More stories

  • in

    Using high-throughput sequencing to investigate the dietary composition of the Korean water deer (Hydropotes inermis argyropus): a spatiotemporal comparison

    Schilling, A.-M. & Rössner, G. E. The (sleeping) beauty in the beast—a review on the water deer, Hydropotes inermis. Hystrix Ital. J. Mammal. 28, 121–133 (2017).
    Google Scholar 
    Geist, V. Deer of the World: Their Evolution, Behaviour and Ecology (Stackpole Books, Pennsylvania, 1998).
    Google Scholar 
    Cooke, A. Muntjac and Water Deer: Natural History, Environmental Impact and Management (Pelagic Publishing Ltd, UK, 2019).Book 

    Google Scholar 
    Kim, B. J., Lee, B. K. & Kim, Y. J. Korean water deer (National Institute of Ecology, South Korea, 2016).
    Google Scholar 
    Belyaev, D. A. & Jo, Y.-S. Northernmost finding and further information on water deer Hydropotes inermis in Primorskiy Krai, Russia. Mammalia 85, 71–73 (2021).Article 

    Google Scholar 
    Harris, R. B. & Duckworth, J. W. Hydropotes inermis. The IUCN Red List of Threatened Species, e.T10329A22163569 (2015).National Institute of Biological Resources. Harmful wildlife. https://species.nibr.go.kr/home/mainHome.do?cont_link=011&subMenu=011016&contCd=011016001 (2015).Hofmann, R. R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Guo, G. & Zhang, E. Diet of the Chinese water deer (Hydropotes inermis) in Zhoushan Archipelago, China. Acta Theriol. Sin. 25, 122–130 (2005).
    Google Scholar 
    Kim, B. J., Lee, N. S. & Lee, S. D. Feeding diets of the Korean water deer (Hydropotes inermis argyropus) based on a 202 bp rbcL sequence analysis. Conserv. Genet. 12, 851–856 (2011).Article 

    Google Scholar 
    Park, J.-E., Kim, B.-J., Oh, D.-H., Lee, H. & Lee, S.-D. Feeding habit analysis of the Korean water deer. Korean J. Environ. Ecol. 25, 836–845 (2011).
    Google Scholar 
    Kim, J., Joo, S. & Park, S. Diet composition of Korean water deer (Hydropotes inermis argyropus) from the Han River Estuary Wetland in Korea using fecal DNA. Mammalia 85, 487–493 (2021).Article 

    Google Scholar 
    Hofmann, R., Kock, R. A., Ludwig, J. & Axmacher, H. Seasonal changes in rumen papillary development and body condition in free ranging Chinese water deer (Hydropotes inermis). J. Zool. 216, 103–117 (1988).Article 

    Google Scholar 
    Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).Article 

    Google Scholar 
    Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 5, cox030 (2017).Article 

    Google Scholar 
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).Article 
    CAS 

    Google Scholar 
    Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 11, 759–769 (2011).Article 
    CAS 

    Google Scholar 
    Nichols, R. V., Åkesson, M. & Kjellander, P. Diet assessment based on rumen contents: A comparison between DNA metabarcoding and macroscopy. PLoS ONE 11, e0157977 (2016).Article 

    Google Scholar 
    Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).Article 
    CAS 

    Google Scholar 
    Kumari, P. et al. DNA metabarcoding-based diet survey for the Eurasian otter (Lutra lutra): Development of a Eurasian otter-specific blocking oligonucleotide for 12S rRNA gene sequencing for vertebrates. PLoS ONE 14, e0226253 (2019).Article 
    CAS 

    Google Scholar 
    Iwanowicz, D. D. et al. Metabarcoding of fecal samples to determine herbivore diets: A case study of the endangered Pacific pocket mouse. PLoS ONE 11, e0165366 (2016).Article 

    Google Scholar 
    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).Article 

    Google Scholar 
    Ford, M. J. et al. Estimation of a killer whale (Orcinus orca) population’s diet using sequencing analysis of DNA from feces. PLoS ONE 11, e0144956 (2016).Article 

    Google Scholar 
    Ando, H. et al. Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens) in oceanic island habitats. Ecol. Evol. 3, 4057–4069 (2013).Article 

    Google Scholar 
    Kim, E.-K. Behavioral ecology, habitat evaluation and genetic characteristics of water deer (Hydropotes inermis) in Korea. Ph.D. thesis. Kangwon National University (2011).Park, J.-E., Kim, B.-J. & Lee, S.-D. A study of potential of diet analysis in the Korean water deer (Hydropotes inermis argyropus) using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Korean J. Environ. Ecol. 24, 318–324 (2010).
    Google Scholar 
    Hollingsworth, P. M. Refining the DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 108, 19451–19452 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, D.-Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Park, E. & Nam, M. Changes in land cover and the cultivation area of ginseng in the Civilian Control Zone -Paju City and Yeoncheon County-. Korean J. Environ. Ecol. 27, 507–515 (2013).
    Google Scholar 
    Cheng, T. et al. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Resour. 16, 138–149 (2016).Article 
    CAS 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).Article 
    CAS 

    Google Scholar 
    Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J. & Förster, F. ITS2 database V: Twice as much. Mol. Biol. Evol. 32, 3030–3032 (2015).Article 
    CAS 

    Google Scholar 
    Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 20 (2015).Article 

    Google Scholar 
    Edgar, R. C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 6, e4652 (2018).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community ecology package v 2.5–7 (R Foundation, Vienna, Austria, 2020).
    Google Scholar 
    Hsieh, T., Ma, K. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 

    Google Scholar 
    Yan, L. ggvenn: Draw venn diagram by ‘ggplot2’ v. 0.1.8 (R Foundation, Vienna, Austria, 2021).Choi, D.-Y. et al. Flora of province Gyonggi-do. Bull. Seoul Nat’l Univ. Arbor. 21, 25–76 (2001).
    Google Scholar 
    Ko, S. & Shin, Y. Flora of middle part in Gyeonggi Province. Korean J. Plant Res. 22, 49–70 (2009).
    Google Scholar 
    Lee, S.-K., Ryu, Y. & Lee, E. J. Endozoochorous seed dispersal by Korean water deer (Hydropotes inermis argyropus) in Taehwa Research Forest, South Korea. Glob. Ecol. Conserv. 40, e02325 (2022).Article 

    Google Scholar 
    Kim, K.-H. & Kang, S.-H. Flora of western civilian control zone (CCZ) in Korea. Korean J. Plant Res. 32, 565–588 (2019).
    Google Scholar 
    Gyeonggi Tourism Organization. Pyeonghwa-Nuri Trail ecological resource survey. (Paju City, Gyeonggi Province, Korea, 2018).Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, New York, 2016).Book 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Foundation, Vienna, Austria, 2020).Pertoldi, C. et al. Comparing DNA metabarcoding with faecal analysis for diet determination of the Eurasian otter (Lutra lutra) in Vejlerne. Denmark. Mammal. Res. 66, 115–122 (2021).Article 

    Google Scholar 
    Lee, B. Morphological, ecological and DNA taxonomic characteristics of Chinese water deer (Hydropotes inermis Swinhoe). Ph.D. thesis. Chungbuk National University (2003).Wilmshurst, J. F., Fryxell, J. M. & Hudsonb, R. J. Forage quality and patch choice by wapiti (Cervus elaphus). Behav. Ecol. 6, 209–217 (1995).Article 

    Google Scholar 
    Langvatn, R. & Hanley, T. A. Feeding-patch choice by red deer in relation to foraging efficiency. Oecologia 95, 164–170 (1993).Article 
    ADS 

    Google Scholar 
    Gray, P. B. & Servello, F. A. Energy intake relationships for white-tailed deer on winter browse diets. J. Wildl. Manag. 59, 147–152 (1995).Article 

    Google Scholar 
    Brown, D. T. & Doucet, G. J. Temporal changes in winter diet selection by white-tailed deer in a northern deer yard. J. Wildl. Manag. 55, 361–376 (1991).Article 

    Google Scholar 
    Takahashi, H. & Kaji, K. Fallen leaves and unpalatable plants as alternative foods for sika deer under food limitation. Ecol. Res. 16, 257–262 (2001).Article 

    Google Scholar 
    Bee, J. N. et al. Spatio-temporal feeding selection of red deer in a mountainous landscape. Austral Ecol. 35, 752–764 (2010).Article 

    Google Scholar 
    Gebert, C. & Verheyden-Tixier, H. Variations of diet composition of red deer (Cervus elaphus L.) in Europe. Mammal. Rev. 31, 189–201 (2001).Article 

    Google Scholar 
    Cornelis, J., Casaer, J. & Hermy, M. Impact of season, habitat and research techniques on diet composition of roe deer (Capreolus capreolus): a review. J. Zool. 248, 195–207 (1999).Article 

    Google Scholar 
    Kim, B. J. & Lee, S.-D. Home range study of the Korean water deer (Hydropotes inermis agyropus) using radio and GPS tracking in South Korea: Comparison of daily and seasonal habitat use pattern. J. Ecol. Field Biol. 34, 365–370 (2011).
    Google Scholar 
    Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329 (1987).Article 

    Google Scholar 
    Staines, B. W., Crisp, J. M. & Parish, T. Differences in the quality of food eaten by red deer (Cervus elaphus) stags and hinds in winter. J. Appl. Ecol. 19, 65–77 (1982).Article 

    Google Scholar 
    Koga, T. & Ono, Y. Sexual differences in foraging behavior of sika deer, Cervus nippon. J. Mammal. 75, 129–135 (1994).Article 

    Google Scholar 
    Han, S.-H., Lee, S.-S., Cho, I.-C., Oh, M.-Y. & Oh, H.-S. Species identification and sex determination of Korean water deer (Hydropotes inermis argyropus) by duplex PCR. J. Appl. Anim. Res. 35, 61–66 (2009).Article 
    CAS 

    Google Scholar 
    You, Z. et al. Seasonal variations in the composition and diversity of gut microbiota in white-lipped deer (Cervus albirostris). PeerJ 10, e13753 (2022).Article 

    Google Scholar 
    Zhao, W. et al. Metagenomics analysis of the gut microbiome in healthy and bacterial pneumonia forest musk deer. Gene Genom. 43, 43–53 (2021).Article 
    CAS 

    Google Scholar 
    Amato, K. R. et al. Gut microbiome, diet, and conservation of endangered langurs in Sri Lanka. Biotropica 52, 981–990 (2020).Article 

    Google Scholar 
    Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).Article 

    Google Scholar 
    Redford, K. H., Segre, J. A., Salafsky, N., del Rio, C. M. & McAloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).Article 

    Google Scholar 
    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).Article 

    Google Scholar 
    Corse, E. et al. A from-benchtop-to-desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies. Mol. Ecol. Resour. 17, e146–e159 (2017).Article 
    CAS 

    Google Scholar 
    Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).Article 

    Google Scholar 
    Nakahara, F. et al. The applicability of DNA barcoding for dietary analysis of sika deer. DNA Barcodes 3, 200–206 (2015).Article 

    Google Scholar 
    Thomas, A. C., Jarman, S. N., Haman, K. H., Trites, A. W. & Deagle, B. E. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias. Mol. Ecol. 23, 3706–3718 (2014).Article 
    CAS 

    Google Scholar 
    Deagle, B. E., Eveson, J. P. & Jarman, S. N. Quantification of damage in DNA recovered from highly degraded samples–a case study on DNA in faeces. Front. Zool. 3, 11 (2006).Article 

    Google Scholar 
    Coissac, E., Riaz, T. & Puillandre, N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21, 1834–1847 (2012).Article 
    CAS 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Clare, E. L. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157 (2014).Article 

    Google Scholar 
    Ramirez, R., Quintanilla, J. & Aranda, J. White-tailed deer food habits in northeastern Mexico. Small Rumin. Res. 25, 141–146 (1997).Article 

    Google Scholar 
    Anouk Simard, M., Côté, S. D., Weladji, R. B. & Huot, J. Feedback effects of chronic browsing on life-history traits of a large herbivore. J. Anim. Ecol. 77, 678–686 (2008).Article 
    CAS 

    Google Scholar 
    Putman, R. J. & Staines, B. W. Supplementary winter feeding of wild red deer Cervus elaphus in Europe and North America: justifications, feeding practice and effectiveness. Mammal Rev. 34, 285–306 (2004).Article 

    Google Scholar 
    Milner, J. M., Van Beest, F. M., Schmidt, K. T., Brook, R. K. & Storaas, T. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J. Wildl. Manag. 78, 1322–1334 (2014).Article 

    Google Scholar 
    Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mammal Rev. 51, 95–108 (2021).Article 

    Google Scholar 
    Cappa, F., Lombardini, M. & Meriggi, A. Influence of seasonality, environmental and anthropic factors on crop damage by wild boar Sus scrofa. Folia Zool. 68, 261–268 (2019).Article 

    Google Scholar  More

  • in

    Dung beetles prefer used land over natural greenspace in urban landscape

    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    McDonald, R. I., Marcotullio, P. J. & Güneralp, B. Urbanization and global trends in biodiversity and ecosystem services. in Urbanization, Biodiversity and Ecosystem Services: Challenges And Opportunities, 31–52 (Springer, 2013).McDonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).Article 

    Google Scholar 
    Müller, N., Ignatieva, M., Nilon, C. H., Werner, P. & Zipperer, W. C. Patterns and trends in urban biodiversity and landscape design. In Urbanization, Biodiversity and Ecosystem Services: Challenges And Opportunities, 123–174 (Springer, 2013).Lahr, E. C., Dunn, R. R. & Frank, S. D. Getting ahead of the curve: Cities as surrogates for global change. Proc. R. Soc. B. 285, 20180643 (2018).Article 

    Google Scholar 
    Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion?. Biol. Invasions. 19, 3489–3503 (2017).Article 

    Google Scholar 
    Thompson, K. A., Rieseberg, L. H. & Schluter, D. Speciation and the city. Trends Ecol. Evol. 33, 815–826 (2018).Article 

    Google Scholar 
    Borden, J. B. & Flory, S. L. Urban evolution of invasive species. Front. Ecol. Environ. 19, 184–191 (2021).Article 

    Google Scholar 
    Melliger, R. L., Braschler, B., Rusterholz, H. P. & Baur, B. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders. PLoS ONE 13, e0199245 (2018).Article 

    Google Scholar 
    McKinney, M. L. Urbanization, biodiversity, and conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience 52, 883–890 (2002).Article 

    Google Scholar 
    Roshnath, R. & Sinu, P. A. Nesting tree characteristics of heronry birds of urban ecosystems in peninsular India: Implications for habitat management. Curr. Zool. 63, 599–605 (2017).Article 

    Google Scholar 
    Roshnath, R., Athira, K. & Sinu, P. A. Does predation pressure drive heronry birds to nest in the urban landscape?. J. Asia Pac. Biodivers. 12, 311–315 (2019).Article 

    Google Scholar 
    Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).Article 

    Google Scholar 
    Saari, S. et al. Urbanization is not associated with increased abundance or decreased richness of terrestrial animals-dissecting the literature through meta-analysis. Urban Ecosyst. 19, 1251–1264 (2016).Article 

    Google Scholar 
    Lessard, J. P. & Buddle, C. M. The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson Nature Reserve. Quebec. Can. Entomol. 137, 215–225 (2005).Article 

    Google Scholar 
    Uno, S., Cotton, J. & Philpott, S. M. Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst. 13, 425–441 (2010).Article 

    Google Scholar 
    Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).Article 
    ADS 

    Google Scholar 
    Baldock, K. C. et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B. 282, 20142849 (2015).Article 

    Google Scholar 
    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).Article 

