinuous and continuous buffers. Electrophoresis 20(7), 1462–1468. https://doi.org/10.1002/(SICI)1522-2683(19990601)20:7%3c1462::AID-ELPS1462%3e3.0.CO;2-0 (1999).Article 
    CAS 

    Google Scholar 
    Cavalcanti, L. C. G. et al. Genetic characterization of coat color genes in Brazilian Crioula sheep from a conservation nucleus. Pesq. Agrop. Brasil. 52(8), 615–622. https://doi.org/10.1590/s0100-204×2017000800007 (2017).Article 

    Google Scholar 
    Li, Y. et al. Heat stress-responsive transcriptome analysis in the liver tissue of Hu sheep. Genes 10(5), 395. https://doi.org/10.3390/genes10050395 (2019).Article 
    CAS 

    Google Scholar 
    Younis, F. Expression pattern of heat shock protein genes in sheep. Mansoura Vet. Med. J. 21(1), 1–5. https://doi.org/10.35943/mvmj.2020.21.001 (2020).Article 

    Google Scholar 
    Yeh F. C., Boyle R., Yang R. C., Ye Z., Mao J. X. & Yeh D. POPGENE version 1.32. Computer program and documentation distributed by the author. http://www.ualberta.ca/∼fyeh/popgene.html (1999).Lê, S., Josse, J. & Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01 (2008).Article 

    Google Scholar 
    Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer. https://ggplot2.tidyverse.org (2016) (ISBN 978-3-319-24277-4).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020). More

  • in

    Responses to salinity in the littoral earthworm genus Pontodrilus

    Lavelle, P., Blanchart, E., Martin, A., Spain, A. V. & Martin, S. Impact of soil fauna on the properties of soils in the humid tropics. In Myths and Science of Soils of the Tropics (eds Lal, R. & Sanchez, P.) 157–185 (Soil Science Society of America, 1992).
    Google Scholar 
    Eisenhauer, N. The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53, 343–352 (2010).Article 

    Google Scholar 
    Eisenhauer, N. & Eisenhauer, E. The “intestines of the soil”: The taxonomic and functional diversity of earthworms—A review for young ecologists. Preprint at https://doi.org/10.32942/osf.io/tfm5y (2020).Gates, G. E. Burmese earthworms, an introduction to the systematics and biology of megadrile oligochaetes with special reference to South-east Asia. Trans. Amer. Phil. Soc. 62, 1–326. https://doi.org/10.2307/1006214 (1972).Article 

    Google Scholar 
    Blakemore, R. J. Origin and means of dispersal of cosmopolitan Pontodrilus litoralis (Oligocaheta: Megascolecidae). Eur. J. Soil Biol. 443, S3–S8. https://doi.org/10.1016/j.ejsobi.2007.08.041 (2007).Article 

    Google Scholar 
    Seesamut, T., Sutcharit, C., Jirapatrasilp, P., Chanabun, R. & Panha, S. Morphological and molecular evidence reveal a new species of the earthworm genus Pontodrilus Perrier, 1874 (Clitellata, Megascolecidae) from Thailand and Peninsular Malaysia. Zootaxa 4496, 218–237. https://doi.org/10.11646/zootaxa.4496.1.18 (2018).Article 

    Google Scholar 
    Seesamut, T., Jirapatrasilp, P., Chanabun, R., Oba, Y. & Panha, S. Size variation and geographical distribution of the luminous earthworm Pontodrilus litoralis (Grube, 1855) (Clitellata, Megascolecidae) in Southeast Asia and Japan. Zookeys 862, 23–43. https://doi.org/10.3897/zookeys.862.35727 (2019).Article 

    Google Scholar 
    Seesamut, T., Jirapatrasilp, P., Sutcharit, C., Tongkerd, P. & Panha, S. Mitochondrial genetic population structure and variation of the littoral earthworm Pontodrilus longissimus Seesamut and Panha, 2018 along the coast of Thailand. Eur. J. Soil Biol. 93, 103091. https://doi.org/10.1016/j.ejsobi.2019.103091 (2019).Article 

    Google Scholar 
    Attrill, M. J. A testable linear model for diversity trends in estuaries. J. Anim. Ecol. 71, 262–269. https://doi.org/10.1046/j.1365-2656.2002.00593.x (2002).Article 

    Google Scholar 
    McLusky, D. S. & Elliott, M. The Estuarine Ecosystem: Ecology, Threats and Management 3rd edn. (Oxford University Press, 2004).Book 

    Google Scholar 
    Telesh, I. V. & Khlebovich, V. V. Principal processes within the estuarine salinity gradient: A review. Mar. Pollut. Bull. 61, 149–155. https://doi.org/10.1016/j.marpolbul.2010.02.008 (2010).Article 
    CAS 

    Google Scholar 
    Owojori, O. J. & Reinecke, A. J. Effects of natural (flooding and drought) and anthropogenic (copper and salinity) stressors on the earthworm Aporrectodea caliginosa under field conditions. Appl. Soil Ecol. 44, 156–163. https://doi.org/10.1016/j.apsoil.2009.11.006 (2010).Article 

    Google Scholar 
    Guzyte, G., Sujetoviene, G. & Zaltauskaite, J. Effects of salinity on earthworm (Eisenia fetida). Environ. Eng. 8, 111 (2011).
    Google Scholar 
    Ganapati, P. N. & Subba Rao, B. V. S. S. R. Salinity tolerance of a littoral oligochaete, Pontodrilus bermudensis Beddard. Proc. Ind. Nat. Sci. Acad. 38, 350–354 (1972).
    Google Scholar 
    Subba Rao, B. V. S. S. R. Volume regulation in a euryhaline oligochaete, Pontodrilus bermudensis Beddard. Proc. Indian Acad. Sci. 87, 339–347 (1978).Article 

    Google Scholar 
    Owojori, O. J., Reinecke, A. J. & Rozanov, A. B. Effects of salinity on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Soil Biol. Biochem. 40, 2385–2393. https://doi.org/10.1016/j.soilbio.2008.05.019 (2008).Article 
    CAS 

    Google Scholar 
    Seesamut, T. et al. Occurrence of bioluminescent and nonbioluminescent species in the littoral earthworm genus Pontodrilus. Sci. Rep. 11, 8407 (2021).Article 
    CAS 

    Google Scholar 
    Sivinski, J. & Forrest, T. Luminous defense in an earthworm. Fla. Entomol. 66, 517 (1983).Article 

    Google Scholar 
    Verdes, A. & Gruber, D. F. Glowing worms: Biological, chemical, and functional diversity of bioluminescent annelids. Integr. Comp. Biol. 57, 18–32. https://doi.org/10.1093/icb/icx017 (2017).Article 
    CAS 

    Google Scholar 
    Shimomura, O. & Yampolsky, I. Bioluminescence: Chemical Principles and Methods 3rd edn. (World Scientific, 2019).Book 

    Google Scholar 
    Easton, E. G. Earthworms (Oligochaeta) from islands of the south-western Pacific, and a note on two species from Papua New Guinea. N. Z. J. Zool. 11, 111–128. https://doi.org/10.1080/03014223.1984.10423750 (1984).Article 

    Google Scholar 
    Shen, H.-P., Tsai, S.-C. & Tsai, C.-F. Occurrence of the earthworms Pontodrilus litoralis (Grube, 1855), Metaphire houlleti (Perrier, 1872), and Eiseniella tetraedra (Savigny, 1826) from Taiwan. Taiwania 50, 11–21 (2005).
    Google Scholar 
    Satheeshkumar, P., Khan, A. B. & Senthilkumar, D. Annelida, Oligochaeta, Megascolecidae, Pontodrilus litoralis (Grupe, 1985): First record from Pondicherry mangroves, southeast coast of India. Int. J. Zool. Res. 7, 406–409. https://doi.org/10.3923/ijzr.2011.406.409 (2011).Article 

    Google Scholar 
    Nguyen, T. T., Nguyen, D. A., Tran, T. T. B. & Blakemore, R. J. A comprehensive checklist of earthworm species and subspecies from Vietnam (Annelida: Clitellata: Oligochaeta: Almidae, Eudrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, Moniligastridae, Ocnerodrilidae, Octochaetidae). Zootaxa 4140, 1–92. https://doi.org/10.11646/zootaxa.4140.1.1 (2016).Article 

