More stories

  • in

    Laboratory and semi-field efficacy evaluation of permethrin–piperonyl butoxide treated blankets against pyrethroid-resistant malaria vectors

    All methods were performed in accordance with the relevant guidelines and regulations.Study siteThe laboratory experiments on regeneration and wash resistance were conducted at the KCMUCo-PAMVERC Insecticide Testing Facility; while experimental hut study was carried out at Harusini, the facility’s field site located at Mabogini village (S03˚22.764’ E03˚720.793’), adjacent to Lower Moshi rice irrigation scheme in north-eastern Tanzania. The dominant vector at this site is An. arabiensis with moderate level of resistance to pyrethroids conferred by both oxidase and esterase activities32. In this study, pyrethroid-resistant laboratory reared An. gambiae Muleba-Kis mosquitoes were released into the huts for the release-recapture experiment.Test systemsNon-blood fed, 2–5 day old females of susceptible An. gambiae s.s. Kisumu strain and pyrethroid resistant An. gambiae s.s Muleba-Kis strain were used for the evaluation of efficacy in the laboratory (phase I). The Muleba-Kis strain has been colonized for more than 8 years and it is resistant to permethrin with fixed L1014S kdr frequency and metabolic resistance through increased oxidase activity has also been reported21. Only An. gambiae s.s Muleba-Kis were used in release-recapture experiments. The Kisumu strain is fully susceptible to insecticides and free of any detectable insecticide resistance mechanisms. The strain originated from Kisumu, Kenya and has been colonized for many years in laboratory. At the KCMUCo-PAMVERC Moshi insectary, the adult Kisumu strain mosquitoes are reared at a temperature of 24–27 °C, 75 ± 10% relative humidity (RH) and maintained under a dark:light regime of 12:12 h. The Muleba-Kis mosquitoes used for the release-recapture experiments were reared in the field insectary under ambient temperature and relative humidity and treated as previously explained21. The susceptibility status of these colonies is checked every three months using WHO susceptibility test33 and, CDC bottle bioassay test34. The colonies are regularly genotyped for kdr mutations using TaqMan assays35. To maintain the resistance of Muleba-Kis, larvae are frequently selected with alpha-cypermethrin.Regeneration timeTo determine the regeneration time of the insecticide-treated blankets, blankets were cut into 25 × 25 cm pieces and tested before washing and then washed and dried three times consecutively following WHO recommended procedures for LLINs36. The pieces were then re-tested after one, two, three, six and seven days post-washing using WHO cylinders against susceptible An. gambiae s.s (Kisumu).Graphs for 24-h mortality and 60 min knock down (KD) correlating to insecticide bioavailability, as measured by 3 min exposure in cylinder bioassays, were established before and after washing blanket pieces three times consecutively in a day, and tested within a maximum of seven days post-washing. The time in days required to reach initial mortality or 60 min KD plateau is the period required for full regeneration of insecticide-treated blanket.Wash resistanceWHO cylinder bioassays36 were used to assess the wash resistance for the blanket pieces washed 0, 5, 10, 15 and 20 times at the intervals equivalent to the regeneration time. Four pieces cut from 4 permethrin and 4 untreated blankets were used as positive and negative control respectively, against 4 pieces cut from 4 PBO–permethrin blankets.Bioassay proceduresFive, non-blood fed, 2–5 day old An. gambiae Kisumu or An. gambiae Muleba-Kis mosquitoes were exposed for 3 min or 30 min to blanket pieces in WHO cylinder. Bioassays were carried out at 27 ± 2 °C and 75 ± 10% RH. Knock-down was scored after 60 min post-exposure and mortality after 24 h. Fifty mosquitoes (5 mosquitoes per cylinder) were used on each 25 × 25 cm piece of blanket sample. After exposure, the mosquitoes were held for 24 h with access to 10% glucose solution in the paper cups covered with a net material. Mosquitoes exposed to untreated blanket were referred as a negative control.WHO tunnel test methodBlanket pieces which recorded ≤ 80% mortality in cylinder bioassay were tested in the tunnel assay using WHO guidelines. The tunnel was made of an acrylic square cylinder (25 cm in height, 25 cm in width, and 60 cm in length) divided into two sections using a blanket-covered frame fitted into a slot across the tunnel. During the assays a guinea pig was held in a small wooden cage (as a bait) in one of the sections and 50, non-blood fed, female An. gambiae Kisumu or An. gambiae Muleba-Kis aged 5–8 days were released in the other section at dusk and left overnight (13 h) for experimentation at 27 ± 2 °C and 75 ± 10% RH. The blanket surface was deliberately holed (nine 1-cm holes) to allow mosquitoes to contact the blanket material and penetrate to the baited chamber. Treated blankets were tested concurrently together with an untreated blanket. Scoring for the numbers of mosquitoes found alive or dead, fed or unfed, in each section were done in the morning. Mosquitoes found alive were removed and held in paper cups with labels corresponding to each tunnel sections under controlled conditions (25–27 °C and 75–85% RH) and fed on 10% glucose solution to monitor for delayed mortality post exposurely. Outcomes recorded were: mosquito penetration, blood feeding and mortality.Washing of blankets and whole nets for hut trialBlankets and whole nets were separately washed following WHOPES guidelines. In brief, each blanket/net was washed in Savon de Marseilles soap solution (2 g/L) for 10 min: 3 min stirring, 4 min soaking, then another 3 min stirring. This was followed by 2 rinse cycles of the same duration with water only. The water pH was 6 for all washes. The mean water hardness was within the WHOPES limit of ≤ 89 ppm. All nets used in the experimental hut study were cut with holes (4 cm × 4 cm) to simulate the conditions of a torn net. While nets were washed 20 times as per guidelines, blankets were only washed 10 times. To simulate a situation in emergence situations where washing is less frequent due to water scarcity30,31.Experimental hut trial:experimental hut designExperimental hut study was done in Lower Moshi using typical East African experimental huts design as described in the WHOPES35. Huts were constructed with brick walls and featured with cement plaster on the inside and a ceiling board, a metal iron sheet roof, open eaves with window and veranda traps on each side and window traps. Slight modifications from the original structure were made by installing metal eave baffles on two sides. The baffles allow mosquito entry but prevent exits. The window traps were used to collect mosquitoes that tend to exit the huts.Test item labelling, washing and perforatingBoth blankets and LLINs for the trial were distinctively labelled with fabric labels that withstand washes. For wash resistance, the blankets and nets were separately washed according to a protocol adapted from the standard WHO washing procedure36 at the interval equivalent to the regeneration time established in the laboratory for blanket and LLIN respectively. Before testing in the experimental huts, all nets were deliberately holed i.e. 30 holes measuring 4 × 4 cm were made in each net, 9 holes in each of the long side panels, and 6 holes at each short side (head- and foot-side panels) to enhance blood-feeding on the control arm.Test items packagingEach blanket and net were sealed in a plastic bag and then packed in the large plastic container. Each container was labelled for a single treatment to avoid cross contamination between test items.Experimental hut decontaminationA cone assay with 10 susceptible mosquitoes was performed on one wall per hut to rule out any contamination of the wall surface. Only huts with 24 h mortality of susceptible mosquitoes  More