    Google Scholar 
    Rocha, E. A. & Fellowes, M. D. Urbanisation alters ecological interactions: Ant mutualists increase and specialist insect predators decrease on an urban gradient. Sci. Rep. 10, 1–8 (2020).Article 
    ADS 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).Article 

    Google Scholar 
    Carvalho, R. L. et al. Understanding what bioindicators are actually indicating: Linking disturbance responses to ecological traits of dung beetles and ants. Ecol. Indic. 108, 105764 (2020).Article 

    Google Scholar 
    Asha, G., Manoj, K., Megha, P. P. & Sinu, P. A. Spatiotemporal effects on dung beetle activities in island forests-home garden matrix in a tropical village landscape. Sci. Rep. 11, 1–13 (2021).Article 

    Google Scholar 
    Correa, C. M. A., da Silva, P. G., Ferreira, K. R. & Puker, A. Residential sites increase species loss and cause high temporal changes in functional diversity of dung beetles in an urbanized Brazilian Cerrado landscape. J. Insect Conserv. 25, 417–428 (2021).Article 

    Google Scholar 
    Correa, C. M. A., Ferreira, K. R., Puker, A., Audino, L. D. & Korasaki, V. Greenspace sites conserve taxonomic and functional diversity of dung beetles in an urbanized landscape in the Brazilian Cerrado. Urban Ecosyst. 24, 1023–1034 (2021).Article 

    Google Scholar 
    Beiroz, W. et al. Spatial and temporal shifts in functional and taxonomic diversity of dung beetle in a human-modified tropical forest landscape. Ecol. Indic. 95, 418–526 (2018).Article 

    Google Scholar 
    Fuzessy, L. F. et al. Identifying the anthropogenic drivers of declines in tropical dung beetle communities and functions. Biol. Conserv. 256, 109063 (2021).Article 

    Google Scholar 
    Barragan, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE 6, e17976 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Salomão, R. P. et al. Urbanization effects on dung beetle assemblages in a tropical city. Ecol. Indic. 103, 665–675 (2019).Article 

    Google Scholar 
    Filgueiras, B. K. C., Liberal, C. N., Aguiar, C. D. M., Hernández, M. I. M. & Iannuzzi, L. Attractivity of omnivore, carnivore and herbivore mammalian dung to Scarabaeinae (Coleoptera: Scarabaeidae) in a tropical Atlantic rainforest remnant. Rev. Bras. Entomol. 53, 422–427 (2009).Article 

    Google Scholar 
    Ramírez-Restrepo, L. & Halffter, G. Copro-necrophagous beetles (Coleoptera: Scarabaeinae) in urban areas: A global review. Urban Ecosyst. 19, 1179–1195 (2016).Article 

    Google Scholar 
    Krell, F. T. et al. Human influence on the dung fauna in Afrotropical grasslands (Insecta: Coleoptera). In African Biodiversity: Molecules Organisms Ecosystems (eds Huber, B. A. et al.) 133–139 (Springer, 2005).Chapter 

    Google Scholar 
    Jiménez-Ferbans, L., Mendieta-Otálora, W., García, H. & Amat-García, G. Notes on dung beetles (Coleoptera: Scarabaeinae) in dry environments of the Santa Marta region, Colombia. Acta Biol. Colomb. 13, 203–208 (2008).
    Google Scholar 
    Costa, F. C. et al. What is the importance of open habitat in a predominantly closed forest area to the dung beetle (Coleoptera, Scarabaeinae) assemblage?. Rev. Bras. Entomol. 57, 329–334 (2013).Article 

    Google Scholar 
    Korasaki, V., Lopes, J., Gardner, B. G. & Louzada, J. Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity. Insect Sci. 20, 393–406 (2013).Article 

    Google Scholar 
    Audino, L., Louzada, J. & Comita, L. Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity?. Biol. Conserv. 169, 248–257 (2014).Article 

    Google Scholar 
    Gómez-Cifuentez, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic Forest of Argentina. J. Insect. Conserv. 21, 147–156 (2017).Article 

    Google Scholar 
    Gómez-Cifuentes, A., Gómez, V. C. G., Moreno, C. E. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: The role of microclimate and soil conditions. Basic Appl. Ecol. 34, 64–74 (2019).Article 

    Google Scholar 
    Magnano, L. F. S. et al. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J. Ecol. 102, 475–485 (2014).Article 

    Google Scholar 
    GiménezGómez, V. C., Verdú, J. R., Casanoves, F. & Zurita, G. A. Functional responses to anthropogenic disturbance and the importance of selected traits: a study case using dung beetles. Ecol. Entomol. 1, 1–12 (2022).
    Google Scholar 
    Lobo, J. M. Decline of roller dung beetle (Scarabaeinae) populations in the Iberian Peninsula during the 20th century. Biol. Conserv. 97, 43–50 (2001).Article 

    Google Scholar 
    Ballullaya, U. P. et al. Stakeholder motivation for the conservation of sacred groves in south India: An analysis of environmentalperceptions of rural and urban neighbourhood communities. Land Use Policy 89, 104213 (2019).Article 

    Google Scholar 
    Lowman, M. D. & Sinu, P. A. Can the spiritual values of forests inspire effective conservation?. Bioscience 67, 688–690 (2017).Article 

    Google Scholar 
    Bhagwat, S. A., Kushalappa, C. G., Williams, P. H. & Brown, N. D. The role of informal protected areas in maintaining biodiversity in the Western Ghats of India. Ecol. Soc 10, 108 (2005).Article 

    Google Scholar 
    Rajesh, T. P., Prashanth Ballullaya, U., Unni, A. P., Parvathy, S. & Sinu, P. A. Interactive effects of urbanization and year on invasive and native ant diversity of sacred groves of South India. Urban Ecosyst. 23, 1335–1348 (2020).Article 

    Google Scholar 
    Asha, G., Navya, K. K., Rajesh, T. P. & Sinu, P. A. Roller dung beetles of dung piles suggest habitats are alike, but that of guarding pitfall traps suggest habitats are different. J. Trop. Ecol. 37, 209–213 (2021).Article 

    Google Scholar 
    Arrow, G. J. The Fauna Of British India Including Ceylon And Burma, Coleoptera: Lamellicornia (Coprinae) (Taylor and Francis, 1931).
    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and extrapolation for species diversity. R package version 2.0.20. http://chao.stat.nthu.edu.tw/wordpress/software-download/ (2020).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (2020).Hartig, F. & Hartig, M. F. Package ‘DHARMa’. R package (2017).Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.1.1. https://CRAN.R-project.org/package=gplots (2020).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2021).Venugopal, K. S., Thomas, S. K. & Flemming, A. T. Diversity and community structure of dung beetles (Coleoptera: Scarabaeinae) associated with semi-urban fragmented agricultural land in the Malabar coast in southern India. J. Threat. Taxa. 4, 2685–2692 (2012).Article 

    Google Scholar 
    Sabu, T. K. & Nithya, S. Comparison of the arboreal dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) of the wet and dry forests of the western Ghats. India. Coleopt. Bull. 70, 144–148 (2016).Article 

    Google Scholar 
    Sabu, T. K., Vinod, K. V. & Vineesh, P. J. Guild structure, diversity and succession of dung beetles associated with Indian elephant dung in South Western Ghats forests. J. Insect Sci. 6, 6–17 (2006).Article 

    Google Scholar 
    Rodrigues, M. M., Uchôa, M. A. & Ide, S. Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil. Braz. J. Biol. 73, 211–220 (2013).Article 
    CAS 

    Google Scholar 
    Rios-Diaz, C. L. et al. Sheep herding in small grasslands promotes dung beetle diversity in a mountain forest landscape. J. Insect. Conserv. 25, 13–26 (2020).Article 

    Google Scholar 
    Carrión-Paladines, V. et al. Effects of land-use change on the community structure of the dung beetle (Scarabaeinae) in an altered ecosystem in Southern Ecuador. Insects. 12, 306 (2021).Article 

    Google Scholar 
    Gómez, V. C. G., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 1–14 (2020).ADS 

    Google Scholar 
    Slade, E. M., Mann, D. J., Villanueva, J. F. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1094–1104 (2007).Article 

    Google Scholar 
    Vinod, K. V. & Sabu, T. K. Species composition and community structure of dung beetles attracted to dung of gaur and elephant in the moist forests of South Western Ghats. J. Insect. Sci. 7, 1–14 (2007).Article 
    CAS 

    Google Scholar 
    Milotić, T. et al. Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. J. Biogeogr. 46, 70–82 (2019).Article 

    Google Scholar 
    Braga, R. F., Korasaki, V., Andresen, E. & Louzada, J. Dung beetle community and functions along a habitat-disturbance gradient in the amazon: A rapid assessment of ecological functions associated to biodiversity. PLoS ONE 8, e57786 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94, 180–189 (2013).Article 

    Google Scholar 
    Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139–150 (2008).Article 

    Google Scholar  More

  • in

    A sensitive soil biological indicator to changes in land-use in regions with Mediterranean climate

    Takoutsing, B. et al. Assessment of soil health indicators for sustainable production of maize in smallholder farming systems in the highlands of Cameroon. Geoderma 276, 64–73 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Wenzel, W. W. et al. Soil and land use factors control organic caron status and accumulation in agricultural soils of Lower Austria. Geoderma 409, 115595. https://doi.org/10.1016/j.geoderma.2021.115595 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T. & Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total. Environ. 648, 1484–1491 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Veum, K. S., Sudduth, K. A., Kremer, R. J. & Kitchen, R. (2017) Sensor data fusion for soil health assessment. Geoderma 305, 53–61 (2017).Article 
    ADS 

    Google Scholar 
    Nunes, M. R., Van Es, H. M., Schindelbeck, R., Ristow, A. J. & Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 328, 30–43 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Chhipaa, V., Stein, A., Shankar, H., George, K. J. & Alidoost, F. Assessing and transferring soil health information in a hilly terrain. Geoderma 343, 130–138 (2019).Article 
    ADS 

    Google Scholar 
    Oliver, D. P., Bramley, R. G. V., Riches, D., Porter, I. & Edwards, J. A review of soil physical and chemical properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 19, 129–139 (2013).Article 
    CAS 

    Google Scholar 
    Riches, D. et al. Review: soil biological properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 19, 311–323 (2013).CAS 

    Google Scholar 
    Ritz, K., Black, H. I. J., Campbell, C. D., Harris, J. A. & Wood, C. Selecting biological indicators for monitoring soils: a framework for balancing scientific opinion to assist policy development. Ecol. Ind. 9, 1212–1221 (2009).Article 
    CAS 

    Google Scholar 
    Zhuo, Z., Kirchner, I., Pfahl, S. & Cubasch, U. Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments. Atmos. Chem. Phys. 21, 13425–13442 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Griffiths, B. S., Bonkowski, M., Roy, J. & Ritz, K. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Appl. Soil Ecol. 16(1), 49–61 (2001).Article 

    Google Scholar 
    Avidano, L., Gamalero, E., Cossa, G. P. & Carraro, E. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl. Soil Ecol. 30(1), 21–33 (2005).Article 

    Google Scholar 
    Pattison, A. B. et al. Development of key soil health indicators for the Australian banana industry. Appl. Soil Ecol. 40(1), 155–164 (2008).Article 

    Google Scholar 
    Damsma, K. M., Rose, M. T. & Cavagnaro, T. R. Landscape scale survey of indicators of soil health in grazing systems. Soil Res. 53(2), 154–167 (2015).Article 

    Google Scholar 
    Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81(3), 589–601 (2016).Article 

    Google Scholar 
    Roper, W. R., Osmond, D. L., Heitman, J. L., Wagger, M. G. & Reberg-Horton, S. C. Soil Health indicators do not differentiate among agronomic management systems in North Carolina soils. Soil Sci. Soc. Am. J. 81(4), 828–843 (2016).Article 

    Google Scholar 
    Li, Z. et al. Rapid diagnosis of agricultural soil health: A novel soil health index based on natural soil productivity and human management. J. Environ. Manage. 277, 111402. https://doi.org/10.1016/j.jenvman.2020.111402 (2021).Article 

    Google Scholar 
    Oren, A. & Steinberger, Y. Catabolic profiles of soil fungal communities along a geographic climatic gradient in Israel. Soil Biol. Biochem. 40, 2578–2587 (2008).Article 
    CAS 

    Google Scholar 
    Yu, J., Glazer, N. & Steinberger, Y. Carbon utilization, microbial biomass, and respiration in biological soil crusts in the Negev Desert. Biol. Fert. Soils 50, 285–293 (2014).Article 
    CAS 

    Google Scholar 
    Van der Putten, W. H. et al. Plant–soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    Sherman, C. & Steinberger, Y. Microbial functional diversity associated with plant litter decomposition along a climatic gradient. Microb. Ecol. 64, 399–415 (2012).Article 
    CAS 

    Google Scholar 
    Dwivedi, V. & Soni, P. A review on the role of soil microbial biomass in eco-restoration of degraded ecosystem with special reference to mining areas. J. Appl. Nat. Sci. 3(1), 151–158 (2011).Article 

    Google Scholar 
    Barreiro, A., Martín, A., Carballas, T. & Díaz-Raviña, M. Long-term response of soil microbial communities to fire and fire-fighting chemicals. Biol. Fertil. Soils 52, 963–975 (2016).Article 
    CAS 

    Google Scholar 
    Soil Science Division Staff. Soil survey manual. In USDA Handbook 18 (ed. Ditzler, C., Scheffe, K. & Monger, H.C.). (Washington, G. P. O., 2017).Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Anderson, J. P. E. & Domsch, K. H. Physiological method for quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).Article 
    CAS 

    Google Scholar 
    Creamer, R. E., Stone, D., Berry, P. & Kuiper, I. Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method. Appl. Soil Ecol. 97, 36–43 (2016).Article 

    Google Scholar 
    Oren, A. & Steinberger, Y. Coping with artifacts induced by CaCO3–CO2–H2O equilibria in substrate utilization profiling of calcareous soils. Soil Biol. Biochem. 40, 2569–2577 (2008).Article 
    CAS 

    Google Scholar 
    Zak, J. C., Willig, M. R., Howard, D. L. & Wildman, G. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 26(9), 1101–1108 (1994).Article 

    Google Scholar 
    Hotelling, H. The most predictable criterion. J. Educ. Psychol. 26, 139–142 (1935).Article 

    Google Scholar 
    Morrison, D. F. Multivariate Statistical Methods 2nd edn. (McGraw-Hill, 1976).MATH 

    Google Scholar 
    Rencher, A. C. Methods of Multivariate Analysis (Wiley, Uk, 1995).MATH 

    Google Scholar 
    IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0. (Armonk, NY: IBM Corp., 2020)R Core Team. A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    Bartoń K. MuMIn: Multi-Model Inference. R package version 1.46.0, https://CRAN.R-project.org/package=MuMIn, 2022.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 
    MATH 

    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).Article 

    Google Scholar 
    Kiryushin, V. I. The management of soil fertility and productivity of agrocenoses in adaptive-landscape farming systems. Eurasian Soil Sci. 52, 1137–1145 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Hermans, S. M. et al. Using soil bacterial communities to predict physic-chemical variables and soil quality. Microbiome 8, 79 (2020).Article 
    CAS 

    Google Scholar 
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103, 626–631 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Frey, S. D., Drijber, R., Smith, H. & Melillo, J. M. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 40, 2904–2907 (2008).Article 
    CAS 

    Google Scholar 
    Powlson, D. S., Brookes, P. C. & Christensen, B. T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19, 159–164 (1987).Article 
    CAS 

    Google Scholar 
    Brookes, P. C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils. 19, 269–279 (1995).Article 
    CAS 