    Google Scholar 
    Chen, S.-Y., Hsu, C.-H. & Soong, K. How to cross the sea: Testing the dispersal mechanisms of the cosmopolitan earthworm Pontodrilus litoralis. R. Soc. Open Sci. 8, 202297. https://doi.org/10.1098/rsos.202297 (2021).Article 
    ADS 

    Google Scholar 
    Smyth, K. & Elliott, M. Effects of changing salinity on the ecology of the marine environment. In Stressors in the Marine Environment (eds Solan, M. & Whiteley, N. M.) 161–175 (Oxford University Press, 2016).Chapter 

    Google Scholar 
    Veiga, M. P. T., Gutierre, S. M. M., Castellano, G. C. & Freire, C. A. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): Behaviour and maintenance of tissue water content. J. Molluscan Stud. 82, 154–160. https://doi.org/10.1093/mollus/eyv044 (2016).Article 

    Google Scholar 
    Carley, W. W., Caracciolo, E. A. & Mason, R. T. Cell and coelomic fluid volume regulation in the earthworm Lumbricus terrestris. Comp. Biochem. Physiol. 74, 569–575 (1983).Article 

    Google Scholar 
    Sharif, F. et al. Salinity tolerance of earthworms and effects of salinity and vermi amendments on growth of Sorghum bicolor. Arch. Agron. Soil Sci. 62, 1169–1181. https://doi.org/10.1080/03650340.2015.1132838 (2016).Article 
    CAS 

    Google Scholar 
    Wu, Z. et al. Effects of salinity on earthworms and the product during vermicomposting of kitchen wastes. Int. J. Environ. Res. Public Health 16, 4737. https://doi.org/10.3390/ijerph16234737 (2019).Article 
    CAS 

    Google Scholar 
    Oglesby, L. C. Volume regulation in aquatic invertebrates. J. Exp. Zool. 215, 289–301 (1981).Article 
    CAS 

    Google Scholar 
    Generlich, O. & Giere, O. Osmoregulation in two aquatic oligochaetes from habitats with different salinity and comparison to other annelids. Hydrobiologia 334, 251–261. https://doi.org/10.1007/BF00017375 (1996).Article 

    Google Scholar 
    Carregosa, V. et al. Tolerance of Venerupis philippinarum to salinity: Osmotic and metabolic aspects. Comp. Biochem. Physiol. A 171, 36–43. https://doi.org/10.1016/j.cbpa.2014.02.009 (2014).Article 
    CAS 

    Google Scholar 
    Freitas, R. et al. The effects of salinity changes on the polychaete Diopatra neapolitana: Impacts on regenerative capacity and biochemical markers. Aquat. Toxicol. 163, 167–176. https://doi.org/10.1016/j.aquatox.2015.04.006 (2015).Article 
    CAS 

    Google Scholar 
    Rivera-Ingraham, G. A. & Lignot, J. H. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. J. Exp. Biol. 220, 1749–1760. https://doi.org/10.1242/jeb.135624 (2017).Article 

    Google Scholar 
    Munnoli, P. M. & Bhosle, S. Effect of soil cow dung proportion of vermicomposting. J. Sci. Ind. Res. 68, 57–60 (2009).
    Google Scholar  More

  • in

    Multiscale responses and recovery of soils to wildfire in a sagebrush steppe ecosystem

    Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).Article 
    ADS 
    CAS 

    Google Scholar 
    Gorham, E., Vitousek, P. M. & Reiners, W. A. The regulation of element budgets over the course of terrestrial ecosystem succession. Annu. Rev. Ecol. Syst. 10, 53–84 (1979).Article 
    CAS 

    Google Scholar 
    Corman, J. R. et al. Foundations and frontiers of ecosystem science: Legacy of a classic paper (Odum 1969). Ecosystems 22, 1160–1172. https://doi.org/10.1007/s10021-018-0316-3 (2019).Article 

    Google Scholar 
    Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Change Biol. 22, 76–91. https://doi.org/10.1111/gcb.12985 (2016).Article 
    ADS 

    Google Scholar 
    Kominoski, J. S., Gaiser, E. E. & Baer, S. G. Advancing theories of ecosystem development through long-term ecological research. Bioscience 68, 554–562. https://doi.org/10.1093/biosci/biy070 (2018).Article 

    Google Scholar 
    Balch, J. K., Bradley, B. A., D’Antonio, C. M. & Gómez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Change Biol. 19, 173–183. https://doi.org/10.1111/gcb.12046 (2013).Article 
    ADS 

    Google Scholar 
    Abatzoglou, J. T. & Kolden, C. A. Climate change in Western US deserts: Potential for increased wildfire and invasive annual grasses. Rangeland Ecol. Manag. 64(5), 471–478 (2011).Article 

    Google Scholar 
    Shi, H. et al. Historical cover trends in a sagebrush steppe ecosystem from 1985 to 2013: Links with climate, disturbance, and management. Ecosystems 21, 913–929. https://doi.org/10.1007/s10021-017-0191-3 (2018).Article 

    Google Scholar 
    Seyfried, M. S. & Wilcox, B. P. Scale and the nature of spatial variability: Field examples having implications for hydrologic modeling. Water Resour. Res. 31, 173–184. https://doi.org/10.1029/94WR02025 (1995).Article 
    ADS 

    Google Scholar 
    Gasch, C. K., Huzurbazar, S. V. & Stahl, P. D. Description of vegetation and soil properties in sagebrush steppe following pipeline burial, reclamation, and recovery time. Geoderma 265, 19–26. https://doi.org/10.1016/j.geoderma.2015.11.013 (2016).Article 
    ADS 

    Google Scholar 
    Huber, D. P. et al. Vegetation and precipitation shifts interact to alter organic and inorganic carbon storage in desert soils. Ecosphere 10, e02655. https://doi.org/10.1002/ecs2.2655 (2019).Article 

    Google Scholar 
    Knight, D. H., Jones, G. P., Reiners, W. A. & Romme, W. H. Mountains and Plains: The Ecology of Wyoming Landscapes (Yale University Press, 2014).
    Google Scholar 
    Patton, N. R., Lohse, K. A., Seyfried, M. S., Godsey, S. E. & Parsons, S. Topographic controls on soil organic carbon on soil mantled landscapes. Sci. Rep. 9, 6390. https://doi.org/10.1038/s41598-019-42556-5 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Schwabedissen, S. G., Lohse, K. A., Reed, S. C., Aho, K. A. & Magnuson, T. S. Nitrogenase activity by biological soil crusts in cold sagebrush steppe ecosystems. Biogeochemistry 134, 57–76. https://doi.org/10.1007/s10533-017-0342-9 (2017).Article 
    CAS 

    Google Scholar 
    You, Y. et al. Biological soil crust bacterial communities vary along climatic and shrub cover gradients within a sagebrush steppe ecosystem. Front. Microbiol. 12, 2365. https://doi.org/10.3389/fmicb.2021.569791 (2021).Article 

    Google Scholar 
    Burke, I. C., Reiners, W. A. & Olson, R. K. Topographic control of vegetation in a mountain big sagebrush steppe. Vegetation 84, 77–86 (1989).Article 

    Google Scholar 
    Poulos, M. J., Pierce, J. L., Flores, A. N. & Benner, S. G. Hillslope asymmetry maps reveal widespread, multi-scale organization. Geophys. Res. Lett. 39, 6. https://doi.org/10.1029/2012GL051283 (2012).Article 

    Google Scholar 
    Smith, T. & Bookhagen, B. Climatic and biotic controls on topographic asymmetry at the global scale. J. Geophys. Res.: Earth Surf. 126, e2020JF005692. https://doi.org/10.1029/2020JF005692Received22 (2021).Article 
    ADS 

    Google Scholar 
    Seyfried, M., Link, T., Marks, D. & Murdock, M. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing. Vadose Zone J. 15, 6. https://doi.org/10.2136/vzj2015.09.0128 (2016).Article 

    Google Scholar 
    Chambers, J. C. et al. Resilience and resistance of sagebrush ecosystems: Implications for state and transition models and management treatments. Rangel. Ecol. Manage. 67, 440–454. https://doi.org/10.2111/REM-D-13-00074.1 (2014).Article 

    Google Scholar 
    Chambers, J. C. et al. Operationalizing resilience and resistance concepts to address invasive grass-fire cycles. Front. Ecol. Evol. 7, 2369. https://doi.org/10.3389/fevo.2019.00185 (2019).Article 