  • in

    Effects of aspect on phenology of Larix gmelinii forest in Northeast China

    La Sorte, F. A., Johnston, A. & Ault, T. R. Global trends in the frequency and duration of temperature extremes. Clim. Change 166, 1–2 (2021).Article 
    ADS 

    Google Scholar 
    Hansen, J., Sato, M., Ruedy, R., Lo, K. & Medina-Elizade, M. Global temperature change. Proc. Natl. Acad. Sci. U.S.A. 103(39), 14288–14293 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Borchert, R., Robertson, K., Schwartz, M. D. & Williams-Linera, G. Phenology of temperate trees in tropical climates. Int. J. Biometeorol. 50, 57–65 (2005).Article 
    ADS 

    Google Scholar 
    Misra, G., Sarah, A. & Menzel, A. Ground and satellite phenology in alpine forests are becoming more heterogeneous across higher elevations with warming. Agric. For. Meteorol. 303, 108383 (2021).Article 
    ADS 

    Google Scholar 
    Zuo, Z., Xiao, D. & Qiong, H. Role of the warming trend in global land surface air temperature variations. Sci. China Earth Sci. 6, 866–871 (2021).Article 
    ADS 

    Google Scholar 
    Ling, Y. et al. Assessing the accuracy of forest phenological extraction from sentinel-1 C-band backscatter measurements in deciduous and coniferous forests. Remote Sens. 14(3), 674 (2022).Article 
    ADS 

    Google Scholar 
    Zhang, H., Yuan, W., Liu, S., Dong, W. & Fu, Y. Sensitivity of flowering phenology to changing temperature in China. J. Geophys. Res. Biogeosci. 120(8), 1658–1665 (2015).Article 