    Google Scholar 
    Hermans, S. M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, e02826-e2916. https://doi.org/10.1128/AEM.02826-16 (2016).Article 

    Google Scholar 
    Liddicoat, C. et al. Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health?. Environ. Int. 129, 105–117 (2019).Article 

    Google Scholar 
    Jeanne, T., Parent, S. -É. & Hogue, R. Using a soil bacterial species balance index to estimate potato crop productivity. PLoS ONE 14, e0214089. https://doi.org/10.1371/journal.pone.0214089 (2019).Article 
    CAS 

    Google Scholar 
    Taylor, B. R. & Parkinson, D. Respiration and mass loss rates of aspen and pine leaf litter decomposing in laboratory microcosms. Can. J. Bot. 66, 1948–1959 (1988).Article 

    Google Scholar 
    Wardle, D. A. & Parkinson, D. Response of the soil microbial biomass to glucose, and selective inhibitors, across a soil moisture gradient. Soil Biol. Biochem. 22, 825–834 (1990).Article 
    CAS 

    Google Scholar 
    Baldrian, P., Merhautová, V., Petránková, M., Cajthaml, T. & Snajdr, J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil Ecol. 46, 177–182 (2010).Article 

    Google Scholar 
    Holland, T. C. et al. The response of soil biota to water availability in vineyards. Pedobiol. Int. J. Soil Biol. 56, 9–14 (2013).
    Google Scholar 
    Yu, J. & Steinberger, Y. Vertical distribution of microbial-community functionality under the canopies of Zygophyllum dumosum and Hammada scoparia in the Negev Desert. Microb. Ecol. 62, 218–227 (2011).Article 

    Google Scholar 
    Wardle, D. A. & Parkinson, D. Interaction between microclimatic variables and the soil microbial biomass. Biol. Fertil. Soils. 9, 273–280 (1990).Article 

    Google Scholar  More

  • in

    Epibiotic fauna of the Antarctic minke whale as a reliable indicator of seasonal movements

    Rice, D. W. Marine mammals of the world: systematics and distribution. In The Society for Marine Mammalogy (ed. Rice, D. W.) 231 (Allen Press, 1998).
    Google Scholar 
    Best, P. B. External characters of southern minke whales and the existence of a diminutive form. Sci. Rep. Whales Res. Inst. 36, 1–33 (1985).
    Google Scholar 
    Acevedo, J. et al. Occurrence of dwarf minke whales (Balaenoptera acutorostrata subsp.) around the Antarctic Peninsula. Polar Biol. 34, 313–318 (2011).Article 

    Google Scholar 
    Risch, D., Norris, T., Curnock, M. & Friedlaender, A. Common and Antarctic minke whales: Conservation status and future research directions. Front. Mar. Sci. 6, 247. https://doi.org/10.3389/fmars.2019.00247 (2019).Article 

    Google Scholar 
    International Whaling Commission (IWC). Report of the scientific committee. J. Cetacean Res. Manag. 14, 102 (2013).
    Google Scholar 
    Matsuoka, K. et al. Overview of minke whale sightings surveys conducted on IWC/IDCR and SOWER Antarctic cruises from 1978/79 to 2000/01. J. Cetacean Res. Manag. 5, 173–201 (2003).
    Google Scholar 
    Glover, K. A. et al. Migration of Antarctic minke whales to the Arctic. PLoS One 5, e15197. https://doi.org/10.1371/journal.pone.0015197 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Williams, R., Brierley, A., Friedlaender, A. & Scheidat, M. Densitiy of Antarctic minke whales in Weddell Sea from helicopter survey data. Ecology 63, IA14 (2011).
    Google Scholar 
    Williams, R. et al. Counting whales in a challenging, changing environment. Sci. Rep. 4, 4170. https://doi.org/10.1038/srep04170 (2014).Article 
    CAS 

    Google Scholar 
    Shabangu, F. W., Findlay, K. & Stafford, K. M. Seasonal acoustic occurrence, diel vocalizing patterns and bioduck call-type composition of Antarctic minke whales off the west coast of South Africa and the Maud Rise Antarctica. Mar. Mamm. Sci. 36, 658–675 (2019).Article 

    Google Scholar 
    Kasamatsu, F., Nishiwaki, S. & Ishikawa, H. Breeding areas and southbound migrations of southern minke whales Balaenoptera acutorostrata. Mar. Ecol. Prog. Ser. 119, 1–10 (1995).Article 
    ADS 

    Google Scholar 
    Tamura, T. & Konishi, K. Food habit and prey consumption of Antarctic minke whale Balaenoptera bonaerensis in the JARPA research area. J. Northwest Atl. Fish. Sci. 42, 13–25 (2009).Article 

    Google Scholar 
    Perrin, W. F., Mallette, S. D. & Brownell, R. L. Minke whales. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 608–613 (Academic Press, 2018).Chapter 

    Google Scholar 
    Taylor, R. J. F. An unusual record of three species of whale being restricted to pools in Antarctic sea-ice. Proc. R. Soc. Lond. 129, 325–331 (1957).
    Google Scholar 
    Ensor, P. H. Minke whales in the pack ice zone, East Antarctica, during the period of maximum annual ice extent. Rep. Int. Whal. Commn 39, 219–225 (1989).
    Google Scholar 
    Scheidat, M. et al. Cetacean surveys in the Southern Ocean using icebreaker-supported helicopters. Polar Biol. 34, 1513–1522 (2011).Article 

    Google Scholar 
    Meirelles, A. C. O. & Furtado-Neto, M. A. A. Stranding of an Antarctic minke whale, Balaenoptera bonaerensis Burmeister, 1867, on the northern coast of South America. Lat. Am. J. Aquat. Mamm. 3, 81–82 (2004).Article 

    Google Scholar 
    Juri, E., Valdivia, M., Simoes-Lopes, P. C. & Le Bas, A. A note on minke whales (Cetacea: Balaenopteridae) in Uruguay: Strandings review. JCRM 21, 135–140 (2020).Article 

    Google Scholar 
    Williamson, G. R. Minke whales off Brazil. Sci. Rep. Whales Res. Inst. 27, 37–59 (1975).
    Google Scholar 
    Pastene, L. A. & Goto, M. Genetic characterization and population genetic structure of the Antarctic minke whale Balaenoptera bonaerensis in the Indo-Pacific region of the Southern Ocean. Fish Sci. 82, 873–886 (2016).Article 
    CAS 

    Google Scholar 
    Balbuena, J. A., Aznar, F. J., Fernández, M. & Raga, J. A. Parasites as indicators of social structure and stock identity of marine mammals. Dev. Mar. Biol. 4, 133–139 (1995).
    Google Scholar 
    Kuramochi, T., Araki, J., Uchida, Moriyama, N., Takeda, Y., Hayashi, N., Wakao, H., Machida, M. & Nagasawa, K. Summary of parasite and epizoit investigations during JARPN surveys 1994–1999, with reference to stock structure analysis for the western North Pacific minke whales. IWC Scientific Committee Workshop to Review the Japanese Whaling Programme under Special Permit for North Pacific Minke Whales (JARPN) SC/F2K/J19 (2000).Kaliszewska, Z. A. et al. Population histories of right whales (Cetacea: Eubalaena) inferred from mitochondrial sequence diversities and divergences of their whale lice (Amphipoda: Cyamus). Mol. Ecol. 14, 3439–3456 (2005).Article 
    CAS 

    Google Scholar 
    Ólafsdóttir, D. & Shinn, A. P. Epibiotic macrofauna on common minke whales, Balaenoptera acutorostrata Lacépède, 1804 Icelandic waters. Parasit. Vectors 6, 1–10 (2013).Article 

    Google Scholar 
    Matthews, C. J., Ghazal, M., Lefort, K. J. & Inuarak, E. Epizoic barnacles on Arctic killer whales indicate residency in warm waters. Mar. Mamm. Sci. 36, 1010–1014 (2020).Article 

    Google Scholar 
    Flach, L., Van Bressem, M. F., Pitombo, F. & Aznar, F. J. Emergence of the epibiotic barnacle Xenobalanus globicipitis in Guiana dolphins after a morbillivirus outbreak in Sepetiba Bay Brazil. Estuar. Coast. Shelf Sci. 263, 107632. https://doi.org/10.1016/j.ecss.2021.107632 (2021).Article 

    Google Scholar 
    Ten, S., Raga, J. A. & Aznar, F. J. Epibiotic fauna on cetaceans worldwide: A systematic review of records and indicator potential. Front. Mar. Sci. 9, 846558. https://doi.org/10.3389/fmars.2022.846558 (2022).Article 

    Google Scholar 
    Liouville, J. Cétacés de l’Antarctique. Paris: Deuxième Expédition Antarctique Française (1908–1910) (1913).Ohsumi, S., Masaki, Y. & Kawamura, A. Stock of the Antarctic minke whale. Sci. Rep. Whales Res. Inst. 22, 75–125 (1970).
    Google Scholar 
    Ohsumi, S. Find of marlin spear from the Antarctic minke whales. Sci. Rep. Whales Res. Inst. 25, 237–239 (1973).
    Google Scholar 
    Ivashin, M. V. External Parasites on Lesser Rorquals in the Antarctic 125–127 (Naukova Dumka, 1975).
    Google Scholar 
    Berzin, A. A. & Vlasova, L. P. Fauna of the Cetacea Cyamidae (Amphipoda) of the world ocean. Investig. Cet. 13, 149–164 (1982).
    Google Scholar 
    Best, P. B. Seasonal abundance, feeding, reproduction, age and growth in minke whales off Durban (with incidental observations from the Antarctic). Rep. Int. Whal. Commn 32, 759–786 (1982).
    Google Scholar 
    Avdeev, V. V. Parasitic amphipods of the family Cyamidae and the problem of Cetacea origin. Biol. Morja 4, 27–33 (1989).
    Google Scholar 
    Bushuev, S. G. A study of the population structure of the southern minke whale (Balaenoptera acutorostrata Lacepede) based on morphological and ecological variability. Rep. Int. Whal. Commn 40, 317–324 (1990).
    Google Scholar 
    Sedlak-Weinstein, E. Preliminary report of parasitic infestation of the minke whale Balaenoptera acutorostrata taken during the 1988/89 Antarctic expedition. Unpublished paper (1990).Dailey, M. D. & Vogelbein, W. Parasite fauna of 3 species of Antarctic whales with reference to their use as potential stock indicators. Fish. Bull. 89, 355–365 (1991).
    Google Scholar 
    Nemoto, T., Best, P. B., Ishimaru, K. & Takano, H. Diatom films on whales in South African waters. Sci. Rep. Whales Res. Inst. 32, 97–103 (1980).
    Google Scholar 
    Donovan, G. A review of IWC stock boundaries. Rep. Int. Whal. Commn 13, 39–68 (1991).
    Google Scholar 
    Lester, R. J. G. & MacKenzie, K. The use and abuse of parasites as stock markers for fish. Fish. Res. 97, 1–2 (2009).Article 

    Google Scholar 
    Ten, S. et al. Epibiotic barnacles of sea turtles as indicators of habitat use and fishery interactions: an analysis of juvenile loggerhead sea turtles, Caretta caretta, in the western Mediterranean. Ecol. Indic. 107, 105672. https://doi.org/10.1016/j.ecolind.2019.105672 (2019).Article 

    Google Scholar 
    Calman, W. T. A whale-barnacle of the genus Xenobalanus from Antarctic Seas. Ann. Mag. Nat. Hist. 6, 165–166 (1920).Article 

    Google Scholar 
    Kato, H., Hiroyama, H., Fujise, Y. & Ono, K. Preliminary report of the 1987/88 Japanese feasibility study of the special permit proposal for Southern Hemisphere Minke Whales. Rep. int. Whal. Commn 39, 235–248 (1989).
    Google Scholar 
    International Whaling Commission (IWC). Report of the Intersessional Workshop to review data and results from special permit research on minke whales in the Antarctic, Tokyo, 7–8 December 2006. J. Cetacean Res. Manag. 10, 411–445 (2008).
    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583 (1997).Article 
    CAS 

    Google Scholar 
    Kim, H., Chan, B., Kang, C., Kim, H. & Kim, W. How do whale barnacles live on their hosts? Functional morphology and mating-group sizes of Coronula diadema (Linnaeus, 1767) and Conchoderma auritum (Linnaeus, 1767) (Cirripedia: Thoracicalcarea). J. Crustac. Biol. 40, 808–824 (2020).Article 

    Google Scholar 
    Reiczigel, J. Confidence intervals for the binomial parameter: Some new considerations. Stat. Med. 22, 611–621 (2003).Article 

    Google Scholar 
    Kato, H. Migration strategy of southern minke whales to maintain high reproductive rate. Dev. Mar. Biol. 4, 465–480 (1995).
    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. In Statistics for Biology and Health (ed. Gail, M.) (Springer, 2009).MATH 

    Google Scholar 
    Fransen, C. H. J. M. & Smeenk, C. Whale-lice (Amphipoda: Cyamidae) recorded from The Netherlands. Zool. Meded. 65, 393–405 (1991).
    Google Scholar 
    Barton, N. A., Farewell, T. S. & Hallett, S. H. Using generalized additive models to investigate the environmental effects on pipe failure in clean water networks. NPJ Clean Water 3, 31. https://doi.org/10.1038/s41545-020-0077-3 (2020).Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).Article 
    CAS 

    Google Scholar 
    Kane, E. A., Olson, P. A., Gerrodette, T. & Fiedler, P. Prevalence of the commensal barnacle Xenobalanus globicipitis on cetacean species in the eastern tropical Pacific Ocean, and a review of global occurrence. Fish. Bull. 106, 395–404 (2008).
    Google Scholar 
    Aznar, F. J., Balbuena, J. A. & Raga, J. A. Are epizoites biological indicators of a western Mediterranean striped dolphin die-off?. Dis. Aquat. Organ. 18, 159–163 (1994).Article 

    Google Scholar 
    Carrillo, J. M., Overstreet, R. M., Raga, J. A. & Aznar, F. J. Living on the edge: Settlement patterns by the symbiotic barnacle Xenobalanus globicipitis on small cetaceans. PLoS One 10, e0127367. https://doi.org/10.1371/journal.pone.0127367 (2015).Article 
    CAS 

    Google Scholar 
    Moreno-Colom, P., Ten, S., Raga, J. A. & Aznar, F. J. Spatial distribution and aggregation of Xenobalanus globicipitis on the flukes of striped dolphins, Stenella coeruleoalba: An indicator of host hydrodynamics?. Mar. Mamm. Sci. 36, 897–914 (2020).Article 

    Google Scholar 
    Aznar, F. J. et al. Changes in epizoic crustacean infestations during cetacean die-offs: The mass mortality of Mediterranean striped dolphins Stenella coeruleoalba revisited. Dis. Aquat. Org. 67, 239–247 (2005).Article 
    CAS 

    Google Scholar 
    Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Modell. 157, 157–177 (2002).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).Book 
    MATH 

    Google Scholar 
    Bloch, D. et al. Short-term movements of long-finned pilot whales Globicephala melas around the Faroe Islands. Wildl. Biol. 9, 47–58 (2003).Article 

    Google Scholar 
    Beasley, I. et al. Stomach contents of long-finned pilot whales, Globicephala melas mass-stranded in Tasmania. PLoS One 14, e0206747. https://doi.org/10.1371/journal.pone.0206747 (2019).Article 
    CAS 