    Google Scholar 
    Boehm, A. R. et al. Slope and aspect effects on seedbed microclimate and germination timing of fall-planted seeds. Rangel. Ecol. Manage. 75, 58–67. https://doi.org/10.1016/j.rama.2020.12.003 (2021).Article 

    Google Scholar 
    Sankey, J. B., Germino, M. J., Sankey, T. T. & Hoover, A. N. Fire effects on the spatial patterning of soil properties in sagebrush steppe, USA: A meta-analysis. Int. J. Wildl. Fire 21, 545–556. https://doi.org/10.1071/WF11092 (2012).Article 

    Google Scholar 
    Fellows, A., Flerchinger, G., Seyfried, M. S. & Lohse, K. A. Rapid recovery of mesic mountain big sagebrush gross production and respiration following prescribed fire. Ecosystems 21, 1283–1294. https://doi.org/10.1007/s10021-017-0218-9 (2018).Article 

    Google Scholar 
    Vega, S. P. et al. Interaction of wind and cold-season hydrologic processes on erosion from complex topography following wildfire in sagebrush steppe. Earth Surf. Process. Landforms https://doi.org/10.1002/esp.4778 (2019).Article 

    Google Scholar 
    Xie, J., Li, Y., Zhai, C., Li, C. & Lan, Z. CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ. Geol. 56, 953–961 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Stanbery, C., Pierce, J. L., Benner, S. G. & Lohse, K. On the rocks: Quantifying storage of inorganic soil carbon on gravels and determining pedon-scale variability. CATENA 157, 436–442. https://doi.org/10.1016/j.catena.2017.06.011 (2017).Article 
    CAS 

    Google Scholar 
    Stanbery, C. et al. Controls on the presence and concentration of soil inorganic carbon in a semi-arid watershed. CATENA https://doi.org/10.2139/ssrn.4267018 (2023).Article 

    Google Scholar 
    Cerling, T. E. & Quade, J. Stable carbon and oxygen isotopes in soil carbonates. Geophys. Monogr. 78, 217–231 (1993).ADS 

    Google Scholar 
    Tappa, D. J., Kohn, M. J., McNamara, J. P., Benner, S. G. & Flores, A. N. Isotopic composition of precipitation in a topographically steep, seasonally snow-dominated watershed and implications of variations from the global meteoric water line. Hydrol. Process. 30, 4582–4592. https://doi.org/10.1002/hyp.10940 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Salomons, W., Goudie, A. & Mook, W. G. Isotopic composition of calcrete deposits from Europe, Africa and India. Earth Surf. Process. 3, 43–57. https://doi.org/10.1002/esp.3290030105 (1978).Article 
    CAS 

    Google Scholar 
    Salomons, W. & Mook, W. G. In Handbook of Environmental Isotope Geochemistry (eds P. Fritz & J. Fontes) Ch. 6, 241–269 (Elsevier, 1986).Bodí, M. B. et al. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Kéraval, B. et al. Soil carbon dioxide emissions controlled by an extracellular oxidative metabolism identifiable by its isotope signature. Biogeosciences 13, 6353–6362. https://doi.org/10.5194/bg-13-6353-2016 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Goforth, B. R., Graham, R. C., Hubbert, K. R., Zanner, C. W. & Minnich, R. A. Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California. Int. J. Wildland Fire 14, 343–354 (2005).Article 

    Google Scholar 
    Glossner, K. L. et al. Long-term suspended sediment and particulate organic carbon yields from the Reynolds Creek Experimental Watershed and Critical Zone Observatory. Hydrol. Process. 36, e14484. https://doi.org/10.1002/hyp.14484 (2022).Article 
    CAS 

    Google Scholar 
    Seyfried, M. S. et al. Reynolds creek experimental watershed and critical zone observatory. Vadoze Zone J. 17, 180129. https://doi.org/10.2136/vzj2018.07.0129 (2018).Article 
    CAS 

    Google Scholar 
    McIntyre, D. H. Cenozoic geology of the Reynolds Creek Experimental Watershed, Owyhee County, Idaho (Idaho Bureau of Mines and Geology, 1972).Earth Resources Observation and Science (EROS) Center, U. Image of the week: Burned Area Analysis for the Soda Fire, Idaho, https://eros.usgs.gov/media-gallery/image-of-the-week/burned-area-analysis-the-soda-fire-idaho (2015).Jenny, H. Factors of Soil Formation (McGraw-Hill, 1941).Book 

    Google Scholar 
    Kormos, P. R. et al. 31 years of hourly spatially distributed air temperature, humidity, and precipitation amount and phase from Reynolds Critical Zone Observatory. Earth Syst. Sci. Data 10, 1197–1205. https://doi.org/10.5194/essd-10-1197-2018 (2018).Article 
    ADS 

    Google Scholar 
    Thomas, G. W. In Methods in Soil Analysis. Part 3. Chemical Methods (ed Sparks, D. L. ) (Soil Science Society of America and American Society of Agronomy, 1996).Brodie, C. R. et al. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem. Geol. 282, 67–83. https://doi.org/10.1016/j.chemgeo.2011.01.007 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Patton, N. P., Lohse, K. A., Seyfried, M. S., Will, R. & Benner, S. G. Lithology and coarse fraction adjusted bulk density estimates for determining total organic carbon stocks in dryland soils. Geoderma 337, 844–852. https://doi.org/10.1016/j.geoderma.2018.10.036 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    McGuire, L. A., Rasmussen, C., Youberg, A. M., Sanderman, J. & Fenerty, B. Controls on the Spatial distribution of near-surface pyrogenic carbon on hillslopes 1 year following wildfire. J. Geophys. Res.: Earth Surf. 126, e2020JF005996. https://doi.org/10.1029/2020JF005996 (2021).Article 
    ADS 

    Google Scholar 
    Jiménez-González, M. A. et al. Spatial distribution of pyrogenic carbon in Iberian topsoils estimated by chemometric analysis of infrared spectra. Sci. Total Env. 790, 148170. https://doi.org/10.1016/j.scitotenv.2021.148170 (2021).Article 
    CAS 

    Google Scholar 
    Baldock, J. A. et al. Quantifying the allocation of soil organic carbon to biologically significant fractions. Soil Res. 51, 561–576. https://doi.org/10.1071/SR12374 (2013).Article 
    CAS 

    Google Scholar 
    Sanderman, J. et al. Soil organic carbon fractions in the Great Plains of the United States: An application of mid-infrared spectroscopy. Biogeochemistry 156, 97–114. https://doi.org/10.1007/s10533-021-00755-1 (2021).Article 
    CAS 

    Google Scholar 
    Sherrod, L. A., Dunn, G., Peterson, G. A. & Kolberg, R. L. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Sci. Soc. Am. J. 66, 299–305 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Mikutta, R., Kleber, M., Kaiser, K. & Jahn, R. Review. Soil Sci. Soc. Am. J. 69, 120–135. https://doi.org/10.2136/sssaj2005.0120 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Risk, D., Nickerson, N., Creelman, C., McArthur, G. & Owens, J. Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux. Agric. For. Meteorol. 151, 1622–1631. https://doi.org/10.1016/j.agrformet.2011.06.020 (2011).Article 
    ADS 

    Google Scholar 
    Fierer, N. & Schimel, J. P. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 34, 777–787. https://doi.org/10.1016/S0038-0717(02)00007-X (2002).Article 
    CAS 

    Google Scholar 
    Dane, J. H., Topp, G. C. & Campbell, G. S. In Methods of Soil Analysis: Physical Methods. Vol. 4 (ed SSSA) 721–738 (2002). More

