Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215â233 (1999).ArticleÂ
Google ScholarÂ
Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165â170 (2013).ArticleÂ
ADSÂ
Google ScholarÂ
Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929â933 (2003).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560â563 (2008).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. 116, 12907â12912 (2019).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11â37 (2012).ArticleÂ
ADSÂ
Google ScholarÂ
Van Oppen, M. J., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. 112, 2307â2313 (2015).ArticleÂ
ADSÂ
Google ScholarÂ
Parrett, J. M. & Knell, R. J. The effect of sexual selection on adaptation and extinction under increasing temperatures. Proc. R. Soc. B. 285, 20180303 (2018).ArticleÂ
Google ScholarÂ
Hagedorn, M. et al. Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc. Natl. Acad. Sci. 118, e2110559118 (2021).ArticleÂ
CASÂ
Google ScholarÂ
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373â377 (2017).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492â496 (2018).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Epstein, N., Bak, R. & Rinkevich, B. Applying forest restoration principles to coral reef rehabilitation. Aquat. Conserv. Mar. Freshw. Ecosyst. 13, 387â395 (2003).ArticleÂ
Google ScholarÂ
West, J. M. & Salm, R. V. Resistance and resilience to coral bleaching: Implications for coral reef conservation and management. Conserv. Biol. 17, 956â967 (2003).ArticleÂ
Google ScholarÂ
Yeemin, T., Sutthacheep, M. & Pettongma, R. Coral reef restoration projects in Thailand. Ocean Coast. Manag. 49, 562â575 (2006).ArticleÂ
Google ScholarÂ
Anthony, K. et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Chang. Biol. 21, 48â61 (2015).ArticleÂ
ADSÂ
Google ScholarÂ
Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203â232 (2020).ArticleÂ
ADSÂ
Google ScholarÂ
Porter, J. W., Fitt, W. K., Spero, H. J., Rogers, C. S. & White, M. W. Bleaching in reef corals: Physiological and stable isotopic responses. Proc. Natl. Acad. Sci. 86, 9342â9346 (1989).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Mendes, J. M. & Woodley, J. D. Effect of the 1995â1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93â102 (2002).ArticleÂ
ADSÂ
Google ScholarÂ
Grottoli, A., Rodrigues, L. & Juarez, C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar. Biol. 145, 621â631 (2004).ArticleÂ
CASÂ
Google ScholarÂ
Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874â1882 (2007).ArticleÂ
ADSÂ
Google ScholarÂ
Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L. & Matsui, Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: Implications for resilience in mounding corals. PLoS ONE 8, e63267 (2013).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B. 282, 20151887 (2015).ArticleÂ
Google ScholarÂ
Dai, C., Fan, T. & Yu, J. Reproductive isolation and genetic differentiation of a scleractinian coral Mycedium elephantotus. Mar. Ecol. Prog. Ser. 201, 179â187 (2000).ArticleÂ
ADSÂ
Google ScholarÂ
Vargas-Ăngel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110â122 (2006).ArticleÂ
ADSÂ
Google ScholarÂ
Rosser, N. & Gilmour, J. New insights into patterns of coral spawning on Western Australian reefs. Coral Reefs 27, 345â349 (2008).ArticleÂ
ADSÂ
Google ScholarÂ
Szmant, A. M. & Gassman, N. J. The effects of prolonged âbleachingâ on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217â224 (1990).ArticleÂ
ADSÂ
Google ScholarÂ
Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133â141 (2002).ArticleÂ
ADSÂ
Google ScholarÂ
Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1â10 (2014).ArticleÂ
ADSÂ
Google ScholarÂ
Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. In Proc. 9th Int. Coral Reef Symp. 1123â1128 (2002).Johnston, E. C., Counsell, C. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 34, 2315â2325 (2020).ArticleÂ
Google ScholarÂ
Hirose, M. & Hidaka, M. Reduced reproductive success in scleractinian corals that survived the 1998 bleaching in Okinawa. Galaxea 2000, 17â21 (2000).ArticleÂ
Google ScholarÂ
Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999: An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704â706 (2001).ArticleÂ
ADSÂ
Google ScholarÂ
Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. 28, 1061â1071 (2016).ArticleÂ
CASÂ
Google ScholarÂ
Bassim, K., Sammarco, P. & Snell, T. Effects of temperature on success of (self and non-self) fertilization and embryogenesis in Diploria strigosa (Cnidaria, Scleractinia). Mar. Biol. 140, 479â488 (2002).ArticleÂ
Google ScholarÂ
Kenkel, C. D. et al. Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS ONE 6, e26914 (2011).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Louis, Y. D., Bhagooli, R., Kenkel, C. D., Baker, A. C. & Dyall, S. D. Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 191, 63â77 (2017).ArticleÂ
CASÂ
Google ScholarÂ
Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719 (2017).ArticleÂ
Google ScholarÂ
Gierz, S., Ainsworth, T. D. & Leggat, W. Diverse symbiont bleaching responses are evident from 2-degree heating week bleaching conditions as thermal stress intensifies in coral. Mar. Freshw. Res. 71, 1149â1160 (2020).ArticleÂ
Google ScholarÂ
Baker, D. M., Freeman, C. J., Wong, J. C., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921â930 (2018).ArticleÂ
CASÂ
Google ScholarÂ
Yee, S. H. & Barron, M. G. Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data. Environ. Monit. Assess. 161, 423â438 (2010).ArticleÂ
Google ScholarÂ
Lesser, M. P. Coral bleaching: causes and mechanisms. In Coral Reefs: An Ecosystem in Transition (eds Riegl, B. M. & Purkis, S. J.) 405â419 (Springer, 2011).ChapterÂ
Google ScholarÂ
Barber, J. & Andersson, B. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 17, 61â66 (1992).ArticleÂ
CASÂ
Google ScholarÂ
Aro, E.-M., Virgin, I. & Andersson, B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta Bioenergy 1143, 113â134 (1993).ArticleÂ
CASÂ
Google ScholarÂ
Lesser, M. P. & Farrell, J. H. Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23, 367â377 (2004).ArticleÂ
Google ScholarÂ
Salih, A., Hoegh-Guldberg, O. & Cox, G. Bleaching responses of symbiotic dinoflagellates in corals: the effects of light and elevated temperature on their morphology and physiology. In Proceedings of the Australian Coral Reef Society 75th Anniversary Conference (eds Greenwood, J. G. & Hall, N. R.) 199â216 (1998).Smith, D. J., Suggett, D. J. & Baker, N. R. Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals?. Glob. Chang. Biol. 11, 1â11 (2005).ArticleÂ
ADSÂ
Google ScholarÂ
Downs, C. et al. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS ONE 8, e77173 (2013).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Banaszak, A. T. & Lesser, M. P. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 8, 1276â1294 (2009).ArticleÂ
CASÂ
Google ScholarÂ
Jokiel, P. L. & York, R. H. Jr. Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae. Bull. Mar. Sci. 32, 301â315 (1982).
Google ScholarÂ
Vareschi, E. & Fricke, H. Light responses of a scleractinian coral (Plerogyra sinuosa). Mar. Biol. 90, 395â402 (1986).ArticleÂ
Google ScholarÂ
Henley, E. M. et al. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci. Rep. 11, 12525 (2021).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Wellington, G. & Fitt, W. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185â1192 (2003).ArticleÂ
CASÂ
Google ScholarÂ
Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836â838 (1993).ArticleÂ
ADSÂ
Google ScholarÂ
Courtial, L., Roberty, S., Shick, J. M., HoulbrĂšque, F. & Ferrier-PagĂšs, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000â1013 (2017).ArticleÂ
ADSÂ
Google ScholarÂ
Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in KÄneÊ»ohe Bay. HawaiÊ»i. PeerJ 3, e1136 (2015).ArticleÂ
Google ScholarÂ
Rodgers, K. S., Bahr, K. D., Jokiel, P. L. & Richards DonĂ , A. Patterns of bleaching and mortality following widespread warming events in 2014 and 2015 at the Hanauma Bay Nature Preserve, Hawaiâi. PeerJ 5, e3355 (2017).ArticleÂ
Google ScholarÂ
Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in KÄneâohe Bay, Hawaiâi. Coral Reefs 39, 757â769 (2020).ArticleÂ
Google ScholarÂ
Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159â164 (1983).ArticleÂ
ADSÂ
Google ScholarÂ
Kramarsky-Winter, E. & Loya, Y. Reproductive strategies of two fungiid corals from the northern Red Sea: Environmental constraints?. Mar. Ecol. Prog. Ser. 174, 175â182 (1998).ArticleÂ
ADSÂ
Google ScholarÂ
Loya, Y. & Sakai, K. Bidirectional sex change in mushroom stony corals. Proc. R. Soc. B. 275, 2335â2343 (2008).ArticleÂ
Google ScholarÂ
Hagedorn, M. et al. Coral larvae conservation: Physiology and reproduction. Cryobiology 52, 33â47 (2006).ArticleÂ
CASÂ
Google ScholarÂ
Jokiel, P. L. & Brown, E. K. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Chang. Biol. 10, 1627â1641 (2004).ArticleÂ
ADSÂ
Google ScholarÂ
Tanaka, K., Guidry, M. W. & Gruber, N. Ecosystem responses of the subtropical Kaneohe Bay, Hawaii, to climate change: A nitrogen cycle modeling approach. Aquat. Geochem. 19, 569â590 (2013).ArticleÂ
CASÂ
Google ScholarÂ
Couch, C. S. et al. Mass coral bleaching due to unprecedented marine heatwave in PapahÄnaumokuÄkea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 12, e0185121 (2017).ArticleÂ
Google ScholarÂ
Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, e5347 (2018).ArticleÂ
Google ScholarÂ
Barnhill, K. A. & Bahr, K. D. Coral resilience at Malaukaa fringing reef, KÄneÊ»ohe Bay, OÊ»ahu after 18 years. J. Mar. Sci. Eng. 7, 311 (2019).ArticleÂ
Google ScholarÂ
Lesser, M., Stochaj, W., Tapley, D. & Shick, J. Bleaching in coral reef anthozoans: Effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8, 225â232 (1990).ArticleÂ
ADSÂ
Google ScholarÂ
Brown, B., Dunne, R., Scoffin, T. & Le Tissier, M. Solar damage in intertidal corals. Mar. Ecol. Prog. Ser. 219â230 (1994).Le Tissier, M. D. A. & Brown, B. E. Dynamics of solar bleaching in the intertidal reef coral Goniastrea aspera at Ko Phuket, Thailand. Mar. Ecol. Prog. Ser. 136, 235â244 (1996).ArticleÂ
ADSÂ
Google ScholarÂ
Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41, 271â283 (1996).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Takahashi, S., Nakamura, T., Sakamizu, M., Woesik, R. V. & Yamasaki, H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45, 251â255 (2004).ArticleÂ
CASÂ
Google ScholarÂ
Coelho, V. et al. Shading as a mitigation tool for coral bleaching in three common Indo-Pacific species. J. Exp. Mar. Biol. Ecol. 497, 152â163 (2017).ArticleÂ
Google ScholarÂ
Marquis, R. J. Phenological variation in the neotropical understory shrub Piper arielanum: Causes and consequences. Ecology 69, 1552â1565 (1988).ArticleÂ
Google ScholarÂ
Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs 40, 1411â1418 (2021).ArticleÂ
Google ScholarÂ
Hagedorn, M. et al. Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS ONE 7, e33354 (2012).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Zuchowicz, N. et al. Assessing coral sperm motility. Sci. Rep. 11, 61 (2021).ArticleÂ
CASÂ
Google ScholarÂ
Binet, M., Doyle, C., Williamson, J. & Schlegel, P. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 452, 91â100 (2014).ArticleÂ
CASÂ
Google ScholarÂ
Jokiel, P., Maragos, J. & Franzisket, L. Coral growth: buoyant weight technique. In Coral Reefs: Research Methods Vol. 5 (eds Stoddart, D. R. & Johannes, R. E.) 529â542 (UNESCO, 1978).
Google ScholarÂ
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2019).Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2019).
Google ScholarÂ
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).BookÂ
MATHÂ
Google ScholarÂ
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1â26 (2017).ArticleÂ
Google ScholarÂ
Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1â33 (2016).ArticleÂ
Google ScholarÂ
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. J. Math. Methods Biosci. 50, 346â363 (2008).MathSciNetÂ
MATHÂ
Google ScholarÂ
Graves, S., Piepho, H.-P. & Selzer, M. L. multcompView: Visualizations of paired comparisons. R package version 0.1-7. https://CRAN.R-project.org/package=multcompView (2015).Christensen, R. H. B. ordinal-Regression models for ordinal data. R package version 2019.4-25. https://cran.r-project.org/package=ordinal/. (2019).Mangiafico, S. rcompanion: functions to support extension education program evaluation. R package version 2.3.7. https://cran.r-project.org/package=rcompanion (2019).Hope, R. M. Rmisc: Ryan Miscellaneous. R package version 1.5. https://cran.r-project.org/package=Rmisc (2013).HervĂ©, M. RVAideMemoire: Testing and plotting procedures for biostatistics, R package version 0.9-73. https://cran.r-project.org/package=RVAideMemoire (2019).Callaghan, J. A short note on the intensification and extreme rainfall associated with Hurricane Lane. Trop. Cyclone Res. Rev. 8, 103â107 (2019).ArticleÂ
Google ScholarÂ
Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Seasonal reproduction in equatorial reef corals. Invertebr. Reprod. Dev. 48, 207â218 (2005).ArticleÂ
Google ScholarÂ
Lotterhos, K. E. & Levitan, D. Gamete release and spawning behavior in broadcast spawning marine invertebrates. In The Evolution of Primary Sexual Characters (eds Leonard, J. & CĂłrdoba-Aguilar, A.) 99â120 (Oxford Univ. Press, 2010).
Google ScholarÂ
Ims, R. A. The ecology and evolution of reproductive synchrony. Trends Ecol. Evol. 5, 135â140 (1990).ArticleÂ
CASÂ
Google ScholarÂ
Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002â1007 (2019).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Guest, J. R., Baird, A. H., Bouwmeester, J. & Edwards, A. J. To assess temporal breakdown in spawning synchrony requires comparable temporal data. https://doi.org/10.1126/comment.737627/full/ (2020).Hartmann, D. L. et al. Observations: atmosphere and surface. In Climate change 2013 The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 159â254 (Cambridge University Press, 2013).Pörtner, H. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC Intergovernmental Panel on Climate Change, 2019).
Google ScholarÂ
Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming?. Science 363, 128â129 (2019).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Gorbunov, M. Y. & Falkowski, P. G. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309â315 (2002).ArticleÂ
ADSÂ
Google ScholarÂ
Boch, C. A., Ananthasubramaniam, B., Sweeney, A. M., Doyle Iii, F. J. & Morse, D. E. Effects of light dynamics on coral spawning synchrony. Biol. Bull. 220, 161â173 (2011).ArticleÂ
Google ScholarÂ
Sweeney, A. M., Boch, C. A., Johnsen, S. & Morse, D. E. Twilight spectral dynamics and the coral reef invertebrate spawning response. J. Exp. Biol. 214, 770â777 (2011).ArticleÂ
Google ScholarÂ
Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: Influence of temperature. Biol. Bull. 222, 192â202 (2012).ArticleÂ
Google ScholarÂ
Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379â394 (1986).ArticleÂ
Google ScholarÂ
Hunter, C. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilatata. In Proc 6th Int Coral Reef Symp. vol. 2, 727â732.Levitan, D. R. et al. Mechanisms of reproductive isolation among sympatric broadcast spawning corals of the Montastraea annularis species complex. Evolution 58, 308â323 (2004).
Google ScholarÂ
Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759â763 (2007).ArticleÂ
ADSÂ
Google ScholarÂ
Humanes, A., Noonan, S. H., Willis, B. L., Fabricius, K. E. & Negri, A. P. Cumulative effects of nutrient enrichment and elevated temperature compromise the early life history stages of the coral Acropora tenuis. PLoS ONE 11, e0161616 (2016).ArticleÂ
Google ScholarÂ
Lesser, M. P., Kruse, V. A. & Barry, T. M. Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos. J. Exp. Biol. 206, 4097â4103 (2003).ArticleÂ
Google ScholarÂ
HĂ€der, D.-P. et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem. Photobiol. Sci. 14, 108â126 (2015).ArticleÂ
Google ScholarÂ
Albright, R. & Mason, B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS ONE 8, e56468 (2013).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Espinoza, J., Schulz, M., Sanchez, R. & Villegas, J. Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia 41, 51â54 (2009).ArticleÂ
CASÂ
Google ScholarÂ
Paoli, D. et al. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil. Steril. 95, 2315â2319 (2011).ArticleÂ
CASÂ
Google ScholarÂ
Gallo, A., Esposito, M. C., Tosti, E. & Boni, R. Sperm motility, oxidative status, and mitochondrial activity: Exploring correlation in different species. Antioxidants 10, 1131 (2021).ArticleÂ
CASÂ
Google ScholarÂ
Schlegel, P., Binet, M. T., Havenhand, J. N., Doyle, C. J. & Williamson, J. E. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol. 218, 1084â1090 (2015).ArticleÂ
Google ScholarÂ
Gulko, D. Effects of ultraviolet radiation on fertilization and production of planula larvae in the Hawaiian coral Fungia scutaria. In Ultraviolet Radiation and Coral Reefs Vol. 41 (eds Gulko, D. & Jokiel, P. L.) 135â147 (University of Hawaiâi, 1995).
Google ScholarÂ
Pruski, A. M., Nahon, S., Escande, M.-L. & Charles, F. Ultraviolet radiation induces structural and chromatin damage in Mediterranean sea-urchin spermatozoa. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 673, 67â73 (2009).ArticleÂ
CASÂ
Google ScholarÂ
Dahms, H.-U. & Lee, J.-S. UV radiation in marine ectotherms: Molecular effects and responses. Aquat. Toxicol. 97, 3â14 (2010).ArticleÂ
CASÂ
Google ScholarÂ
Nesa, B., Baird, A. H., Harii, S., Yakovleva, I. & Hidaka, M. Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool. Stud. 51, 12â17 (2012).CASÂ
Google ScholarÂ
Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511 (2015).ArticleÂ
Google ScholarÂ
Jokiel, P. & Coles, S. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201â208 (1977).ArticleÂ
Google ScholarÂ
Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the Central Red Sea. Science 329, 322â325. https://doi.org/10.1126/science.1190182 (2010).ArticleÂ
ADSÂ
CASÂ
Google ScholarÂ
Cooper, T. F., DeâAth, G., Fabricius, K. E. & Lough, J. M. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob. Chang. Biol. 14, 529â538 (2008).ArticleÂ
ADSÂ
Google ScholarÂ
Tanzil, J., Brown, B., Tudhope, A. & Dunne, R. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28, 519â528 (2009).ArticleÂ
ADSÂ
Google ScholarÂ
Tanzil, J. T. I. et al. Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob. Chang. Biol. 19, 3011â3023 (2013).ArticleÂ
ADSÂ
Google ScholarÂ
Richmond, R. H., Tisthammer, K. H. & Spies, N. P. The effects of anthropogenic stressors on reproduction and recruitment of corals and reef organisms. Front. Mar. Sci. 5, 226 (2018).ArticleÂ
Google ScholarÂ
Chen, P.-Y., Chen, C.-C., Chu, L. & McCarl, B. Evaluating the economic damage of climate change on global coral reefs. Glob. Environ. Change 30, 12â20 (2015).ArticleÂ
Google ScholarÂ
Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. Elife 4, e09991 (2015).ArticleÂ
Google ScholarÂ
Lin, C.-H., Takahashi, S., Mulla, A. J. & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl. Acad. Sci. 118, e2101985118 (2021).ArticleÂ
CASÂ
Google ScholarÂ
Anthony, K. R. et al. Interventions to help coral reefs under global changeâA complex decision challenge. PLoS ONE 15, e0236399 (2020).ArticleÂ
CASÂ
Google ScholarÂ
Daly, J. et al. Cryopreservation can assist gene flow on the Great Barrier Reef. Coral Reefs 41, 455â462 (2022).ArticleÂ
Google Scholar More