    Google Scholar 
    Ohno, M. & Fujino, K. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets, season 1950/51. Sci. Rep. Whales Res. Inst. 7, 125–188 (1952).
    Google Scholar 
    Clarke, R. The stalked barnacle Conchoderma, ectoparasitic on whales. Norsk Hvalfangst-Tidende 55, 153–168 (1966).
    Google Scholar 
    Christensen, I. First record of gooseneck barnacles (Conchoderma auritum) on a minke whale (Balaenoptera acutorostrata). ICES C. M. 1985/N:9 (1985).Bertulli, C. G., Cecchetti, A., Van Bressem, M. F. & Van Waerebeek, K. Skin disorders in common minke whales and white-beaked dolphins off Iceland, a photographic assessment. J. Mar. Anim. Ecol. 5, 29–40 (2012).
    Google Scholar 
    Knowlton, N. Sibling species in the sea. Annu. Rev. Ecol. Evol. Syst. 24, 189–216 (1993).Article 

    Google Scholar 
    Trontelj, P. & Fišer, C. Perspectives: Cryptic species diversity should not be trivialised. Syst. Biodivers. 7, 1–3 (2009).Article 

    Google Scholar 
    Norris, R. & Hull, P. The temporal dimension of marine speciation. Evol. Ecol. 26, 393–415 (2011).Article 

    Google Scholar 
    Rawson, P., Macnamee, R., Frick, M. & Williams, K. Phylogeography of the coronulid barnacle, Chelonibia testudinaria, from loggerhead sea turtles Caretta caretta. Mol. Ecol. 12, 2697–2706 (2003).Article 
    CAS 

    Google Scholar 
    Cabezas, M. P., Cabezas, P., Machordom, A. & Guerra-García, J. M. Hidden diversity and cryptic speciation refute cosmopolitan distribution in Caprella penantis (Crustacea: Amphipoda: Caprellidae). J. Zool. Syst. Evol. 51, 85–99 (2013).Article 

    Google Scholar 
    Boyd, L. L., Zardus, J. D., Knauer, C. M. & Wood, L. D. Evidence for host selectivity and specialization by epizoic Chelonibia barnacles between hawksbill and green sea turtles. Front. Ecol. Evol. 9, 807237. https://doi.org/10.3389/fevo.2021.807237 (2021).Article 

    Google Scholar 
    Schell, D., Rowntree, V. & Pfeiffer, C. Stable-isotope and electron-microscopic evidence that cyamids (Crustacea: Amphipoda) feed on whale skin. Can. J. Zool. 78, 721–727 (2000).Article 

    Google Scholar 
    Iwasa-Arai, T. & Serejo, C. S. Phylogenetic analysis of the family Cyamidae (Crustacea: Amphipoda): A review based on morphological characters. Zool. J. Linn. Soc. 184, 66–94 (2018).Article 

    Google Scholar 
    Fraija-Fernández, N. et al. Living in a harsh habitat: Epidemiology of the whale louse, Syncyamus aequus (Cyamidae), infecting striped dolphins in the Western Mediterranean. J. Zool. 303, 199–206 (2017).Article 

    Google Scholar 
    Angot, M. Rapport scientifique sur les expeditions baleinieres autour de Madagascar (saisons 1949 et 1950). Mem. Inst. Sci. Madag. Ser. A 6, 439–486 (1951).
    Google Scholar 
    Newman, W. A. & Abbott, D. P. Cirripedia: The barnacles. In Intertidal Invertebrates of California (eds Morris, R. H. et al.) 504–535 (Stanford University Press, 1980).
    Google Scholar 
    Nogata, Y. & Matsumura, K. Larval development and settlement of a whale barnacle. Biol Lett. 2, 92–93 (2006).Article 

    Google Scholar 
    Hiro, F. The fauna of Akkeshi Bay. II. Cirripedia. J. Fac. Sci. Hokkaido Univ. 4, 213–229 (1935).
    Google Scholar 
    Rice, D. W. Progress report on biological studies of the larger Cetacea in the waters off California. Norsk Hvalfangst-Tid 52, 181–187 (1963).
    Google Scholar 
    Klinkhart, E. G. The beluga whale in Alaska. State Alsk. Dep. Fish 7, 11 (1966).
    Google Scholar 
    Nilsson-Cantell, C. A. Cirripedia Thoracica and Acrothoracica. MIOS 5, 1–133 (1978).
    Google Scholar 
    Scarff, J. E. Occurrence of the barnacles Coronula diadema, C. reginae and Cetopirus complanatus (Cirripedia) on right whales. Sci. Rep. Whales Res. Inst. 37, 129–153 (1986).
    Google Scholar 
    Kakuwa, Z., Kawakami, T. & Iguchi, K. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets in the 1951–52 season. Sci. Rep. Whales Res. Inst. 8, 147–213 (1953).
    Google Scholar 
    Nishiwaki, M. Humpback whales in Ryukyuan waters. Sci. Rep. Whales Res. Inst. 14, 49–87 (1959).
    Google Scholar 
    Best, P. B. The presence of coronuline barnacles on a southern right whale Eubalaena australis. S. Afr. J. Mar. Sci. 11, 585–587 (1991).Article 

    Google Scholar 
    Mackintosh, N. A. & Wheeler, J. F. G. Southern blue and fin whales. Disc. Rep. 1, 257–540 (1929).
    Google Scholar 
    Nilsson-Cantell, C. A. Thoracic cirripedes collected in 1925–1927. Disc. Rep. 2, 223–260 (1930).
    Google Scholar 
    Nishiwaki, M. & Hayashi, K. Biological survey of fin and blue whales taken in the Antarctic season 1947–48 by the Japanese fleet. Sci. Rep. Whales Res. Inst. 3, 132–190 (1950).
    Google Scholar 
    Mizue, K. & Murata, T. Biological investigation on the whales caught by the Japanese Antarctic whaling fleets season 1949–50. Sci. Rep. Whales Res. Inst. 6, 73–131 (1951).
    Google Scholar 
    Nishiwaki, M. & Oye, T. Biological investigation on blue whales (Balaenoptera musculus) and Fin Whales (Balaenoptera physalus) caught by the Japanese Antarctic Whaling Fleets. Sci. Rep. Whales Res. Inst. 5, 91–167 (1951).
    Google Scholar 
    Tomilin, A. G. Cetacea. In Mammals of the U.S.S.R. and Adjacent Countries Vol. 9 (ed. Tomilin, A. G.) 717 (Akademii Nauk SSSR, 1957).
    Google Scholar 
    Cockrill, W. R. Pathology of the cetacea. A veterinary study on whales. Br. Vet. J. 116, 1–28 (1960).
    Google Scholar 
    Kawamura, A. Some consideration on the stock unit of sei whales by the aspect of ectoparasitic organisms on the body. Bull. Jpn. Soc. Fish. Oceanogr. 14, 38–43 (1969).
    Google Scholar 
    Fraija-Fernández, N., Hernández-Hortelano, A., Ahuir-Baraja, A. E., Raga, J. A. & Aznar, F. J. Taxonomic status and epidemiology of the mesoparasitic copepod Pennella balaenoptera in cetaceans from the western Mediterranean. Dis. Aquat. Org. 128, 249–258 (2018).Article 

    Google Scholar 
    Foster, B. A. & Willan, R. C. Foreign barnacles transported to New Zealand on an oil platform. N. Z. J. Mar. Freshw. Res. 13, 143–149 (1979).Article 

    Google Scholar 
    González, J. et al. Cirripedia of the Canary islands: Distribution and ecological notes. J. Mar. Biol. Assoc. U.K. 92, 129–141 (2012).Article 

    Google Scholar 
    Zettler, M. L. An example for transatlantic hitchhiking by macrozoobenthic organisms with a research vessel. Helgol. Mar. Res. 75, 4. https://doi.org/10.1186/s10152-021-00549-w (2021).Article 

    Google Scholar 
    Matthews, L. H. The humpback whale Megaptera novaeangliae. Disc. Rep. 17, 7–92 (1937).
    Google Scholar 
    Scheffer, V. B. Organisms collected from whales in the Aleutian Islands. Murrelet 20, 67–69 (1939).Article 

    Google Scholar 
    Symons, H. W. & Weston, R. D. Studies on the humpback whale (Megaptera nodosa) in the Bellinghausen Sea. Norsk Hvalfangsttid 47, 53–81 (1958).
    Google Scholar 
    Van Waerebeek, K., Reyes, J. C. & Alfaro, J. Helminth parasites and phoronts of dusky dolphins Lagenorhynchus obscurus (Gray, 1828) from Peru. Aquat. Mamm. 19, 159–169 (1993).
    Google Scholar 
    Fertl, D. Barnacles. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 75–78 (Academic Press, 2002).
    Google Scholar 
    Cornwall, I. E. The barnacles of british Columbia. Br. Col. Prov. Mus. Dept. 7, 5–69 (1955).
    Google Scholar 
    Abaunza, P., Arroyo, N. L. & Preciado, I. A contribution to the knowledge on the morphometry and the anatomical characters of Pennella balaenopterae (Copepoda, Ciphonostomatoida, Pennellidae), with special reference to the buccal complex. Crustaceana 74, 193–210 (2001).Article 

    Google Scholar 
    Marcer, F. et al. Parasitological and pathological findings in fin whales Balaenoptera physalus stranded along Italian coastlines. Dis. Aquat. Org. 133, 25–37 (2019).Article 
    CAS 

    Google Scholar 
    Turner, W. On Pennella balænopteræ: A crustacean, parasitic on a finner whale, Balaenoptera musculus. Earth. Environ. Sci. Trans. R. Soc. Edinb. 41, 409–434 (1905).Article 

    Google Scholar 
    Walker, W. A. & Hanson, M. B. Biological observations on Stejneger’s beaked whale, Mesoplodon stejnegeri, from strandings on Adak Alaska. Mar. Mamm. Sci. 15, 1314–1329 (1999).Article 

    Google Scholar 
    Delaney, M. A., Ford, J. K. B., Tang, K. & Gaydos, J. K. Mesoparasitic copepod (Pennella balaenopterae) infestation of a stranded offshore orca (Orcinus orca) in Southeast Alaska: Review of significance as a health indicator in cetaceans. In IAAAM 21–26 (2016).Suyama, S., Kakehi, S., Yanagimoto, T. & Chow, S. Infection of the pacific saury Cololabis saira (Brevoort, 1856) (Teleostei: Beloniformes: Scomberesocidae) by Pennella sp. (Copepoda: Siphonostomatoida: Pennellidae) south of the Subarctic Front. J. Crust. Biol. 40, 384–389 (2020).Article 

    Google Scholar 
    Rowntree, V. J. Feeding, distribution and reproductive behavior of cyamids (Crustacea: Amphipoda) living on humpback and right whales. Can. J. Zool. 74, 103–109 (1996).Article 

    Google Scholar 
    Leung, Y. M. Life cycle of Cyamus scammoni (Amphipoda: Cyamidae), ectoparasite of gray whale, with a remark on the associated species. Sci. Rep. Whales Res. Inst. 28, 153–160 (1976).
    Google Scholar 
    MacIntyre, R. J. Rapid growth in stalked barnacles. Nature 212, 637–638 (1966).Article 
    ADS 

    Google Scholar 
    Rasmussen, T. Notes on the biology of the shipfouling gooseneck barnacle Conchoderma auritum Linnaeus, 1776 (Cirripedia; Lepadomorpha). Biol. Mar. 2, 37–44 (1980).
    Google Scholar 
    Dalley, R. & Crisp, D. J. Conchoderma: A fouling hazard to ships underway. Mar. Biol. Lett. 2, 141–152 (1981).
    Google Scholar 
    Dalley, R. The larval stages of the oceanic, pedunculate barnacle Conchoderma auritum (L) (Cirripedia, Thoracica). Crustaceana 46, 39–54 (1984).Article 

    Google Scholar 
    Foskolos, I., Provata, M. T. & Frantzis, A. First record of Conchoderma auritum (Cirripedia: Lepadidae) on Ziphius cavirostris (Cetacea: Ziphiidae) in Greece. Ann. Ser. Hist. 27, 29–34 (2017).
    Google Scholar 
    Lee, J. F., Friedlaender, A. S., Oliver, M. J. & DeLiberty, T. L. Behavior of satellite-tracked Antarctic minke whales (Balaenoptera bonaerensis) in relation to environmental factors around the western Antarctic Peninsula. Anim. Biotelem. 5, 23. https://doi.org/10.1186/s40317-017-0138-7 (2017).Article 

    Google Scholar 
    Darwin, C. A Monograph on the Subclass Cirripedia Vol. 1 (The Ray Society, 1851).
    Google Scholar 
    Tsikhon-Lukanina, V. A., Soldatova, I. N., Kuznetsova, I. A. & Il’in, I. I. Macrofouling community in the Strait of Tunisia (Sicily). Oceanology 16, 519–522 (1977).
    Google Scholar 
    Nilsson-Cantell, C. A. Cirripedien von der Stewart Insel und von Südgeorgien. Senckenbergiana 12, 210–213 (1930).
    Google Scholar 
    Slijper, E. J. Whales (Hutchinson, 1962).
    Google Scholar 
    Kaufman, G. D. & Forestell, P. H. Hawaii’s humpback whales, a complete whalewatching guide (Pacific Whale Foundation Press, 1986).
    Google Scholar 
    Dawbin, W. H. Baleen whales. In Whales, Dolphins and Porpoises (eds Harrison, R. & Bryden, M.) 44–65 (Facts on File, 1988).
    Google Scholar 
    Félix, F., Bearson, B. & Falconí, J. Epizoic barnacles removed from the skin of a humpback whale after a period of intense surface activity. Mar. Mamm. Sci. 22, 979–984 (2006).Article 

    Google Scholar 
    Towers, J. R. et al. Seasonal movements and ecological markers as evidence for migration of common minke whales photo-identified in the eastern North Pacific. J. Cetacean Res. Manag. 13, 221–229 (2013).
    Google Scholar 
    Iwasa-Arai, T. et al. The host-specific whale louse (Cyamus boopis) as a potential tool for interpreting humpback whale (Megaptera novaeangliae) migratory routes. J. Exp. Mar. Biol. Ecol. 505, 45–51 (2018).Article 

    Google Scholar 
    Lehnert, K. et al. Whale lice (Isocyamus deltobranchium & Isocyamus delphinii; Cyamidae) prevalence in odontocetes off the German and Dutch coasts – Morphological and molecular characterization and health implications. Int. J. Parasitol. 15, 22–30 (2021).
    Google Scholar 
    Dreyer, N. et al. How whale and dolphin barnacles attach to their hosts and the paradox of remarkably versatile attachment structures in cypris larvae. Org. Divers. Evol. 20, 233–249 (2020).Article 

    Google Scholar 
    Visser, I. N., Cooper, T. E. & Grimm, H. Duration of pseudo-stalked barnacles (Xenobalanus globicipitis) on a New Zealand Pelagic ecotype orca (Orcinus orca), with comments on cookie cutter shark bite marks (Isistius sp.); can they be used as biological tags?. Biol. Divers. 11, 1067–1086 (2020).
    Google Scholar 
    Van Waerebeek, K. & Reyes, J. C. A note on incidental fishery mortality of southern minke whales off western South America. Rep. Int. Whal. Commn 15, 521–523 (1994).
    Google Scholar 
    Félix, F. & Haase, B. A note on the northernmost record of the Antarctic minke whale (Balaenoptera bonaerensis) in the Eastern Pacific. J. Cetacean Res. Manag. 13, 191–194 (2013).
    Google Scholar 
    Esposito, C., Bichet, O. & Petit, M. First sightings of Antarctic minke whale (Balaenoptera bonaerensis) mother–calf pairs in French Polynesia. Aquat. Mamm. 47, 175–180 (2021).Article 