  • in

    Economic and biophysical limits to seaweed farming for climate change mitigation

    Monte Carlo analysisSeaweed production costs and net costs of climate benefits were estimated on the basis of outputs of the biophysical and technoeconomic models described below. The associated uncertainties and sensitivities were quantified by repeatedly sampling from uniform distributions of plausible values for each cost and economic parameter (n = 5,000 for each nutrient scenario from the biophysical model, for a total of n = 10,000 simulations; see Supplementary Figs. 14 and 15)47,48,49,50,51,52. Parameter importance across Monte Carlo simulations (Fig. 3 and Supplementary Fig. 9) was determined using decision trees in LightGBM, a gradient-boosting machine learning framework.Biophysical modelG-MACMODS is a nutrient-constrained, biophysical macroalgal growth model with inputs of temperature, nitrogen, light, flow, wave conditions and amount of seeded biomass30,53, that we used to estimate annual seaweed yield per area (either in tons of carbon or tons of dry weight biomass per km2 per year)33,34. In the model, seaweed takes up nitrogen from seawater, and that nitrogen is held in a stored pool before being converted to structural biomass via growth54. Seaweed biomass is then lost via mortality, which includes breakage from variable ocean wave intensity. The conversion from stored nitrogen to biomass is based on the minimum internal nitrogen requirements of macroalgae, and the conversion from biomass to units of carbon is based on an average carbon content of macroalgal dry weight (~30%)55. The model accounts for farming intensity (sub-grid-scale crowding) and employs a conditional harvest scheme, where harvest is optimized on the basis of growth rate and standing biomass33.The G-MACMODS model is parameterized for four types of macroalgae: temperate brown, temperate red, tropical brown and tropical red. These types employed biophysical parameters from genera that represent over 99.5% of present-day farmed macroalgae (Eucheuma, Gracilaria, Kappahycus, Sargassum, Porphyra, Saccharina, Laminaria, Macrocystis)39. Environmental inputs were derived from satellite-based and climatological model output mapped to 1/12-degree global resolution, which resolves continental shelf regions. Nutrient distributions were derived from a 1/10-degree resolution biogeochemical simulation led by the National Center for Atmospheric Research (NCAR) and run in the Community Earth System Model (CESM) framework35.Two nutrient scenarios were simulated with G-MACMODS and evaluated using the technoeconomic model analyses described below: the ‘ambient nutrient’ scenario where seaweed growth was computed using surface nutrient concentrations without depletion or competition, and ‘limited nutrient’ simulations where seaweed growth was limited by an estimation of the nutrient supply to surface waters (computed as the flux of deep-water nitrate through a 100 m depth horizon). For each Monte Carlo simulation in the economic analysis, the technoeconomic model randomly selects either the 5th, 25th, 50th, 75th or 95th percentile G-MACMODS seaweed yield map from a normal distribution to use as the yield map for that simulation. Figures and numbers reported in the main text are based on the ambient-nutrient scenario; results based on the limited-nutrient scenario are shown in Supplementary Figures.Technoeconomic modelAn interactive web tool of the technoeconomic model is available at https://carbonplan.org/research/seaweed-farming.We estimated the net cost of seaweed-related climate benefits by first estimating all costs and emissions related to seaweed farming, up to and including the point of harvest at the farm location, then estimating costs and emissions related to the transportation and processing of harvested seaweed, and finally estimating the market value of seaweed products and either carbon sequestered or GHG emissions avoided.Production costs and emissionsSpatially explicit costs of seaweed production ($ tDW−1) and production-related emissions (tCO2 tDW−1) were calculated on the basis of ranges of capital costs ($ km−2), operating costs (including labour, $ km−2), harvest costs ($ km−2) and transport emissions per distance travelled (tCO2 km−1) in the literature (Table 1, Supplementary Tables 1 and 2); annual seaweed biomass (tDW km−2, for the preferred seaweed type in each grid cell), line spacing and number of harvests (species-dependent) from the biophysical model; as well as datasets of distances to the nearest port (km), ocean depth (m) and significant wave height (m).Capital costs were calculated as:$$c_{cap} = c_{capbase} + left( {c_{capbase} times left( {k_d + k_w} right)} right) + c_{sl}$$
    (1)
    where ccap is the total annualized capital costs per km2, ccapbase is the annualized capital cost per km2 (for example, cost of buoys, anchors, boats, structural rope) before applying depth and wave impacts, kd and kw are the impacts of depth and waviness on capital cost, respectively, each expressed as a multiplier between 0 and 1 modelled using our Monte Carlo method and applied only to grid cells with depth >500 m and/or significant wave height >3 m, respectively, and csl is the total annual cost of seeded line calculated as:$$c_{sl} = c_{slbase} times p_{sline}$$
    (2)
    where cslbase is the cost per metre of seeded line, and psline is the total length of line per km2, based on the optimal seaweed type grown in each grid cell.Operating and maintenance costs were calculated as:$$c_{op} = c_{ins} + c_{lic} + c_{lab} + c_{opbase}$$
    (3)
    where cop is the total annualized operating and maintenance costs per km2, cins is the annual insurance cost per km2, clic is the annual cost of a seaweed aquaculture license per km2, clab is the annual cost of labour excluding harvest labour, and copbase is all other operating and maintenance costs.Harvest costs were calculated as:$$c_{harv} = c_{harvbase} times n_{harv}$$
    (4)
    where charv is the total annual costs associated with harvesting seaweed per km2, charvbase is the cost per harvest per km2 (including harvest labour but excluding harvest transport), and nharv is the total number of harvests per year.Costs associated with transporting equipment to the farming location were calculated as:$$c_{eqtrans} = c_{transbase} times m_{eq} times d_{port}$$
    (5)
    where ceqtrans is total annualized cost of transporting equipment, ctransbase is the cost to transport 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons and dport is the ocean distance to the nearest port in km.The total production cost of growing and harvesting seaweed was therefore calculated as:$$c_{prod} = frac{{left( {c_{cap}} right) + left( {c_{op}} right) + left( {c_{harv}} right) + (c_{eqtrans})}}{{s_{dw}}}$$
    (6)
    where cprod is total annual cost of seaweed production (growth + harvesting), ccap is as calculated in equation (1), cop is as calculated in equation (3), charv is as calculated in equation (4), ceqtrans is as calculated in equation (5) and sdw is the DW of seaweed harvested annually per km2.Emissions associated with transporting equipment to the farming location were calculated as:$$e_{eqtrans} = e_{transbase} times m_{eq} times d_{port}$$
    (7)
    where eeqtrans is the total annualized CO2 emissions in tons from transporting equipment, etransbase is the CO2 emissions from transporting 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons and dport is the ocean distance to the nearest port in km.Emissions from maintenance trips to/from the seaweed farm were calculated as:$$e_{mnt} = left( {left( {2 times d_{port}} right) times e_{mntbase} times left( {frac{{n_{mnt}}}{{a_{mnt}}}} right)} right) + (e_{mntbase} times d_{mnt})$$
    (8)
    where emnt is total annual CO2 emissions from farm maintenance, dport is the ocean distance to the nearest port in km, nmnt is the number of maintenance trips per km2 per year, amnt is the area tended to per trip, dmnt is the distance travelled around each km2 for maintenance and emntbase is the CO2 emissions from travelling 1 km on a typical fishing maintenance vessel (for example, a 14 m Marinnor vessel with 2 × 310 hp engines) at an average speed of 9 knots (16.67 km h−1), resulting in maintenance vessel fuel consumption of 0.88 l km−1 (refs. 28,56).Total emissions from growing and harvesting seaweed were therefore calculated as:$$e_{prod} = frac{{(e_{eqtrans}) + (e_{mnt})}}{{s_{dw}}}$$
    (9)
    where eprod is total annual emissions from seaweed production (growth + harvesting), eeqtrans is as calculated in equation (7), emnt is as calculated in equation (8) and sdw is the DW of seaweed harvested annually per km2.Market value and climate benefits of seaweedFurther transportation and processing costs, economic value and net emissions of either sinking seaweed in the deep ocean for carbon sequestration or converting seaweed into usable products (biofuel, animal feed, pulses, vegetables, fruits, oil crops and cereals) were calculated on the basis of ranges of transport costs ($ tDW−1 km−1), transport emissions (tCO2-eq t−1 km−1), conversion cost ($ tDW−1), conversion emissions (tCO2-eq tDW−1), market value of product ($ tDW−1) and the emissions avoided by product (tCO2-eq tDW−1) in the literature (Table 1). Market value was treated as globally homogeneous and does not vary by region. Emissions avoided by products were determined by comparing estimated emissions related to seaweed production to emissions from non-seaweed products that could potentially be replaced by seaweed (including non-CO2 greenhouse gas emissions from land use)24. Other parameters used are distance to nearest port (km), water depth (m), spatially explicit sequestration fraction (%)57 and distance to optimal sinking location (km; cost-optimized for maximum emissions benefit considering transport emissions combined with spatially explicit sequestration fraction; see ‘Distance to sinking point calculation’ below). Each Monte Carlo simulation calculated the cost of both CDR via sinking seaweed and GHG emissions mitigation via seaweed products.For seaweed CDR, after the seaweed is harvested, it can either be sunk in the same location that it was grown, or be transported to a more economically favourable sinking location where more of the seaweed carbon would remain sequestered for 100 yr (see ‘Distance to optimal sinking point’ below). Immediately post-harvest, the seaweed still contains a large amount of water, requiring a conversion from dry mass to wet mass for subsequent calculations33:$$s_{ww} = frac{{s_{dw}}}{{0.1}}$$
    (10)
    where sww is the annual wet weight of seaweed harvested per km2 and sdw is the annual DW of seaweed harvested per km2.The cost to transport harvested seaweed to the optimal sinking location was calculated as:$$c_{swtsink} = c_{transbase} times d_{sink} times s_{ww}$$
    (11)
    where cswtsink is the total annual cost to transport harvested seaweed to the optimal sinking location, ctransbase is the cost to transport 1 ton of material 1 km on a barge, dsink is the distance in km to the economically optimized sinking location and sww is the annually harvested seaweed wet weight in t km−2 as in equation (10).The costs associated with transporting replacement equipment (for example, lines, buoys,anchors) to the farming location and hauling back used equipment at the end of its assumed lifetime (1 yr for seeded line, 5–20 yr for capital equipment by equipment type) in the sinking CDR pathway were calculated as:$$c_{eqtsink} = left( {c_{transbase} times left( {2 times d_{sink}} right) times m_{eq}} right) + (c_{transbase} times d_{port} times m_{eq})$$
