Global habitat suitability modeling reveals insufficient habitat protection for mangrove crabs
Valiela, I., Bowen, J. L. & York, J. K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 51, 807–815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 (2001).Article
Google Scholar
Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V. & Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 3, 1. https://doi.org/10.3390/rs3050878 (2011).Article
Google Scholar
Turschwell, M. P. et al. Multi-scale estimation of the effects of pressures and drivers on mangrove forest loss globally. Biol. Cons. 247, 108637. https://doi.org/10.1016/j.biocon.2020.108637 (2020).Article
Google Scholar
Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis. (2005).Nagelkerken, I. et al. The habitat function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 89, 155–185. https://doi.org/10.1016/j.aquabot.2007.12.007 (2008).Article
Google Scholar
Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738. https://doi.org/10.1111/geb.12449 (2016).Article
Google Scholar
Friess, D. A. et al. The state of the world’s Mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115. https://doi.org/10.1146/annurev-environ-101718-033302 (2019).Article
Google Scholar
Zeng, Y., Friess, D. A., Sarira, T. V., Siman, K. & Koh, L. P. Global potential and limits of mangrove blue carbon for climate change mitigation. Curr. Biol. 31, 1737-1743.e1733. https://doi.org/10.1016/j.cub.2021.01.070 (2021).Article
CAS
Google Scholar
zu Ermgassen, P. S. E. et al. Fishers who rely on mangroves: Modelling and mapping the global intensity of mangrove-associated fisheries. Estuar. Coast. Shelf Sci. 247, 106975. https://doi.org/10.1016/j.ecss.2020.106975 (2020).Article
Google Scholar
Walters, A. D. et al. Do hotspots fall within protected areas? A geographic approach to planning analysis of regional freshwater biodiversity. Freshw. Biol. 64, 2046–2056. https://doi.org/10.1111/fwb.13394 (2019).Article
Google Scholar
Blasco, F., Saenger, P. & Janodet, E. Mangroves as indicators of coastal change. CATENA 27, 167–178. https://doi.org/10.1016/0341-8162(96)00013-6 (1996).Article
Google Scholar
Gilman, E. L., Ellison, J., Duke, N. C. & Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 89, 237–250. https://doi.org/10.1016/j.aquabot.2007.12.009 (2008).Article
Google Scholar
Hamilton, S. Assessing the role of commercial aquaculture in displacing mangrove forest. Bull. Mar. Sci. 89, 585–601 (2013).Article
Google Scholar
Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563. https://doi.org/10.1038/nature15538 (2015).Article
ADS
CAS
Google Scholar
Richards Daniel, R. & Friess Daniel, A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. 113, 344–349. https://doi.org/10.1073/pnas.1510272113 (2016).Article
ADS
CAS
Google Scholar
Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202. https://doi.org/10.1016/j.cub.2012.09.036 (2012).Article
CAS
Google Scholar
Ward, R. D., Friess, D. A., Day, R. H. & MacKenzie, R. A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosyst. Health Sustain. 2, e01211. https://doi.org/10.1002/ehs2.1211 (2016).Article
Google Scholar
Van der Stocken, T., Vanschoenwinkel, B., Carroll, D., Cavanaugh, K. C. & Koedam, N. Mangrove dispersal disrupted by projected changes in global seawater density. Nat. Clim. Chang. 12, 685–691. https://doi.org/10.1038/s41558-022-01391-9 (2022).Article
ADS
Google Scholar
Alongi, D. M. The impact of climate change on Mangrove forests. Curr. Clim. Change Rep. 1, 30–39. https://doi.org/10.1007/s40641-015-0002-x (2015).Article
Google Scholar
Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x (2011).Article
Google Scholar
Kristensen, E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59, 30–43. https://doi.org/10.1016/j.seares.2007.05.004 (2008).Article
ADS
Google Scholar
Penha-Lopes, G. et al. Are fiddler crabs potentially useful ecosystem engineers in mangrove wastewater wetlands?. Mar. Pollut. Bull. 58, 1694–1703. https://doi.org/10.1016/j.marpolbul.2009.06.015 (2009).Article