    Google Scholar 
    Karaa, S., Insacco, G., Bradai, M. N. & Scaravelli, D. Records of Xenobalanus globicipitis on Balaenoptera physalus and Stenella coeruleoalba in Tunisian and Sicilian waters. Nat. Rerum 1, 55–59 (2011).
    Google Scholar 
    Oliveira, J. B., Morales, J. A., González-Barrientos, R. C., Hernández-Gamboa, J. & Hernández-Mora, G. Parasites of cetaceans stranded on the Pacific Coast of Costa Rica. Vet. Parasitol. 182, 319–328. https://doi.org/10.1016/j.vetpar.2011.05.014 (2011).Article 
    CAS 

    Google Scholar 
    Dı́az-Gamboa, R. E. Varamiento de orcas pigmeas (Feresa attenuata Gray 1874) en Yucatán: Reporte de caso. Bioagrociencias 8, 36–43 (2015).
    Google Scholar 
    IJsseldijk, L. L. et al. Beached bachelors: An extensive study on the largest recorded sperm whale Physeter macrocephalus mortality event in the north sea. PloS One 13, e0201221. https://doi.org/10.1371/journal.pone.0201221 (2018).Article 
    CAS 

    Google Scholar 
    Guerrero-Ruiz, M. & Urbán, J. R. First report of remoras on two killer whales (Orcinus orca) in the Gulf of California Mexico. Aquat. Mamm. 26, 148–150 (2000).
    Google Scholar 
    Kautek, G., Van Bressem, M. F. & Ritter, F. External body conditions in cetaceans from La Gomera, Canary Islands Spain. J. Marine Anim. Ecol. 11, 4–17 (2008).
    Google Scholar 
    Bearzi, M. & Patonai, K. Occurrence of the barnacle (Xenobalanus globicipitis) on coastal and offshore common bottlenose dolphins (Tursiops truncatus) in Santa Monica Bay and adjacent areas California. Bull. S. Calif. Acad. Sci. 109, 37–44. https://doi.org/10.3160/0038-3872-109.2.37 (2010).Article 

    Google Scholar 
    Foote, A. D. et al. Genetic differentiation among North Atlantic killer whale populations. Mol. Ecol. 20, 629–641. https://doi.org/10.1111/j.1365-294X.2010.04957.x (2011).Article 

    Google Scholar 
    Toth, J. L., Hohn, A. A., Able, K. W. & Gorgone, A. M. Defining bottlenose dolphin (Tursiops truncatus) stocks based on environmental, physical and behavioral characteristics. Mar. Mamm. Sci. 28, 461–478. https://doi.org/10.1111/j.1748-7692.2011.00497.x (2012).Article 

    Google Scholar 
    Urian, K. W., Kaufmann, R., Waples, D. M. & Read, A. J. The prevalence of ectoparasitic barnacles discriminates stocks of Atlantic common bottlenose dolphins (Tursiops truncatus) at risk of entanglement in coastal gill net fisheries. Mar. Mamm. Sci. 35, 290–299. https://doi.org/10.1111/mms.12522 (2019).Article 

    Google Scholar 
    Siciliano, S. et al. Epizoic barnacle (Xenobalanus globicipitis) infestations in several cetacean species in South-Eastern Brazil. Mar. Biol. Res. 16, 1–13. https://doi.org/10.1080/17451000.2020.1783450 (2020).Article 

    Google Scholar 
    Whitehead, T. O., Rollinson, D. P. & Reisinger, R. R. Pseudostalked barnacles Xenobalanus globicipitis attached to killer whales Orcinus orca in South African waters. Mar. Biodivers. Rec. 45, 873–876. https://doi.org/10.1007/s12526-014-0296-2 (2014).Article 

    Google Scholar 
    Methion, S. & Dı́az López, B. First record of atypical pigmentation pattern in fin whale Balaenoptera physalus in the Atlantic ocean. Dis. Aquat. Org. 135, 121–125. https://doi.org/10.3354/dao03385 (2019).Article 

    Google Scholar 
    Herr, H., Burkhardt-Holm, P., Heyer, K., Siebert, U. & Selling, J. Injuries, malformations and epidermal conditions in cetaceans of the strait of Gibraltar. Aquat. Mamm. 46, 215–235. https://doi.org/10.1578/AM.46.2.2020.215 (2020).Article 

    Google Scholar 
    Herr, H. et al. Return of large fin whale feeding aggregations to historical whaling grounds in the southern ocean. Sci. Rep. 12, 9458. https://doi.org/10.1038/s41598-022-13798-7 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Gruvel, J. A. Cirrhipèdes Provenant Des Campagnes Scientifiques De S.A.S. Le Prince De Monaco, (1885– 1913). In Résultas Des Campagnes Scientifiques Accomplies Sur Son Yacht Par Albert Ler (Monaco: Prince Souverain de Monaco) 1-88 (1920).Annandale, N. The rate of growth in Conchoderma and Lepas. Rec. Indian Mus. 3, 295 (1909).
    Google Scholar 
    Il’in, I. I., Kuznetsova, L. A. & Starostin, I. V. Oceanic fouling in the equatorial Atlantic. Oceanology 18, 597–599 (1978).
    Google Scholar 
    Eckert, K. L. & Eckert, S. A. Growth rate and reproductive condition of the barnacle Conchoderma virgatum on gravid leatherback sea turtles in Caribbean waters. J. Crust. Biol. 7, 682–690. https://doi.org/10.2307/1548651 (1987).Article 

    Google Scholar 
    Arroyo, N. L., Abaunza, P. & Preciado, I. The first naupliar stage of Pennella balaenopterae Koren and Danielssen 1877 (Copepoda: Siphonostomatoida, Pennellidae). Sarsia 87, 333–337. https://doi.org/10.1080/0036482021000155785 (2002).Article 

    Google Scholar  More

  • in

    Maize and ancient Maya droughts

    Evans, N. P. et al. Quantification of drought during the collapse of the classic Maya civilization. Science 361, 498–501 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gill, R. B. The Great Maya Droughts: Water, Life, and Death (University of New Mexico Press, 2001).
    Google Scholar 
    Coe, M. D. The Maya (Thames and Hudson, 1993).
    Google Scholar 
    Douglas, P. M. J. et al. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. Proc. Natl. Acad. Sci. USA 112, 5607–5612 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Haug, G. H. et al. Climate and the collapse of Maya civilization. Science 299, 1731–1735 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Ford, A. & Nigh, R. Origins of the Maya forest garden: Maya resource management. J. Ethnobiol. 29, 213–236 (2009).Article 

    Google Scholar 
    Anderson, E. N. et al. Las Plantas de los Mayas: Etnobotánica en Quintana Roo, México (CONABIO-ECOSUR, 2005).
    Google Scholar 
    Fedick, S. L. Maya cornucopia: Indigenous food plants of the Maya lowlands. in The Real Business of Ancient Maya Economies (eds. Masson, M. A., Freidel, D. A. & Demarest, A. A.). 224–237 (University Press Florida, 2020).Ford, A. & Clarke, K. C. Linking the past and present of the ancient Maya: Lowland land use, population distribution, and density in the Late Classic period. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds. Isendahl, C. & Stump, D.) (Oxford Handbook of Historical Ecology and Applied Archaeology, 2015).Ford, A. & Nigh, R. The Maya Forest Garden: Eight Millennia of Sustainable Cultivation of the Tropical Woodlands (Routledge, 2016).Gómez-Pompa, A. On maya silviculture. Mexican Stud. (Estudios Mexicanos) 3, 1–17 (1987).Article 

    Google Scholar 
    Beach, T., Luzzadder-Beach, S., Krause, S. & Walling, S. ‘Mayacene’ floodplain and wetland formation in the Rio Bravo watershed of northwestern Belize. Holocene 25(10), 1612–1622 (2015).Pohl, M. D. et al. Early agriculture in the Maya lowlands. Lat. Am. Antiq. 7, 355–372 (1996).Article 

    Google Scholar 
    Fedick, S. L. The Managed Mosaic: Ancient Maya Agriculture and Resource Use (University of Utah Press, 1996).
    Google Scholar 
    Mueller, A. D. et al. Recovery of the forest ecosystem in the tropical lowlands of northern Guatemala after disintegration of Classic Maya polities. Geology 38, 523–526 (2010).Article 
    ADS 

    Google Scholar 
    Hodell, D. A., Curtis, J. H. & Brenner, M. Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391–394 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Islebe, G. A., Hooghiemstra, H., Brenner, M., Curtis, J. H. & Hodell, D. A. A Holocene vegetation history from lowland Guatemala. Holocene 6, 265–271 (1996).Article 
    ADS 

    Google Scholar 
    Medina-Elizalde, M., Polanco-Martínez, J. M., Lases-Hernández, F., Bradley, R. & Burns, S. Testing the ‘tropical storm’ hypothesis of Yucatan Peninsula climate variability during the Maya Terminal Classic Period. Quat. Res. 86, 111–119 (2016).Aragón-Moreno, A. A., Islebe, G. A., Torrescano-Valle, N. & Arellano-Verdejo, J. Middle and late Holocene mangrove dynamics of the Yucatan Peninsula, Mexico. J. South Am. Earth Sci. 85, 307–311 (2018).Article 
    ADS 

    Google Scholar 
    Aragón-Moreno, A. A., Islebe, G. A., Roy, P. D., Torrescano-Valle, N. & Mueller, A. D. Climate forcings on vegetation of the southeastern Yucatán Peninsula (Mexico) during the middle to late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 495, 214–226 (2018).Article 

    Google Scholar 
    Kennett, D. J. et al. Development and disintegration of Maya political systems in response to climate change. Science 338, 788–791 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Conde, C. et al. El Niño y la agricultura. in Los impactos de El Niño en México (ed. Magaña, V.). 103–135 (Dirección General de Protección Civil, Secretaría de Gobernación, México, 1999).Magaña, V. O., Vázquez, J. L., Pérez, J. L. & Pérez, J. B. Impact of El Niño on precipitation in Mexico. Geofísica Int. 42, 313–330 (2003).
    Google Scholar 
    Wahl, D., Byrne, R. & Anderson, L. An 8700 year paleoclimate reconstruction from the southern Maya lowlands. Quat. Sci. Rev. 103, 19–25 (2014).Article 
    ADS 

    Google Scholar 
    Nooren, K. et al. Climate impact on the development of Pre-Classic Maya civilisation. Clim. Past 14, 1253–1273 (2018).Article 

    Google Scholar 
    Palomo-Kumul, J., Valdez-Hernández, M., Islebe, G. A., Cach-Pérez, M. J. & El Andrade, J. L. Niño-Southern oscillation affects the water relations of tree species in the Yucatan Peninsula. Mexico. Sci. Rep. 11, 10451 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Rosenswig, R. M., VanDerwarker, A. M., Culleton, B. J. & Kennett, D. J. Is it agriculture yet? Intensified maize-use at 1000 cal BC in the Soconusco and Mesoamerica. J. Anthropol. Archaeol. 40, 89–108 (2015).Article 

    Google Scholar 
    Mueller, A. D. et al. Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene. Quat. Res. 71, 133–141 (2009).Article 

    Google Scholar 
    Aragón-Moreno, A. A., Islebe, G. A. & Torrescano-Valle, N. A ~3800-yr, high-resolution record of vegetation and climate change on the north coast of the Yucatan Peninsula. Rev. Palaeobot. Palynol. 178, 35–42 (2012).Article 

    Google Scholar 
    Carrillo-Bastos, A., Islebe, G. A. & Torrescano-Valle, N. 3800 Years of quantitative precipitation reconstruction from the Northwest Yucatan Peninsula. PLoS ONE 8, e84333 (2013).Article 
    ADS 

    Google Scholar 
    Berglund, B. E. Human impact and climate changes—Synchronous events and a causal link?. Quat. Int. 105, 7–12 (2003).Article 

    Google Scholar 
    Vela-Peláez, A. A., Torrescano-Valle, N., Islebe, G. A., Mas, J. F. & Weissenberger, H. Holocene precipitation changes in the Maya forest, Yucatán peninsula. Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. 505, 42–52 (2018).Article 
    ADS 

    Google Scholar 
    Torrescano-Valle, N. & Islebe, G. A. Holocene paleoecology, climate history and human influence in the southwestern Yucatán Peninsula. Rev. Palaeobot. Palynol. 217, 1–8 (2015).Article 

    Google Scholar 
    Anselmetti, F. S., Hodell, D. A., Ariztegui, D., Brenner, M. & Rosenmeier, M. F. Quantification of soil erosion rates related to ancient Maya deforestation. Geology 35, 915–918 (2007).Article 
    ADS 

    Google Scholar 
    Beach, T. et al. A review of human and natural changes in Maya Lowland wetlands over the Holocene. Quat. Sci. Rev. 28, 1710–1724 (2009).Article 
    ADS 

    Google Scholar 
    Kerr, M. T. Holocene Precipitation Variability, Prehistoric Agriculture, and Natural and Human-Set Fires in Costa Rica (University of Tennessee, 2019).
    Google Scholar 
    Ebert, C. E., Peniche May, N., Culleton, B. J., Awe, J. J. & Kennett, D. J. Regional response to drought during the formation and decline of Preclassic Maya societies. Quat. Sci. Rev. 173, 211–235 (2017).Article 
    ADS 

    Google Scholar 
    De la Barreda, B., Metcalfe, S. E. & Boyd, D. S. Precipitation regionalization, anomalies and drought occurrence in the Yucatan Peninsula, Mexico. Int. J. Climatol. 40, 4541–4555 (2020).Article 

    Google Scholar 
    Islebe, G. A. et al. Holocene Paleoecology and Paleoclimatology of south and south-eastern Mexico: A palynological approach. in Mexico´s Environmental Holocene and Anthropocene History (eds. Torrescano-Valle, N., Islebe, G. A. & Roy, P.) (Springer, 2019).Tuxill, J., Reyes, L. A., Moreno, L. L., Uicab, V. C. & Jarvis, D. I. All maize is not equal: Maize variety choices and Mayan foodways in rural Yucatan, Mexico. in Pre-Columbian Foodways: Interdisciplinary Approaches to Food, Culture, and Markets in Ancient Mesoamerica (eds. Staller, J. & Carrasco, M.) 467–486 (Springer, 2010).Torrescano-Valle, N., Ramírez-Barajas, P. J., Islebe, G. A., Vela-Pelaez, A. A. & Folan, W. J. Human influence versus natural climate variability. in The Holocene and Anthropocene Environmental History of Mexico: A Paleoecological Approach on Mesoamerica (eds. Torrescano-Valle, N., Islebe, G. A. & Roy, P. D.). 171–194 (Springer, 2019).Faegri, K. & Iversen, J. Textbook of Pollen Analysis (Wiley, 1989).
    Google Scholar 
    Ford, A. The Maya forest: A domesticated landscape. in The Maya World (eds. Hutson, S. R. & Ardren, T.). 519–539 (Routledge, 2020).Fedick, S. L. & Santiago, L. S. Large variation in availability of Maya food plant sources during ancient droughts. Proc. Natl. Acad. Sci. USA 119, 2115657118 (2022).Article 

    Google Scholar 
    Puleston, D. E. The role of ramón in Maya subsistence. in Maya Subsistence. 353–366 (Elsevier, 1982).Atran, S. et al. Itza Maya tropical agro-forestry [and comments and replies]. Curr. Anthropol. 34, 633–700 (1993).Article 

    Google Scholar 
    Dussol, L., Elliott, M., Michelet, D. & Nondédéo, P. Ancient Maya sylviculture of breadnut (Brosimum alicastrum Sw.) and sapodilla (Manilkara zapota (L.) P. Royen) at Naachtun (Guatemala): A reconstruction based on charcoal analysis. Quat. Int. 457, 29–42 (2017).Ebel, R., de Jesús Méndez Aguilar, M. & Putnam, H. R. Milpa: One sister got climate-sick. The impact of climate change on traditional Maya farming systems. Int. J. Sociol. Agric. Food (Online) 24, 175–199 (2018).
    Google Scholar 
    Hernández-González, O. & Vergara-Yoisura, S. Studies on the productivity of Brosimum alicastrum a tropical tree used for animal feed in the Yucatan Peninsula. Bothalia 22, 7 (2014).
    Google Scholar 
    Martínez-Ruiz, N. del R. & Larqué-Saavedra, A. Semilla de Ramón. in Alimentos Vegetales Autóctonos Iberoamericanos Subutilizados (eds. Sonia, S.-A. & Álvarez-Parrilla, E.). 177–192 (Fabro Editores, 2018).Hatfield, J. L. & Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 10, 103 (2019).Article 

    Google Scholar 
    Basso, B. & Ritchie, J. T. Evapotranspiration in high-yielding maize and under increased vapor pressure deficit in the US Midwest. Agric. Environ. Lett. 3, 170039 (2018).Article 

    Google Scholar 
    Gregory, P. J., Simmonds, L. P. & Pilbeam, C. J. Soil type, climatic regime, and the response of water use efficiency to crop management. Agron. J. 92, 814–820 (2000).Article 

    Google Scholar 
    Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research. R package at https://CRAN.R-project.org/package=psych (2022).Wickham, H. & Bryan, J. readxl: Read Excel Files. R package at https://readxl.tidyverse.org/ (2022).Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System. QGIS Association at https://www.qgis.org (2022)Instituto Nacional de Estadistica Geographia e Informatica (INEGI). 1:1000000 Merida, Carta de Precipitacion. Merida, Yucatán, Mexico (1981). More

  • in

    2-D sex images elicit mate copying in fruit flies

    Bovet, D. & Vauclair, J. Picture recognition in animals and humans. Behav. Brain. Res. 109, 143–165 (2000).Article 
    CAS 

    Google Scholar 
    Anonymous. Tinder for Orangutans. Dublin Zoo. https://www.dublinzoo.ie/news/tinder-for-orangutans (2020).Henley, J. “Tinder for Orangutans”: Dutch zoo to let female choose mate on a tablet. The Guardian. https://www.theguardian.com/environment/2017/jan/31/tinder-for-orangutans-dutch-zoo-to-let-female-choose-mate-on-a-tablet (2017).Gierszewski, S. et al. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II validation. Curr. Zool. 6, 65–74 (2017).Article 

    Google Scholar 
    Dolins, F. L., Klimowicz, C., Kelley, J. & Menzel, C. R. Using virtual reality to investigate comparative spatial cognitive abilities in chimpanzees and humans. Am. J. Primat. 76, 496–513 (2014).Article 

    Google Scholar 
    Faria, J. J. et al. A novel method for investigating the collective behaviour of fish: Introducing ‘Robofish’. Behav. Ecol. Sociobiol. 64, 1211–1218 (2010).Article 

    Google Scholar 
    Kozak, E. C. & Uetz, G. W. Male courtship signal modality and female mate preference in the wolf spider Schizocosa ocreata: results of digital multimodal playback studies. Curr. Zool. 65, 705–711 (2019).Article 

    Google Scholar 
    Loukola, O. J., Perry, C. J., Coscos, L. & Chittka, L. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355, 833–836 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    MacLaren, R. D. Evidence of an emerging female preference for an artificial male trait and the potential for spread via mate choice copying in Poecilia latipinna. Ethology 125, 575–586 (2019).
    Google Scholar 
    Rönkä, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654–1663 (2020).Article 

    Google Scholar 
    Rosenthal, G. G., Rand, A. S. & Ryan, M. J. The vocal sac as a visual cue in anuran communication: An experimental analysis using video playback. Anim. Behav. 68, 55–58 (2004).Article 

    Google Scholar 
    Thurley, K. & Ayaz, A. Virtual reality systems for rodents. Curr. Zool. 63, 109–119 (2017).Article 

    Google Scholar 
    Ware, E. L., Saunders, D. R. & Troje, N. F. Social interactivity in pigeon courtship behavior. Curr. Zool. 63, 85–95 (2017).Article 

    Google Scholar 
    Wang, D. et al. The influence of model quality on self-other mate choice copying. Pers. Ind. Diff. 17, 110481 (2021).Article 

    Google Scholar 
    Gray, J. R., Pawlowski, V. & Willis, M. A. A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space. J. Neurosci. Meth. 120, 211–223 (2002).Article 

    Google Scholar 
    Strauss, R., Schuster, S. & Götz, K. G. Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 1281–1296 (1997).Article 
    CAS 

    Google Scholar 
    Kemppainen, J. et al. Binocular mirror-symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision. PNAS 119, e2109717119 (2022).Article 
    CAS 

    Google Scholar 
    Bowers, R. I., Place, S. S., Todd, P. M., Penke, L. & Asendorpf, J. B. Generalization in mate-choice copying in humans. Behav. Ecol. 23, 112–124 (2012).Article 

    Google Scholar 
    Pruett-Jones, S. Independent versus nonindependent mate choice: do females copy each other? Am. Nat. 140, 1000–1006 (1992).Article 
    CAS 

    Google Scholar 
    Dagaeff, A.-C., Pocheville, A., Nöbel, S., Isabel, G. & Danchin, E. Drosophila mate copying correlates with atmospheric pressure in a speed learning situation. Anim. Behav. 121, 163–174 (2016).Article 

    Google Scholar 
    Mery, F. et al. Public versus personal information for mate copying in an invertebrate. Curr. Biol. 19, 730–734 (2009).Article 
    CAS 

    Google Scholar 
    Danchin, E. et al. Cultural flies: Conformist social learning in fruitflies predicts long-lasting mate-choice traditions. Science 362, 1025–1030 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Monier, M., Nöbel, S., Isabel, G. & Danchin, E. Effects of a sex ratio gradient on female mate-copying and choosiness in Drosophila melanogaster. Curr. Zool. 64, 251–258 (2018).Article 

    Google Scholar 
    Monier, M., Nöbel, S., Danchin, E. & Isabel, G. Dopamine and serotonin are both required for mate-copying in Drosophila melanogaster. Front. Behav. Neurosci. 12, 334 (2019).Article 

    Google Scholar 
    Nöbel, S., Allain, M., Isabel, G. & Danchin, E. Mate copying in Drosophila melanogaster males. Anim. Behav. 141, 9–15 (2018).Article 

    Google Scholar 
    Nöbel, S., Danchin, E. & Isabel, G. Mate-copying for a costly variant in Drosophila melanogaster females. Behav. Ecol. 29, 1150–1156 (2018).Article 

    Google Scholar 
    Dukas, R. Natural history of social and sexual behavior in fruit flies. Sci. rep. 10, 1–11 (2020).Article 

    Google Scholar 
    Chouinard-Thuly, L. et al. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr. Zool. 63, 5–19 (2017).Article 

    Google Scholar 
    Nöbel, S. et al. Female fruit flies copy the acceptance, but not the rejection, of a mate. Behav. Ecol. 33, 1018–1024 (2022)Article 

    Google Scholar 
    Bretman, A., Westmancoat, J. D., Gage, M. J. G. & Chapman, T. Males use multiple, redundant cues to detect mating rivals. Curr. Biol. 21, 617–622 (2011).Article 
    CAS 

    Google Scholar 
    Greenspan, R. J. & Ferveur, J. F. Courtship in drosophila. Ann. Rev. Gen. 34, 205 (2000).Article 
    CAS 

    Google Scholar 
    Grillet, M., Dartevelle, L. & Ferveur, J. F. A Drosophila male pheromone affects female sexual receptivity. Proc. Roy. Soc. B. 273, 315–323 (2006).Article 
    CAS 

    Google Scholar 
    Borst, A. Drosophila’s view on insect vision. Curr. Biol. 19, R36–R47 (2009).Article 
    CAS 

    Google Scholar 
    Paulk, A., Millard, S. & van Swinderen, B. Vision in Drosophila: Seeing the world through a model´s eye. Ann. Rev. Entomol. 58, 313–332 (2013).Article 
    CAS 

    Google Scholar 
    Antony, C. & Jallon, J. M. The chemical basis for sex recognition in Drosophila melanogaster. J. Insect. Physiol. 28, 873–880 (1982).Article 
    CAS 

    Google Scholar 
    Keesey, I. W. et al. Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J. Chem. Ecol. 42, 739–747 (2016).Article 
    CAS 

    Google Scholar 
    Talyn, B. C. & Bowse, H. B. The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Anim. Behav. 68, 1165–1180 (2004).Article 

    Google Scholar 
    von Schilcher, F. The function of pulse song and sine song in the courtship of Drosophila melanogaster. Anim. Behav. 24, 622–6251976 (1976).Article 

    Google Scholar 
    McGregor, P. K. et al. Design of playback experiments: The Thornbridge hall NATO ARW consensus. In Playback and Studies of Animal Communication (ed. McGregor, P.) 1–9 (Plenum Press, New York, 1992).Chapter 

    Google Scholar 
    Richmond, J. The three Rs. In The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals (eds Hubrecht, R. & Kirkwood, J.) 5–22 (Wiley-Blackwell, Hoboken, 2002).
    Google Scholar 
    Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen & Co Ltd, 1959).
    Google Scholar 
    Schlupp, I., Ryan, M. & Waschulewski, M. Female preferences for naturally-occurring novel male traits. Behaviour 136, 519–527 (1999).Article 

    Google Scholar 
    Witte, K. & Klink, K. No pre-existing bias in sailfin molly females, Poecilia latipinna, for a sword in males. Behaviour 142, 283–303 (2005).Article 

    Google Scholar 
    Gerlai, R. Animated images in the analysis of zebrafish behavior. Curr. Zool. 63, 35–44 (2017).Article 

    Google Scholar 
    Ioannou, C. C., Guttal, V. & Couzin, I. D. Predatory fish select for coordinated collective motion in virtual prey. Science 337, 1212–1215 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Little, A. C., Jones, B. C. & DeBruine, L. M. Preferences for variation in masculinity in real male faces change across the menstrual cycle: Women prefer more masculine faces when they are more fertile. Pers. Ind. Diff. 45, 478–482 (2008).Article 

    Google Scholar 
    Little, A. C., Jones, B. C. & DeBruine, L. M. Facial attractiveness: Evolutionary based research. Phil. Trans. R. Soc. B. 366, 1638–1659 (2011).Article 

    Google Scholar 
    Morrison, E. R., Clark, A. P., Tiddeman, B. P. & Penton-Voak, I. S. Manipulating shape cues in dynamic human faces: Sexual dimorphism is preferred in female but not male faces. Ethology 116, 1234–1243 (2010).Article 

    Google Scholar 
    Kacsoh, B. Z., Bozler, J., Ramaswami, M. & Bosco, G. Social communication of predator-induced changes in Drosophila behavior and germ line physiology. eLife. 4, e07423 (2015).Article 

    Google Scholar 
    Caruana, N. & Seymour, K. Objects that induce face pareidolia are prioritized by the visual system. Brit. J. Psychol. 113, 496–507 (2022).Article 

    Google Scholar 
    Agrawal, S., Safarik, S. & Dickinson, M. The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster. J. Exp. Biol. 217, 2796–2805 (2014).
    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (Austria, Vienna, 2021).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression 2nd edn. (Sage Publishing, London, 2001).
    Google Scholar  More

  • in

    The widely distributed soft coral Xenia umbellata exhibits high resistance against phosphate enrichment and temperature increase

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).
    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Hughes, T. P., Kerry, J. T. & Simpson, T. Large-scale bleaching of corals on the Great Barrier Reef. Ecology 99, 501 (2017).Article 

    Google Scholar 
    Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS 105, 17442–17446 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013 (2017).Article 
    ADS 

    Google Scholar 
    Jessen, C. et al. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the Red Sea Coral Acropora hemprichii. PLoS ONE 8, e62091 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Jessen, C., Roder, C., Villa Lizcano, J. F., Voolstra, C. R. & Wild, C. In-situ effects of simulated overfishing and eutrophication on benthic coral reef algae growth, succession, and composition in the Central Red Sea. PLoS ONE 8, e66992 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Fabricius, K. E., Cséke, S., Humphrey, C. & De’ath, G. Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework. PLoS ONE 8, e54399 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: A review of methods. Coral Reefs 39, 885–902 (2020).Article 

    Google Scholar 
    Fabricius, K. E. Factors determining the resilience of coral reefs to eutrophication: A review and conceptual model. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) (Springer, 2011).
    Google Scholar 
    Tilstra, A. et al. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata. PeerJ. https://doi.org/10.7717/PEERJ.3802/ (2017).Article 

    Google Scholar 
    Connolly, S. R., Lopez-Yglesias, M. A. & Anthony, K. R. N. Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31, 951–960 (2012).Article 
    ADS 

    Google Scholar 
    Coles, S. L. & Brown, B. E. Coral bleaching—Capacity for acclimatization and adaptation. Adv. Mar. Biol. 46, 183 (2003).Article 
    CAS 

    Google Scholar 
    Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).Article 
    CAS 

    Google Scholar 
    Szmant, A. M. Nutrient enrichment on coral reefs: Is it a major cause of coral reef decline? Estuaries 25, 743–766 (2002).Article 
    CAS 

    Google Scholar 
    Atkinson, M. J., Carlson, B. & Crow, G. L. Coral growth in high-nutrient, low-pH seawater: A case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii. Coral Reefs 14, 215–223 (1995).Article 
    ADS 

    Google Scholar 
    Bongiorni, L., Shafir, S., Angel, D. & Rinkevich, B. Survival, growth and gonad development of two hermatypic corals subjected to in situ fish-farm nutrient enrichment. Mar. Ecol. Prog. Ser. 253, 137–144 (2003).Article 
    ADS 

    Google Scholar 
    Grigg, R. W. Coral reefs in an urban embayment in Hawaii: A complex case history controlled by natural and anthropogenic stress. Coral Reefs 14, 253–266 (1995).Article 
    ADS 

    Google Scholar 
    Fabricius, K. E. & De’ath, G. Identifying ecological change and its causes: A case study on coral reefs. Ecol. Appl. 14, 1448–1465 (2004).Article 

    Google Scholar 
    Ferrier-Pagès, C., Gattuso, J. P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).Article 

    Google Scholar 
    Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017).Article 
    CAS 

    Google Scholar 
    Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).Article 
    ADS 

    Google Scholar 
    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2012).Article 
    ADS 

    Google Scholar 
    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. PNAS. https://doi.org/10.1073/pnas.2022653118 (2021).Article 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).Article 
    CAS 

    Google Scholar 
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & McCloskey, L. Population control in symbiotic corals—Ammonium ions and organic materials maintain the density of zooxanthellae. Bioscience 43, 606–611 (1993).Article 

    Google Scholar 
    Muscatine, L. & Pool, R. R. Regulation of numbers of intracellular algae. Proc. R. Soc. Lond. Ser. B Biol. Sci. 204, 131–139 (1979).ADS 
    CAS 

    Google Scholar 
    Muller-Parker, G., D’Elia, C. F. & Cook, C. B. Interactions between corals and their symbiotic algae. Coral Reefs Anthr. https://doi.org/10.1007/978-94-017-7249-5_5 (2015).Article 

    Google Scholar 
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: The key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).Article 

    Google Scholar 
    Steinberg, R. K., Dafforn, K. A., Ainsworth, T. & Johnston, E. L. Know thy anemone: A review of threats to octocorals and anemones and opportunities for their restoration. Front. Mar. Sci. 7, 590 (2020).Article 

    Google Scholar 
    Inoue, S., Kayanne, H., Yamamoto, S. & Kurihara, H. Spatial community shift from hard to soft corals in acidified water. Nat. Clim. Change 3, 683–687 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Wild, C. & Naumann, M. S. Effect of active water movement on energy and nutrient acquisition in coral reef-associated benthic organisms. PNAS 110, 8767–8768 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields: Long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).Article 
    CAS 

    Google Scholar 
    Benayahu, Y. & Loya, Y. Settlement and recruitment of a soft coral: Why is Xenia macrospiculata a successful colonizer? Bull. Mar. Sci. 36, 177–188 (1985).
    Google Scholar 
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: Beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 293–306 (2009).Article 
    ADS 

    Google Scholar 
    Reverter, M., Helber, S. B., Rohde, S., De Goeij, J. M. & Schupp, P. J. Coral reef benthic community changes in the Anthropocene: Biogeographic heterogeneity, overlooked configurations, and methodology. Glob. Change Biol. 28, 1956–1971 (2022).Article 

    Google Scholar 
    Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 2020, 1–25 (2020).
    Google Scholar 
    El-Khaled, Y. C. et al. Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs. Sci. Rep. 11, 1–15 (2021).Article 

    Google Scholar 
    Ruiz-Allais, J. P., Benayahu, Y. & Lasso-Alcalá, O. M. The invasive octocoral Unomia stolonifera (Alcyonacea, Xeniidae) is dominating the benthos in the Southeastern Caribbean Sea. Mem. la Fund La Salle Ciencias Nat. 79, 63–80 (2021).
    Google Scholar 
    Ruiz Allais, J. P., Amaro, M. E., McFadden, C. S., Halász, A. & Benayahu, Y. The first incidence of an alien soft coral of the family Xeniidae in the Caribbean, an invasion in eastern Venezuelan coral communities. Coral Reefs 33, 287 (2014).Article 
    ADS 

    Google Scholar 
    Baum, G., Januar, I., Ferse, S. C. A., Wild, C. & Kunzmann, A. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia. PeerJ 2016, 1–29 (2016).
    Google Scholar 
    Menezes, N. M. et al. New non-native ornamental octocorals threatening a South-west Atlantic reef. J. Mar. Biol. Assoc. U.K. https://doi.org/10.1017/S0025315421000849 (2022).Article 

    Google Scholar 
    Mantelatto, M. C., da Silva, A. G., dos Louzada, T. S., McFadden, C. S. & Creed, J. C. Invasion of aquarium origin soft corals on a tropical rocky reef in the southwest Atlantic. Brazil. Mar. Pollut. Bull. 130, 84–94 (2018).Article 
    CAS 

    Google Scholar 
    Simancas-Giraldo, S. M. et al. Photosynthesis and respiration of the soft coral Xenia umbellata respond to warming but not to organic carbon eutrophication. PeerJ 9, e11663 (2021).Article 

    Google Scholar 
    Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M. & Wild, C. Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ 2020, 1–16 (2020).
    Google Scholar 
    Thobor, B. et al. The pulsating soft coral Xenia umbellata shows high resistance to warming when nitrate concentrations are low. Sci. Rep. https://doi.org/10.1038/s41598-022-21110-w (2022).Article 

    Google Scholar 
    Costa, O. S., Leão, Z. M. A. N., Nimmo, M. & Attrill, M. J. Nutrification impacts on coral reefs from northern Bahia, Brazil. Hydrobiologia 440, 307–315 (2000).Article 
    CAS 

    Google Scholar 
    Fleury, B. G., Coll, J. C., Tentori, E., Duquesne, S. & Figueiredo, L. Effect of nutrient enrichment on the complementary (secondary) metabolite composition of the soft coral Sarcophyton ebrenbergi (Cnidaria: Octocorallia: Alcyonaceae) of the Great Barrier Reef. Mar. Biol. 136, 63–68 (2000).Article 
    CAS 

    Google Scholar 
    Bednarz, V. N., Naumann, M. S., Niggl, W. & Wild, C. Inorganic nutrient availability affects organic matter fluxes and metabolic activity in the soft coral genus Xenia. J. Exp. Biol. 215, 3672–3679 (2012).CAS 

    Google Scholar 
    Bruno, J. F., Petes, L. E., Harvell, C. D. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).Article 

    Google Scholar 
    Ezzat, L., Maguer, J.-F.F., Grover, R. & Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 6, 1–11 (2016).Article 

    Google Scholar 
    Tanaka, Y., Grottoli, A. G., Matsui, Y., Suzuki, A. & Sakai, K. Effects of nitrate and phosphate availability on the tissues and carbonate skeleton of scleractinian corals. Mar. Ecol. Prog. Ser. 570, 101–112 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, G., Strong, A. E., Skirving, W. & Arzayus, L. F. Overview of NOAA coral reef watch program’s near-real time satellite global coral bleaching monitoring activities. In Proc. 10th International Coral Reef Symposium, 1783–1793 (2006).Bellworthy, J. & Fine, M. Beyond peak summer temperatures, branching corals in the Gulf of Aqaba are resilient to thermal stress but sensitive to high light. Coral Reefs 36, 1071–1082 (2017).Article 
    ADS 

    Google Scholar 
    Rex, A., Montebon, F. & Yap, H. T. Metabolic responses of the scleractinian coral Porites cylindrica Dana to water motion. I. Oxygen flux studies. J. Exp. Mar. Biol. Ecol. 186, 33–52 (1995).Article 

    Google Scholar 
    Long, M. H., Berg, P., de Beer, D. & Zieman, J. C. In situ coral reef oxygen metabolism: An eddy correlation study. PLoS ONE 8, e58581 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fabricius, K. E. & Klumpp, D. W. Widespread mixotrophy in reef-inhabiting soft corals: The influence of depth, and colony expansion and contraction on photosynthesis. Mar. Ecol. Prog. Ser. 125, 195–204 (1995).Article 
    ADS 

    Google Scholar 
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).Article 
    CAS 

    Google Scholar 
    Raimonet, M., Guillou, G., Mornet, F. & Richard, P. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism? Estuar. Coast. Shelf Sci. 119, 126–138 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Furla, P., Galgani, I., Durand, I. & Allemand, D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445–3457 (2000).Article 
    CAS 

    Google Scholar 
    Hughes, A. D., Grottoli, A. G., Pease, T. K. & Matsui, Y. Acquisition and assimilation of carbon in non-bleached and bleached corals. Mar. Ecol. Prog. Ser. 420, 91–101 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Rau, G. H., Takahashi, T. & Des Marais, D. J. Latitudinal variations in plankton delta C-13—Implications for CO2 and productivity in past oceans. Nature 341, 516–518 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Muscatine, L., Porter, J. W. & Kaplan, I. R. Resource partitioning by reef corals as determined from stable isotope composition. Mar. Biol. 100, 185–193 (1989).Article 

    Google Scholar 
    Swart, P. K. et al. The isotopic composition of respired carbon dioxide in scleractinian corals: Implications for cycling of organic carbon in corals. Geochim. Cosmochim. Acta 69, 1495–1509 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals. Geochim. Cosmochim. Acta 70, 2781–2789 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Grottoli, A. G. & Rodrigues, L. J. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids. Coral Reefs 30, 687–692 (2011).Article 
    ADS 

    Google Scholar 
    Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L. & Matsui, Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral porites lobata: Implications for resilience in mounding corals. PLoS ONE 8, 32–35 (2013).Article 

    Google Scholar 
    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B Biol. Sci. 282, 20151887 (2015).Article 

    Google Scholar 
    Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Carpenter, E. J., Harvey, H. R., Brian, F. & Capone, D. G. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep Sea Res. I Oceanogr. Res. Pap. 44, 27–38 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Lachs, L. et al. Effects of tourism-derived sewage on coral reefs: Isotopic assessments identify effective bioindicators. Mar. Pollut. Bull. 148, 85–96 (2019).Article 
    CAS 

    Google Scholar 
    Kürten, B. et al. Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. J. Sea Res. 85, 379–394 (2014).Article 
    ADS 

    Google Scholar 
    Core Team, R. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
    ADS 

    Google Scholar 
    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.4.0 (2020).Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R Package Version 0.7.0 (2021).Contreras-Silva, A. I. et al. A meta-analysis to assess long-term spatiotemporal changes of benthic coral and macroalgae cover in the Mexican Caribbean. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    Ledlie, M. H. et al. Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs 26, 641–653 (2007).Article 
    ADS 

    Google Scholar 
    Kuffner, I. B. & Toth, L. T. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 30, 706–715 (2016).Article 

    Google Scholar 
    Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean Coral Reef. Science 265, 1547–1551 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    de Bakker, D. M., Meesters, E. H., Bak, R. P. M., Nieuwland, G. & van Duyl, F. C. Long-term shifts in coral communities on shallow to deep reef slopes of Curaçao and Bonaire: Are there any winners? Front. Mar. Sci. 3, 247 (2016).Article 

    Google Scholar 
    Mergner, H. & Svoboda, A. Productivity and seasonal changes in selected reef areas in the Gulf of Aqaba (Red Sea). Helgoländer Meeresun. 30, 383–399 (1977).Article 

    Google Scholar 
    Schlichter, D., Svoboda, A. & Kremer, B. P. Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): Carbon assimilation and translocation of photosynthates from symbionts to host. Mar. Biol. 78, 29–38 (1983).Article 
    CAS 

    Google Scholar 
    Al-Sofyani, A. A. & Niaz, G. R. A comparative study of the components of the hard coral Seriatopora hystrix and the soft coral Xenia umbellata along the Jeddah coast, Saudi Arabia. Rev. Biol. Mar. Oceanogr. 42, 207–219 (2007).Article 

    Google Scholar 
    McCloskey, L. R., Wethey, D. S. & Porter, J. W. Measurement and interpretation of photosynthesis and respiration in reef corals. In Coral Reefs: Research Methods (eds Stoddart, D. R. & Johannes, R. E.) 379–396 (United Nations Educational, Scientific and Cultural Organization, 1978).
    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).Article 
    CAS 

    Google Scholar 
    Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol. 129, 279–303 (1989).Article 

    Google Scholar 
    Iglesias-Prieto, R., Matta, J. L., Robins, W. A. & Trench, R. K. Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl. Acad. Sci. 89, 10302–10305 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Béraud, E., Gevaert, F., Rottier, C. & Ferrier-Pagès, C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674 (2013).
    Google Scholar 
    Kremien, M., Shavit, U., Mass, T. & Genin, A. Benefit of pulsation in soft corals. Proc. Natl. Acad. Sci. U.S.A. 110, 8978–8983 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Grover, R. et al. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE 6, 1–10 (2011).
    Google Scholar 
    Cardini, U. et al. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching. Environ. Microbiol. 18, 2620–2633 (2016).Article 
    CAS 

    Google Scholar 
    Cardini, U. et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc. R. Soc. B Biol. Sci. 282, 20152257 (2015).Article 

    Google Scholar 
    Santos, H. F. et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).Article 

    Google Scholar 
    Tilstra, A. et al. Relative diazotroph abundance in symbiotic red sea corals decreases with water depth. Front. Mar. Sci. 6, 372 (2019).Article 

    Google Scholar 
    Klinke, A. et al. Impact of phosphate enrichment on the susceptibility of the pulsating soft coral Xenia umbellata to ocean warming. Front. Mar. Sci. 9, 1026321 (2022).Article 

    Google Scholar 
    Rädecker, N. et al. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J. https://doi.org/10.1038/s41396-021-01158-8 (2021).Article 

    Google Scholar 
    Swart, P. K., Saied, A. & Lamb, K. Temporal and spatial variation in the δ15N and δ13C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol. Oceanogr. 50, 1049–1058 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the Northern Gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 215 (2017).Article 

    Google Scholar 
    Dubinsky, Z. & Stambler, N. Marine pollution and coral reefs. Glob. Change Biol. 2, 511–526 (1996).Article 
    ADS 

    Google Scholar 
    Loya, Y., Lubinevsky, H., Rosenfeld, M. & Kramarsky-Winter, E. Nutrient enrichment caused by in situ fish farms at Eilat, Red Sea is detrimental to coral reproduction. Mar. Pollut. Bull. 49, 344–353 (2004).Article 
    CAS 

    Google Scholar 
    Costa, O. S., Nimmo, M. & Attrill, M. J. Coastal nutrification in Brazil: A review of the role of nutrient excess on coral reef demise. J. S. Am. Earth Sci. 25, 257–270 (2008).Article 

    Google Scholar 
    Tait, D. R. et al. The influence of groundwater inputs and age on nutrient dynamics in a coral reef lagoon. Mar. Chem. 166, 36–47 (2014).Article 
    CAS 

    Google Scholar 
    Guan, Y., Hohn, S., Wild, C. & Merico, A. Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication. Glob. Change Biol. 26, 5646–5660 (2020).Article 
    ADS 

    Google Scholar 
    Hall, E. R. et al. Eutrophication may compromise the resilience of the Red Sea coral Stylophora pistillata to global change. Mar. Pollut. Bull. 131, 701–711 (2018).Article 
    CAS 

    Google Scholar 
    Naumann, M. S. et al. Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29, 649–659 (2010).Article 
    ADS 

    Google Scholar 
    Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428, 66–70 (2004).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Seasonal range fidelity of a megaherbivore in response to environmental change

    Richard, E., Said, S., Hamann, J. L. & Gaillard, J. M. Daily, seasonal and annual variations in individual home range overlap of two sympatric spacies of deer. Can. J. Zool. 92, 853–859 (2014).Article 

    Google Scholar 
    Sorensen, A. A., Stenhouse, G. B., Bourbonnais, M. L. & Nelson, T. A. Effects of habitat quality and anthropogenic disturbance on grizzly bear (Ursus arctos horribilis) home-range fidelity. Can. J. Zool. 93, 857–865 (2015).Article 

    Google Scholar 
    van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).Article 

    Google Scholar 
    Naidoo, R., Du, P., Weaver, G. S. L. C., Jago, M. & Wegmann, M. Factors affecting intraspecific variation in home range size of a large African herbivore. Landsc. Ecol. 27, 1523–1534 (2012).Article 

    Google Scholar 
    Bose, S. et al. Implications of fidelity and philopatry for the population structure of female black-tailed deer. Behav. Ecol. 28, 983–990 (2017).Article 

    Google Scholar 
    Northrup, J. M., Anderson, C. R. Jr. & Wittemyer, G. Environmental dynamics and anthropogenic development alter philopatry and space-use in a North American cervid. Divers. Distrib. 22, 547–557 (2016).Article 

    Google Scholar 
    Passadore, C., Möller, L., Diaz-aguirre, F. & Parra, G. J. High site fidelity and restricted ranging patterns in southern Australian bottlenose dolphins. Ecol. Evol. 8, 242–256 (2018).Article 

    Google Scholar 
    Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B Biol. Sci. 365, 2289–2301 (2010).Article 

    Google Scholar 
    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).Article 

    Google Scholar 
    Morrison, T. A. et al. Drivers of site fidelity in ungulates. J. Anim. Ecol. 00, 1–12 (2021).
    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).Article 

    Google Scholar 
    Barraquand, F. & Benhamou, S. Animal movements in heterogeneous landscapes: Identifying profitable places and homogeneous movement bouts. Ecology 89, 3336–3348 (2008).Article 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments: From individual behaviors to population distributions. Oikos 117, 654–664 (2008).Article 

    Google Scholar 
    Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. H. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88, 450–460 (2019).
    Google Scholar 
    Shakeri, Y. N., White, K. S. & Waite, J. N. Staying close to home: Ecological constraints on space use and range fidelity in a mountain ungulate. Ecol. Evol. 11, 11051–11064 (2021).Article 

    Google Scholar 
    Damuth, J. Home range, home range overlap, and species energy use among herbivorous mammals. Biol. J. Linn. Soc. 15, 185–193 (1981).Article 

    Google Scholar 
    Lindstedt, S. L., Miller, B. J. & Buskirk, S. W. Home range, time, and body size in mammals. Ecol. Soc. Am. 67, 413–418 (1986).
    Google Scholar 
    Ofstad, E. G., Herfindal, I., Solberg, E. J. & Sæther, B. E. Home ranges, habitat and body mass: Simple correlates of home range size in ungulates. Proc. R. Soc. B Biol. Sci. 283, 20161234 (2016).Article 

    Google Scholar 
    Gehr, B. et al. Stay home, stay safe—Site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J. Anim. Ecol. 89, 1329–1339 (2020).Article 

    Google Scholar 
    Sach, F., Dierenfeld, E. S., Langley-Evans, S. C., Watts, M. J. & Yon, L. African savanna elephants (Loxodonta africana) as an example of a herbivore making movement choices based on nutritional needs. PeerJ 7, 1–27 (2019).Article 

    Google Scholar 
    Pretorius, Y. et al. Diet selection of African elephant over time shows changing optimization currency. Oikos 121, 2110–2120 (2012).Article 

    Google Scholar 
    Chamaillé-Jammes, S., Valeix, M. & Fritz, H. Managing heterogeneity in elephant distribution: Interactions between elephant population density and surface-water availability. J. Appl. Ecol. 44, 625–633 (2007).Article 

    Google Scholar 
    Purdon, A. & van Aarde, R. J. Water provisioning in Kruger National Park alters elephant spatial utilisation patterns. J. Arid Environ. 141, 45–51 (2017).Article 
    ADS 

    Google Scholar 
    Shannon, G., Matthews, W. S., Page, B. R., Parker, G. E. & Smith, R. J. The affects of artificial water availability on large herbivore ranging patterns in savanna habitats: A new approach based on modelling elephant path distributions. Divers. Distrib. 15, 776–783 (2009).Article 

    Google Scholar 
    Kos, M. et al. Seasonal diet changes in elephant and impala in mopane woodland. Eur. J. Wildl. Res. 58, 279–287 (2012).Article 

    Google Scholar 
    Shannon, G., Mackey, R. L. & Slotow, R. Diet selection and seasonal dietary switch of a large sexually dimorphic herbivore. Acta Oecologica 46, 48–55 (2013).Article 
    ADS 

    Google Scholar 
    Loarie, S. R., van Aarde, R. J. & Pimm, S. L. Elephant seasonal vegetation preferences across dry and wet savannas. Biol. Conserv. 142, 3099–3107 (2009).Article 

    Google Scholar 
    Scogings, P. F. et al. Seasonal variations in nutrients and secondary metabolites in semi-arid savannas depend on year and species. J. Arid Environ. 114, 54–61 (2015).Article 
    ADS 

    Google Scholar 
    Birkett, P. J., Vanak, A. T., Muggeo, V. M. R., Ferreira, S. M. & Slotow, R. Animal perception of seasonal thresholds: Changes in elephant movement in relation to rainfall patterns. PLoS ONE 7, 1–8 (2012).Article 

    Google Scholar 
    Cushman, S. A., Chase, M. & Griffin, C. Elephants in space and time. Oikos 109, 331–341 (2005).Article 

    Google Scholar 
    Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 1–12 (2014).Article 

    Google Scholar 
    Purdon, A., Mole, M. A., Chase, M. J. & van Aarde, R. J. Partial migration in savanna elephant populations distributed across southern Africa. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Shannon, G., Page, B. R., Duffy, K. J. & Slotow, R. The ranging behaviour of a large sexually dimorphic herbivore in response to seasonal and annual environmental variation. Austral Ecol. 35, 731–742 (2010).Article 

    Google Scholar 
    Tsalyuk, M., Kilian, W., Reineking, B. & Getz, W. M. Temporal variation in resource selection of African elephants follows long-term variability in resource availability. Ecol. Monogr. 89, 1–19 (2019).Article 

    Google Scholar 
    Thaker, M., Prins, H. H. T., Slotow, R., Vanak, A. T. & Gupte, P. R. Fine-scale tracking of ambient temperature and movement reveals shuttling behavior of elephants to water. Front. Ecol. Evol. 7, 1–12 (2019).Article 

    Google Scholar 
    Govender, N., Trollope, W. S. W. & Van Wilgen, B. W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 43, 748–758 (2006).Article 

    Google Scholar 
    MacFadyen, S., Hui, C., Verburg, P. H. & Van Teeffelen, A. J. A. Spatiotemporal distribution dynamics of elephants in response to density, rainfall, rivers and fire in Kruger National Park, South Africa. Divers. Distrib. 25, 880–894 (2019).Article 

    Google Scholar 
    Edwards, M. A., Nagy, J. A. & Derocher, A. E. Low site fidelity and home range drift in a wide-ranging, large Arctic omnivore. Anim. Behav. 77, 23–28 (2009).Article 

    Google Scholar 
    Switzer, P. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7, 533–555 (1993).Article 

    Google Scholar 
    Kranstauber, B., Kays, R., Lapoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).Article 

    Google Scholar 
    Kranstauber, B., Smolla, M. & Safi, K. Similarity in spatial utilization distributions measured by the earth mover’s distance. Methods Ecol. Evol. 8, 155–160 (2017).Article 

    Google Scholar 
    Wartmann, F., Juarez, C. & Fernandez-duque, E. Size, site fidelity, and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of Northern Argentina. Int. J. Primatol. 35, 919–939 (2014).Article 

    Google Scholar 
    Pringle, R. M. Elephants as agents of habitat creation for small vertebrates at the patch scale. Ecology 89, 26–33 (2008).Article 

    Google Scholar 
    Valeix, M. et al. Elephant-induced structural changes in the vegetation and habitat selection by large herbivores in an African savanna. Biol. Conserv. 144, 902–912 (2011).Article 

    Google Scholar 
    Coverdale, T. C. et al. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology 97, 3219–3230 (2016).Article 

    Google Scholar 
    Gertenbach, W. Rainfall patterns in the Kruger National Park. Koedoe 23, 35–43 (1980).Article 

    Google Scholar 
    Venter, F. J., Scholes, R. J. & Eckhardt, H. C. The abiotic template and its associated vegetation pattern. In The Kruger Experience (eds du Toit, J. T. et al.) 83–129 (Island Press, 2003).
    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. The influence of increasing population size and vegetation productivity on elephant distribution in the Kruger National Park. Austral Ecol. 34, 329–342 (2009).Article 

    Google Scholar 
    Ferreira, S. M., Greaver, C. & Simms, C. Elephant population growth in Kruger National Park, South Africa, under a landscape management approach. Koedoe 59, 1–6 (2017).Article 

    Google Scholar 
    Brownrigg, R. Package ‘Maps’: Draw Geographical Maps (2022).Kranstauber, B. & Smolla, M. Move: Visualizing and analyzing animal track data. R package version 2.1.0 (2013).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. URL https://www.R-project.org/ (2017).Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movement using Brownian bridges. Ecology 88, 2354–2363 (2007).Article 

    Google Scholar 
    Wato, Y. A. et al. Movement patterns of African elephants (Loxodonta africana) in a semi-arid savanna suggest that they have information on the location of dispersed water sources. Front. Ecol. Evol. 6, 1–8 (2018).Article 

    Google Scholar 
    Polansky, L., Kilian, W. & Wittemyer, G. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models. Proc. R. Soc. B Biol. Sci. 282, 1–7 (2015).
    Google Scholar 
    Archibald, S. & Scholes, R. J. Leaf green-up in a semi-arid African savanna–separating tree and grass responses to environmental cues. J. Veg. Sci. 18, 583–594 (2007).
    Google Scholar 
    Majozi, N. P. et al. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa. Hydrol. Earth Syst. Sci. 21, 3401–3415 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1, 1–14 (2013).Article 

    Google Scholar 
    Didan, K. MOD13Q1 MODIS/terra vegetation indices 16-day L3 global 250m SIN Grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Redfern, J. V., Grant, C. C., Gaylard, A. & Getz, W. M. Surface water availability and the management of herbivore distributions in an African savanna ecosystem. J. Arid Environ. 63, 406–424 (2005).Article 
    ADS 

    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. Elephant spatial use in wet and dry savannas of southern Africa. J. Zool. 278, 189–205 (2009).Article 

    Google Scholar 
    Goldenberg, S. Z., Douglas-Hamilton, I. & Wittemyer, G. Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality. Proc. R. Soc. B Biol. Sci. 285, 1–8 (2018).
    Google Scholar 
    Woolley, L.-A. et al. Population and individual elephant response to a catastrophic fire in Pilanesberg National Park. PLoS ONE 3, 1–10 (2008).Article 

    Google Scholar 
    Eby, S. L., Anderson, T. M., Mayemba, E. P. & Ritchie, M. E. The effect of fire on habitat selection of mammalian herbivores: The role of body size and vegetation characteristics. J. Anim. Ecol. 83, 1196–1205 (2014).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).van Moorter, B. et al. Memory keeps you at home: A mechanistic model for home range emergence. Oikos 118, 641–652 (2009).Article 

    Google Scholar 
    Guldemond, R. A. R., Purdon, A. & van Aarde, R. J. A systematic review of elephant impact across Africa. PLoS ONE 12, 1–12 (2017).Article 

    Google Scholar 
    Abraham, J. O., Goldberg, E. R., Botha, J. & Staver, A. C. Heterogeneity in African savanna elephant distributions and their impacts on trees in Kruger National Park, South Africa. Ecol. Evol. 11, 5624–5634 (2021).Article 

    Google Scholar 
    Wall, J., Douglas-Hamilton, I. & Vollrath, F. Elephants avoid costly mountaineering. Curr. Biol. 16, 527–529 (2006).Article 

    Google Scholar 
    Presotto, A., Fayrer-Hosken, R., Curry, C. & Madden, M. Spatial mapping shows that some African elephants use cognitive maps to navigate the core but not the periphery of their home ranges. Anim. Cogn. 22, 251–263 (2019).Article 

    Google Scholar 
    Landman, M., Schoeman, D. S., Hall-Martin, A. J. & Kerley, G. I. H. Understanding long-term variations in an elephant piosphere effect to manage impacts. PLoS ONE 7, 1–11 (2012).Article 

    Google Scholar 
    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).Article 

    Google Scholar 
    Hamm, M. & Drossel, B. Habitat heterogeneity hypothesis and edge effects in model metacommunities. J. Theor. Biol. 426, 40–48 (2017).Article 
    ADS 

    Google Scholar 
    Katayama, N. et al. Landscape heterogeneity-biodiversity relationship: Effect of range size. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).Article 

    Google Scholar 
    O’Connor, T. G., Goodman, P. S. & Clegg, B. A functional hypothesis of the threat of local extirpation of woody plant species by elephant in Africa. Biol. Conserv. 136, 329–345 (2007).Article 

    Google Scholar 
    Codron, J. et al. Elephant (Loxodonta africana) diets in Kruger National Park, South Africa: Spatial and landscape differences. J. Mammal. 87, 27–34 (2006).Article 

    Google Scholar 
    Mduma, S. A. R., Sinclair, A. R. E. & Hilborn, R. Food regulates the Serengeti wildebeest: A 40-year record. J. Anim. Ecol. 68, 1101–1122 (1999).Article 

    Google Scholar 
    Ogutu, J. O. & Owen-Smith, N. ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol. Lett. 6, 412–419 (2003).Article 

    Google Scholar 
    Codron, J. et al. Landscape-scale feeding patterns of African elephant inferred from carbon isotope analysis of feces. Oecologia 165, 89–99 (2011).Article 
    ADS 

    Google Scholar 
    Woolley, L.-A., Millspaugh, J. J., Woods, R. J., Page, B. R. & Slotow, R. Intraspecific strategic responses of African elephants to temporal variation in forage quality. J. Wildl. Manag. 73, 827–835 (2009).Article 

    Google Scholar 
    Dube, K. & Nhamo, G. Evidence and impact of climate change on South African national parks. Potential implications for tourism in the Kruger National Park. Environ. Dev. 33, 1–11 (2020).Article 

    Google Scholar 
    Tshipa, A. et al. Partial migration links local surface-water management to large-scale elephant conservation in the world’s largest transfrontier conservation area. Biol. Conserv. 215, 46–50 (2017).Article 

    Google Scholar 
    Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science (80-.) 375, 1–12 (2022).Article 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science (80-.) 348, 1222–1232 (2015).Article 
    CAS 

    Google Scholar 
    Mpakairi, K. S., Ndaimani, H., Tagwireyi, P., Zvidzai, M. & Madiri, T. H. Futuristic climate change scenario predicts a shrinking habitat for the African elephant (Loxodonta africana): Evidence from Hwange National Park, Zimbabwe. Eur. J. Wildl. Res. 66, 1–10 (2020).Article 

    Google Scholar 
    Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).Article 

    Google Scholar 
    Asner, G. P., Vaughn, N., Smit, I. P. J. & Levick, S. Ecosystem-scale effects of megafauna in African savannas. Ecography (Cop.) 39, 240–252 (2016).Article 

    Google Scholar 
    Shannon, G. et al. Relative impacts of elephant and fire on large trees in a savanna ecosystem. Ecosystems 14, 1372–1381 (2011).Article 

    Google Scholar 
    Mole, M. A., DÁraujo, S. R., van Aarde, R. J., Mitchell, D. & Fuller, A. Coping with heat: Behavioural and physiological responses of savanna elephants in their natural habitat. Conserv. Physiol. 4, 1–11 (2016).Article 

    Google Scholar 
    Ncongwane, K. P., Botai, J. O., Sivakumar, V., Botai, C. M. & Adeola, A. M. Characteristics and long-term trends of heat stress for South Africa. Sustainability 13, 1–20 (2021).Article 

    Google Scholar 
    Lagendijk, G., Mackey, R. L., Page, B. R. & Slotow, R. The effects of herbivory by a mega- and mesoherbivore on tree recruitment in sand forest, South Africa. PLoS ONE 6, 1–9 (2011).Article 

    Google Scholar 
    Wells, H. B. M. et al. Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species’ traits. J. Anim. Ecol. 90, 2510–2522 (2021).Article 

    Google Scholar 
    Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: Effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).Article 

    Google Scholar 
    Fležar, U. et al. Simulated elephant-induced habitat changes can create dynamic landscapes of fear. Biol. Conserv. 237, 267–279 (2019).Article 

    Google Scholar 
    Brennan, A. et al. Characterizing multispecies connectivity across a transfrontier conservation landscape. J. Appl. Ecol. 57, 1700–1710 (2020).Article 

    Google Scholar 
    Roever, C. L., van Aarde, R. J. & Leggett, K. Functional connectivity within conservation networks: Delineating corridors for African elephants. Biol. Conserv. 157, 128–135 (2013).Article 

    Google Scholar 
    Green, S. E., Davidson, Z., Kaaria, T. & Doncaster, C. P. Do wildlife corridors link or extend habitat? Insights from elephant use of a Kenyan wildlife corridor. Afr. J. Ecol. 56, 860–871 (2018).Article 

    Google Scholar  More