    (12)
    where ceqtsink is the total annualized cost to transport both used and replacement equipment, ctransbase is the cost to transport 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dsink is the distance in km to the economically optimized sinking location and dport is the ocean distance to the nearest port in km. We assumed that the harvesting barge travels from the farming location directly to the optimal sinking location with harvested seaweed and replaced (used) equipment in tow (including used seeded line and annualized mass of used capital equipment), sinks the harvested seaweed, returns to the farm location and then returns to the nearest port (see Supplementary Fig. 16). These calculations assumed the shortest sea-route distance (see Distance to optimal sinking point).The total value of seaweed that is sunk for CDR was therefore calculated as:$$v_{sink} = frac{{left( {v_{cprice} – left( {c_{swtsink} + c_{eqtsink}} right)} right)}}{{s_{dw}}}$$
    (13)
    where vsink is the total value (cost, if negative) of seaweed farmed for CDR in $ tDW−1, vcprice is a theoretical carbon price, cswtsink is as calculated in equation (11), ceqtsink is as calculated in equation (12) and sdw is the annually harvested seaweed DW in t km−2. We did not assume any carbon price in our Monte Carlo simulations (vcprice is equal to zero), making vsink negative and thus representing a net cost.To calculate net carbon impacts, our model included uncertainty in the efficiency of using the growth and subsequent deep-sea deposition of seaweed as a CDR method. The uncertainty is expected to include the effects of reduced phytoplankton growth from nutrient competition, the relationship between air–sea gas exchange and overturning circulation (hereafter collectively referred to as the ‘atmospheric removal fraction’) and the fraction of deposited seaweed carbon that remains sequestered for at least 100 yr. The total amount of atmospheric CO2 removed by sinking seaweed was calculated as:$$e_{seqsink} = k_{atm} times k_{fseq} times frac{{tC}}{{tDW}} times frac{{tCO_2}}{{tC}}$$
    (14)
    where eseqsink is net atmospheric CO2 sequestered annually in t km−2, katm is the atmospheric removal fraction and kfseq is the spatially explicit fraction of sunk seaweed carbon that remains sequestered for at least 100 yr (see ref. 57).The emissions from transporting harvested seaweed to the optimal sinking location were calculated as:$$e_{swtsink} = e_{transbase} times d_{sink} times s_{ww}$$
    (15)
    where eswtsink is the total annual CO2 emissions from transporting harvested seaweed to the optimal sinking location in tCO2 km−2, etransbase is the CO2 emissions (tons) from transporting 1 ton of material 1 km on a barge (tCO2 per t-km), dsink is the distance in km to the economically optimized sinking location and sww is the annually harvested seaweed wet weight in t km−2 as in equation (10). Since the unit for etransbase is tCO2 per t-km, the emissions from transporting seaweed to the optimal sinking location are equal to (e_{mathrm{transbase}} times d_{mathrm{sink}} times s_{mathrm{ww}}), and the emissions from transporting seaweed from the optimal sinking location back to the farm are equal to 0 (since the seaweed has already been deposited, the seaweed mass to transport is now 0). Note that this does not yet include transport emissions from transport of equipment post-seaweed-deposition (see equation 16 below and Supplementary Fig. 16).The emissions associated with transporting replacement equipment (for example, lines, buoys, anchors) to the farming location and hauling back used equipment at the end of its assumed lifetime (1 yr for seeded line, 5–20 yr for capital equipment by equipment type)28,41 in the sinking CDR pathway were calculated as:$$e_{eqtsink} = left( {e_{transbase} times left( {2 times d_{sink}} right) times m_{eq}} right) + (e_{transbase} times d_{port} times m_{eq})$$
    (16)
    where eeqtsink is the total annualized CO2 emissions in tons from transporting both used and replacement equipment, etransbase is the CO2 emissions from transporting 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dsink is the distance in km to the economically optimized sinking location and dport is the ocean distance to the nearest port in km. We assumed that the harvesting barge travels from the farming location directly to the optimal sinking location with harvested seaweed and replaced (used) equipment in tow (including used seeded line and annualized mass of used capital equipment), sinks the harvested seaweed, returns to the farm location and then returns to the nearest port. These calculations assumed the shortest sea-route distance (see Distance to optimal sinking point).Net CO2 emissions removed from the atmosphere by sinking seaweed were thus calculated as:$$e_{remsink} = frac{{left( {e_{seqsink} – left( {e_{swtsink} + e_{eqtsink}} right)} right)}}{{s_{dw}}}$$
    (17)
    where eremsink is the net atmospheric CO2 removed per ton of seaweed DW, eseqsink is as calculated in equation (14), eswtsink is as calculated in equation (15), eeqtsink is as calculated in equation (16) and sdw is the annually harvested seaweed DW in t km−2.Net cost of climate benefitsSinkingTo calculate the total net cost and emissions from the production, harvesting and transport of seaweed for CDR, we combined the cost and emissions from the sinking-pathway cost and value modules. The total net cost of seaweed CDR per DW ton of seaweed was calculated as:$$c_{sinknet} = c_{prod} – v_{sink}$$
    (18)
    where csinknet is the total net cost of seaweed for CDR per DW ton harvested, cprod is the net production cost per DW ton as calculated in equation (6) and vsink is the net value (or cost, if negative) per ton seaweed DW as calculated in equation (13).The total net CO2 emissions removed per DW ton of seaweed were calculated as:$$e_{sinknet} = e_{remsink} – e_{prod}$$
    (19)
    where esinknet is the total net atmospheric CO2 removed per DW ton of seaweed harvested annually (tCO2 tDW−1 yr−1), eremsink is the net atmospheric CO2 removed via seaweed sinking annually as calculated in equation (17) and eprod is the net CO2 emitted from production and harvesting of seaweed annually as calculated in equation (9). For each Monte Carlo simulation, locations where esinknet is negative (that is, net emissions rather than net removal) were not included in subsequent calculations since they would not be contributing to CDR in that location under the given scenario. Note that these net emissions cases only occur in areas far from port in specific high-emissions scenarios. Even in such cases, most areas still contribute to CO2 removal (negative emissions), hence costs from locations with net removal were included.Total net cost was then divided by total net emissions to get a final value for cost per ton of atmospheric CO2 removed:$$c_{pertonsink} = frac{{c_{sinknet}}}{{e_{sinknet}}}$$
    (20)
    where cpertonsink is the total net cost per ton of atmospheric CO2 removed via seaweed sinking ($ per tCO2 removed), csinknet is total net cost per ton seaweed DW harvested as calculated in equation (18) ($ tDW−1) and esinknet is the total net atmospheric CO2 removed per ton seaweed DW harvested as calculated in equation (19) (tCO2 tDW−1).GHG emissions mitigationInstead of sinking seaweed for CDR, seaweed can be used to make products (including but not limited to food, animal feed and biofuels). Replacing convention products with seaweed-based products can result in ‘avoided emissions’ if the emissions from growing, harvesting, transporting and converting seaweed into products are less than the total greenhouse gas emissions (including non-CO2 GHGs) embodied in conventional products that seaweed-based products replace.When seaweed is used to make products, we assumed it is transported back to the nearest port immediately after being harvested. The annualized cost to transport the harvested seaweed and replacement equipment (for example, lines, buoys, anchors) was calculated as:$$c_{transprod} = frac{{left( {c_{transbase} times d_{port} times left( {s_{ww} + m_{eq}} right)} right)}}{{s_{dw}}}$$
    (21)
    where ctransprod is the annualized cost per ton seaweed DW to transport seaweed and equipment back to port from the farm location, ctransbase is the cost to transport 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dport is the ocean distance to the nearest port in km, sww is the annual wet weight of seaweed harvested per km2 as calculated in equation (10) and sdw is the annual DW of seaweed harvested per km2.The total value of seaweed that is used for seaweed-based products was calculated as:$$v_{product} = v_{mkt} – left( {c_{transprod} + c_{conv}} right)$$
    (22)
    where vproduct is the total value (cost, if negative) of seaweed used for products ($ tDW−1), vmkt is how much each ton of seaweed would sell for, given the current market price of conventional products that seaweed-based products replace ($ tDW−1), ctransprod is as calculated in equation (21) and cconv is the cost to convert each ton of seaweed to a usable product ($ tDW−1).The annualized CO2 emissions from transporting harvested seaweed and equipment back to port were calculated as:$$e_{transprod} = frac{{left( {e_{transbase} times d_{port} times left( {s_{ww} + m_{eq}} right)} right)}}{{s_{dw}}}$$
    (23)
    where etransprod is the annualized CO2 emissions per ton seaweed DW to transport seaweed and equipment back to port from the farm location, etransbase is the CO2 emissions from transporting 1 ton of material 1 km on a barge, meq is the annualized equipment mass in tons, dport is the ocean distance to the nearest port in km, sww is the annual wet weight of seaweed harvested per km2 as calculated in equation (10) and sdw is the annual DW of seaweed harvested per km2.Total emissions avoided by each ton of harvested seaweed DW were calculated as:$$e_{avprod} = e_{subprod} – left( {e_{transprod} + e_{conv}} right)$$
    (24)
    where eavprod is total CO2-eq emissions avoided per ton of seaweed DW per year (including non-CO2 GHGs using a GWP time period of 100 yr), esubprod is the annual CO2-eq emissions avoided per ton seaweed DW by replacing a conventional product with a seaweed-based product, etransprod is as calculated in equation (23) and econv is the annual CO2 emissions per ton seaweed DW from converting seaweed into usable products. esubprod was calculated by converting seaweed DW to caloric content58 for food/feed and comparing emissions intensity per kcal to agricultural products24, or by converting seaweed DW into equivalent biofuel content with a yield of 0.25 tons biofuel per ton DW59 and dividing the CO2 emissions per ton fossil fuel by the seaweed biofuel yield.To calculate the total net cost and emissions from the production, harvesting, transport and conversion of seaweed for products, we combined the cost and emissions from the product-pathway cost and value modules. The total net cost of seaweed for products per ton DW was calculated as:$$c_{prodnet} = c_{prod} – v_{product}$$
    (25)