    Google Scholar 
    Cho, J. G. et al. Apple phenology occurs earlier across South Korea with higher temperatures and increased precipitation. Int. J. Biometeorol. 65, 265–276 (2020).Article 

    Google Scholar 
    Li, C. et al. Response of vegetation phenology to the interaction of temperature and precipitation changes in Qilian mountains. Remote Sens. 14(5), 1248 (2022).Article 
    ADS 

    Google Scholar 
    Berra, E. F. & Gaulton, R. Remote sensing of temperate and boreal forest phenology: A review of progress, challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics. For. Ecol. Manage. 480, 118663 (2021).Article 

    Google Scholar 
    Zhang, Y. & Li, M. A new method for monitoring start of season (SOS) of forest based on multisource remote sensing. Int. J. Appl. Earth Obs. Geoinf. 104, 102556 (2021).
    Google Scholar 
    Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84(3), 471–475 (2003).Article 
    ADS 

    Google Scholar 
    Thapa, S., Garcia Millan, V. E. & Eklundh, L. Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, PhenoCam) and Satellite (MODIS, Sentinel-2) remote sensing. Remote Sens. 13, 1597 (2021).Article 
    ADS 

    Google Scholar 
    Bórnez, K., Descals, A., Verger, A. & Peñuelas, J. Land surface phenology from VEGETATION and PROBA-V data: Assessment over deciduous forests. Int. J. Appl. Earth Observ. Geoinf. 84, 101974 (2020).
    Google Scholar 
    Yu, L., Yan, Z. & Zhang, S. Forest phenology shifts in response to climate change over China–Mongolia–Russia international economic corridor. Forests 11, 757 (2020).Article 

    Google Scholar 
    Lara, C. et al. Climatic regulation of vegetation phenology in protected areas along Western South America. Remote Sens. 13, 2590 (2021).Article 
    ADS 

    Google Scholar 
    Silveira, E. M. O. et al. Forest phenoclusters for Argentina based on vegetation phenology and climate. Ecol. Appl. 32, 2526 (2022).Article 

    Google Scholar 
    Tatalovich, Z., Wilson, J. P. & Cockburn, M. A comparison of thiessen polygon, kriging, and spline models of potential UV exposure. Cartogr. Geogr. Inf. Sci. 33, 217–231 (2006).Article 

    Google Scholar 
    Choubin, B. et al. Spatiotemporal dynamics assessment of snow cover to infer snowline elevation mobility in the mountainous regions. Cold Reg. Sci. Technol. 167, 102870 (2019).Article 

    Google Scholar 
    Rojas, R., Flexas, J. & Coopman, R. E. Particularities of the highest elevation treeline in the world: Polylepis tarapacana Phil. as a model to study ecophysiological adaptations to extreme environments. Flora 292, 152076 (2022).Article 

    Google Scholar 
    Du, J. et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 269–270, 71–77 (2019).Article 
    ADS 

    Google Scholar 
    Du, J. et al. Daily minimum temperature and precipitation control on spring phenology in arid-mountain ecosystems in China. Int. J. Climatol. 40, 2568–2579 (2020).Article 

    Google Scholar 
    He, Z. et al. Impacts of recent climate extremes on spring phenology in arid-mountain ecosystems in China. Agric. For. Meteorol. 260–261, 31–40 (2018).Article 
    ADS 

    Google Scholar 
    He, Z. et al. Assessing temperature sensitivity of subalpine shrub phenology in semi-arid mountain regions of China. Agric. For. Meteorol. 213, 42–52 (2015).Article 
    ADS 

    Google Scholar 
    Mu, C., Lu, H., Wang, B., Bao, X. & Cui, W. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii–Carex schmidtii forested wetlands in Daxing’anling, northeast China. For. Ecol. Manage. 293, 140–148 (2013).Article 

    Google Scholar 
    Hu, T. et al. Effects of fire on soil respiration and its components in a Dahurian larch (Larix gmelinii) forest in northeast China: Implications for forest ecosystem carbon cycling. Geoderma 402, 115273 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Nyikadzino, B., Chitakira, M. & Muchuru, S. Rainfall and runoff trend analysis in the Limpopo river basin using the Mann Kendall statistic. Phys. Chem. Earth 117, 102870 (2020).Article 

    Google Scholar 
    Gocic, M. & Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Change 100, 172–182 (2013).Article 
    ADS 