CAS
Google Scholar
Sharifian, S., Kamrani, E. & Saeedi, H. Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. J. Therm. Biol 92, 102692. https://doi.org/10.1016/j.jtherbio.2020.102692 (2020).Article
CAS
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article
Google Scholar
Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 (2000).Article
Google Scholar
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435. https://doi.org/10.1111/ele.12189 (2013).Article
Google Scholar
Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).Luan, J., Zhang, C., Xu, B., Xue, Y. & Ren, Y. Modelling the spatial distribution of three Portunidae crabs in Haizhou Bay, China. PLoS ONE 13, e0207457. https://doi.org/10.1371/journal.pone.0207457 (2018).Article
CAS
Google Scholar
Kafash, A. et al. The Gray Toad-headed Agama, Phrynocephalus scutellatus, on the Iranian Plateau: The degree of niche overlap depends on the phylogenetic distance. Zool. Middle East 64, 47–54. https://doi.org/10.1080/09397140.2017.1401309 (2018).Article
Google Scholar
Yousefi, M., Shabani, A. A. & Azarnivand, H. Reconstructing distribution of the Eastern Rock Nuthatch during the Last Glacial Maximum and Last Interglacial. Avian Biol. Res. 13, 3–9. https://doi.org/10.1177/1758155919874537 (2019).Article
Google Scholar
De Rock, P. et al. Predicting large-scale habitat suitability for cetaceans off Namibia using MinxEnt. Mar. Ecol. Prog. Ser. 619, 149–167 (2019).Article
ADS
Google Scholar
Saeedi, H., Basher, Z. & Costello, M. J. Modelling present and future global distributions of razor clams (Bivalvia: Solenidae). Helgol. Mar. Res. 70, 23. https://doi.org/10.1186/s10152-016-0477-4 (2016).Article
Google Scholar
Bosso, L. et al. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invas. 24, 3169–3187. https://doi.org/10.1007/s10530-022-02838-y (2022).Article
Google Scholar
Moradmand, M. & Yousefi, M. Ecological niche modelling and climate change in two species groups of huntsman spider genus Eusparassus in the Western Palearctic. Sci. Rep. 12, 4138. https://doi.org/10.1038/s41598-022-08145-9 (2022).Article
ADS
CAS
Google Scholar
Compton, T. J., Leathwick, J. R. & Inglis, G. J. Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). Divers. Distrib. 16, 243–255. https://doi.org/10.1111/j.1472-4642.2010.00644.x (2010).Article
Google Scholar
Kafash, A., Ashrafi, S. & Yousefi, M. Modeling habitat suitability of bats to identify high priority areas for field monitoring and conservation. Environ. Sci. Pollut. Res. 29, 25881–25891. https://doi.org/10.1007/s11356-021-17412-7 (2022).Article
Google Scholar
Leathwick, J. et al. Novel methods for the design and evaluation of marine protected areas in offshore waters. Conserv. Lett. 1, 91–102. https://doi.org/10.1111/j.1755-263X.2008.00012.x (2008).Article
Google Scholar
Charrua, A. B., Bandeira, S. O., Catarino, S., Cabral, P. & Romeiras, M. M. Assessment of the vulnerability of coastal mangrove ecosystems in Mozambique. Ocean Coast. Manag. 189, 105145. https://doi.org/10.1016/j.ocecoaman.2020.105145 (2020).Article
Google Scholar
Khajoei Nasab, F., Mehrabian, A. & Mostafavi, H. Mapping the current and future distributions of Onosma species endemic to Iran. J. Arid Land 12, 1031–1045. https://doi.org/10.1007/s40333-020-0080-z (2020).Article
Google Scholar
Allyn, A. J. et al. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. PLoS ONE 15, e0231595. https://doi.org/10.1371/journal.pone.0231595 (2020).Article
CAS
Google Scholar
Makki, T., Mostafavi, H., Matkan, A. & Aghighi, H. Modelling Climate-Change Impact on the Spatial Distribution of Garra Rufa (Heckel, 1843) (Teleostei: Cyprinidae). Iran. J. Sci. Technol. Trans. A: Sci. 45, 795–804. https://doi.org/10.1007/s40995-021-01088-2 (2021).Article
Google Scholar
Bolon, I. et al. What is the impact of snakebite envenoming on domestic animals? A nation-wide community-based study in Nepal and Cameroon. Toxicon: X 9–10, 100068. https://doi.org/10.1016/j.toxcx.2021.100068 (2021).Sharma, A., Dubey, V. K., Johnson, J. A., Rawal, Y. K. & Sivakumar, K. Is there always space at the top? Ensemble modeling reveals climate-driven high-altitude squeeze for the vulnerable snow trout Schizothorax richardsonii in Himalaya. Ecol. Ind. 120, 106900. https://doi.org/10.1016/j.ecolind.2020.106900 (2021).Article
Google Scholar
Yousefi, M., Naderloo, R. & Keikhosravi, A. Freshwater crabs of the Near East: Increased extinction risk from climate change and underrepresented within protected areas. Glob. Ecol. Conserv. 38, e02266. https://doi.org/10.1016/j.gecco.2022.e02266 (2022).Article
Google Scholar
Sheykhi Ilanloo, S. et al. Applying opportunistic observations to model current and future suitability of the Kopet Dagh Mountains for a Near Threatened avian scavenger. Avian Biol. Res. 14, 18–26. https://doi.org/10.1177/1758155920962750 (2020).Article
Google Scholar
Naderloo, R. Grapsoid crabs (Decapoda: Brachyura: Thoracotremata) of the Persian Gulf and the Gulf of Oman. Zootaxa 3048(1), 1. https://doi.org/10.11646/zootaxa.3048.1.1 (2011).Article
Google Scholar
Naderloo, R. Atlas of crabs of the Persian Gulf. (2017).Innocenti, G., Schubart, C. D. & Fratini, S. Description of Metopograpsus cannicci, new species, a pseudocryptic crab species from East Africa and the Western Indian Ocean (Decapoda: Brachyura: Grapsidae). Raffles Bull. Zool. (RBZ) 68, 619–628 (2020).
Google Scholar
Hemmati, M. R., Shojaei, M. G., Taheri Mirghaed, A., Mashhadi Farahani, M. & Weigt, M. Food sources for camptandriid crabs in an arid mangrove ecosystem of the Persian Gulf: a stable isotope approach. Isotop. Environ. Health Stud. 57, 457–469. https://doi.org/10.1080/10256016.2021.1925665 (2021).Article
CAS
Google Scholar
Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101. https://doi.org/10.1038/nature09329 (2010).Article
ADS
CAS
Google Scholar
Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226. https://doi.org/10.1016/j.jembe.2011.02.029 (2011).Article
Google Scholar
Hall, S. & Thatje, S. Temperature-driven biogeography of the deep-sea family Lithodidae (Crustacea: Decapoda: Anomura) in the Southern Ocean. Polar Biol. 34, 363–370. https://doi.org/10.1007/s00300-010-0890-0 (2011).Article
Google Scholar
Hannah, L. Climate Change Biology. Academic Press (2015).Ali, H. et al. Expanding or shrinking? range shifts in wild ungulates under climate change in Pamir-Karakoram mountains, Pakistan. PLoS ONE 16, e0260031. https://doi.org/10.1371/journal.pone.0260031 (2022).Article
CAS
Google Scholar
Yousefi, M. et al. Climate change is a major problem for biodiversity conservation: A systematic review of recent studies in Iran. Contemp. Probl. Ecol. 12, 394–403. https://doi.org/10.1134/S1995425519040127 (2019).Article
Google Scholar
Doney, S. C. et al. Climate Change Impacts on Marine Ecosystems. Ann. Rev. Mar. Sci. 4, 11–37. https://doi.org/10.1146/annurev-marine-041911-111611 (2011).Article
Google Scholar
Worm, B. & Lotze, H. K. in Climate Change (Second Edition) (ed Trevor M. Letcher) 195–212 (Elsevier, 2016).Ramírez, F., Afán, I., Davis, L. S. & Chiaradia, A. Climate impacts on global hot spots of marine biodiversity. Sci. Adv. 3, e1601198. https://doi.org/10.1126/sciadv.1601198 (2017).Article
ADS
Google Scholar
Worm, B. et al. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science 314, 787–790. https://doi.org/10.1126/science.1132294 (2006).Article
ADS
CAS
Google Scholar
Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).Article
ADS
Google Scholar
Daru, B. H. & le Roux, P. C. Marine protected areas are insufficient to conserve global marine plant diversity. Glob. Ecol. Biogeogr. 25, 324–334. https://doi.org/10.1111/geb.12412 (2016).Article
Google Scholar
Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature https://doi.org/10.1038/s41586-021-03371-z (2021).Article
Google Scholar
Embling, C. B. et al. Using habitat models to identify suitable sites for marine protected areas for harbour porpoises (Phocoena phocoena). Biol. Cons. 143, 267–279. https://doi.org/10.1016/j.biocon.2009.09.005 (2010).Article
Google Scholar
Magris, R. A. & Déstro, G. F. G. Predictive modeling of suitable habitats for threatened marine invertebrates and implications for conservation assessment in Brazil. Braz. J. Oceanogr. 58, 57–68 (2010).Article
Google Scholar
Welch, H., Pressey, R. L. & Reside, A. E. Using temporally explicit habitat suitability models to assess threats to mobile species and evaluate the effectiveness of marine protected areas. J. Nat. Conserv. 41, 106–115. https://doi.org/10.1016/j.jnc.2017.12.003 (2018).Article
Google Scholar
Rhoden, C. M., Peterman, W. E. & Taylor, C. A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5, e3632–e3632. https://doi.org/10.7717/peerj.3632 (2017).Article
Google Scholar
Ancillotto, L., Mori, E., Bosso, L., Agnelli, P. & Russo, D. The Balkan long-eared bat (Plecotus kolombatovici) occurs in Italy—First confirmed record and potential distribution. Mamm. Biol. 96, 61–67. https://doi.org/10.1016/j.mambio.2019.03.014 (2019).
Article
Google Scholar
Imtiyaz, B. B., Sweta, P. D., Prakash, K. K. Threats to marine biodiversity. Mar. Biodivers.: Present Status Prospects (2011).Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).Article
Google Scholar
Fabri-Ruiz, S., Danis, B., David, B. & Saucède, T. Can we generate robust species distribution models at the scale of the Southern Ocean?. Divers. Distrib. 25, 21–37. https://doi.org/10.1111/ddi.12835 (2019).Article
Google Scholar
Maxwell, D. L., Stelzenmüller, V., Eastwood, P. D. & Rogers, S. I. Modelling the spatial distribution of plaice (Pleuronectes platessa), sole (Solea solea) and thornback ray (Raja clavata) in UK waters for marine management and planning. J. Sea Res. 61, 258–267. https://doi.org/10.1016/j.seares.2008.11.008 (2009).Article
ADS
Google Scholar
Marshall, C. E., Glegg, G. A. & Howell, K. L. Species distribution modelling to support marine conservation planning: The next steps. Mar. Policy 45, 330–332. https://doi.org/10.1016/j.marpol.2013.09.003 (2014).Article
Google Scholar
GBIF. GBIF Occurrence Download https://doi.org/10.15468/dl.khpu28. GBIF (2021).Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583. https://doi.org/10.1641/B570707 (2007).Article
Google Scholar
Basher, Z., Bowden, D. A. & Costello, M. J. Global marine environment datasets (GMED). World Wide Web Electron. Publ. 14, 1 (2018).
Google Scholar
Barnes, D. Ecology of subtropical hermit crabs in SW Madagascar: short-range migrations. Mar. Biol. 142, 549–557. https://doi.org/10.1007/s00227-002-0968-5 (2003).Article
Google Scholar
Naimullah, M. et al. Association of environmental factors in the Taiwan Strait with distributions and habitat characteristics of three swimming crabs. Remote Sens. 12, 1. https://doi.org/10.3390/rs12142231 (2020).Article
Google Scholar
Malvé, M. E., Rivadeneira, M. M. & Gordillo, S. Northward range expansion of the European green crab Carcinus maenas in the SW Atlantic: a synthesis after ~20 years of invasion history. bioRxiv, 2020.2011.2004.368761, doi:https://doi.org/10.1101/2020.11.04.368761 (2020).Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).Article
Google Scholar
Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375. https://doi.org/10.1111/ecog.01881 (2016).Article
Google Scholar
Team, R. C. R: A Language and Environment for Statistical Computing (2020).Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49. https://doi.org/10.1017/S0376892997000088 (1997).Article
Google Scholar
Swets John, A. Measuring the Accuracy of Diagnostic Systems. Science 240, 1285–1293. https://doi.org/10.1126/science.3287615 (1988).Article
ADS
MathSciNet
MATH
Google Scholar
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).Article
Google Scholar
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.3–7 (2020).UNEP-WCMC and IUCN. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM). UNEP-WCMC and IUCN (2021). More