    where cprodnet is the total net cost per ton DW of seaweed harvested for use in products, cprod is the net production cost per ton DW as calculated in equation (6) and vproduct is the net value (or cost, if negative) per ton DW as calculated in equation (22).The total net CO2-eq emissions avoided per ton DW of seaweed used in products were calculated as:$$e_{prodnet} = e_{avprod} – e_{prod}$$
    (26)
    where eprodnet is the total net CO2-eq emissions avoided per ton DW of seaweed harvested annually (tCO2 tDW−1 yr−1), eavprod is the net CO2-eq emissions avoided by seaweed products annually as calculated in equation (24) and eprod is the net CO2 emitted from production and harvesting of seaweed annually as calculated in equation (9). For each Monte Carlo simulation, locations where eprodnet is negative (that is, net emissions rather than net emissions avoided) were not included in subsequent calculations since they would not be avoiding any emissions in that scenario.Total net cost was then divided by total net emissions avoided to get a final value for cost per ton of CO2-eq emissions avoided:$$c_{pertonprod} = frac{{c_{prodnet}}}{{e_{prodnet}}}$$
    (27)
    where cpertonprod is the total net cost per ton of CO2-eq emissions avoided by seaweed products ($ per tCO2-eq avoided), cprodnet is total net cost per ton seaweed DW harvested for products as calculated in equation (25) ($ tDW−1) and eprodnet is total net CO2-eq emissions avoided per ton seaweed DW harvested for products as calculated in equation (26) (tCO2 tDW−1).Parameter ranges for Monte Carlo simulationsFor technoeconomic parameters with two or more literature values (see Supplementary Table 1), we assumed that the maximum literature value reflected the 95th percentile and the minimum literature value represented the 5th percentile of potential costs or emissions. For parameters with only one literature value, we added ±50% to the literature value to represent greater uncertainty within the modelled parameter range. Values at each end of parameter ranges were then rounded before Monte Carlo simulations as follows: capital costs, operating costs and harvest costs to the nearest $10,000 km−2, labour costs and insurance costs to the nearest $1,000 km−2, line costs to the nearest $0.05 m−1, transport costs to the nearest $0.05 t−1 km−1, transport emissions to the nearest 0.000005 tCO2 t−1 km−1, maintenance transport emissions to the nearest 0.0005 tCO2 km−1, product-avoided emissions to the nearest 0.1 tCO2-eq tDW−1, conversion cost down to the nearest $10 tDW−1 on the low end of the range and up to the nearest $10 tDW−1 on the high end of the range, and conversion emissions to the nearest 0.01 tCO2 tDW−1.We extended the minimum range values of capital costs to $10,000 km−2 and transport emissions to 0 to reflect potential future innovations, such as autonomous floating farm setups that would lower capital costs and net-zero emissions boats that would result in 0 transport emissions. To calculate the minimum value of $10,000 km−2 for a potential autonomous floating farm, we assumed that the bulk of capital costs for such a system would be from structural lines and flotation devices, and we therefore used the annualized structural line (system rope) and buoy costs from ref. 41 rounded down to the nearest $5,000 km−2. The full ranges used for our Monte Carlo simulations and associated literature values are shown in Supplementary Table 1.Distance to optimal sinking pointDistance to the optimal sinking point was calculated using a weighted distance transform (path-finding algorithm, modified from code in ref. 60) that finds the shortest ocean distance from each seaweed growth pixel to the location at which the net CO2 removed is maximized (including impacts of both increased sequestration fraction and transport emissions for different potential sinking locations) and the net cost is minimized. This is not necessarily the location in which the seaweed was grown, since the fraction of sunk carbon that remains sequestered for 100 yr is spatially heterogeneous (see ref. 57). For each ocean grid cell, we determined the cost-optimal sinking point by iteratively calculating equations (11–20) and assigning dsink as the distance calculated by weighted distance transform to each potential sequestration fraction (0.01–1.00) in increments of 0.01. Except for transport emissions, the economic parameter values used for these calculations were the averages of unrounded literature value ranges; we assumed that the maximum literature value reflected the 95th percentile and the minimum literature value represented the 5th percentile of potential costs or emissions, or for parameters with only one literature value, we added ±50% to the literature value to represent greater uncertainty within the modelled parameter range. For transport and maintenance transport emissions, we extended the minimum values of the literature ranges to zero to reflect potential net-zero emissions transport options and used the mean values of the resulting ranges. The dsink that resulted in minimum net cost per ton CO2 for each ocean grid cell was saved as the final dsink map, and the associated sequestration fraction value that the seaweed is transported to via dsink was assigned to the original cell where the seaweed was farmed and harvested (Supplementary Fig. 19). If the cost-optimal location to sink using this method was the same cell where the seaweed was harvested, then dsink was 0 km and the sequestration fraction was not modified from its original value (Supplementary Fig. 18).Comparison of gigaton-scale sequestration area to previous estimatesPrevious related work estimating the ocean area suitable for macroalgae cultivation13 and/or the area that might be required to reach gigaton-scale carbon removal via macroalgae cultivation13,19,36 has yielded a wide range of results, primarily due to differences in modelling methods. For example, Gao et al. (2022)36 estimate that 1.15 million km2 would be required to sequester 1 GtCO2 annually when considering carbon lost from seaweed biomass/sequestered as particulate organic carbon (POC) and refractory dissolved organic carbon (rDOC), and assume that the harvested seaweed is sold as food such that the carbon in the harvested seaweed is not sequestered. The area (0.31 million km2) required to sequester 1 GtCO2 in our study assumes that all harvested seaweed is sunk to the deep ocean to sequester carbon.Additionally, Wu et al.19 estimates that roughly 12 GtCO2 could be sequestered annually via macroalgae cultivation in approximately 20% of the world ocean area (that is, 1.67% ocean area per GtCO2), which is a much larger area per GtCO2 than our estimate of 0.085% ocean area. This notable difference arises for several reasons (including differences in yields, which in Wu et al. are around 500 tDW yr−1 in the highest-yield areas, whereas yields in our cheapest sequestration areas from G-MACMODS average 3,400 tDW km−2 yr−1) that arise from differences in model methodology. First, Wu et al. model temperate brown seaweeds, while our study considers different seaweed types, many of which have higher growth rates, and uses the most productive seaweed type for each ocean grid cell. The G-MACMODS seaweed growth model we use also has a highly optimized harvest schedule, includes luxury nutrient uptake (a key feature of macroalgal nutrient physiology) and does not directly model competition with phytoplankton during seaweed growth. Finally, tropical red seaweeds (the seaweed type in our cheapest sequestration areas) grow year-round, while others, such as the temperate brown seaweeds modelled by Wu et al., only grow seasonally. These differences all contribute to higher productivity in our model, leading to a smaller area required for gigaton-scale CO2 sequestration compared with Wu et al.Conversely, the ocean areas we model for seaweed-based CO2 sequestration or GHG emissions avoided are much larger than the 48 million km2 that Froehlich et al.13 estimate to be suitable for macroalgae farming globally. Although our maps show productivity and costs everywhere, the purpose of our modelling was to evaluate where different types of seaweed grow best and how production costs and product values vary over space, to highlight the lowest-cost areas (which are often the highest-producing areas) under various technoeconomic assumptions.Comparison of seaweed production costs to previous estimatesAlthough there are not many estimates of seaweed production costs in the scientific literature, our estimates for the lowest-cost 1% area of the ocean ($190–$2,790 tDW−1) are broadly consistent with previously published results: seaweed production costs reported in the literature range from $120 to $1,710 tDW−1 (refs. 40,41,61,62), but are highly dependent on assumed seaweed yields. For example, Camus et al.41 calculate a cost of $870 tDW−1 assuming a minimum yield of 12.4 kgDW m−1 of cultivation line (equivalent to 8.3 kgDW m−2 using 1.5 m spacing between lines). Using the economic values from Camus et al. but with our estimates of average yield for the cheapest 1% production cost areas (2.6 kgDW m−2) gives a much higher average cost of $2,730 tDW−1. Contrarily, van den Burg et al.40 calculate a cost of $1,710 tDW−1 using a yield of 20 tDW ha−1 (that is, 2.0 kg m−2). Instead assuming the average yield to be that from our lowest-cost areas (that is, 2.6 kgDW m−2 or 26 tDW ha−1) would decrease the cost estimated by van den Burg et al. (2016) to $1,290 tDW−1. Most recently, Capron et al.62 calculate an optimistic scenario cost of $120 tDW−1 on the basis of an estimated yield of 120 tDW ha−1 (12 kg m−2; over 4.5 times higher than the average yield in our lowest-cost areas). Again, instead assuming the average yield to be that in our lowest-cost areas would raise Capron et al.’s production cost to $540 tDW−1 (between the $190–$880 tDW−1 minimum to median production costs in the cheapest 1% areas from our model; Fig. 1a,b).Data sourcesSeaweed biomass harvestedWe used spatially explicit data for seaweed harvested globally under both ambient and limited-nutrient scenarios from the G-MACMODS seaweed growth model33.Fraction of deposited carbon sequestered for 100 yrWe used data from ref. 57 interpolated to our 1/12-degree grid resolution.Distance to the nearest portWe used the Distance from Port V1 dataset from Global Fishing Watch (https://globalfishingwatch.org/data-download/datasets/public-distance-from-port-v1) interpolated to our 1/12-degree grid resolution.Significant wave heightWe used data for annually averaged significant wave height from the European Center for Medium-range Weather Forecasts (ECMWF) interpolated to our 1/12-degree grid resolution.Ocean depthWe used data from the General Bathymetric Chart of the Oceans (GEBCO).Shipping lanesWe used data of Automatic Identification System (AIS) signal count per ocean grid cell, interpolated to our 1/12-degree grid resolution. We defined a major shipping lane grid cell as any cell with >2.25 × 108 AIS signals, a threshold that encompasses most major trans-Pacific and trans-Atlantic shipping lanes as well as major shipping lanes in the Indian Ocean, the North Sea, and coastal routes worldwide.Marine protected areas (MPAs)We used data from the World Database on Protected Areas (WDPA) and defined an MPA as any ocean MPA >20 km2.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Maize and ancient Maya droughts

    Evans, N. P. et al. Quantification of drought during the collapse of the classic Maya civilization. Science 361, 498–501 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gill, R. B. The Great Maya Droughts: Water, Life, and Death (University of New Mexico Press, 2001).
    Google Scholar 
    Coe, M. D. The Maya (Thames and Hudson, 1993).
    Google Scholar 
    Douglas, P. M. J. et al. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. Proc. Natl. Acad. Sci. USA 112, 5607–5612 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Haug, G. H. et al. Climate and the collapse of Maya civilization. Science 299, 1731–1735 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Ford, A. & Nigh, R. Origins of the Maya forest garden: Maya resource management. J. Ethnobiol. 29, 213–236 (2009).Article 

    Google Scholar 
    Anderson, E. N. et al. Las Plantas de los Mayas: Etnobotánica en Quintana Roo, México (CONABIO-ECOSUR, 2005).
    Google Scholar 
    Fedick, S. L. Maya cornucopia: Indigenous food plants of the Maya lowlands. in The Real Business of Ancient Maya Economies (eds. Masson, M. A., Freidel, D. A. & Demarest, A. A.). 224–237 (University Press Florida, 2020).Ford, A. & Clarke, K. C. Linking the past and present of the ancient Maya: Lowland land use, population distribution, and density in the Late Classic period. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds. Isendahl, C. & Stump, D.) (Oxford Handbook of Historical Ecology and Applied Archaeology, 2015).Ford, A. & Nigh, R. The Maya Forest Garden: Eight Millennia of Sustainable Cultivation of the Tropical Woodlands (Routledge, 2016).Gómez-Pompa, A. On maya silviculture. Mexican Stud. (Estudios Mexicanos) 3, 1–17 (1987).Article 

    Google Scholar 
    Beach, T., Luzzadder-Beach, S., Krause, S. & Walling, S. ‘Mayacene’ floodplain and wetland formation in the Rio Bravo watershed of northwestern Belize. Holocene 25(10), 1612–1622 (2015).Pohl, M. D. et al. Early agriculture in the Maya lowlands. Lat. Am. Antiq. 7, 355–372 (1996).Article 

    Google Scholar 
    Fedick, S. L. The Managed Mosaic: Ancient Maya Agriculture and Resource Use (University of Utah Press, 1996).
    Google Scholar 
    Mueller, A. D. et al. Recovery of the forest ecosystem in the tropical lowlands of northern Guatemala after disintegration of Classic Maya polities. Geology 38, 523–526 (2010).Article 
    ADS 

    Google Scholar 
    Hodell, D. A., Curtis, J. H. & Brenner, M. Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391–394 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Islebe, G. A., Hooghiemstra, H., Brenner, M., Curtis, J. H. & Hodell, D. A. A Holocene vegetation history from lowland Guatemala. Holocene 6, 265–271 (1996).Article 
    ADS 

    Google Scholar 
    Medina-Elizalde, M., Polanco-Martínez, J. M., Lases-Hernández, F., Bradley, R. & Burns, S. Testing the ‘tropical storm’ hypothesis of Yucatan Peninsula climate variability during the Maya Terminal Classic Period. Quat. Res. 86, 111–119 (2016).Aragón-Moreno, A. A., Islebe, G. A., Torrescano-Valle, N. & Arellano-Verdejo, J. Middle and late Holocene mangrove dynamics of the Yucatan Peninsula, Mexico. J. South Am. Earth Sci. 85, 307–311 (2018).Article 
    ADS 

    Google Scholar 
    Aragón-Moreno, A. A., Islebe, G. A., Roy, P. D., Torrescano-Valle, N. & Mueller, A. D. Climate forcings on vegetation of the southeastern Yucatán Peninsula (Mexico) during the middle to late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 495, 214–226 (2018).Article 

    Google Scholar 
    Kennett, D. J. et al. Development and disintegration of Maya political systems in response to climate change. Science 338, 788–791 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Conde, C. et al. El Niño y la agricultura. in Los impactos de El Niño en México (ed. Magaña, V.). 103–135 (Dirección General de Protección Civil, Secretaría de Gobernación, México, 1999).Magaña, V. O., Vázquez, J. L., Pérez, J. L. & Pérez, J. B. Impact of El Niño on precipitation in Mexico. Geofísica Int. 42, 313–330 (2003).
    Google Scholar 
    Wahl, D., Byrne, R. & Anderson, L. An 8700 year paleoclimate reconstruction from the southern Maya lowlands. Quat. Sci. Rev. 103, 19–25 (2014).Article 
    ADS 

    Google Scholar 
    Nooren, K. et al. Climate impact on the development of Pre-Classic Maya civilisation. Clim. Past 14, 1253–1273 (2018).Article 

    Google Scholar 
    Palomo-Kumul, J., Valdez-Hernández, M., Islebe, G. A., Cach-Pérez, M. J. & El Andrade, J. L. Niño-Southern oscillation affects the water relations of tree species in the Yucatan Peninsula. Mexico. Sci. Rep. 11, 10451 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Rosenswig, R. M., VanDerwarker, A. M., Culleton, B. J. & Kennett, D. J. Is it agriculture yet? Intensified maize-use at 1000 cal BC in the Soconusco and Mesoamerica. J. Anthropol. Archaeol. 40, 89–108 (2015).Article 

    Google Scholar 
    Mueller, A. D. et al. Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene. Quat. Res. 71, 133–141 (2009).Article 

    Google Scholar 
    Aragón-Moreno, A. A., Islebe, G. A. & Torrescano-Valle, N. A ~3800-yr, high-resolution record of vegetation and climate change on the north coast of the Yucatan Peninsula. Rev. Palaeobot. Palynol. 178, 35–42 (2012).Article 

    Google Scholar 
    Carrillo-Bastos, A., Islebe, G. A. & Torrescano-Valle, N. 3800 Years of quantitative precipitation reconstruction from the Northwest Yucatan Peninsula. PLoS ONE 8, e84333 (2013).Article 
    ADS 

    Google Scholar 
    Berglund, B. E. Human impact and climate changes—Synchronous events and a causal link?. Quat. Int. 105, 7–12 (2003).Article 

    Google Scholar 
    Vela-Peláez, A. A., Torrescano-Valle, N., Islebe, G. A., Mas, J. F. & Weissenberger, H. Holocene precipitation changes in the Maya forest, Yucatán peninsula. Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. 505, 42–52 (2018).Article 
    ADS 

    Google Scholar 
    Torrescano-Valle, N. & Islebe, G. A. Holocene paleoecology, climate history and human influence in the southwestern Yucatán Peninsula. Rev. Palaeobot. Palynol. 217, 1–8 (2015).Article 

    Google Scholar 
    Anselmetti, F. S., Hodell, D. A., Ariztegui, D., Brenner, M. & Rosenmeier, M. F. Quantification of soil erosion rates related to ancient Maya deforestation. Geology 35, 915–918 (2007).Article 
    ADS 

    Google Scholar 
    Beach, T. et al. A review of human and natural changes in Maya Lowland wetlands over the Holocene. Quat. Sci. Rev. 28, 1710–1724 (2009).Article 
    ADS 

    Google Scholar 
    Kerr, M. T. Holocene Precipitation Variability, Prehistoric Agriculture, and Natural and Human-Set Fires in Costa Rica (University of Tennessee, 2019).
    Google Scholar 
    Ebert, C. E., Peniche May, N., Culleton, B. J., Awe, J. J. & Kennett, D. J. Regional response to drought during the formation and decline of Preclassic Maya societies. Quat. Sci. Rev. 173, 211–235 (2017).Article 
    ADS 

    Google Scholar 
    De la Barreda, B., Metcalfe, S. E. & Boyd, D. S. Precipitation regionalization, anomalies and drought occurrence in the Yucatan Peninsula, Mexico. Int. J. Climatol. 40, 4541–4555 (2020).Article 

    Google Scholar 
    Islebe, G. A. et al. Holocene Paleoecology and Paleoclimatology of south and south-eastern Mexico: A palynological approach. in Mexico´s Environmental Holocene and Anthropocene History (eds. Torrescano-Valle, N., Islebe, G. A. & Roy, P.) (Springer, 2019).Tuxill, J., Reyes, L. A., Moreno, L. L., Uicab, V. C. & Jarvis, D. I. All maize is not equal: Maize variety choices and Mayan foodways in rural Yucatan, Mexico. in Pre-Columbian Foodways: Interdisciplinary Approaches to Food, Culture, and Markets in Ancient Mesoamerica (eds. Staller, J. & Carrasco, M.) 467–486 (Springer, 2010).Torrescano-Valle, N., Ramírez-Barajas, P. J., Islebe, G. A., Vela-Pelaez, A. A. & Folan, W. J. Human influence versus natural climate variability. in The Holocene and Anthropocene Environmental History of Mexico: A Paleoecological Approach on Mesoamerica (eds. Torrescano-Valle, N., Islebe, G. A. & Roy, P. D.). 171–194 (Springer, 2019).Faegri, K. & Iversen, J. Textbook of Pollen Analysis (Wiley, 1989).
    Google Scholar 
    Ford, A. The Maya forest: A domesticated landscape. in The Maya World (eds. Hutson, S. R. & Ardren, T.). 519–539 (Routledge, 2020).Fedick, S. L. & Santiago, L. S. Large variation in availability of Maya food plant sources during ancient droughts. Proc. Natl. Acad. Sci. USA 119, 2115657118 (2022).Article 

    Google Scholar 
    Puleston, D. E. The role of ramón in Maya subsistence. in Maya Subsistence. 353–366 (Elsevier, 1982).Atran, S. et al. Itza Maya tropical agro-forestry [and comments and replies]. Curr. Anthropol. 34, 633–700 (1993).Article 

    Google Scholar 
    Dussol, L., Elliott, M., Michelet, D. & Nondédéo, P. Ancient Maya sylviculture of breadnut (Brosimum alicastrum Sw.) and sapodilla (Manilkara zapota (L.) P. Royen) at Naachtun (Guatemala): A reconstruction based on charcoal analysis. Quat. Int. 457, 29–42 (2017).Ebel, R., de Jesús Méndez Aguilar, M. & Putnam, H. R. Milpa: One sister got climate-sick. The impact of climate change on traditional Maya farming systems. Int. J. Sociol. Agric. Food (Online) 24, 175–199 (2018).
    Google Scholar 
    Hernández-González, O. & Vergara-Yoisura, S. Studies on the productivity of Brosimum alicastrum a tropical tree used for animal feed in the Yucatan Peninsula. Bothalia 22, 7 (2014).
    Google Scholar 
    Martínez-Ruiz, N. del R. & Larqué-Saavedra, A. Semilla de Ramón. in Alimentos Vegetales Autóctonos Iberoamericanos Subutilizados (eds. Sonia, S.-A. & Álvarez-Parrilla, E.). 177–192 (Fabro Editores, 2018).Hatfield, J. L. & Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 10, 103 (2019).Article 

    Google Scholar 
    Basso, B. & Ritchie, J. T. Evapotranspiration in high-yielding maize and under increased vapor pressure deficit in the US Midwest. Agric. Environ. Lett. 3, 170039 (2018).Article 

    Google Scholar 
    Gregory, P. J., Simmonds, L. P. & Pilbeam, C. J. Soil type, climatic regime, and the response of water use efficiency to crop management. Agron. J. 92, 814–820 (2000).Article 

    Google Scholar 
    Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research. R package at https://CRAN.R-project.org/package=psych (2022).Wickham, H. & Bryan, J. readxl: Read Excel Files. R package at https://readxl.tidyverse.org/ (2022).Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System. QGIS Association at https://www.qgis.org (2022)Instituto Nacional de Estadistica Geographia e Informatica (INEGI). 1:1000000 Merida, Carta de Precipitacion. Merida, Yucatán, Mexico (1981). More