    Google Scholar 
    Fang, Y. et al. Changing contribution rate of heavy rainfall to the rainy season precipitation in Northeast China and its possible causes. Atmos. Res. 197, 437–445 (2017).Article 

    Google Scholar 
    Piao, S. et al. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Change Biol. 17, 3228–3239 (2011).Article 
    ADS 

    Google Scholar 
    Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G. & Scheifinger, H. Changes in European spring phenology. Int. J. Climatol. 22, 1727–1738 (2002).Article 

    Google Scholar 
    Liang, L., Henebry, G. M., Liu, L., Zhang, X. & Hsu, L. C. Trends in land surface phenology across the conterminous United States (1982–2016) analyzed by NEON domains. Ecol. Appl. 31, e02323 (2021).Article 

    Google Scholar 
    Fu, Y. H. et al. Decreasing control of precipitation on grassland spring phenology in temperate China. Glob. Ecol. Biogeogr. 30, 490–499 (2020).Article 

    Google Scholar 
    Aze, T. Unraveling ecological signals from a global warming event of the past. Proc. Natl. Acad. Sci. U.S.A. 119, e2201495119 (2022).Article 

    Google Scholar 
    Menzel, A., Estrella, N. & Testka, A. Temperature response rates from long-term phenological records. Climate Res. 30, 21–28 (2005).Article 
    ADS 

    Google Scholar 
    Wang, H., Liu, D., Lin, H., Montenegro, A. & Zhu, X. NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan plateau. Int. J. Climatol. 35, 687–698 (2015).Article 

    Google Scholar 
    Lesica, P. & Kittelson, P. M. Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland. J. Arid Environ. 74, 1013–1017 (2010).Article 
    ADS 

    Google Scholar 
    Shen, M., Piao, S., Cong, N., Zhang, G. & Jassens, I. A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).Article 
    ADS 

    Google Scholar 
    Li, Z. et al. Spatio-temporal responses of cropland phenophases to climate change in Northeast China. J. Geog. Sci. 22, 29–45 (2012).Article 
    CAS 

    Google Scholar 
    Badeck, F. W. et al. Responses of spring phenolgy to climate change. New Phytol. 162, 295–309 (2004).Article 

    Google Scholar 
    Peng, H., Xia, H., Chen, H., Zhi, P. & Xu, Z. Spatial variation characteristics of vegetation phenology and its influencing factors in the subtropical monsoon climate region of southern China. PLoS ONE 16, e0250825 (2021).Article 
    CAS 

    Google Scholar 
    Zhang, J. et al. NIRv and SIF better estimate phenology than NDVI and EVI: Effects of spring and autumn phenology on ecosystem production of planted forests. Agric. For. Meteorol. 315, 108819 (2022).Article 
    ADS 

    Google Scholar 
    Yu, X., Zhuang, D., Hou, X. & Chen, H. Forest phenological patterns of Northeast China inferred from MODIS data. J. Geog. Sci. 15, 239–246 (2005).Article 

    Google Scholar 
    Chen, X. & Xu, L. Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int. J. Biometeorol. 56, 695–706 (2012).Article 
    ADS 

    Google Scholar 
    Ma, X., Bai, H., He, Y. & Li, S. The vegetation RSP of Qinling Mountains based on the NDVI and the response of temperature to it. Appl. Mech. Mater. 700, 394–399 (2014).Article 

    Google Scholar  More

  • in

    The widely distributed soft coral Xenia umbellata exhibits high resistance against phosphate enrichment and temperature increase

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).
    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Hughes, T. P., Kerry, J. T. & Simpson, T. Large-scale bleaching of corals on the Great Barrier Reef. Ecology 99, 501 (2017).Article 

    Google Scholar 
    Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS 105, 17442–17446 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013 (2017).Article 
    ADS 

    Google Scholar 
    Jessen, C. et al. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the Red Sea Coral Acropora hemprichii. PLoS ONE 8, e62091 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Jessen, C., Roder, C., Villa Lizcano, J. F., Voolstra, C. R. & Wild, C. In-situ effects of simulated overfishing and eutrophication on benthic coral reef algae growth, succession, and composition in the Central Red Sea. PLoS ONE 8, e66992 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Fabricius, K. E., Cséke, S., Humphrey, C. & De’ath, G. Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework. PLoS ONE 8, e54399 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: A review of methods. Coral Reefs 39, 885–902 (2020).Article 

    Google Scholar 
    Fabricius, K. E. Factors determining the resilience of coral reefs to eutrophication: A review and conceptual model. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) (Springer, 2011).
    Google Scholar 
    Tilstra, A. et al. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata. PeerJ. https://doi.org/10.7717/PEERJ.3802/ (2017).Article 

    Google Scholar 
    Connolly, S. R., Lopez-Yglesias, M. A. & Anthony, K. R. N. Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31, 951–960 (2012).Article 
    ADS 

    Google Scholar 
    Coles, S. L. & Brown, B. E. Coral bleaching—Capacity for acclimatization and adaptation. Adv. Mar. Biol. 46, 183 (2003).Article 
    CAS 

    Google Scholar 
    Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).Article 
    CAS 

    Google Scholar 
    Szmant, A. M. Nutrient enrichment on coral reefs: Is it a major cause of coral reef decline? Estuaries 25, 743–766 (2002).Article 
    CAS 

    Google Scholar 
    Atkinson, M. J., Carlson, B. & Crow, G. L. Coral growth in high-nutrient, low-pH seawater: A case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii. Coral Reefs 14, 215–223 (1995).Article 
    ADS 

    Google Scholar 
    Bongiorni, L., Shafir, S., Angel, D. & Rinkevich, B. Survival, growth and gonad development of two hermatypic corals subjected to in situ fish-farm nutrient enrichment. Mar. Ecol. Prog. Ser. 253, 137–144 (2003).Article 
    ADS 

    Google Scholar 
    Grigg, R. W. Coral reefs in an urban embayment in Hawaii: A complex case history controlled by natural and anthropogenic stress. Coral Reefs 14, 253–266 (1995).Article 
    ADS 

    Google Scholar 
    Fabricius, K. E. & De’ath, G. Identifying ecological change and its causes: A case study on coral reefs. Ecol. Appl. 14, 1448–1465 (2004).Article 

    Google Scholar 
    Ferrier-Pagès, C., Gattuso, J. P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).Article 

    Google Scholar 
    Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017).Article 
    CAS 

    Google Scholar 
    Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).Article 
    ADS 

    Google Scholar 
    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2012).Article 
    ADS 

    Google Scholar 
    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. PNAS. https://doi.org/10.1073/pnas.2022653118 (2021).Article 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).Article 
    CAS 

    Google Scholar 
    Falkowski, P. G., Dubinsky, Z., Muscatine, L. & McCloskey, L. Population control in symbiotic corals—Ammonium ions and organic materials maintain the density of zooxanthellae. Bioscience 43, 606–611 (1993).Article 

    Google Scholar 
    Muscatine, L. & Pool, R. R. Regulation of numbers of intracellular algae. Proc. R. Soc. Lond. Ser. B Biol. Sci. 204, 131–139 (1979).ADS 
    CAS 

    Google Scholar 
    Muller-Parker, G., D’Elia, C. F. & Cook, C. B. Interactions between corals and their symbiotic algae. Coral Reefs Anthr. https://doi.org/10.1007/978-94-017-7249-5_5 (2015).Article 

    Google Scholar 
    Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: The key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).Article 

    Google Scholar 
    Steinberg, R. K., Dafforn, K. A., Ainsworth, T. & Johnston, E. L. Know thy anemone: A review of threats to octocorals and anemones and opportunities for their restoration. Front. Mar. Sci. 7, 590 (2020).Article 

    Google Scholar 
    Inoue, S., Kayanne, H., Yamamoto, S. & Kurihara, H. Spatial community shift from hard to soft corals in acidified water. Nat. Clim. Change 3, 683–687 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Wild, C. & Naumann, M. S. Effect of active water movement on energy and nutrient acquisition in coral reef-associated benthic organisms. PNAS 110, 8767–8768 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields: Long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).Article 
    CAS 

    Google Scholar 
    Benayahu, Y. & Loya, Y. Settlement and recruitment of a soft coral: Why is Xenia macrospiculata a successful colonizer? Bull. Mar. Sci. 36, 177–188 (1985).
    Google Scholar 
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: Beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 293–306 (2009).Article 
    ADS 

    Google Scholar 
    Reverter, M., Helber, S. B., Rohde, S., De Goeij, J. M. & Schupp, P. J. Coral reef benthic community changes in the Anthropocene: Biogeographic heterogeneity, overlooked configurations, and methodology. Glob. Change Biol. 28, 1956–1971 (2022).Article 

    Google Scholar 
    Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 2020, 1–25 (2020).
    Google Scholar 
    El-Khaled, Y. C. et al. Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs. Sci. Rep. 11, 1–15 (2021).Article 

    Google Scholar 
    Ruiz-Allais, J. P., Benayahu, Y. & Lasso-Alcalá, O. M. The invasive octocoral Unomia stolonifera (Alcyonacea, Xeniidae) is dominating the benthos in the Southeastern Caribbean Sea. Mem. la Fund La Salle Ciencias Nat. 79, 63–80 (2021).
    Google Scholar 
    Ruiz Allais, J. P., Amaro, M. E., McFadden, C. S., Halász, A. & Benayahu, Y. The first incidence of an alien soft coral of the family Xeniidae in the Caribbean, an invasion in eastern Venezuelan coral communities. Coral Reefs 33, 287 (2014).Article 
    ADS 

    Google Scholar 
    Baum, G., Januar, I., Ferse, S. C. A., Wild, C. & Kunzmann, A. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia. PeerJ 2016, 1–29 (2016).
    Google Scholar 
    Menezes, N. M. et al. New non-native ornamental octocorals threatening a South-west Atlantic reef. J. Mar. Biol. Assoc. U.K. https://doi.org/10.1017/S0025315421000849 (2022).Article 

    Google Scholar 
    Mantelatto, M. C., da Silva, A. G., dos Louzada, T. S., McFadden, C. S. & Creed, J. C. Invasion of aquarium origin soft corals on a tropical rocky reef in the southwest Atlantic. Brazil. Mar. Pollut. Bull. 130, 84–94 (2018).Article 
    CAS 

    Google Scholar 
    Simancas-Giraldo, S. M. et al. Photosynthesis and respiration of the soft coral Xenia umbellata respond to warming but not to organic carbon eutrophication. PeerJ 9, e11663 (2021).Article 

    Google Scholar 
    Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M. & Wild, C. Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ 2020, 1–16 (2020).
    Google Scholar 
    Thobor, B. et al. The pulsating soft coral Xenia umbellata shows high resistance to warming when nitrate concentrations are low. Sci. Rep. https://doi.org/10.1038/s41598-022-21110-w (2022).Article 

    Google Scholar 
    Costa, O. S., Leão, Z. M. A. N., Nimmo, M. & Attrill, M. J. Nutrification impacts on coral reefs from northern Bahia, Brazil. Hydrobiologia 440, 307–315 (2000).Article 
    CAS 

    Google Scholar 
    Fleury, B. G., Coll, J. C., Tentori, E., Duquesne, S. & Figueiredo, L. Effect of nutrient enrichment on the complementary (secondary) metabolite composition of the soft coral Sarcophyton ebrenbergi (Cnidaria: Octocorallia: Alcyonaceae) of the Great Barrier Reef. Mar. Biol. 136, 63–68 (2000).Article 
    CAS 

    Google Scholar 
    Bednarz, V. N., Naumann, M. S., Niggl, W. & Wild, C. Inorganic nutrient availability affects organic matter fluxes and metabolic activity in the soft coral genus Xenia. J. Exp. Biol. 215, 3672–3679 (2012).CAS 

    Google Scholar 
    Bruno, J. F., Petes, L. E., Harvell, C. D. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).Article 

    Google Scholar 
    Ezzat, L., Maguer, J.-F.F., Grover, R. & Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 6, 1–11 (2016).Article 

    Google Scholar 
    Tanaka, Y., Grottoli, A. G., Matsui, Y., Suzuki, A. & Sakai, K. Effects of nitrate and phosphate availability on the tissues and carbonate skeleton of scleractinian corals. Mar. Ecol. Prog. Ser. 570, 101–112 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, G., Strong, A. E., Skirving, W. & Arzayus, L. F. Overview of NOAA coral reef watch program’s near-real time satellite global coral bleaching monitoring activities. In Proc. 10th International Coral Reef Symposium, 1783–1793 (2006).Bellworthy, J. & Fine, M. Beyond peak summer temperatures, branching corals in the Gulf of Aqaba are resilient to thermal stress but sensitive to high light. Coral Reefs 36, 1071–1082 (2017).Article 
    ADS 

    Google Scholar 
    Rex, A., Montebon, F. & Yap, H. T. Metabolic responses of the scleractinian coral Porites cylindrica Dana to water motion. I. Oxygen flux studies. J. Exp. Mar. Biol. Ecol. 186, 33–52 (1995).Article 

    Google Scholar 
    Long, M. H., Berg, P., de Beer, D. & Zieman, J. C. In situ coral reef oxygen metabolism: An eddy correlation study. PLoS ONE 8, e58581 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Fabricius, K. E. & Klumpp, D. W. Widespread mixotrophy in reef-inhabiting soft corals: The influence of depth, and colony expansion and contraction on photosynthesis. Mar. Ecol. Prog. Ser. 125, 195–204 (1995).Article 
    ADS 

    Google Scholar 
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).Article 
    CAS 

    Google Scholar 
    Raimonet, M., Guillou, G., Mornet, F. & Richard, P. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism? Estuar. Coast. Shelf Sci. 119, 126–138 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Furla, P., Galgani, I., Durand, I. & Allemand, D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445–3457 (2000).Article 
    CAS 

    Google Scholar 
    Hughes, A. D., Grottoli, A. G., Pease, T. K. & Matsui, Y. Acquisition and assimilation of carbon in non-bleached and bleached corals. Mar. Ecol. Prog. Ser. 420, 91–101 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Rau, G. H., Takahashi, T. & Des Marais, D. J. Latitudinal variations in plankton delta C-13—Implications for CO2 and productivity in past oceans. Nature 341, 516–518 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Muscatine, L., Porter, J. W. & Kaplan, I. R. Resource partitioning by reef corals as determined from stable isotope composition. Mar. Biol. 100, 185–193 (1989).Article 

    Google Scholar 
    Swart, P. K. et al. The isotopic composition of respired carbon dioxide in scleractinian corals: Implications for cycling of organic carbon in corals. Geochim. Cosmochim. Acta 69, 1495–1509 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodrigues, L. J. & Grottoli, A. G. Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals. Geochim. Cosmochim. Acta 70, 2781–2789 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Grottoli, A. G. & Rodrigues, L. J. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids. Coral Reefs 30, 687–692 (2011).Article 
    ADS 

    Google Scholar 
    Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L. & Matsui, Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral porites lobata: Implications for resilience in mounding corals. PLoS ONE 8, 32–35 (2013).Article 

    Google Scholar 
    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B Biol. Sci. 282, 20151887 (2015).Article 

    Google Scholar 
    Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Carpenter, E. J., Harvey, H. R., Brian, F. & Capone, D. G. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep Sea Res. I Oceanogr. Res. Pap. 44, 27–38 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Lachs, L. et al. Effects of tourism-derived sewage on coral reefs: Isotopic assessments identify effective bioindicators. Mar. Pollut. Bull. 148, 85–96 (2019).Article 
    CAS 

    Google Scholar 
    Kürten, B. et al. Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. J. Sea Res. 85, 379–394 (2014).Article 
    ADS 

    Google Scholar 
    Core Team, R. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
    ADS 

    Google Scholar 
    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.4.0 (2020).Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R Package Version 0.7.0 (2021).Contreras-Silva, A. I. et al. A meta-analysis to assess long-term spatiotemporal changes of benthic coral and macroalgae cover in the Mexican Caribbean. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    Ledlie, M. H. et al. Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs 26, 641–653 (2007).Article 
    ADS 

    Google Scholar 
    Kuffner, I. B. & Toth, L. T. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 30, 706–715 (2016).Article 

    Google Scholar 
    Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean Coral Reef. Science 265, 1547–1551 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    de Bakker, D. M., Meesters, E. H., Bak, R. P. M., Nieuwland, G. & van Duyl, F. C. Long-term shifts in coral communities on shallow to deep reef slopes of Curaçao and Bonaire: Are there any winners? Front. Mar. Sci. 3, 247 (2016).Article 

    Google Scholar 
    Mergner, H. & Svoboda, A. Productivity and seasonal changes in selected reef areas in the Gulf of Aqaba (Red Sea). Helgoländer Meeresun. 30, 383–399 (1977).Article 

    Google Scholar 
    Schlichter, D., Svoboda, A. & Kremer, B. P. Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): Carbon assimilation and translocation of photosynthates from symbionts to host. Mar. Biol. 78, 29–38 (1983).Article 
    CAS 

    Google Scholar 
    Al-Sofyani, A. A. & Niaz, G. R. A comparative study of the components of the hard coral Seriatopora hystrix and the soft coral Xenia umbellata along the Jeddah coast, Saudi Arabia. Rev. Biol. Mar. Oceanogr. 42, 207–219 (2007).Article 

    Google Scholar 
    McCloskey, L. R., Wethey, D. S. & Porter, J. W. Measurement and interpretation of photosynthesis and respiration in reef corals. In Coral Reefs: Research Methods (eds Stoddart, D. R. & Johannes, R. E.) 379–396 (United Nations Educational, Scientific and Cultural Organization, 1978).
    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).Article 
    CAS 

    Google Scholar 
    Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol. 129, 279–303 (1989).Article 

    Google Scholar 
    Iglesias-Prieto, R., Matta, J. L., Robins, W. A. & Trench, R. K. Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl. Acad. Sci. 89, 10302–10305 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Béraud, E., Gevaert, F., Rottier, C. & Ferrier-Pagès, C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674 (2013).
    Google Scholar 
    Kremien, M., Shavit, U., Mass, T. & Genin, A. Benefit of pulsation in soft corals. Proc. Natl. Acad. Sci. U.S.A. 110, 8978–8983 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Grover, R. et al. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE 6, 1–10 (2011).
    Google Scholar 
    Cardini, U. et al. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching. Environ. Microbiol. 18, 2620–2633 (2016).Article 
    CAS 

    Google Scholar 
    Cardini, U. et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc. R. Soc. B Biol. Sci. 282, 20152257 (2015).Article 

    Google Scholar 
    Santos, H. F. et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).Article 

    Google Scholar 
    Tilstra, A. et al. Relative diazotroph abundance in symbiotic red sea corals decreases with water depth. Front. Mar. Sci. 6, 372 (2019).Article 

    Google Scholar 
    Klinke, A. et al. Impact of phosphate enrichment on the susceptibility of the pulsating soft coral Xenia umbellata to ocean warming. Front. Mar. Sci. 9, 1026321 (2022).Article 

    Google Scholar 
    Rädecker, N. et al. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J. https://doi.org/10.1038/s41396-021-01158-8 (2021).Article 

    Google Scholar 
    Swart, P. K., Saied, A. & Lamb, K. Temporal and spatial variation in the δ15N and δ13C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol. Oceanogr. 50, 1049–1058 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the Northern Gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 215 (2017).Article 

    Google Scholar 
    Dubinsky, Z. & Stambler, N. Marine pollution and coral reefs. Glob. Change Biol. 2, 511–526 (1996).Article 
    ADS 

    Google Scholar 
    Loya, Y., Lubinevsky, H., Rosenfeld, M. & Kramarsky-Winter, E. Nutrient enrichment caused by in situ fish farms at Eilat, Red Sea is detrimental to coral reproduction. Mar. Pollut. Bull. 49, 344–353 (2004).Article 
    CAS 

    Google Scholar 
    Costa, O. S., Nimmo, M. & Attrill, M. J. Coastal nutrification in Brazil: A review of the role of nutrient excess on coral reef demise. J. S. Am. Earth Sci. 25, 257–270 (2008).Article 

    Google Scholar 
    Tait, D. R. et al. The influence of groundwater inputs and age on nutrient dynamics in a coral reef lagoon. Mar. Chem. 166, 36–47 (2014).Article 
    CAS 

    Google Scholar 
    Guan, Y., Hohn, S., Wild, C. & Merico, A. Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication. Glob. Change Biol. 26, 5646–5660 (2020).Article 
    ADS 

    Google Scholar 
    Hall, E. R. et al. Eutrophication may compromise the resilience of the Red Sea coral Stylophora pistillata to global change. Mar. Pollut. Bull. 131, 701–711 (2018).Article 
    CAS 

    Google Scholar 
    Naumann, M. S. et al. Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29, 649–659 (2010).Article 
    ADS 

    Google Scholar 
    Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428, 66–70 (2004).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Phylogenetic relationships of sleeper gobies (Eleotridae: Gobiiformes: Gobioidei), with comments on the position of the miniature genus Microphilypnus

    Jordan, D. S. A classification of fishes including families and genera as far as know. Stanford University Publications. Bio. Sci. 3, 79–243. https://doi.org/10.5962/bhl.title.161386 (1923).Article 

    Google Scholar 
    Akihito, et al. Evolutionary aspects of gobioid fishes based on an analysis of mitochondrial cytochrome b genes. Gene 259, 5–15 (2000).Article 
    CAS 

    Google Scholar 
    Wang, H.-Y., Tsai, M.-P., Dean, J. & Lee, S.-C. Molecular phylogeny of gobioid Wshes (Perciformes: Gobioidei) based on mitochondrial 12S rRNA sequences. Mol. