More stories

  • in

    Potential negative effects of the installation of video surveillance cameras in raptors’ nests

    Ribic, C. A., Thompson, F. R. & Pietz, P. J. Video Surveillance of Nesting Birds (University of California Press, 2012).Book 

    Google Scholar 
    O’Brien, T. G. & Kinnaird, M. F. A picture is worth a thousand words: The application of camera trapping to the study of birds. Bird Conserv. Int. 18, S144–S162 (2008).Article 

    Google Scholar 
    Kristan, D. M., Golightly Jr, R. T. & Tomkiewicz Jr, S. M. A solar-powered transmitting video camera for monitoring raptor nests. Wildl. Soc. Bull. 24, 284–290 (1996).
    Google Scholar 
    Grubb, T. An infrared video camera system for monitoring diurnal and nocturnal raptors. J. Raptor Res. 32, 290–296 (1998).
    Google Scholar 
    Margalida, A. et al. A solar-powered transmitting video camera for monitoring cliff-nesting raptors. J. Field Ornithol. 77, 7–12 (2006).Article 

    Google Scholar 
    Bolton, M., Butcher, N., Sharpe, F., Stevens, D. & Fisher, G. Remote monitoring of nests using digital camera technology. J. Field Ornithol. 78, 213–220 (2007).Article 

    Google Scholar 
    Pierce, A. J. & Pobprasert, K. A portable system for continuous monitoring of bird nests using digital video recorders. J. Field Ornithol. 78, 322–328 (2007).Article 

    Google Scholar 
    Benson, T. J., Brown, J. D. & Bednarz, J. C. Identifying predators clarifies predictors of nest success in a temperate passerine. J. Anim. Ecol. 79, 225–234 (2010).Article 

    Google Scholar 
    Lewis, S. B., Fuller, M. R. & Titus, K. A comparison of 3 methods for assessing raptor diet during the breeding season. Wildl. Soc. Bull. 32, 373–385 (2004).Article 

    Google Scholar 
    Rogers, A. S. Quantifying Northern Goshawk diets using remote cameras and observations from blinds. J. Raptor Res. 39, 303–309 (2005).ADS 

    Google Scholar 
    Tornberg, R. & Reif, V. Assessing the diet of birds of prey: A comparison of prey items found in nests and images. Ornis Fenn. 84, 21 (2007).
    Google Scholar 
    López-López, P. & Urios, V. Use of digital trail cameras to study Bonelli’s eagle diet during the nestling period. Ital. J. Zool. 77, 289–295 (2010).Article 

    Google Scholar 
    Harrison, J. T., Kochert, M. N., Pauli, B. P. & Heath, J. A. Using motion-activated trail cameras to study diet and productivity of cliff-nesting Golden Eagles. J. Raptor Res. 53, 26–37 (2019).Article 

    Google Scholar 
    McRae, S. B., Weatherhead, P. J. & Montgomerie, R. American robin nestlings compete by jockeying for position. Behav. Ecol. Sociobiol. 33, 101–106 (1993).Article 

    Google Scholar 
    Nathan, A., Legge, S. & Cockburn, A. Nestling aggression in broods of a siblicidal kingfisher, the laughing kookaburra. Behav. Ecol. 12, 716–725 (2001).Article 

    Google Scholar 
    Grivas, C. et al. An audio–visual nest monitoring system for the study and manipulation of siblicide in bearded vultures Gypaetus barbatus on the island of Crete (Greece). J. Ethol. 27, 105–116 (2009).Article 

    Google Scholar 
    Gula, R., Theuerkauf, J., Rouys, S. & Legault, A. An audio/video surveillance system for wildlife. Eur. J. Wildl. Res. 56, 803–807 (2010).Article 

    Google Scholar 
    Sanaiotti, T. M., Seixas, G. H., Duleba, S. & Martins, F. D. Camera trapping at harpy eagle nests: Interspecies interactions under predation risk. J. Raptor Res. 51, 72–78 (2017).Article 

    Google Scholar 
    Allen, M. L., Inagaki, A. & Ward, M. P. Cannibalism in raptors: A review. J. Raptor Res. 54, 424–430 (2020).Article 

    Google Scholar 
    Academia, M. H. & Dalgleish, H. J. Use of nest web cameras and citizen science to quantify osprey prey delivery rate and nest success. J. Raptor Res. 56, 212–219 (2022).Article 

    Google Scholar 
    Gysel, L. W. & Davis, E. M. A simple automatic photographic unit for wildlife research. J. Wildl. Manag. 20, 451–453 (1956).Article 

    Google Scholar 
    Royama, T. A device of an auto-cinematic food-recorder. Jpn. J. Ornithol. 15, 172–176 (1959).Article 

    Google Scholar 
    Cox, W. A. et al. Development of camera technology for monitoring nests. In Chapter 15. Video Surveill. Nesting Birds Stud. Avian Biol. (eds Ribic, C. A. et al.) 185–210 (Univ. Calif. Press, 2012).Sanders, M. D. & Maloney, R. F. Causes of mortality at nests of ground-nesting birds in the Upper Waitaki Basin, South Island, New Zealand: A 5-year video study. Biol. Conserv. 106, 225–236 (2002).Article 

    Google Scholar 
    Reif, V. & Tornberg, R. Using time-lapse digital video recording for a nesting study of birds of prey. Eur. J. Wildl. Res. 52, 251–258 (2006).Article 

    Google Scholar 
    McKinnon, L. & Bêty, J. Effect of camera monitoring on survival rates of High-Arctic shorebird nests. J. Field Ornithol. 80, 280–288 (2009).Article 

    Google Scholar 
    Powell, L. A., Giovanni, M. D., Groepper, S. R., Reineke, M. & Schacht, W. H. Attendance Patterns and Survival of Western Meadowlark Nests (University of California Press, 2012).Book 

    Google Scholar 
    Herranz, J., Yanes, M. & Suárez, F. Does Photo-Monitoring Affect Nest Predation? J. Field Ornithol. 73, 97–101 (2002).Article 

    Google Scholar 
    Richardson, T. W., Gardali, T. & Jenkins, S. H. Review and meta-analysis of camera effects on avian nest success. J. Wildl. Manag. 73, 287–293 (2009).Article 

    Google Scholar 
    Cain, S. L. Nesting activity time budgets of Bald Eagles in southeast Alaska. (1985).García-Salgado, G. et al. Evaluation of trail-cameras for analyzing the diet of nesting raptors using the Northern Goshawk as a model. PLoS ONE 10, e0127585 (2015).Article 

    Google Scholar 
    Swann, D. E., Kawanishi, K. & Palmer, J. Evaluating types and features of camera traps in ecological studies: a guide for researchers. In Camera Traps in Animal Ecology 27–43 (Springer, 2011).Dykstra, C., Meyer, M. & Warnke, D. Bald Eagle reproductive performance following video camera placement. J. Raptor Res. 36, 136–139 (2002).
    Google Scholar 
    Del Moral, J. C. & Molina, B. El águila perdicera en España, población reproductora en 2018 y método de censo (SEO/BirdLife, 2018).
    Google Scholar 
    Generalitat Valenciana. Orden 2/2022, de 16 de febrero, de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica, por la que se actualizan los listados valencianos de especies protegidas de flora y fauna (2022).Real, J. & Mañosa, S. Demography and conservation of western European Bonelli’s eagle Hieraaetus fasciatus populations. Biol. Conserv. 79, 59–66 (1997).Article 

    Google Scholar 
    Hernández-Matías, A. et al. From local monitoring to a broad-scale viability assessment: A case study for the Bonelli’s Eagle in western Europe. Ecol. Monogr. 83, 239–261 (2013).Article 

    Google Scholar 
    Rollan, A. et al. Guiding local-scale management to improve the conservation of endangered populations: The example of Bonelli’s Eagle Aquila fasciata. Bird Conserv. Int. 31, 395–409 (2021).Article 

    Google Scholar 
    López-López, P., García-Ripollés, C. & Urios, V. Population size, breeding performance and territory quality of Bonelli’s Eagle Hieraaetus fasciatus in eastern Spain. Bird Study 54, 335–342 (2007).Article 

    Google Scholar 
    López-López, P. Informe científico valoración de la inclusión del águila perdicera como especie en peligro de extinción en el Catálogo Valenciano de Especies de Fauna Amenazadahttps://doi.org/10.13140/RG.2.2.32806.04166 (2021).López-López, P., Perona, A., Egea-Casas, O., Morant, J. & Urios, V. Tri-axial accelerometry shows differences in energy expenditure and parental effort throughout the breeding season in long-lived raptors. Curr. Zool. 68, 57–67 (2022).Article 

    Google Scholar 
    Perona, A. M., Urios, V. & López-López, P. Holidays? Not for all Eagles have larger home ranges on holidays as a consequence of human disturbance. Biol. Conserv. 231, 59–66 (2019).Article 

    Google Scholar 
    Morollón, S., Urios, V. & López-López, P. Fifteen days are enough to estimate home-range size in some long-lived resident eagles. J. Ornithol. 163, 849–854 (2022).Article 

    Google Scholar 
    Stewart-Oaten, A., Murdoch, W. W. & Parker, K. R. Environmental impact assessment:” Pseudoreplication” in time?. Ecology 67, 929–940 (1986).Article 

    Google Scholar 
    Underwood, A. Beyond BACI: The detection of environmental impacts on populations in the real, but variable, world. J. Exp. Mar. Biol. Ecol. 161, 145–178 (1992).Article 

    Google Scholar 
    López-López, P., García-Ripollés, C., García-López, F., Aguilar, J. M. & Verdejo, J. Patrón de distribución del águila real Aquila chrysaetos y del águila-azor perdicera Hieraaetus fasciatus en la provincia de Castellón. Ardeola 51, 275–283 (2004).
    Google Scholar 
    López-López, P., García-Ripollés, C., Aguilar, J. M., Garcia-López, F. & Verdejo, J. Modelling breeding habitat preferences of Bonelli’s eagle (Hieraaetus fasciatus) in relation to topography, disturbance, climate and land use at different spatial scales. J. Ornithol. 147, 97–106 (2006).Article 

    Google Scholar 
    Gil-Sánchez, J. Effects of altitude and prey availability on the laying date of Bonelli’s Eagles (Hieraaetus fasciatus) in Granada (SE Spain). Ardeola 47, 1–8 (2000).
    Google Scholar 
    Forsman, D. Flight Identification of Raptors of Europe, North Africa and the Middle East (Bloomsbury Publishing, 2016).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Vol. 574 (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. R package version 1.46.0. (2022).Cutler, T. L. & Swann, D. E. Using remote photography in wildlife ecology: A review. Wildl. Soc. Bull. 27, 571–581 (1999).
    Google Scholar 
    Richardson, C. T. & Miller, C. K. Recommendations for protecting raptors from human disturbance: A review. Wildl. Soc. Bull. 25, 634–638 (1997).
    Google Scholar 
    Balbontin, J., Penteriani, V. & Ferrer, M. Variations in the age of mates as an early warning signal of changes in population trends? The case of Bonelli’s eagle in Andalusia. Biol. Conserv. 109, 417–423 (2003).Article 

    Google Scholar 
    Martinez, J. A. et al. Breeding performance, age effects and territory occupancy in a Bonelli’s eagle Hieraaetus fasciatus population. Ibis 150, 223–233 (2008).Article 

    Google Scholar 
    Sánchez-Zapata, J., Calvo, J., Carrete, M. & Martínez, J. Age and breeding success of a Golden Eagle Aquila chrysaetos population in southeastern Spain. Bird Study 47, 235–237 (2000).Article 

    Google Scholar 
    Ferrer, M., Penteriani, V., Balbontin, J. & Pandolfi, M. The proportion of immature breeders as a reliable early warning signal of population decline: Evidence from the Spanish imperial eagle in Donana. Biol. Conserv. 114, 463–466 (2003).Article 

    Google Scholar 
    Cano, A. & Parrinder, E. Studies of less familiar birds, Bonelli’s Eagle. Br. Birds 54, 422–427 (1961).
    Google Scholar 
    Blondel, J., Coulon, L., Girerd, B. & Hortigue, M. Deux cents heures d’observation aupre‘s de l’aire de l’Aigle de Bonelli Hieraaetus fasciatus. Nos Oiseaux 30, 37–60 (1969).
    Google Scholar 
    Vaucher, C. Notes sur 1’ethologie de I’Aigle de Bonelli. Nos Oiseaux 31, 101–111 (1971).
    Google Scholar 
    Elósegui, J. Informe preliminar sobre alimentación de aves rapaces en Navarra y provincias limítrofes. Ardeola 19, 249–256 (1974).
    Google Scholar 
    Cheylan, G. L. place trophique de l’Aigle de Bonelli Hieraaetus fasciatus dans les biocénoses méditerranéennes. Alauda 45, 1–15 (1977).
    Google Scholar 
    Palma, L., Cancela da Fonseca, L. & Oliveira, L. L’alimentation de l’aigle de Bonelli Hieraaetus fasciatus dans la coˆte portugaise. Rapinyaires Mediterranis 2, 87–96 (1984).
    Google Scholar 
    Real, J. Biases in diet study methods in the Bonelli’s eagle. J. Wildl. Manag. 60, 632–638 (1996).Article 

    Google Scholar 
    Gil-Sánchez, J. M., Molino, F., Valenzuela, G. & Moleón, M. Demografía y alimentación del Águila-azor Perdicera (Hieraaetus fasciatus) en la provincia de Granada. Ardeola 47, 69–75 (2000).
    Google Scholar 
    Ontiveros, D., Pleguezuelos, J. M. & Caro, J. Prey density, prey detectability and food habits: The case of Bonelli’s eagle and the conservation measures. Biol. Conserv. 123, 19–25 (2005).Article 

    Google Scholar 
    Moleón, M. et al. Large-scale spatio-temporal shifts in the diet of a predator mediated by an emerging infectious disease of its main prey. J. Biogeogr. 36, 1502–1515 (2009).Article 

    Google Scholar 
    Resano-Mayor, J. et al. Diet–demography relationships in a long-lived predator: From territories to populations. Oikos 125, 262–270 (2016).Article 

    Google Scholar 
    Di Vittorio, M. et al. Long-term changes in the breeding period diet of Bonelli’s eagle (Aquila fasciata) in Sicily, Italy. Wildl. Res. 46, 409–414 (2019).Article 

    Google Scholar  More

  • in

    Evolution of self-organised division of labour driven by stigmergy in leaf-cutter ants

    Wilson, E. O. Success and dominance in ecosystems: the case of the social insects. Vol. 2 I-XXI (Ecology Institute, 1990).Anderson, C., Franks, N. R. & McShea, D. W. The complexity and hierarchical structure of tasks in insect societies. Anim. Behav. 62, 643–651. https://doi.org/10.1006/anbe.2001.1795 (2001).Article 

    Google Scholar 
    Theraulaz, G. & Deneubourg, J.-L. in The Ethological roots of Culture (eds Gardner RA, Chiarelli AB, Gardner BT, & Ploojd FX) 1–19 (Kluwer Academic Publishers, 1994).Theraulaz, G. & Bonabeau, E. Modelling the collective building of complex architectures in social insects with lattice swarms. J. Theor. Biol. 177, 381–400. https://doi.org/10.1006/jtbi.1995.0255 (1995).Article 
    ADS 

    Google Scholar 
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12, 188–193 (1997).Article 

    Google Scholar 
    Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).Article 
    ADS 

    Google Scholar 
    Gordon, D. M. The evolution of the algorithms for collective behavior. Cell Syst. 3, 514–520 (2016).Article 

    Google Scholar 
    Grüter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. PLoS ONE 7, e44501. https://doi.org/10.1371/journal.pone.0044501 (2012).Article 
    ADS 

    Google Scholar 
    Wehner, R., Harkness, R. D. & Schmid-Hempel, P. Foraging Strategies in Individually Searching Ants. (Fischer, 1983).Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects. (Princeton University Press, 1978).Anderson, C. & Franks, N. R. Teams in animal societies. Behav. Ecol. 12, 534–540. https://doi.org/10.1093/beheco/12.5.534 (2001).Article 

    Google Scholar 
    Jeanne, R. L. The evolution of the organization of work in social insects. Monitore Zool. Italiano-Ital. J. Zool. 20, 119–133. https://doi.org/10.1080/00269786.1986.10736494 (1986).Article 

    Google Scholar 
    Ratnieks, F. L. & Anderson, C. Task partitioning in insects societies. Insectes Soc. 46, 95–108 (1999).Article 

    Google Scholar 
    Anderson, C., Boomsma, J. J. & Bartholdi, J. J. Task partitioning in insect societies: bucket brigades. Insectes Soc. 49, 171–180. https://doi.org/10.1007/s00040-002-8298-7 (2002).Article 

    Google Scholar 
    Jeanson, R. & Weidenmüller, A. Interindividual variability in social insects–proximate causes and ultimate consequences. Biol. Rev. 89, 671–687 (2014).Article 

    Google Scholar 
    Leighton, G. M., Charbonneau, D. & Dornhaus, A. Task switching is associated with temporal delays in Temnothorax rugatulus ants. Behav. Ecol. 28, 319–327. https://doi.org/10.1093/beheco/arw162 (2017).Article 

    Google Scholar 
    Grassé, P.-P. La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Soc. 6, 41–80 (1959).Article 

    Google Scholar 
    Theraulaz, G. & Bonabeau, E. A brief history of stigmergy. Artif. Life 5, 97–116. https://doi.org/10.1162/106454699568700 (1999).Article 

    Google Scholar 
    Karsai, I. Decentralized control of construction behavior in paper wasps: an overview of the stigmergy approach. Artif. Life 5, 117–136. https://doi.org/10.1162/106454699568719 (1999).Article 

    Google Scholar 
    Karsai, I. & Penzes, Z. Comb Building in Social Wasps – Self-Organization and Stigmergic Script. J. Theor. Biol. 161, 505–525. https://doi.org/10.1006/jtbi.1993.1070 (1993).Article 
    ADS 

    Google Scholar 
    Dorigo, M., Bonabeau, E. & Theraulaz, G. Ant algorithms and stigmergy. Fut. Gen. Comput. Syst. 16, 851–871 (2000).Article 

    Google Scholar 
    Camazine, S. Self-organizing pattern-formation on the combs of Honey-Bee Colonies. Behav. Ecol. Sociobiol. 28, 61–76. https://doi.org/10.1007/bf00172140 (1991).Article 

    Google Scholar 
    Camazine, S., Sneyd, J., Jenkins, M. J. & Murray, J. D. A Mathematical-model of self-organized pattern-formation on the combs of Honeybee Colonies. J. Theor. Biol. 147, 553–571. https://doi.org/10.1016/S0022-5193(05)80264-4 (1990).Article 
    ADS 

    Google Scholar 
    Deneubourg, J.-L. et al. in Simulation of Adaptive Behavior: From Animals to Animats (eds J.A. Meyer & S.W. Wilson) 356–365 (The MIT Press/Bradford Books, 1991).Franks, N. R. & Sendovafranks, A. B. Brood Sorting by Ants – Distributing the Workload over the Work-Surface. Behav. Ecol. Sociobiol. 30, 109–123 (1992).Article 

    Google Scholar 
    Sendova-Franks, A. B., Scholes, S. R., Franks, N. R. & Melhuish, C. Brood sorting by ants: two phases and differential diffusion. Anim. Behav. 68, 1095–1106. https://doi.org/10.1016/j.anbehav.2004.02.013 (2004).Article 

    Google Scholar 
    Lan, T., Liu, S. & Yang, S. X. in 2006 6th World Congress on Intelligent Control and Automation. 441–445 (IEEE).Renucci, M., Tirard, A. & Provost, E. Complex undertaking behavior in Temnothorax lichtensteini ant colonies: from corpse-burying behavior to necrophoric behavior. Insectes Soc. 58, 9–16 (2011).Article 

    Google Scholar 
    Detrain, C. & Deneubourg, J. L. Collective decision-making and foraging patterns in Ants and Honeybees. Advances in Insect Physiology 35(35), 123–173. https://doi.org/10.1016/S0065-2806(08)00002-7 (2008).Article 

    Google Scholar 
    Couzin, I. D. & Franks, N. R. Self-organized lane formation and optimized traffic flow in army ants. Proc Biol Sci 270, 139–146. https://doi.org/10.1098/rspb.2002.2210 (2003).Article 

    Google Scholar 
    Gulyas, L., Laufer, L. & Szabo, R. in International Workshop on Engineering Self-Organising Applications 50–65 (Springer).Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529. https://doi.org/10.1007/s00265-004-0824-3 (2004).Article 

    Google Scholar 
    Oberst, S. et al. Revisiting stigmergy in light of multi-functional, biogenic, termite structures as communication channel. Comput. Struct. Biotechnol. J. 18, 2522–2534 (2020).Article 

    Google Scholar 
    Hart, A., Anderson, C. & Ratnieks, F. Task partitioning in leafcutting ants. Acta Ethologica 5, 1–11. https://doi.org/10.1007/s10211-002-0062-5 (2002).Article 

    Google Scholar 
    Hart, A. G. & Ratnieks, F. L. Leaf caching in the leafcutting ant Atta colombica: organizational shift, task partitioning and making the best of a bad job. Anim. Behav. 62, 227–234 (2001).Article 

    Google Scholar 
    Röschard, J. & Roces, F. Sequential load transport in grass-cutting ants (Atta vollenweideri): maximization of plant delivery rate or improved information transfer? Psyche 2011 (2011).Nickele, M. A., Reis Filho, W. & Pie, M. R. Sequential load transport during foraging in Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Myrmecol News 21, 73–82 (2015).Ferrante, E., Turgut, A. E., Duenez-Guzman, E., Dorigo, M. & Wenseleers, T. Evolution of Self-Organized Task Specialization in Robot Swarms. PLoS Comp. Biol. 11, e1004273. https://doi.org/10.1371/journal.pcbi.1004273 (2015).Article 
    ADS 

    Google Scholar 
    Grueter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. (2012).Holcombe, M. et al. Modelling complex biological systems using an agent-based approach. Integr. Biol. 4, 53–64 (2012).Article 

    Google Scholar 
    Fourcassié, V., Dussutour, A. & Deneubourg, J.-L. Ant traffic rules. J. Exp. Biol. 213, 2357–2363 (2010).Article 

    Google Scholar 
    Modlmeier, A. P., Keiser, C. N., Shearer, T. A. & Pruitt, J. N. Species-specific influence of group composition on collective behaviors in ants. Behav. Ecol. Sociobiol. 68, 1929–1937 (2014).Article 

    Google Scholar 
    Modlmeier, A. P., Liebmann, J. E. & Foitzik, S. Diverse societies are more productive: a lesson from ants. Proc. R. Soc. B 279, 2142–2150 (2012).Article 

    Google Scholar 
    Walsh, J. T., Garnier, S. & Linksvayer, T. A. Ant collective behavior is heritable and shaped by selection. Am. Nat. 196, 541–554 (2020).Article 

    Google Scholar 
    Tannenbaum, E. When does division of labor lead to increased system output?. J. Theor. Biol. 247, 413–425 (2007).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wahl, L. M. Evolving the division of labour: Generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).Article 
    ADS 
    MathSciNet 

    Google Scholar 
    Wakano, J., Nakata, K. & Yamamura, N. Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J. Theor. Biol. 193, 153–165 (1998).Article 
    ADS 

    Google Scholar 
    Goldsby, H. J., Dornhaus, A., Kerr, B. & Ofria, C. Task-switching costs promote the evolution of division of labor and shifts in individuality. Proc. Natl. Acad. Sci. 109, 13686–13691 (2012).Article 
    ADS 

    Google Scholar 
    Rueffler, C., Hermisson, J. & Wagner, G. P. Evolution of functional specialization and division of labor. Proc. Natl. Acad. Sci. 109, E326–E335 (2012).Article 
    ADS 

    Google Scholar 
    Lopes, J. F., Forti, L. C., Camargo, R. S., Matos, C. A. & Verza, S. S. The effect of trail length on task partitioning in three Acromyrmex species (Hymenoptera: Formicidae). Sociobiology 42, 87–92 (2003).
    Google Scholar 
    Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst. 42(42), 91–110. https://doi.org/10.1146/annurev-ecolsys-102710-145017 (2011).Article 

    Google Scholar 
    Duarte, A., Pen, I., Keller, L. & Weissing, F. J. Evolution of self-organized division of labor in a response threshold model. Behav. Ecol. Sociobiol. 66, 947–957. https://doi.org/10.1007/s00265-012-1343-2 (2012).Article 

    Google Scholar 
    Floreano, D. & Keller, L. Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biol. 8, e1000292 (2010).Article 

    Google Scholar 
    Floreano, D., Mitri, S., Magnenat, S. & Keller, L. Evolutionary conditions for the emergence of communication in robots. Curr. Biol. 17, 514–519 (2007).Article 

    Google Scholar 
    Mitri, S., Floreano, D. & Keller, L. The evolution of information suppression in communicating robots with conflicting interests. Proc. Natl. Acad. Sci. 106, 15786–15790 (2009).Article 
    ADS 

    Google Scholar 
    Abiodun, O. I. et al. State-of-the-art in artificial neural network applications: A survey. Heliyon 4, e00938 (2018).Article 

    Google Scholar 
    Dingemanse, N. J., Kazem, A. J., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).Article 

    Google Scholar 
    Van den Berg, P. & Weissing, F. J. The importance of mechanisms for the evolution of cooperation. Proc. R. Soc. B 282, 20151382 (2015).Article 

    Google Scholar 
    Wetterer, J. K. Ontogenetic changes in forager polymorphism and foraging ecology in the leaf-cutting ant Atta cephalotes. Oecologia 98, 235–238. https://doi.org/10.1007/BF00341478 (1994).Article 
    ADS 

    Google Scholar 
    Wetterer, J. K. Forager size and ecology of Acromyrmex coronatus and other leaf-cutting ants in Costa Rica. Oecologia 104, 409–415. https://doi.org/10.1007/BF00341337 (1995).Article 
    ADS 

    Google Scholar 
    Evison, S. E. F. & Hughes, W. O. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Naturwissenschaften 98, 643–649 (2011).Article 
    ADS 

    Google Scholar 
    Hughes, W. O., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).Article 
    ADS 

    Google Scholar 
    Villesen, P., Murakami, T., Schultz, T. R. & Boomsma, o. J. Identifying the transition between single and multiple mating of queens in fungus-growing ants. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 269, 1541–1548 (2002).Mueller, U. G. & Rabeling, C. A breakthrough innovation in animal evolution. Proc. Natl. Acad. Sci. 105, 5287–5288 (2008).Article 
    ADS 

    Google Scholar 
    Schultz, T. R. & Brady, S. G. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. 105, 5435–5440 (2008).Article 
    ADS 

    Google Scholar 
    Fowler, H. G. Latitudinal gradients and diversity of the leaf-cutting ants (Atta and Acromyrmex)(Hymenoptera: Formicidae). Rev. Biol. Trop. 31, 213–216 (1983).
    Google Scholar 
    Jackson, D. E. & Ratnieks, F. L. Communication in ants. Curr. Biol. 16, R570–R574 (2006).Article 

    Google Scholar 
    Roces, F. & Hölldobler, B. Vibrational communication between hitchhikers and foragers in leaf-cutting ants (Atta cephalotes). Behav. Ecol. Sociobiol. 37, 297–302 (1995).Article 

    Google Scholar 
    Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B. & Fowler, H. Foraging by bucket-brigade in leaf-cutter ants. Biotropica 1, 210–213 (1980).Article 

    Google Scholar 
    Boi, S., Couzin, I. D., Buono, N. D., Franks, N. & Britton, N. Coupled oscillators and activity waves in ant colonies. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 371–378 (1999).Cole, B. J. Short-term activity cycles in ants: generation of periodicity by worker interaction. Am. Nat. 137, 244–259 (1991).Article 

    Google Scholar 
    Cornejo, A., Dornhaus, A., Lynch, N. & Nagpal, R. in International Symposium on Distributed Computing. 46–60 (Springer).Franks, N. R., Bryant, S., Griffiths, R. & Hemerik, L. Synchronization of the behaviour within nests of the antleptothorax acervorum (fabricius)—I. Discovering the phenomenon and its relation to the level of starvation. Bull. Math. Biol. 52, 597–612 (1990).Pagliara, R., Gordon, D. M. & Leonard, N. E. Regulation of harvester ant foraging as a closed-loop excitable system. PLoS Comp. Biol. 14, e1006200 (2018).Article 
    ADS 

    Google Scholar 
    Schmickl, T. & Karsai, I. Integral feedback control is at the core of task allocation and resilience of insect societies. Proc. Natl. Acad. Sci. 115, 13180–13185 (2018).Article 
    ADS 

    Google Scholar 
    Solé, R. V., Miramontes, O. & Goodwin, B. C. Oscillations and chaos in ant societies. J. Theor. Biol. 161, 343–357 (1993).Article 
    ADS 

    Google Scholar 
    Gordon, D. M., Goodwin, B. C. & Trainor, L. E. A parallel distributed model of the behaviour of ant colonies. J. Theor. Biol. 156, 293–307 (1992).Article 
    ADS 

    Google Scholar 
    Aoki, S. K. et al. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570, 533–537 (2019).Article 

    Google Scholar 
    Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).Article 

    Google Scholar 
    Niemeyer, N., Schleimer, J.-H. & Schreiber, S. Biophysical models of intrinsic homeostasis: Firing rates and beyond. Curr. Opin. Neurobiol. 70, 81–88 (2021).Article 

    Google Scholar 
    Rombouts, J., Vandervelde, A. & Gelens, L. Delay models for the early embryonic cell cycle oscillator. PLoS ONE 13, e0194769 (2018).Article 

    Google Scholar 
    Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).Article 

    Google Scholar 
    Bryant, B. D. & Miikkulainen, R. Foundations of Trusted Autonomy 87–115 (Springer, 2018).
    Google Scholar 
    Masad, D. & Kazil, J. in 14th PYTHON in Science Conference. 53–60 (Citeseer).Knaden, M. & Graham, P. The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu. Rev. Entomol. 61, 63–76 (2016).Article 

    Google Scholar  More

  • in

    Out-of-date datasets hamper conservation of species close to extinction

    Scheffers, B. R., Yong, D. L., Harris, J. B. C., Giam, X. & Sodhi, N. S. The world’s rediscovered species: back from the brink? PloS ONE 6, e22531 (2011).Article 
    CAS 

    Google Scholar 
    Abeli, T., Albani Rocchetti, G., Barina, Z., Bazos, I. & Draper, D. et al. Seventeen ‘extinct’ plant species back to conservation attention in Europe. Nat. Plants 7, 282–286 (2021).Article 

    Google Scholar 
    Guidelines for Using the IUCN Red List Categories and Criteria Version 14 (IUCN Standards and Petitions Committee, 2019); http://www.iucnredlist.org/documents/RedListGuidelines.pdfDalrymple, S. E. & Abeli, T. Ex situ seed banks and the IUCN Red List. Nat. Plants 5, 122–123 (2019).Article 

    Google Scholar 
    Albani Rocchetti, G. et al. Selecting the best candidates for resurrecting extinct-in-the-wild plants from herbaria. Nat. Plants. https://doi.org/10.1038/s41477-022-01296-7 (2022).The IUCN Red List of Threatened Species Version 2022-1 (IUCN, accessed 264 October 2022); https://www.iucnredlist.orgHumphreys, A. M., Govaerts, R., Ficinski, S. Z., Lughadha, E. N. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).Article 

    Google Scholar 
    Knapp, W. M., Frances, A., Noss, R., Naczi, R. F. & Weakley, A. et al. Vascular plant extinction in the continental United States and Canada. Conserv. Biol. 35, 360–368 (2021).Article 

    Google Scholar 
    Sasidharan, N. Cynometra beddomei. The IUCN Red List of Threatened Species 2020 (IUCN, accessed 27 October 2021); https://www.iucnredlist.org/species/31184/115932185Cronk, Q. C. B. A new species and hybrid in the St Helena endemic genus Trochetiopsis. Edinb. J. Bot. 52, 205–213 (1995).Article 

    Google Scholar 
    Loizeau, P. A. & Jackson, P. W. World Flora Online mid-term update. Ann. Missouri Bot. Gard. 102, 341–346 (2017).Article 

    Google Scholar 
    Edwards, C., Bassüner, B., Birkinshaw, C., Camara, C. & Lehavana, A. et al. A botanical mystery solved by phylogenetic analysis of botanical garden collections: the rediscovery of the presumed-extinct Dracaena umbraculifera. Oryx 52, 427–436 (2018).Article 

    Google Scholar 
    MosaChristas, K., Karthick, R., Kowsalya, E. & Jaquline, C. R. I. Musa kattuvazhana (Musaceae): rediscovery and additional notes on a critically endangered species from Western Ghats of Tamil Nadu, India. Feddes Repert. 132, 263–268 (2021).Article 

    Google Scholar 
    Van Hoi, Q. U. A. C. H., Doudkin, R. V., Cuong, T. Q., Le Van, S. O. N. & Van Dung, L. U. O. N. G. et al. Rediscovery of Camellia langbianensis (Theaceae) in Vietnam. Phytotaxa 480, 85–90 (2021).Article 

    Google Scholar 
    Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G. & Axton, M. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).Costello, M. J. & Wieczorek, J. Best practice for biodiversity data management and publication. Biol. Conserv. 173, 68–73 (2014).Article 

    Google Scholar 
    Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Döring, M., Giovanni, R., Robertson, T. & Vieglais, D. Darwin Core: an evolving community-developed biodiversity data standard. PloS ONE 7, e29715 (2012).Article 
    CAS 

    Google Scholar 
    de Lange, P.J. Lepidium obtusatum Fact Sheet (content continuously updated) (New Zealand Plant Conservation Network, accessed 16 December 2021); https://www.nzpcn.org.nz/flora/species/lepidium-obtusatum/Knapp, W.M., Poindexter, D.B. & Weakley, A.S. The true identity of Marshallia grandiflora an extinct species and the description of Marshallia pulchra (Asteraceae Helenieae Marshalliinae). Phytotaxa 447, 1–15 (2020).Article 

    Google Scholar  More

  • in

    Number of simultaneously acting global change factors affects composition, diversity and productivity of grassland plant communities

    Study species and pre-cultivationTo create the mesocosm communities, we selected nine herbaceous grassland species that are native to and widespread in Central Europe (Supplementary Table 9), where they can also co-occur. The species were Alopecurus pratensis L., Diplotaxis tenuifolia (L.) DC., Lolium perenne L., Poa pratensis L., Prunella vulgaris L., Sinapis arvensis L., Sonchus oleraceus L., Vicia cracca L., Vicia sativa L. To increase generalizability54, the species were selected from three functional groups (grasses, annual forbs, perennial forbs), and they represent five families.Seeds were obtained from different sources (Supplementary Table 9). For the transplanted-seedling community (see section ‘Experimental lay-out), seedlings were pre-cultivated in a greenhouse of the Botanical Garden of the University of Konstanz. As the species require different times for germination, they were sown on different dates (Supplementary Table 10) to ensure that seedlings of all species were at a similar developmental stage at transplantation. Seeds were sown separately per species in plastic trays filled with potting soil (Einheitserde®, Pikiererde CL P). The greenhouse had a regular day-night rhythm of c. 16:8 hours, and its ventilation windows automatically opened at 21 °C during the day and at 18 °C during the night. Two days before transplanting, the seedlings were placed outdoors to acclimatize. For the sown community, we sowed a seed mixture of the nine study species directly into the outdoor mesocosm pots.Experimental setupGlobal change treatmentsWe imposed six global change treatments: climate warming, light pollution, microplastic pollution, soil salinization, eutrophication, and fungicide accumulation, all of which frequently occur in the environment. These GCFs were chosen because they differ in their nature (i.e., physical, chemical), are likely to differ in their mode of action and effect direction21, and can be easily implemented. Each of the six GCFs have been shown to impact plants and their environment when applied on their own10,13,17,19,20,55,56,57,58,59,60. Furthermore, all of the chosen GCFs are likely to continue to increase in magnitude or extent in the near future61,62,63,64,65. For the climate-warming treatment, we used infrared-heater lamps (HS-2420; 240 V, 2000 W; Kalglo Electronics Co., Bethlehem, USA) set to 70% of their maximum capacity to achieve an average temperature increase of 2.0 °C (±SD = 0.2 °C) at plant level. This is within the range of temperature increases predicted by the RCP 4.5 scenario for the year 2100 [+1.1 − 2.6 °C; 63]. For the light-pollution treatment, we used LED spotlights (LED-Strahler Flare 10 W, IP 65, 900 lm, cool white 6500 K; REV Ritter GmbH, Mömbris, Germany), which were switched on daily from 9 pm to 5 am, corresponding to the times of sunset and -rise. The average light intensity was 24.5 lx at ground level, which is within the range of light intensities found below street lights, and matches the light intensities used in other light-pollution experiments14,56. For the microplastic pollution treatment, we used granules (1.0–2.5 mm diameter) of the synthetic rubber ethylene propylene diene monomer (EPDM Granulat, Gummi Appel GmbH + Co. KG, Kahl am Main, Germany) at a concentration of 1% (w/w, granules/dry soil, approximately corresponding to 1.5% v/v). EPDM granules are, for example, used in artificial sport turfs, from where they easily spread into the surroundings, and have been used previously to investigate the effects of microplastics on plants18. The chosen concentration is well within the range of concentrations used in previous studies18,66,67, and is at the low to intermediate range of concentrations found in sites polluted with plastics68. For the soil-salinization treatment, dissolved NaCl was added to the soil. Soil salinity is commonly measured as electrical conductivity, with a conductivity between 4 and 8 dS m−1 considered to be moderately saline69. For the experiment, we used a salinity of 6 dS m−1. To maintain a more or less constant salinity level, electrical conductivity was measured weekly, and, if required, adjusted by adding dissolved NaCl. For the eutrophication treatment, 3 g of a dissolved NPK fertilizer (Universol® blue oxide, ICL SF Germany & Austria, Nordhorn, Germany) was added per pot. For N, this corresponds to an input of 100 kg N ha−1, comparable to the yearly amounts of atmospheric N deposition in large parts of Europe52 and the yearly nitrogen input on agricultural field in the European Union70. To ensure a more or less constant nutrient availability during the experiments, we split total fertilizer input into three applications (directly after, 3 weeks after, and 6 weeks after starting the experiments) of 1 g fertilizer per pot per application. In addition, to avoid severe nutrient limitation in the other pots, all pots (irrespective of the eutrophication treatment) received basic fertilization. This was applied four times to the transplanted-seedling-community pots and five times to the sown community pots, with 0.2 g fertilizer per pot per application. For the pesticide treatment, we used the fungicide Landor® CT (Syngenta Agro GmbH, Maintal, Germany). This fungicide was chosen because it contains three azoles as active agents, which belong to the most widely used class of antifungal agents71. To each pot in this treatment, we added 1.5 μl fungicide dissolved in water (1‰). This corresponds to 60% of the maximum amount that should be used per hectare of cropland. A summary of the levels of the individual GCFs used in our experiment is provided in Supplementary Table 8.Combinations of simultaneously acting GCFsTo examine the potential effects of the numbers of simultaneously acting GCFs, we created five levels of increasing GCF numbers. These levels were: zero (i.e., the control without any GCF application), one (single), two, four and six GCFs. For the one-, two- and four-GCF levels, there were six different combinations, so that each of these levels included either six different GCFs in case of the one-factor, or six different GCF combinations in case of the two- and four-GCF levels. In the six-GCF level, all six factors were combined, so that there was only one combination. To avoid potential biases due to unequal representation of the different GCFs in each GCF-number level, we created the GCF combinations randomly but with the restriction that each GCF was present in an equal number of combinations for each GCF-number level (i.e., each GCF was included once in GCF-number levels 1 and 6, respectively, twice in GCF-number level 2, and four times in GCF-number level 4; Supplementary Table 11).Experimental lay-outThe experiment was conducted outdoors in the climate-warming-simulation facility of the Botanical Garden of the University of Konstanz, Germany (N: 47°69’19.56”, E: 9°17’78.42”). Twenty of the 2 m × 2 m plots of this facility were used for our experiment. As the climate-warming and light-pollution treatments could not be applied to each individual pot separately, we applied those treatments at the plot level. Therefore, we assigned four of the 20 plots to the climate-warming treatment, four plots to the light-pollution treatment and four plots to both climate-warming and light-pollution treatment combination. Each plot had a 145 cm high metal frame. The eight plots assigned to the climate-warming treatment were equipped with a 1.80 m long, horizontally hanging infrared-heating lamp at the top of the metal frame (i.e., at 145 cm above soil level). The heating lamp slowly oscillated along its longitudinal axis to ensure uniform heating of the whole 2 m × 2 m plot. The eight plots assigned to the light-pollution treatment, each had a LED spotlight attached to one of the sides of the metal frame at a height of 120 cm. To reduce illumination of the neighboring plots, light-pollution was only applied to the outer plots of the climate-warming-simulation facility (Supplementary Fig. 5), and LEDs were pointing away from the inner plots and were equipped with lamp shades made of black plastic pots (18 cm × 18 cm × 25.5 cm). Furthermore, to reduce the light intensity to a realistic light-pollution level (24.5 lx) as found below street lights, we covered the spotlight with a layer of white cloth (Supplementary Fig. 6). For further details on the artificial light treatment, see Supplementary Fig. 7.To create mesocosms with the transplanted-seedling and sown communities, we filled 10-L pots (CEP- Container, 10.0 F, Burger GmbH, Renningen-Malmsheim, Germany) with a mixture of 40% potting soil (see above), 40% quartz sand (0.5–0.8 mm), and—to inoculate the substrate with a natural soil community—20% top soil excavated from a seminatural grassland patch in the botanical garden. In total, the experiments with the transplanted-seedling and sown communities, each included 120 pots (i.e., 20 treatment combinations × six replicates × 2 experiments = 240 pots in total; see Supplementary Table 11), which were distributed across the 20 plots. To prevent leakage of fertilizer or salt solutions, each pot was placed onto a plastic dish. To reduce differences due to environmental variation within plots, the positions of pots within each plot were re-randomized every 14 days. Plants were watered regularly to avoid drought stress and to avoid differences in soil moisture due to application of fertilizer- and salt-solutions.For the sown community, we randomly distributed five seeds of each of the nine species on the substrate in each pot on 3 July 2020. For the transplanted-seedling community, two seedlings of each of the nine species were transplanted into each pot (i.e., 18 seedlings per pot) according to a fixed pattern (Supplementary Fig. 8) on 6 July 2020. Since there were a few seedlings missing for S. arvensis (six seedlings) and V. cracca (four seedlings), we re-sowed these species in germination trays on 6 July 2020. On 13 July 2020, dead seedlings, and the missing seedlings for S. arvensis were replaced. Since V. cracca took longer to germinate, the missing seedlings were transplanted on 17 July 2020.MeasurementsTo investigate the effects of single-GCFs and their number on the sown and transplanted-seedling communities, we used plant biomass as an indicator for plant performance72. As it was impossible to disentangle the roots, we only used aboveground biomass. On 14 and 15 September 2020, i.e., 10 weeks after transplanting, we harvested the transplanted-seedling communities. On 28 and 29 September, i.e., twelve weeks after sowing, we harvested the sown communities. For both community types, we harvested the plants separately by species. The harvested plants were stored in paper bags, dried at 70 °C for at least 72 hours and weighed.Statistical analysisAll analyses were done in R 3.6.273. As the transplanted-seedling and sown communities were harvested at different times, we treated them as separate experiments, and therefore analyzed them separately (but see the subsection “Community type specific responses” below).Community aboveground biomassTo analyze the effects GCF number on plant-community productivity, we fitted linear mixed-effects models separately for the transplanted-seedling and sown communities, using the lmer function in the “lme4” package74. Total aboveground biomass per pot was the response variable. To improve normality of the residuals, biomass of the transplanted-seedling and sown communities was square-root- and natural-log-transformed, respectively. We included GCF number as a continuous fixed variable. To account for non-independence of pots in the same GCF combination and of pots in the same plot, GCF combination and plot were included as random effects. The effects of the individual GCFs on biomass production were also assessed by fitting linear mixed-effects models, using only the data of the control and single-GCF treatments, and including GCF identity as fixed effect.Community compositionTo assess potential effects of single-GCFs and GCF number on the final composition of the transplanted-seedling and sown communities, we first assessed variation in species composition, based on biomass proportions, among pots using principal component analysis (PCA) [rda function of the “vegan” package75,]. For each PCA (Supplementary Fig. 1), we extracted the PC1 and PC2 values, which together explained more than 65% of the variation in community composition and included them as response variables in separate linear mixed models, as described above for community biomass.To evaluate whether GCF number affects the diversity and evenness of plant communities, we calculated the Shannon index (H)76, using the diversity function in the “vegan” package, and evenness index (J)77 based on species biomass proportions. Subsequently, the single-GCF and GCF-number effects on diversity and evenness of the sown and transplanted-seedling communities were analyzed using linear mixed-effects models, or—if adding random effects did not improve the model—more parsimonious linear models78,79. For all models, we used type II analysis of variance (ANOVA) tests (Anova function in the “car” package) to assess the significance of fixed effects.Hierarchical diversity-interaction modelingWhen there is a significant GCF-number effect, this could reflect that with increasing numbers of co-acting GCFs, there is a higher chance that it will include a GCF with a strong and dominant effect (i.e., sampling or selection effects). However, it could also be that the GCF-number effect is driven by interactions among the GCFs, and the effects of these interactions could be GCF-specific or general. As our experiment does not include all possible combinations of GCFs, it does not allow to test the contributions of each possible multi-way GCF interaction. Therefore, to gain insights into whether the GCF identities and specific or general GCF interactions underlie the significant GCF-number effects, we applied the hierarchical diversity-interaction modeling framework of Kirwan et al.80. This framework was originally developed for estimating contributions of species identities and their interactions to ecosystem functions, but we here applied it to GCF identities and interactions. For each of the response variables showing a significant GCF-number effect, we ran five hierarchical models specifying different assumptions about the potential contributions of individual GCFs and their interactions to the GCF-number effect, and compared them using likelihood ratio tests (Fig. 4). For these analyses, the data of the control treatment (i.e., GCF number zero) was excluded. Each of the five models specified different assumptions about the potential contributions of individual GCFs and their interactions to the GCF-number effect. The first model is the null model, which assumed that there were no GCF-specific contributions (i.e., all GCFs contributed equally) and that there were no contributions of GCF interactions. Therefore, the null model only included the centered sum of the GCFs of each treatment (M) as fixed effect. M accounts for differences in ‘initial abundances’ of GCFs—meaning that the other model terms are interpreted based on the average initial abundance—and was also included in the four other models80. This way, we could include the GCFs’ relative proportions in each GCF combination, instead of just considering GCF presence, while taking into account that, with increasing GCF number, the relative proportion of each individual GCF is automatically reduced. In the second model, the GCF identities (i.e., their proportions in the respective GCF combination) were added, assuming that individual GCFs contribute differently to the effect of GCF number. In the third model, separate-pairwise interactions between the GCFs were added, considering that, in addition to contributions of individual GCFs, specific pairwise interactions contributed to the GCF-number effect. In the fourth model, the average GCF-interaction model (which is also called the evenness model in Kirwan et al. 2009), the separate-pairwise GCF interactions were replaced by an average interaction effect. Thus, the average GCF-interaction model assumed equivalent contributions of all pairwise GCF interactions. In the fifth model, the additive GCF-specific interaction contributions model, the average interaction effect of the fourth model was replaced by average GCF-specific interaction effects. This model assumed that each GCF’s contribution to a pairwise interaction remains constant. For the calculation of the average GCF-specific and average interaction effect, we used the equations provided by Kirwan et al.80. For each of the response variables, we generally included the same random terms as in the main analyses of the GCF-number effect. However, as this resulted in singularity warnings for some of the hierarchical diversity-interaction models, e.g., those for species diversity and evenness measures, we used for these cases linear models instead of linear mixed models.Fig. 4: Hierarchical diversity-interaction-modeling framework to assess contributions of GCF identities and GCF interactions to GCF-number effects.The framework was adapted from Kirwan et al.80. The null model assumes equivalent contributions of all GCFs and no interactions between them. The subsequent models assume more complex effects of how the individual GCFs and their interactions determine the GCF-number effects. The questions that can be answered by comparing specific models are depicted next to the arrows connecting the two models.Full size imageCommunity type-specific responsesAs the transplanted-seedling and sown communities were harvested at different times, we treated them as separate experiments, and therefore analyzed them separately. However, to test explicitly whether both community types differed in their responses to single-GCFs and GCF number, we also analyzed them jointly. To this end, we fitted linear mixed-effects models for each response variable including GCF number (or single-factor treatments), community type and their interaction as fixed effects (Supplementary Table 5).Final number of plants per speciesTo test for effects of individual GCFs and GCF number on species presence, i.e., the number of individuals per species present at harvest, we fitted generalized linear mixed-effects models for the transplanted-seedling and sown communities separately. We included the survival rate (number of individuals present at harvest divided by the number of planted/sown individuals) as response variables. For the models testing the effects of GCF number, we included GCF combination, species, pot, and plot as random effects. For the models testing the effects of single-GCFs, the same random effects were included, except for GCF combination. Specific random effects were removed from the model if their incorporation resulted in singular fit warnings due to low variation. We assessed the effects of individual GCFs or GCF number using type III ANOVA tests (Anova function in the “car” package, Supplementary Table 7).Eutrophication effectsIn addition to the general assessment of individual GCF effects in the hierarchical diversity-interaction models, we specifically assessed the effects of eutrophication. This was done because eutrophication had the strongest effect on productivity as individual GCF, and this might also have dominated the GCF-number effect, indicating a sampling effect. To this end, we added a binary-coded variable to include information on whether eutrophication was included in the different GCF combinations. Subsequently, we fitted linear mixed-effects models for all response traits that were affected by GCF number. In these models, we included GCF number, community type, eutrophication, and the respective two-way interactions as fixed effects, and plot and GCF combination as random effects. Effects of fixed factors were assessed using type III ANOVA tests (Anova function in the “car” package; Supplementary Table 6).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Neolithic dental calculi provide evidence for environmental proxies and consumption of wild edible fruits and herbs in central Apennines

    Asevedo, L. et al. Palynological analysis of dental calculus from Pleistocene proboscideans of southern Brazil: a new approach for paleodiet and paleoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 540, 109523 (2020).Article 

    Google Scholar 
    Cristiani, E. et al. Wild cereal grain consumption among Early Holocene foragers of the Balkans predates the arrival of agriculture. Elife 10, e72976 (2021).Article 
    CAS 

    Google Scholar 
    Nava, A. et al. Multipronged dental analyses reveal dietary differences in last foragers and first farmers at Grotta Continenza, central Italy (15,500–7000 BP). Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Ottoni, C. et al. Tracking the transition to agriculture in Southern Europe through ancient DNA analysis of dental calculus. Proc. Natl. Acad. Sci. USA 118, e2102116118 (2021).Article 
    CAS 

    Google Scholar 
    Cammidge, T. S., Kooyman, B. & Theodor, J. M. Diet reconstructions for end-Pleistocene Mammut americanum and Mammuthus based on comparative analysis of mesowear, microwear, and dental calculus in modern Loxodonta africana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 538, 109403 (2020).Article 

    Google Scholar 
    de Oliveira, K. et al. From oral pathology to feeding ecology: the first dental calculus paleodiet study of a South American native megamammal. J. S. Am. Earth Sci. 109, 103281 (2021).Article 

    Google Scholar 
    Mothé, D. et al. The micro from mega: dental calculus description and the first record of fossilized oral bacteria from an extinct proboscidean. Int. J. Paleopathol. 33, 55–60 (2021).Article 

    Google Scholar 
    Eglinton, G. & Logan, G. A. Molecular preservation. Philosophical Transactions of the Royal Society of London. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 333, 315–328 (1991).CAS 

    Google Scholar 
    Romanowski, G., Lorenz, M. G. & Wackernagel, W. Adsorption of plasmid DNA to mineral surfaces and protection against Dnase I. Appl. Environ. Microbiol. 57, 1057–1061 (1991).Article 
    CAS 

    Google Scholar 
    Milanesi, C. et al. Ultrastructural study of archaeological Vitis vinifera L. seeds using rapid-freeze fixation and substitution. Tissue Cell 41, 443–447 (2009).Article 
    CAS 

    Google Scholar 
    Power, R. C., Salazar-García, D. C., Wittig, R. M., Freiberg, M., & Henry, A. G. Dental calculus evidence of Taï Forest chimpanzee plant consumption and life history transitions. Sci. Rep. 5, 15161 (2015).Goude, G. et al. A multidisciplinary approach to Neolithic life reconstruction. J. Archaeol. Method Theory 26, 537–560 (2019).Article 

    Google Scholar 
    Farrer, A. G. et al. Effectiveness of decontamination protocols when analyzing ancient DNA preserved in dental calculus. Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Weyrich, L. S., Dobney, K. & Cooper, A. Ancient DNA analysis of dental calculus. J. Hum. Evol. 79, 119–124 (2015).Article 

    Google Scholar 
    Ozga, A. T. et al. Successful enrichment and recovery of whole mitochondrial genomes from ancient human dental calculus. Am. J. Phys. Anthropol. 160, 220–228 (2016).Article 

    Google Scholar 
    Mann, A. E. et al. Do I have something in my teeth? The trouble with genetic analyses of diet from archaeological dental calculus. Quat. Int. https://doi.org/10.1016/j.quaint.2020.11.019 (2020).Wright, S. L., Dobney, K. & Weyrich, L. S. Advancing and refining archaeological dental calculus research using multiomic frameworks. Sci. Technol. Archaeol. Res. 7, 13–30 (2021).
    Google Scholar 
    Sawafuji, R., Saso, A., Suda, W., Hattori, M. & Ueda, S. Ancient DNA analysis of food remains in human dental calculus from the Edo period, Japan. PLoS One 15, e0226654 (2020).Article 
    CAS 

    Google Scholar 
    Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).Article 
    CAS 

    Google Scholar 
    Ottoni, C. et al. Metagenomic analysis of dental calculus in ancient Egyptian baboons. Sci. Rep. 9, 1–10 (2019).Article 

    Google Scholar 
    Hollingsworth, P. M., Graham, S. W. & Little, D. P. Choosing and using a Plant DNA barcode. PLoS One 6, 1–13 (2011).Article 

    Google Scholar 
    Gismondi, A., Fanali, F., Labarga, J. M. M., Caiola, M. G. & Canini, A. Crocus sativus L. genomics and different DNA barcode applications. Plant Syst. Evol. 299, 1859–1863 (2013).Article 
    CAS 

    Google Scholar 
    ICSN. The international code for starch nomenclature, accessed 15 September 2021; http://fossilfarm.org/ICSN/Code.html (2011).Gismondi, A. et al. Starch granules: a data collection of 40 food species. Plant Biosyst. 153, 273–279 (2019).Article 

    Google Scholar 
    Henry, A. G., Brooks, A. S. & Piperno, D. R. Plant foods and the dietary ecology of Neanderthals and early modern humans. J. Hum. Evol. 69, 44–54 (2014).Article 

    Google Scholar 
    PalDat. A palynological database (2000 onwards), accessed 19 January 2022; https://www.paldat.org/ (2019).Berglund, B. E. & Ralska-Jasiewiczowa, M. Pollen analysis and pollen diagrams. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 455–484 (Wiley, 1986).Faegri, K. & Iversen, J. Textbook of Pollen analysis, 4th edn (eds Faegri, K. et al.) (John Wiley and Sons-Chichester, 1989).Grímsson, F. et al. Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler’s and Chaney’s Arcto-Tertiary hypotheses. Plant Syst. Evol. 301, 809–832 (2015).Article 

    Google Scholar 
    Denk, T. & Tekleva, M. V. Pollen morphology and ultrastructure of Quercus with focus on Group Ilex (= Quercus Subgenus Heterobalanus (Oerst.) Menitsky): Implications for oak systematics and evolution. Grana 53, 255–282 (2014).Article 

    Google Scholar 
    Grímsson, F. & Zetter, R. Combined LM and SEM study of the middle Miocene (Sarmatian) palynofora from the Lavanttal Basin, Austria: Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50, 262–310 (2011).Article 

    Google Scholar 
    Mohanty, R. P., Buchheim, M. A., Portman, R. & Levetin, E. Molecular and ultrastructural detection of plastids in Juniperus (Cupressaceae) pollen. Phytologia 98, 298–310 (2016).
    Google Scholar 
    Martin, A. C. & Harvey, W. J. The Global Pollen Project: a new tool for pollen identifcation and the dissemination of physical reference collections. Methods Ecol. Evol. 8, 892–897 (2017).Article 

    Google Scholar 
    Maciejewska-Rutkowska, I., Bocianowski, J. & Wrońska-Pilarek, D. Pollen morphology and variability of Polish native species from genus Salix L. PLoS One 16, e0243993 (2021).Article 
    CAS 

    Google Scholar 
    Abreu, I., Costa, I., Oliveira, M., Cunha, M. & De Castro, R. Ultrastructure and germination of Vitis vinifera cv. Loureiro pollen. Protoplasma 228, 131–135 (2006).Article 
    CAS 

    Google Scholar 
    Nagels, A. et al. Palynological diversity and major evolutionary trends in Cyperaceae. Plant Syst. Evol. 277, 117 (2009).Article 

    Google Scholar 
    El Ghazali, G. E. Pollen morphological studies in Amaranthaceae s. lat. (incl. Chenopodiaceae) and their taxonomic significance: a review. Grana 61, 1–7 (2022).Article 

    Google Scholar 
    Petraco, N., & Kubic, T. Color Atlas and Manual of Microscopy for Criminalists, Chemists, and Conservators (Boca Raton-CRC Press, 2003).D’Agostino, A. et al. Environmental implications and evidence of natural products from dental calculi of a Neolithic–Chalcolithic community (central Italy). Sci. Rep. 11, 1–13 (2021).Article 

    Google Scholar 
    Frangiote-Pallone, S. & de Souza, L. A. Pappus and cypsela ontogeny in Asteraceae: structural considerations of the tribal category. Rev. Mex. Biodivers. 85, 62–77 (2014).Article 

    Google Scholar 
    Eglinton, G., Gonzalez, A. G., Hamilton, R. J. & Raphael, R. A. Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. Phytochemistry 1, 89–102 (1962).Article 
    CAS 

    Google Scholar 
    Buckley, S. A., Stott, A. W. & Evershed, R. P. Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. Analyst 124, 443–452 (1999).Article 
    CAS 

    Google Scholar 
    Hardy, K. et al. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99, 617–626 (2012).Article 
    CAS 

    Google Scholar 
    Luong, S., Tocheri, M. W., Sutikna, T., Saptomo, E. W. & Roberts, R. G. Incorporating terpenes, monoterpenoids and alkanes into multiresidue organic biomarker analysis of archaeological stone artefacts from Liang Bua (Flores, Indonesia). J. Archaeol. Sci. Rep. 19, 189–199 (2018).
    Google Scholar 
    Luong, S. et al. Combined organic biomarker and use-wear analyses of stone artefacts from Liang Bua, Flores, Indonesia. Sci. Rep. 9, 1–17 (2019).Article 
    CAS 

    Google Scholar 
    Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).Article 

    Google Scholar 
    Mann, A. E. et al. Differential preservation of endogenous human and microbial DNA in dental calculus and dentin. Sci. Rep. 8, 1–15 (2018).Article 

    Google Scholar 
    Horrocks, M., Nieuwoudt, M. K., Kinaston, R., Buckley, H. & Bedford, S. Microfossil and Fourier Transform InfraRed analyses of Lapita and post-Lapita human dental calculus from Vanuatu, Southwest Pacific. J. R. Soc. N. Z. 44, 17–33 (2014).Article 

    Google Scholar 
    Radini, A., Nikita, E., Buckley, S., Copeland, L. & Hardy, K. Beyond food: the multiple pathways for inclusion of materials into ancient dental calculus. Am. J. Phys. Anthropol. 162, 71–83 (2017).Article 

    Google Scholar 
    Henry, A. G. Other microparticles: volcanic glass, minerals, insect remains, feathers, and other plant parts. In Handbook for the Analysis of Micro-Particles in Archaeological Samples 289–295 (Springer, Cham, 2020).MacKenzie, L., Speller, C. F., Holst, M., Keefe, K., & Radini, A. Dental calculus in the industrial age: human dental calculus in the Post-Medieval period, a case study from industrial Manchester. Quat. Int. https://doi.org/10.1016/j.quaint.2021.09.020 (2021).Radini, A., & Nikita, E. Beyond dirty teeth: Integrating dental calculus studies with osteoarchaeological parameters. Quat. Int. https://doi.org/10.1016/j.quaint.2022.03.003 (2022).Dobney, K. & Brothwell, D. A scanning electron microscope study of archaeological dental calculus. In Scanning Electron Microscopy in Archaeology BAR International Series (ed. & Olsen S), vol. 452, pp. 372–385 (Oxford, UK: BAR, 1988).Henry, A. G. & Piperno, D. R. Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqā’i, Syria. J. Archaeol. Sci. 35, 1943–1950 (2008).Article 

    Google Scholar 
    Wesolowski, V., de Souza, S. M. F. M., Reinhard, K. J. & Ceccantini, G. Evaluating microfossil content of dental calculus from Brazilian sambaquis. J. Archaeol. Sci. 37, 1326–1338 (2010).Article 

    Google Scholar 
    González-Guarda, E. et al. Multiproxy evidence for leaf-browsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from Central Chile. Proc. Natl. Acad. Sci. USA 115, 9258–9263 (2018).Article 

    Google Scholar 
    Radley, J. A. Starch and its Derivatives (Chapman and Hall, London, 1968).Power, R. C., Salazar-García, D. C., Wittig, R. M. & Henry, A. G. Assessing use and suitability of scanning electron microscopy in the analysis of micro remains in dental calculus. J. Archaeol. Sci. 49, 160–169 (2014).Article 
    CAS 

    Google Scholar 
    Rottoli, M. & Castiglioni, E. Prehistory of plant growing and collecting in northern Italy, based on seed remains from the early Neolithic to the Chalcolithic (c. 5600–2100 cal BC). Veg. Hist. Archaeobot. 18, 91–103 (2009).Article 

    Google Scholar 
    Fiorentino, G. et al. Climate changes and human–environment interactions in the Apulia region of southeastern Italy during the Neolithic period. Holocene 23, 1297–1316 (2013).Article 

    Google Scholar 
    Rottoli, M., & Pessina, A. Neolithic agriculture in Italy: an update of archaeobotanical data with particular emphasis on northern settlements. In The Origins and Spread of Domestic Plants in Southwest Asia and Europe 157–170 (Routledge, 2016).Arobba, D., Panelli, C., Caramiello, R., Gabriele, M. & Maggi, R. Cereal remains, plant impressions and 14C direct dating from the Neolithic pottery of Arene Candide Cave (Finale Ligure, NW Italy). J. Archaeol. Sci. Rep. 12, 395–404 (2017).
    Google Scholar 
    Ucchesu, M., Sau, S. & Lugliè, C. Crop and wild plant exploitation in Italy during the Neolithic period: New data from Su Mulinu Mannu, Middle Neolithic site of Sardinia. J. Archaeol. Sci. Rep. 14, 1–11 (2017).
    Google Scholar 
    Scorrano, G. et al. Effect of Neolithic transition on an Italian community: Mora Cavorso (Jenne, Rome). Archaeol. Anthropol. Sci. 11, 1443–1459 (2019).Article 

    Google Scholar 
    De Angelis, F. et al. Exploring mobility in Italian Neolithic and Copper Age communities. Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Oxilia, G. et al. Exploring late Paleolithic and Mesolithic diet in the Eastern Alpine region of Italy through multiple proxies. Am. J. Phys. Anthropol. 174, 232–253 (2021).Article 

    Google Scholar 
    Fahmy, A. G. E. Palaeoethnobotanical studies of the Neolithic settlement in Hidden Valley, Farafra Oasis, Egypt. Veg. Hist. Archaeobot. 10, 235–246 (2001).Article 

    Google Scholar 
    Reed, K. From the field to the hearth: plant remains from Neolithic Croatia (ca. 6000–4000 cal bc). Veg. Hist. Archaeobot. 24, 601–619 (2015).Article 

    Google Scholar 
    Lucarini, G., Radini, A., Barton, H. & Barker, G. The exploitation of wild plants in Neolithic North Africa. Use-wear and residue analysis on non-knapped stone tools from the Haua Fteah cave, Cyrenaica, Libya. Quat. Int. 410, 77–92 (2016).Article 

    Google Scholar 
    García-Granero, J. J., Urem-Kotsou, D., Bogaard, A. & Kotsos, S. Cooking plant foods in the northern Aegean: microbotanical evidence from Neolithic Stavroupoli (Thessaloniki, Greece). Quat. Int. 496, 140–151 (2018).Article 

    Google Scholar 
    Bouby, L. et al. Early Neolithic (ca. 5850-4500 cal BC) agricultural diffusion in the Western Mediterranean: an update of archaeobotanical data in SW France. PLoS One 15, e0230731 (2020).Article 
    CAS 

    Google Scholar 
    Delhon, C., Binder, D., Verdin, P. & Mazuy, A. Phytoliths as a seasonality indicator? The example of the Neolithic site of Pendimoun, south-eastern France. Veg. Hist. Archaeobot. 29, 229–240 (2020).Article 

    Google Scholar 
    Lu, H. et al. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS One 4, e4448 (2009).Article 

    Google Scholar 
    Celant, A. Indagini paleobotaniche su macroresti vegetali dai siti neo-eneolitici del territorio di Roma. In Roma prima del mito. Abitati e necropoli dal Neolitico alla prima età dei Metalli nel territorio di Roma (VI-III millennio a.C.) (eds Anzidei, A. P. & Carboni, C.) Vol. 2, 687–704 (Archaeopress Archaeol., 2020).Carra, M. et al. Plant foods in the Late Palaeolithic of Southern Italy and Sicily: Integrating carpological and dental calculus evidence. Quat. Int. https://doi.org/10.1016/j.quaint.2022.06.007 (2022) .Bednar, G. E. et al. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J. Nutr. 131, 276–286 (2001).Article 
    CAS 

    Google Scholar 
    Hoover, R., Hughes, T., Chung, H. J. & Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res. Int. 43, 399–413 (2010).Article 
    CAS 

    Google Scholar 
    Wani, I. A. et al. Isolation, composition, and physicochemical properties of starch from legumes: a review. Starch‐Stärke 68, 834–845 (2016).Article 
    CAS 

    Google Scholar 
    Tayade, R., Kulkarni, K. P., Jo, H., Song, J. T. & Lee, J. D. Insight into the prospects for the improvement of seed starch in legume—a review. Front. Plant Sci. 10, 1213 (2019).Article 

    Google Scholar 
    Stafford, H. A. Distribution of tartaric acid in the leaves of certain angiosperms. Am. J. Bot. 46, 347–352 (1959).Article 
    CAS 

    Google Scholar 
    DeBolt, S., Cook, D. R. & Ford, C. M. L-Tartaric acid synthesis from vitamin C in higher plants. Proc. Natl. Acad. Sci. USA 103, 5608–5613 (2006).Article 
    CAS 

    Google Scholar 
    Fernández-García, E. et al. Carotenoids bioavailability from foods: from plant pigments to efficient biological activities. Food Res. Int. 46, 438–450 (2012).Article 

    Google Scholar 
    Gliszczyńska, A. & Brodelius, P. E. Sesquiterpene coumarins. Phytochem. Rev. 11, 77–96 (2012).Article 

    Google Scholar 
    Eerkens, J. The preservation and identification of Piñon resins by GC‐MS in pottery from the Western Great Basin. Archaeometry 44, 95–105 (2002).Article 
    CAS 

    Google Scholar 
    Barnard, H. et al. Mixed results of seven methods for organic residue analysis applied to one vessel with the residue of a known foodstuff. J. Archaeol. Sci. 34, 28–37 (2007).Article 

    Google Scholar 
    Wysocka, W., Przybył, A. & Brukwicki, T. The structure of angustifoline, an alkaloid of Lupinus angustifolius, in solution. Monatsh. Chem. 125, 1267–1272 (1994).Article 
    CAS 

    Google Scholar 
    Ohmiya, S., Saito, K., & Murakoshi, I. Lupine alkaloids. In The alkaloids: Chemistry and Pharmacology Vol. 47, 1–114) (Academic Press, 1995).Mancinotti, D., Frick, K. M. & Geu-Flores, F. Biosynthesis of quinolizidine alkaloids in lupins: mechanistic considerations and prospects for pathway elucidation. Nat. Prod. Rep. 39, 1423–1437 (2022).Article 
    CAS 

    Google Scholar 
    Silvestri, L., Achino, K. F., Gatta, M., Rolfo, M. F. & Salari, L. Grotta Mora Cavorso: physical, material and symbolic boundaries of life and death practices in a Neolithic cave of central Italy. Quat. Int. 539, 29–38 (2020).Article 

    Google Scholar 
    Steele, V. J., Stern, B. & Stott, A. W. Olive oil or lard?: distinguishing plant oils from animal fats in the archaeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 3478–3484 (2010).Article 
    CAS 

    Google Scholar 
    Buonasera, T. Investigating the presence of ancient absorbed organic residues in groundstone using GC–MS and other analytical techniques: a residue study of several prehistoric milling tools from central California. J. Archaeol. Sci. 34, 1379–1390 (2007).Article 

    Google Scholar 
    Luong, S. et al. Development and application of a comprehensive analytical workflow for the quantification of non-volatile low molecular weight lipids on archaeological stone tools. Anal. Met. 9, 4349–4362 (2017).Article 
    CAS 

    Google Scholar 
    Baeten, J., Jervis, B., De Vos, D. & Waelkens, M. Molecular evidence for the mixing of Meat, Fish and Vegetables in Anglo‐Saxon coarseware from Hamwic, UK. Archaeometry 55, 1150–1174 (2013).Article 
    CAS 

    Google Scholar 
    Evershed, R. P. Chemical composition of a bog body adipocere. Archaeometry 34, 253–265 (1992).Article 
    CAS 

    Google Scholar 
    Garnier, N., Bernal-Casasola, D., Driard, C. & Pinto, I. V. Looking for ancient fish products through invisible biomolecular residues in the roman production vats from the Atlantic. Coast J. Marit. Archaeol. 13, 285–328 (2018).Article 

    Google Scholar 
    Copley, M. S., Bland, H. A., Rose, P., Horton, M. & Evershed, R. P. Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst 130, 860–871 (2005).Article 
    CAS 

    Google Scholar 
    Reber, E. A. & Hart, J. P. Pine resins and pottery sealing: analysis of absorbed and visible pottery residues from central New York State. Archaeometry 50, 999–1017 (2008).Article 
    CAS 

    Google Scholar 
    Simopoulos, A. P. Omega‐3 fatty acids in wild plants, nuts and seeds. Asia Pac. J. Clin. Nutr. 11, S163–S173 (2002).Article 
    CAS 

    Google Scholar 
    Harris, W. S. et al. Stearidonic acid-enriched soybean oil increased the omega-3 index, an emerging cardiovascular risk marker. Lipids 43, 805–811 (2008).Article 
    CAS 

    Google Scholar 
    Gismondi, A., Rolfo, M. F., Leonardi, D., Rickards, O. & Canini, A. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding. C. R. Biol. 335, 472–479 (2012).Article 
    CAS 

    Google Scholar 
    Steffens, W. & Wirth, M. Freshwater fish-an important source of n-3 polyunsaturated fatty acids: a review. Fish. Aquat. Sci. 13, 5–16 (2005).
    Google Scholar 
    Swanson, D., Block, R. & Mousa, S. A. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv. Nutr. 3, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    Wiermann, R., & Gubatz, S. Pollen wall and sporopollenin. In International Review of Cytology 35–72 (Academic Press, 1992).Cristiani, E., Radini, A., Edinborough, M. & Borić, D. Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods. Proc. Natl. Acad. Sci. USA 113, 10298–10303 (2016).Article 
    CAS 

    Google Scholar 
    Hardy, K. et al. Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel. Quat. Int. 398, 129–135 (2016).Article 

    Google Scholar 
    Radini, A. et al. Neanderthals, trees and dental calculus: new evidence from El Sidrón. Antiquity 90, 290–301 (2016).Article 

    Google Scholar 
    Lippi, M. M., Pisaneschi, L., Sarti, L., Lari, M. & Moggi-Cecchi, J. Insights into the Copper-Bronze Age diet in central Italy: plant microremains in dental calculus from Grotta dello Scoglietto (Southern Tuscany, Italy). J. Archaeol. Sci. Rep. 15, 30–39 (2017).
    Google Scholar 
    Modi, A. et al. Combined metagenomic and archaeobotanical analyses on human dental calculus: a cross-section of lifestyle conditions in a Copper Age population of central Italy. Quat. Int. https://doi.org/10.1016/j.quaint.2021.12.003 (2021).Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. https://doi.org/10.1038/ng.2906 (2014).Lieverse, A. R. Diet and the aetiology of dental calculus. Int. J. Osteoarchaeol. 9, 219–232 (1999).Article 

    Google Scholar 
    Lukacs, J. R. & Largaespada, L. L. Explaining sex differences in dental caries prevalence: saliva, hormones, and “life‐history” etiologies. Am. J. Hum. Biol. 18, 540–555 (2006).Article 

    Google Scholar 
    Moore, P. D., Webb, J. A., & Collison, M. E. Pollen Analysis (Blackwell Scientific Publications, 1991).Borojević, K., Forenbaher, S., Kaiser, T. & Berna, F. Plant use at Grapčeva cave and in the eastern Adriatic Neolithic. J. Field Archaeol. 33, 279–303 (2008).Article 

    Google Scholar 
    Martin, L., Jacomet, S. & Tiebault, S. Plant economy during the Neolithic in a mountain context: the case of “Le Chenet des Pierres” in the French Alps (Bozel-Savoie, France). Veg. Hist. Archaeobot. 17, 113–122 (2008).Article 

    Google Scholar 
    Moser, D., Di Pasquale, G., Scarciglia, F. & Nelle, O. Holocene mountain forest changes in central Mediterranean: soil charcoal data from the Sila Massif (Calabria, southern Italy). Quat. Int. 457, 113–130 (2017).Article 

    Google Scholar 
    D’Agostino, A. et al. Pollen record of the Late Pleistocene–Holocene stratigraphic sequence and current plant biodiversity from Grotta Mora Cavorso (Simbruini Mountains, Central Italy). Ecol. Evol. 12, e9486 (2022).Radaeski, J. N., Bauermann, S. G. & Pereira, A. B. Poaceae pollen from Southern Brazil: distinguishing grasslands (campos) from forests by analyzing a diverse range of Poaceae species. Front. Plant Sci. 7, 1833 (2016).Article 

    Google Scholar 
    Turner, S. D. & Brown, A. G. Vitis pollen dispersal in and from organic vineyards: I. Pollen trap and soil pollen data. Rev. Palaeobot. Palynol. 129, 117–132 (2004).Article 

    Google Scholar 
    Marvelli, S., De’Siena, S., Rizzoli, E. & Marchesini, M. The origin of grapevine cultivation in Italy: the archaeobotanical evidence. Ann. Bot. 3, 155–163 (2013).
    Google Scholar 
    Riaz, S. et al. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol. 18, 1–14 (2018).Article 

    Google Scholar 
    Arnold, C., Gillet, F., & Gobat, J. M. Situation de la vigne sauvage Vitis vinifera subsp. silvestris en Europe. Vitis 159–170 (1998).Terral, J. F. et al. Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 105, 443–455 (2010).Article 

    Google Scholar 
    Buckley, S., Usai, D., Jakob, T., Radini, A. & Hardy, K. Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric central Sudan. PLoS One 9, e100808 (2014).Article 

    Google Scholar 
    Petrov, P. R., Popova, E. D. & Zlatanova, D. P. Niche partitioning among the red fox Vulpes vulpes (L.), stone marten Martes foina (Erxleben) and pine marten Martes martes (L.) in two mountains in Bulgaria. Acta Zool. Bulg. 68, 375–390 (2016).
    Google Scholar 
    Mikrjukov, K. A. Revision of genera and species composition of lower Centroheliozoa. II. Family Raphidiophryidae n. tam. Arch. Protistenkd. 147, 205–212 (1996).Article 

    Google Scholar 
    Cavalier-Smith, T. & von der Heyden, S. Molecular phylogeny, scale evolution and taxonomy of centrohelid heliozoa. Mol. Phylogen. Evol. 44, 1186–1203 (2007).Article 
    CAS 

    Google Scholar 
    Mertens, K. N., Rengefors, K., Moestrup, Ø. & Ellegaard, M. A review of recent freshwater dinoflagellate cysts: taxonomy, phylogeny, ecology and palaeocology. Phycologia 51, 612–619 (2012).Article 

    Google Scholar 
    Zlatogursky, V. V. Raphidiophrys heterophryoidea sp. nov. (Centrohelida: Raphidiophryidae), the first heliozoan species with a combination of siliceous and organic skeletal elements. Eur. J. Protist. 48, 9–16 (2012).Article 

    Google Scholar 
    Prokina, K. I. & Mylnikov, A. P. Centrohelid heliozoans from freshwater habitats of different types of South Patagonia and Tierra del Fuego, Chile. Inland Water Biol. 12, 10–20 (2019).Article 

    Google Scholar 
    Siemensma, F. J. & Roijackers, M. M. A study of new and little- known acanthocystid heliozoans, and a proposed division of the genus Acanthocystis (Actinopoda, Heliozoea). Arch. Protistenkd. 135, 197 (1988a).Article 

    Google Scholar 
    Siemensma, F. J. & Roijackers, M. M. The genus Raphidiophrys (Actinopoda, Heliozoea): scale morphology and species distinctions. Arch. Protistenkd. 136 237–248 (1988).Taylor, W.D. & Sanders, R. W. PROTOZOA. In Ecology and Classification of North American Freshwater Invertebrates (eds Thorp, J. H. & Covich, A. P.) 43–96 (Academic Press, 2001).Manconi, R., & Pronzato, R. Global diversity of sponges (Porifera: Spongillina) in freshwater. In Freshwater Animal Diversity Assessment 27–33 (Springer, Dordrecht, 2007).Malone, C. & Stoddart, S. The neolithic site of San Marco, Gubbio (Perugia), Umbria: survey and excavation 1985–7. Pap. Br. Sch. Rome 60, 1–69 (1992).Article 

    Google Scholar 
    Rottoli, M. La Marmotta, Anguillara Sabazia (RM). Scavi 1989. Analisi paletnobotaniche: prime risultanze, Appendice 1 M.A. In La Marmotta” (Anguillara Sabazia, RM). Scavi 1989. Un abitato perilacustre di età neolitica (eds. Fugazzola Delpino, M. A., D’Eugenio, G. & Pessina, A.) Bullettino di Paletnologia Italiana 84, 305–315 (1993).Pini, R. Late Neolithic vegetation history at the pile‐dwelling site of Palù di Livenza (northeastern Italy). J. Quat. Sci. 19, 769–781 (2004).Article 

    Google Scholar 
    Tinner, W. et al. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat. Sci. Rev. 28, 1498–1510 (2009).Article 

    Google Scholar 
    Bieniek, A. Archaeobotanical analysis of some early Neolithic settlements in the Kujawy region, central Poland, with potential plant gathering activities emphasized. Veg. Hist. Archaeobot. 11, 33–40 (2002).Article 

    Google Scholar 
    Tolar, T., Jacomet, S., Velušček, A. & Čufar, K. Plant economy at a late Neolithic lake dwelling site in Slovenia at the time of the Alpine Iceman. Veg. Hist. Archaeobot. 20, 207–222 (2011).Article 

    Google Scholar 
    D’Agostino, A. et al. Investigating plant micro-remains embedded in dental calculus of the Phoenician inhabitants of Motya (Sicily, Italy). Plants 9, 1395 (2020).Article 

    Google Scholar 
    Mercader, J. et al. Exaggerated expectations in ancient starch research and the need for new taphonomic and authenticity criteria. Facets 3, 777–798 (2018).Article 

    Google Scholar 
    Adojoh, O., Fabienne, M., Duller, R. & Osterloff, P. Taxonomy and phytoecology of palynomorphs and non-pollen palynomorphs: a refined compendium from the West Africa Margin. Biodivers. Int. J. 3, 188–200 (2019).Article 

    Google Scholar 
    Knapp, M., Clarke, A. C., Horsburgh, K. A. & Matisoo-Smith, E. A. Setting the stage building and working in an ancient DNA laboratory. Ann. Anat. 194, 3 (2012).Article 
    CAS 

    Google Scholar 
    Knapp, M., Lalueza-Fox, C. & Hofreiter, M. Re-inventing ancient human DNA. Investig. Genet. 6, 1 (2015).Article 

    Google Scholar 
    Gismondi, A. et al. Grapevine carpological remains revealed the existence of a Neolithic domesticated Vitis vinifera L. specimen containing ancient DNA partially preserved in modern ecotypes. J. Archaeol. Sci. 69, 75–84 (2016).Article 
    CAS 

    Google Scholar 
    Llamas, B. et al. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. Sci. Technol. Archaeol. Res. 3, 1–14 (2017).Le Moyne, C. & Crowther, A. Effects of chemical pre-treatments on modified starch granules: recommendations for dental calculus decalcification for ancient starch research. J. Archaeol. Sci. Rep. 35, 102762 (2021).
    Google Scholar 
    Rolfo, M. F., Achino, K. F., Fusco, I., Salari, L. & Silvestri, L. Reassessing human occupation patterns in the inner central Apennines in prehistory: the case-study of Grotta Mora Cavorso. J. Archaeol. Sci. Rep. 7, 358–367 (2016).
    Google Scholar  More

  • in

    Vitality as a measure of animal welfare during purse seine pumping related crowding of Atlantic mackerel (Scomber scrombrus)

    Huntingford, F. A. et al. Current issues in fish welfare. J. Fish Biol. 68, 332–372 (2006).Article 

    Google Scholar 
    Kaiser, M. J. & Huntingford, F. A. Introduction to papers on fish welfare in commercial fisheries. J. Fish Biol. 75, 2852–2854 (2009).Article 
    CAS 

    Google Scholar 
    Veldhuizen, L. J. L., Berentsen, P. B. M., de Boer, I. J. M., van de Vis, J. W. & Bokkers, E. A. M. Fish welfare in capture fisheries: A review of injuries and mortality. Fish. Res. 204, 41–48 (2018).Article 

    Google Scholar 
    Breen, M. et al. Catch welfare in commercial fisheries. In The Welfare of Fish (eds Kristiansen, T. S. et al.) 401–437 (Springer, 2020).Chapter 

    Google Scholar 
    Diggles, B. K., Cooke, S. J., Rose, J. D. & Sawynok, W. Ecology and welfare of aquatic animals in wild capture fisheries. Rev. Fish. Biol. Fish. 21, 739–765 (2011).Article 

    Google Scholar 
    Korte, S. M., Olivier, B. & Koolhaas, J. M. A new animal welfare concept based on allostasis. Physiol. Behav. 92, 422–428 (2007).Article 
    CAS 

    Google Scholar 
    Broom, D. M. The scientific assessment of animal welfare. Appl. Anim. Behav. Sci. 20, 5–19 (1988).Article 

    Google Scholar 
    Broom, D. M. Animal welfare: Concepts and measurement. J. Anim. Sci. 69, 4167–4175 (1991).Article 
    CAS 

    Google Scholar 
    Tveit, G. M., Anders, N., Bondø, M. S., Mathiassen, J. R. & Breen, M. Atlantic mackerel (Scomber scombrus) change skin colour in response to crowding stress. J. Fish Biol. 100, 738–747 (2022).Article 
    CAS 

    Google Scholar 
    Noble, C. et al. Welfare Indicators for Farmed Atlantic Salmon: Tools for Assessing Fish Welfare (Nofima, 2018).
    Google Scholar 
    Sopinka, N. M., Donaldson, M. R., O’Connor, C. M., Suski, C. D. & Cooke, S. J. Stress indicators in fish. In Fish Physiology vol 35 405–462 (Elsevier, 2016).
    Google Scholar 
    Lawrence, M. J. et al. Are 3 minutes good enough for obtaining baseline physiological samples from teleost fish?. Can. J. Zool. 96, 774–786 (2018).Article 
    CAS 

    Google Scholar 
    Lawrence, M. J. et al. Best practices for non-lethal blood sampling of fish via the caudal vasculature. J. Fish Biol. 97, 4–15 (2020).Article 

    Google Scholar 
    Clark, T. D. et al. The efficacy of field techniques for obtaining and storing blood samples from fishes. J. Fish Biol. 79, 1322–1333 (2011).Article 
    CAS 

    Google Scholar 
    Davis, M. W., Olla, B. L. & Schreck, C. B. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress. J. Fish Biol. 58, 1–15 (2001).Article 

    Google Scholar 
    Rushen, J. Problems associated with the interpretation of physiological data in the assessment of animal welfare. Appl. Anim. Behav. Sci. 28, 381–386 (1991).Article 

    Google Scholar 
    Dawkins, M. Using behaviour to assess animal welfare. Anim. Welf. 13, 3–7 (2004).
    Google Scholar 
    Moberg, G. P. & Mench, J. A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (CABI, 2000).Book 

    Google Scholar 
    Wedemeyer, G. A. Effects of rearing conditions on the health and physiological quality of fish in intensive culture. In Fish Stress and Health in Aquaculture vol 278 (Cambridge University Press, 1997).
    Google Scholar 
    Botreau, R. et al. Aggregation of measures to produce an overall assessment of animal welfare. Part 1: A review of existing methods. Animal 1, 1179–1187 (2007).Article 
    CAS 

    Google Scholar 
    Turnbull, J., Bell, A., Adams, C., Bron, J. & Huntingford, F. Stocking density and welfare of cage farmed Atlantic salmon: Application of a multivariate analysis. Aquaculture 243, 121–132 (2005).Article 

    Google Scholar 
    North, B. P. et al. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 255, 466–479 (2006).Article 

    Google Scholar 
    Spoolder, H., De Rosa, G., Hörning, B., Waiblinger, S. & Wemelsfelder, F. Integrating parameters to assess on-farm welfare. Anim. Welf. 12, 529–534 (2003).CAS 

    Google Scholar 
    Walker, J. K., Dale, A. R., D’Eath, R. B. & Wemelsfelder, F. Qualitative Behaviour Assessment of dogs in the shelter and home environment and relationship with quantitative behaviour assessment and physiological responses. Appl. Anim. Behav. Sci. 184, 97–108 (2016).Article 

    Google Scholar 
    Brscic, M. et al. Welfare assessment: Correlations and integration between a Qualitative Behavioural Assessment and a clinical health protocol applied in veal calves farms. Ital. J. Anim. Sci. 8, 601–603 (2009).Article 

    Google Scholar 
    Andreasen, S. N., Wemelsfelder, F., Sandøe, P. & Forkman, B. The correlation of Qualitative Behavior Assessments with Welfare Quality® protocol outcomes in on-farm welfare assessment of dairy cattle. Appl. Anim. Behav. Sci. 143, 9–17 (2013).Article 

    Google Scholar 
    Phythian, C. J., Michalopoulou, E., Cripps, P. J., Duncan, J. S. & Wemelsfelder, F. On-farm qualitative behaviour assessment in sheep: Repeated measurements across time, and association with physical indicators of flock health and welfare. Appl. Anim. Behav. Sci. 175, 23–31 (2016).Article 

    Google Scholar 
    Davis, M. W., Benoît, H. P., Breen, M., Kopp, D. & Depestele, J. Vitality Assessments. In ICES guidelines for estimating discard survival, ICES Cooperative Research Reports No. 351. 219 (International Council for the Exploration of the Sea, 2021). https://doi.org/10.17895/ices.pub.8006.Stoner, A. W. Assessing stress and predicting mortality in economically significant crustaceans. Rev. Fish. Sci. 20, 111–135 (2012).Article 

    Google Scholar 
    Humborstad, O.-B., Davis, M. W. & Løkkeborg, S. Reflex impairment as a measure of vitality and survival potential of Atlantic cod (Gadus morhua). Fish. Bull. 107, 395–402 (2009).
    Google Scholar 
    Campbell, M. D., Tolan, J., Strauss, R. & Diamond, S. L. Relating angling-dependent fish impairment to immediate release mortality of red snapper (Lutjanus campechanus). Fish. Res. 106, 64–70 (2010).Article 

    Google Scholar 
    Davis, M. W. Fish stress and mortality can be predicted using reflex impairment. Fish Fish. 11, 1–11 (2010).Article 

    Google Scholar 
    Barkley, A. S. & Cadrin, S. X. Discard mortality estimation of yellowtail flounder using reflex action mortality predictors. Trans. Am. Fish. Soc. 141, 638–644 (2012).Article 

    Google Scholar 
    Raby, G. D. et al. Validation of reflex indicators for measuring vitality and predicting the delayed mortality of wild coho salmon bycatch released from fishing gears. J. Appl. Ecol. 49, 90–98 (2012).Article 

    Google Scholar 
    LeDain, M. R. K. et al. Assisted recovery following prolonged submergence in fishing nets can be beneficial to turtles: An assessment with blood physiology and reflex impairment. Chelonian Conserv. Biol. 12, 172–177 (2013).Article 

    Google Scholar 
    Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018).Article 

    Google Scholar 
    Ben-Yami, M. Purse seining manual. (1994).Marçalo, A. et al. Mitigating slipping-related mortality from purse seine fisheries for small pelagic fish: Case studies from European Atlantic Waters. In The European Landing Obligation 297–318 (Springer, 2019).Chapter 

    Google Scholar 
    Digre, H., Tveit, G. M., Solvang-Garten, T., Eilertsen, A. & Aursand, I. G. Pumping of mackerel (Scomber scombrus) onboard purse seiners, the effect on mortality, catch damage and fillet quality. Fish. Res. 176, 65–75 (2016).Article 

    Google Scholar 
    Tenningen, M., Vold, A. & Olsen, R. E. The response of herring to high crowding densities in purse-seines: Survival and stress reaction. ICES J. Mar. Sci. 69, 1523–1531 (2012).Article 

    Google Scholar 
    Anders, N., Roth, B. & Breen, M. Physiological response and survival of Atlantic mackerel exposed to simulated purse seine crowding and release. Conserv. Physiol. 9, 25 (2021).Article 

    Google Scholar 
    Anders, N. et al. Effects on individual level behaviour in mackerel (Scomber scombrus) of sub-lethal capture related stressors: Crowding and hypoxia. PLoS One 14, e0213709 (2019).Article 
    CAS 

    Google Scholar 
    Marçalo, A. et al. Behavioural responses of sardines Sardina pilchardus to simulated purse-seine capture and slipping. J. Fish Biol. 83, 480–500 (2013).Article 

    Google Scholar 
    Anders, N., Eide, I., Lerfall, J., Roth, B. & Breen, M. Physiological and flesh quality consequences of pre-mortem crowding stress in Atlantic mackerel (Scomber scombrus). PLoS One 15, e0228454 (2020).Article 
    CAS 

    Google Scholar 
    Olsen, R. E., Oppedal, F., Tenningen, M. & Vold, A. Physiological response and mortality caused by scale loss in Atlantic herring. Fish. Res. 129–130, 21–27 (2012).Article 

    Google Scholar 
    Marçalo, A. et al. Fishing simulation experiments for predicting the effects of purse-seine capture on sardine (Sardina pilchardus). ICES J. Mar. Sci. 67, 334–344 (2010).Article 

    Google Scholar 
    Roth, B. & Skåra, T. Pre mortem capturing stress of Atlantic herring (Clupea harengus) in purse seine and subsequent effect on welfare and flesh quality. Fish. Res. 244, 106124 (2021).Article 

    Google Scholar 
    Marçalo, A. et al. Sardine (Sardina pilchardus) stress reactions to purse seine fishing. Mar. Biol. 149, 1509–1518 (2006).Article 

    Google Scholar 
    ICES. Working Group on Widely Distributed Stocks (WGWIDE). 1019 https://doi.org/10.17895/ices.pub.7475 (2020).Lockwood, S. J., Pawson, M. G. & Eaton, D. R. The effects of crowding on mackerel (Scomber scombrus L)— physical condition and mortality. Fish. Res. 2, 129–147 (1983).Article 

    Google Scholar 
    Huse, I. & Vold, A. Mortality of mackerel (Scomber scombrus L.) after pursing and slipping from a purse seine. Fish. Res. 20, 54–59 (2010).Article 

    Google Scholar 
    Sone, I., Skåra, T. & Olsen, S. H. Factors influencing post-mortem quality, safety and storage stability of mackerel species: A review. Eur. Food Res. Technol. 245, 775–791 (2019).Article 
    CAS 

    Google Scholar 
    Handegard, N. O. et al. Effects on schooling function in mackerel of sub-lethal capture related stressors: Crowding and hypoxia. PLoS One 12, e0190259 (2017).Article 

    Google Scholar 
    Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 40, 1769–1777 (2020).Article 

    Google Scholar 
    Koolhaas, J. M. et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 35, 1291–1301 (2011).Article 
    CAS 

    Google Scholar 
    Tenningen, M., Pobitzer, A., Handegard, N. O. & de Jong, K. Estimating purse seine volume during capture: Implications for fish densities and survival of released unwanted catches. ICES J. Mar. Sci. 76, 2481–2488 (2019).Article 

    Google Scholar 
    Fulton, T. W. The Rate of Growth of Fishes. 141–241 (1904).Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).Article 

    Google Scholar 
    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    Tenningen, M., Peña, H. & Macaulay, G. J. Estimates of net volume available for fish shoals during commercial mackerel (Scomber scombrus) purse seining. Fish. Res. 161, 244–251 (2015).Article 

    Google Scholar 
    Johnston, R., Jones, K. & Manley, D. Confounding and collinearity in regression analysis: A cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual. Quant. 52, 1957–1976 (2018).Article 

    Google Scholar 
    Burnham, K. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).Article 
    CAS 

    Google Scholar 
    Hartig, F. & Lohse, L. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (2022).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Speers-Roesch, B., Mandic, M., Groom, D. J. E. & Richards, J. G. Critical oxygen tensions as predictors of hypoxia tolerance and tissue metabolic responses during hypoxia exposure in fishes. J. Exp. Mar. Biol. Ecol. 449, 239–249 (2013).Article 
    CAS 

    Google Scholar 
    Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J. & Wilson, R. W. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit). Conserv. Physiol. 4, cow012 (2016).Article 

    Google Scholar 
    Domenici, P., Herbert, N. A., Lefrançois, C., Steffensen, J. F. & McKenzie, D. J. The Effect of Hypoxia on Fish Swimming Performance and Behaviour. In Swimming Physiology of Fish: Towards Using Exercise to Farm a Fit Fish in Sustainable Aquaculture (eds Palstra, A. P. & Planas, J. V.) 129–159 (Springer, 2013).Chapter 

    Google Scholar 
    Johnstone, A. D. F., Wardle, C. S. & Almatar, S. M. Routine respiration rates of Atlantic mackerel, Scomber scombrus L., and herring, Clupea harengus L., at low activity levels. J. Fish Biol. 42, 149–151 (1993).Article 

    Google Scholar 
    Peña, H., Macaulay, G. J., Ona, E., Vatnehol, S. & Holmin, A. J. Estimating individual fish school biomass using digital omnidirectional sonars, applied to mackerel and herring. ICES J. Mar. Sci. 78, 940–951 (2021).Article 

    Google Scholar 
    Kieffer, J. D. Limits to exhaustive exercise in fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126, 161–179 (2000).Article 
    CAS 

    Google Scholar 
    Wardle, C. S. & He, P. Burst swimming speeds of mackerel, Scomber scombrus L. J. Fish Biol. 32, 471–478 (1988).Article 

    Google Scholar 
    Anders, N., Breen, M., Skåra, T., Roth, B. & Sone, I. Effects of capture-related stress and pre-freezing holding in refrigerated sea water (RSW) on the muscle quality and storage stability of Atlantic mackerel (Scomber scombrus) during subsequent frozen storage. Food Chem. https://doi.org/10.1016/j.foodchem.2022.134819 (2022).Article 

    Google Scholar 
    Sogn-Grundvåg, G., Zhang, D. & Iversen, A. Large buyers at a fish auction: The case of the Norwegian pelagic auction. Mar. Policy 104, 232–238 (2019).Article 

    Google Scholar 
    Breen, M. et al. Behaviour & Welfare of Mackerel & Herring During Capture in Purse Seine. 134 https://www.fhf.no/prosjekter/prosjektbasen/901350/ (2021). More

  • in

    Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae

    Duggins, D. O., Simenstad, C. A. & Estes, J. A. Magnification of secondary producition by kelp detritus in coastal marine ecosystems. Science 1979(245), 170–173 (1989).Article 
    ADS 

    Google Scholar 
    Hill, R. et al. Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr. 60, 1689–1706 (2015).Article 
    ADS 

    Google Scholar 
    Mann, K. H. Seaweeds: Their productivity and strategy for growth. Science 1979(182), 975–981 (1973).Article 
    ADS 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).Article 

    Google Scholar 
    Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56, 99–131 (2005).Article 
    CAS 

    Google Scholar 
    Raven, J. A. & Beardall, J. The ins and outs of CO2. J. Exp. Bot. 67, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    Raven, J. A. et al. Seaweeds in cold seas: Evolution and carbon acquisition. Ann. Bot. 90, 525–536. https://doi.org/10.1093/aob/mcf171 (2002).Article 
    CAS 

    Google Scholar 
    Raven, J. et al. Ocean Acidification due to Increasing Atmospheric Carbon Dioxide 1–68 (The Royal Society, 2005).
    Google Scholar 
    Kübler, J. E. & Dudgeon, S. R. Predicting effects of ocean acidification and warming on algae lacking carbon concentrating mechanisms. PLoS ONE 10, 1–19 (2015).Article 

    Google Scholar 
    Fernández, P. A., Hurd, C. L. & Roleda, M. Y. Bicarbonate uptake via an anion excange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH1. J. Phycol. 50, 1–11 (2014).Article 

    Google Scholar 
    Raven, J. A. et al. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct. Plant Biol. 29, 355 (2002).Article 
    CAS 

    Google Scholar 
    Raven, J. A., Cockell, C. S. & De La Rocha, C. L. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos. Trans. R. Soc. B 363, 2641–2650 (2008).Article 
    CAS 

    Google Scholar 
    Bidwell, R. G. S. S. & McLachlan, J. Carbon nutrition of seaweeds: Photosynthesis, photorespiration and respiration. J. Exp. Mar. Biol. Ecol. 86, 15–46 (1985).Article 
    CAS 

    Google Scholar 
    Hurd, C. L. Water motion, marine macroalgal physiology and production. J. Phycol. 36, 453–472. https://doi.org/10.1046/j.1529-8817.2000.99139.x (2000).Article 
    CAS 

    Google Scholar 
    Hurd, C. L., Stevens, C. L., Laval, B. E., Lawrence, G. A. & Harrison, P. J. Visualization of seawater flow around morphologically distinct forms of the giant kelp Macrocystis integrifolia from wave-sheltered and exposed sites. Limnol. Oceanogr. 42, 156–163. https://doi.org/10.4319/lo.1997.42.1.0156 (1997).Article 
    ADS 

    Google Scholar 
    Smith, F. A. A. & Walker, N. A. A. Photosynthesis by aquatic plants: Effects of unstirred layers in relation to assimilation of CO2 and HCO3- to carbon isotope discrimination. N. Phytol. 86, 245–259 (1980).Article 
    CAS 

    Google Scholar 
    Wheeler, W. N. Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera. Mar. Biol. 56, 103–110 (1980).Article 
    ADS 
    CAS 

    Google Scholar 
    Hurd, C. L., Lenton, A., Tilbrook, B. & Boyd, P. W. Current understanding and challenges for oceans in a higher-CO2 world. Nat. Clim. Chang. 8, 686–694 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Stocker, T. F. et al. Technical Summary. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 33–115 (2013).Hepburn, C. D. et al. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Glob. Chang. Biol. 17, 2488–2497 (2011).Article 
    ADS 

    Google Scholar 
    Beer, S. & Koch, E. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar. Ecol. Prog. Ser. 141, 199–204 (1996).Article 
    ADS 

    Google Scholar 
    Ihnken, S., Roberts, S. & Beardall, J. Differential responses of growth and photosynthesis in the marine diatom Chaetoceros muelleri to CO2 and light availability. Phycologia 50, 182–193 (2011).Article 
    CAS 

    Google Scholar 
    Gerard, V. A. In situ water motion and nutrient uptake by the giant kelp Macrocystis pyrifera. Mar. Biol. 69, 51–54 (1982).Article 

    Google Scholar 
    Hepburn, C. D., Holborow, J. D., Wing, S. R., Frew, R. D. & Hurd, C. L. Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Mar. Ecol. Prog. Ser. 339, 99–108 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Hurd, C. L. Shaken and stirred: The fundamental role of water motion in resource acquisition and seaweed productivity. Persp. Phycol. 4, 73–81 (2017).ADS 

    Google Scholar 
    Sültemeyer, D. F., Miller, A. G., Espie, G. S., Fock, H. P. & Canvin, D. T. Active CO2 transport by the green alga Chlamydomonas reinhardtii. Plant Physiol. 89, 1213–1219 (1989).Article 

    Google Scholar 
    Koch, M., Bowes, G., Ross, C. & Zhang, X. H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Chang. Biol. 19, 103–132 (2013).Article 
    ADS 

    Google Scholar 
    Britton, D., Cornwall, C. E., Revill, A. T., Hurd, C. L. C. L. & Johnson, C. R. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp Ecklonia radiata. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Cornwall, C. E. et al. Carbon-use strategies in macroalgae: Differential responses to lowered ph and implications for ocean acidification. J. Phycol. 48, 137–144 (2012).Article 
    CAS 

    Google Scholar 
    Kram, S. L. et al. Variable responses of temperate calcified and fleshy macroalgae to elevated pCO2 and warming. ICES J. Mar. Sci. 73, 693–703 (2016).Article 

    Google Scholar 
    Kübler, J. E., Johnston, A. M. & Raven, J. A. The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ. 22, 1303–1310 (1999).Article 

    Google Scholar 
    van der Loos, L. M. et al. Responses of macroalgae to CO2 enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecol. Evol. 9, 125–140 (2019).Article 

    Google Scholar 
    Cornwall, C. E. & Hurd, C. L. Variability in the benefits of ocean acidification to photosynthetic rates of macroalgae without CO2-concentrating mechanisms. Mar. Freshw. Res. 71, 275–280 (2019).Article 

    Google Scholar 
    Cornwall, C. E., Revill, A. T. & Hurd, C. L. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynth. Res. 124, 181–190 (2015).
    Article 
    CAS 

    Google Scholar 
    Lovelock, C. E., Reef, R., Raven, J. A. & Pandolfi, J. M. Regional variation in δ13C of coral reef macroalgae. Limnol. Oceanogr. 65, 2291–2302 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Fischer, G. & Wiencke, C. Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar. Biol. 12, 341–348 (1992).Article 

    Google Scholar 
    Stephens, T. A. & Hepburn, C. D. Mass-transfer gradients across kelp beds influence Macrocystis pyrifera growth over small spatial scales. Mar. Ecol. Prog. Ser. 515, 97–109 (2014).Article 
    ADS 

    Google Scholar 
    Kregting, L. T., Hepburn, C. D. & Savidge, G. Seasonal differences in the effects of oscillatory and uni-directional flow on the growth and nitrate-uptake rates of juvenile Laminaria digitata (Phaeophyceae). J. Phycol. 51, 1116–1126 (2015).Article 
    CAS 

    Google Scholar 
    Parker, H. S. Influence of relative water motion on the growth, ammonium uptake and carbon and nitrogen composition of Ulva lactuca (Chlorophyta). Mar. Biol. 63, 309–318 (1981).Article 
    CAS 

    Google Scholar 
    Bergstrom, E. et al. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Mar. Environ. Res. 161, 105107 (2020).Article 
    CAS 

    Google Scholar 
    Maberly, S. C., Raven, J. A. & Johnston, A. M. Discrimination between C-12 and C-13 by marine plants. Oecologia 91, 481–492 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Gattuso, J. P. et al. Package ‘Seacarb ’. Preprint at http://cran.r-project.org/package=seacarb (2015).Raven, J. A., Beardall, J. & Giordano, M. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 121, 111–124 (2014).Article 
    CAS 

    Google Scholar 
    Raven, J. A., Walker, D. I., Johnston, A. M., Handley, L. L. & Kübler, J. E. Implications of 13C natural abundance measurements for photosynthetic performance by marine macrophytes in their natural environment. Mar. Ecol. Prog. Ser. 123, 193–205 (1995).Article 
    ADS 

    Google Scholar 
    Raven, J. A. Inorganic carbon acquisition by marine autotrophs. Adv. Bot. Res. 27, 85–209 (1997).Article 
    CAS 

    Google Scholar 
    Fernández, P. A., Roleda, M. Y. & Hurd, C. L. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth. Res. 124, 293–304 (2015).Article 

    Google Scholar 
    Bailly, J. & Coleman, J. R. Effect of CO(2) concentration on protein biosynthesis and carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol. 87, 833–840 (1988).Article 
    CAS 

    Google Scholar 
    Dionisio-Sese, M. L., Fukuzawa, H. & Miyachi, S. Light-induced carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol. 94, 1103–1110 (1990).Article 
    CAS 

    Google Scholar 
    Pollock, S. V., Colombo, S. L., Prout, D. L., Godfrey, A. C. & Moroney, J. V. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO2 atmosphere. Plant Physiol. 133, 1854–1861 (2003).Article 
    CAS 

    Google Scholar 
    Carlberg, S., Axelsson, L., Larsson, C., Ryberg, H. & Uusitalo, J. Inducible CO2 concentrating mechanisms in green seaweeds I. Taxonomical and physiological aspects. In Current Research in Photosynthesis (ed. Baltscheffsky, M.) (Springer, 1990). https://doi.org/10.1007/978-94-009-0511-5_749.Chapter 

    Google Scholar 
    Wheeler, W. N. Effect of boundary-layer transport on the fixation of carbon by the giant-kelp Macrocystis pyrifera. Mar. Biol. 56, 103–110 (1980).Article 
    ADS 
    CAS 

    Google Scholar 
    Johnston, A. M. & Raven, J. A. Effects of culture in high CO2 on the photosynthetic physiology of Fucus serratus. Br. J. Phycol. 25, 75–82 (1990).Article 

    Google Scholar 
    Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos. Trans. R. Soc. Lond. 368, 20120442 (2013).Article 

    Google Scholar 
    Porter, E. T., Sanford, L. P. & Suttles, S. E. Gypsum dissolution is not a universal integrator of water motion. Limnol. Oceanogr. 45, 145–158 (2000).Article 
    ADS 

    Google Scholar 
    Gerard, V. A. & Mann, K. H. Growth and production of Laminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J. Phycol. 15, 33–41 (1979).Article 

    Google Scholar 
    Bivand, R., Keitt, T. & Rowlingson, B. Package ‘rgdal’. R Package https://doi.org/10.1353/lib.0.0050 (2016).Article 

    Google Scholar 
    LINZ. LINZ Data Service. https://data.linz.govt.nz/layer/50258-nz-coastlines-topo-150k/history/ Accessed July 2021 (2021).Kirk, J. T. Characteristics of the light field in highly turbid waters: A Monte Carlo study. Limnol. Oceanogr. 39, 702–706 (1994).Article 
    ADS 

    Google Scholar 
    Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis (Fisheries Research Board of Canada, 1968).
    Google Scholar 
    Kohler, K. E. & Gill, S. M. Coral Point Count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).Article 
    ADS 

    Google Scholar 
    Axelsson, L., Mercado, J. & Figueroa, F. Utilization of HCO3− at high ph by the brown macroalga laminaria saccharina. Eur. J. Phycol. 35, 53–59 (2000).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. Preprint at (2017).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).Article 
    MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Wood structure explained by complex spatial source-sink interactions

    Overall frameworkCells in our model are arranged along independent radial files, with each cell in one of either the proliferation, enlargement-only, wall thickening, or mature zones, depending on the distance of the cell’s centre from the inside edge of the phloem and the time of year. Only cells that contribute to the formation of xylem tracheids are treated explicitly. A daily timestep is used, on which cells in the proliferation and enlargement-only zones can enlarge in the radial direction if these zones are non-dormant, and on which secondary-wall thickening can occur in the wall thickening zone. Cells in the proliferation zone divide periclinally if they reach a threshold radial length. Cell-size control at division is intermediate between a critical size and a critical increment22. Mother cells divide asymmetrically, with the subsequent relative growth rates of the daughters inversely proportional to their relative sizes. Size at division and asymmetry of division are computed with added statistical noise22, and therefore the model is run for an ensemble of independent radial files with perturbed initial conditions.Equations and parametersCell enlargement and divisionCells in the proliferation and enlargement-only zones, when not dormant, enlarge in the radial direction at a rate dependent on temperature and relative sibling birth size. A Boltzmann-Arrhenius approach is used for the temperature dependence30:$$mu={mu }_{0}{e}^{frac{{E}_{a}}{k}left(frac{1}{{T}_{0}}-frac{1}{T}right)}$$
    (1)
    where μ is the relative rate of radial cell growth at temperature T (μm μm−1 day−1), μ0 is μ at temperature T0 (=283.15 K), Ea is the effective activation energy for cell enlargement, k is the Boltzmann constant (i.e. 8.617 x 10−5 eV K−1), and T is temperature (K). μ0 was calibrated to an observed mean radial file length at the end of the elongation period dataset23 (Table 1; see “Observations”), and Ea was calibrated to an observed temperature dependence of annual ring width dataset31 (Table 1; Supplementary Fig. 4; see “Observations”).Table 1 Model parameters calibrated to observationsFull size tableRadial length of an individual cell then increases according to:$${{Delta }}{L}_{r}={L}_{r}({e}^{epsilon mu }-1)$$
    (2)
    where ΔLr is the radial increment of the cell (μm day−1), Lr is the radial length of the cell (μm), and ϵ is the cell’s growth dependence on relative birth size, given by22:$$epsilon=1-{g}_{asym}{alpha }_{b}$$
    (3)
    where gasym is the strength of the dependence of relative growth rate on asymmetric division (Table 2; unitless), and αb is the degree of asymmetry relative to the cell’s sister22 (scalar):$${alpha }_{b}=frac{{L}_{r}{,}_{b}-{L}_{r}{,}_{b}^{sis}}{{L}_{r}{,}_{b}+{L}_{r}{,}_{b}^{sis}}$$
    (4)
    where Lr,b is the radial length of the cell at birth (μm) and ({L}_{r}{,}_{b}^{sis}) is the radial length of its sister at birth (μm), which are calculated stochastically22:$${L}_{r}{,}_{b}={L}_{r}{,}_{d}(0.5-{Z}_{a})$$
    (5)
    $${L}_{r}{,}_{b}^{sis}={L}_{r}{,}_{d}(0.5+{Z}_{a})$$
    (6)
    where Lr,d is the length of the mother cell when it divides (μm) and Za is Gaussian noise with mean zero and standard deviation σa (Table 2; −0.49 ≤Za≤ 0.49 for numerical stability).Table 2 Parameters used in the model that are taken directly from literatureFull size tableLength at division is derived as22:$${L}_{r}{,}_{d}=f{L}_{r}{,}_{b}+{chi }_{b}(2-f+Z)$$
    (7)
    where f is the mode of cell-size regulation (Table 2; unitless), χb is the mean cell birth size (Table 3; μm), and Z is Gaussian noise with mean zero and standard deviation σ (Table 2).Table 3 Parameters used in the model that are calculated from observationsFull size tableThe first cell in each radial file is an initial, which produces phloem mother cells outwards and xylem mother cells inwards. It grows and divides as other cells in the proliferation zone, but on division one of the daughters is stochastically assigned to phloem or xylem, the other remaining as the initial. The probability of the daughter being on the phloem side is fphloem (Table 3).Cell-wall growthBoth primary and secondary cell-wall growth are influenced by temperature, carbohydrate concentration, and lumen volume. A Michaelis-Menten equation is used to relate the rate of wall growth to the concentration of carbohydrates in the cytoplasm:$${{Delta }}M=frac{{{Delta }}{M}_{max}theta }{theta+{K}_{m}}$$
    (8)
    where ΔM is the rate of cell-wall growth (mg cell−1 day−1), ΔMmax is the carbohydrate-saturated rate of wall growth (mg cell−1 day−1), θ is the concentration of carbohydrates in the cell’s cytoplasm (mg ml−1), and Km is the effective Michaelis constant (mg ml−1; Table 1).The maximum rate of cell-wall growth, ΔMmax, is assumed to depend linearly on lumen volume (a proxy for the amount of machinery for wall growth), and on temperature as in Eq. (1):$${{Delta }}{M}_{max}=omega {V}_{l}{e}^{frac{{E}_{aw}}{k}left(frac{1}{{T}_{0}}-frac{1}{T}right)}$$
    (9)
    where ω is the normalised rate of cell-wall mass growth (i.e. the rate at T0; Table 1; mg ml−1 day−1), Vl is the cell lumen volume (ml cell−1), and Eaw is the effective activation energy for wall building (eV; Table 1). ω and Km were calibrated to an observed distribution of carbohydrates23 (see next section). Eaw was calibrated to an observed temperature dependence of maximum density31 (Table 1; see “Observations”).Lumen volume is given by:$${V}_{l}={V}_{c}-{V}_{w}$$
    (10)
    where Vc is total cell volume (ml cell−1) and Vw is total wall volume (ml cell−1). Cells are assumed cuboid and therefore Vc is given by:$${V}_{c}={L}_{a}{L}_{t}{L}_{r}/1{0}^{12}$$
    (11)
    where La is axial length (μm; Table 2) and Lt is tangential length (μm; Table 3). Vw is given by:$${V}_{w}=M/rho$$
    (12)
    where M is wall mass (mg cell−1) and ρ is wall-mass density (Table 2; mg[DM] ml−1).Cells in the proliferation and enlargement-only zones only have primary cell walls. ΔMmax (Eq. (9)) is therefore given the following limit:$${{Delta }}{M}_{max}=min ({{Delta }}{M}_{max},rho {V}_{{w}_{p}}-M)$$
    (13)
    where ({V}_{{w}_{p}}) is the required primary wall volume:$${V}_{{w}_{p}}={V}_{c}-({L}_{a}-2{W}_{p})({L}_{t}-2{W}_{p})({L}_{r}-2{W}_{p})/1{0}^{12}$$
    (14)
    where Wp is primary cell-wall thickness (Table 3; μm).Carbohydrate distributionThe distribution of carbohydrates across each radial file is calculated independently from the balance of diffusion from the phloem and the uptake into primary and secondary cell walls. The carbohydrate concentration in the phloem is prescribed at the mean value observed across the three observational dates in23, as described below in “Observations”, and the resulting concentration in the cytoplasm of the furthest living cell from the phloem is solved numerically. The inside wall of this cell is assumed to be impermeable to carbohydrates and therefore provides the inner boundary to the solution. It is assumed that the rate of diffusion across each file is rapid relative to the rate of cell-wall building, and therefore concentrations are assumed to be in equilibrium on each day. Carbohydrate diffusion between living cells is assumed to be proportional to the concentration gradient:$${q}_{i}=({theta }_{i-1}-{theta }_{i})/eta$$
    (15)
    where qi is the rate of carbohydrate diffusion from cell i − 1 to cell i (mg day−1) and η is the resistance to flow between cells (calibrated to the observed distribution of carbohydrates23, see next section; Table 1; day ml−1).As it is assumed that carbohydrates cannot diffuse between radial files, at equilibrium the flux into a given cell must equal the rate of wall growth in that cell plus the wall growth in all cells further along the radial file away from the phloem. From this it can be shown that the equilibrium carbohydrate concentration in the furthest living cell from the phloem in each radial file is given by:$${theta }_{n}={theta }_{p}-eta mathop{sum }limits_{i=1}^{n}mathop{sum }limits_{j=i}^{n}{{Delta }}{M}_{j}$$
    (16)
    where θp is the concentration of carbohydrates in the phloem (Table 3; mg ml−1) and n is the number of living cells in the file (phloem mother cells are ignored for simplicity). The rate of wall growth in each cell depends on the concentration of carbohydrates (Eq. (8)), and therefore θn must be found that results in an equilibrium flow across the radial file. This is done using Brent’s method41 as implemented in the “ZBRENT” function42.Zone widthsThe widths of the proliferation, enlargement-only, and secondary wall thickening zones vary through the year, and are fitted to observations on three dates23 (see Supplementary Fig. 2 and “Observations”). Linear responses to daylength were found, which are therefore used to determine widths for the observational period and later days:$${z}_{k}={a}_{k}+{b}_{k}{{{{{{{rm{dl}}}}}}}};{{mathrm{DOY}}}ge 185$$
    (17)
    where zk is the distance of the inner edge of the zone from the inner edge of the phloem (μm), k is proliferation (p), secondary wall thickening (t), or enlargement-only (e), ak and bk are constants (Table 3), dl is daylength (s), and DOY is day-of-year. The proliferation zone width on earlier days when non-dormant was fixed at its DOY 185 width (assuming this to be its maximum, and that it would reach its maximum very soon after cambial dormancy is broken in the spring). During dormancy, the proliferation zone width is fixed at its value on DOY 231 (the first day of dormancy23). The enlargement-only zone width prior to DOY 185, the first observational day, is assumed to be a linear extension of the rate of change after DOY 185. The wall-thickening zone width plays little role prior to DOY 185 at the focal site, and so was set to its Eq. (17) value each earlier day. On all days the condition zt≥ze≥zp is imposed, and zone widths cannot exceed their values at 24 h daylength (necessary for sites north of the Arctic circle). Supplementary Figure 2 shows the resulting progression of zone widths through the year, together with the observed values.DormancyProliferation was observed to be finished by DOY 23123, and so the proliferation and enlargement-only zones are assumed to enter dormancy then. Release from dormancy in the spring is calculated using an empirical thermal time/chilling model33. It was necessary to adjust the asymptote and temperature threshold of the published model because the heat sum on the day of release calculated from observations in Sweden (see “Observations”) was much lower than reported for Sitka spruce buds in Britain in the original work:$${{{{{{{{rm{dd}}}}}}}}}_{req}=15+4401.8{e}^{-0.042{{{{{{{rm{cd}}}}}}}}}$$
    (18)
    where ddreq is the required sum of degree-days (°C) from DOY 32 for dormancy release and cd is the chill-day sum from DOY 306. The degree-day sum is the sum of daily mean temperatures above 0 °C, and the chill-day sum is the number of days with mean temperatures below 0 °C. Dormancy can only be released during the first half of the year.Simulation protocolsEach simulation consisted of an ensemble of 100 independent radial files. Each radial file was initialised by producing a file of 100 cells with radial lengths χb(1+Za), allowing these to divide once, ignoring the second daughter from each division, and then limiting the remaining daughters to only those falling inside the proliferation zone on DOY 1. Values for ϵ (the relative growth of daughter cells) and Lr,d (the radial length at division) were derived for each cell. The main simulations were conducted at the observation site in boreal Sweden (64.35°N, 19.77°E) over 1951–1995 to capture the growth period of the observed trees23. Results are mostly presented for 1995 when the observations were made. Simulations for calibration of the effective activation energies (i.e. Ea and Eaw) were performed at 68.26°N, 19.63°E in Arctic Sweden over 1901–200431. Daily mean temperatures for both sites were derived from the appropriate gridbox in a 6 h 1/2 degree global-gridded dataset43.ObservationsObservations of cellular characteristics and carbohydrate concentrations23 were used to derive a number of model parameters, and to test model output (model calibration and testing were performed using different outputs). According to the published study we used, samples were cut from three 44 yr old Scots pine trees growing in Sweden (64°21’ N; 19°46’ E) at different times during the growing season. 30 μm thick longitudinal tangential sections of the cambial region were made, and the radial distributions of soluble carbohydrates measured using microanalytical techniques23. Cell sizes, wall thicknesses, and positions in their Fig. 123, an image of transverse sections on three sampling dates, were digitised using “WebPlotDigitizer”44. These, together with the numbers of cells in each zone and their sizes given in the text of that paper, were used to estimate zone widths, which were then regressed against daylength to give the parameters for Eq. (17) (Table 3), mean cell size in the proliferation zone on the first sampling date (used to derive χb; Table 3), mean cell tangential length (Table 3), and final ring width (used to calibrate μ0; Table 1). The thickness of the primary cell wall (Table 3) was derived by plotting cell-wall thickness against time and taking the low asymptote.The distributions of carbohydrates along the radial files on the last sampling date for “Tree 1” and “Tree 3” (results for “Tree 2” were not shown for this date) shown in Fig. 2 of the observational paper23 were calculated. The masses for each of sucrose, glucose, and fructose in each 30 μm section were digitised using the same method as for cell properties and then summed and converted to concentrations, with the results shown in Supplementary Figure 5. Mean observed carbohydrate concentrations and cell masses at four points were used to calibrate values for the η, ω, and Km parameters in Table 1. Calibration was performed by minimising the summed relative error across the observations.The calibration target for the effective activation energy for wall deposition (i.e. Eaw) was the observed relationship between maximum density and mean June-July-August temperature over 1901-2004 in northern Sweden31 (Supplementary Fig. 3), and for the effective activation energy for cell enlargement the relationship between ring width and temperature (i.e. Ea) target was the same study (Supplementary Fig. 4). These observations were made on living and subfossil Scots pine sample material from the Lake Tornesträsk area (68.21–68.31°N; 19.45–19.80°E; 350–450 m a.s.l.) using X-ray densitometry for maximum density, and standardised to remove non-climatic information31.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More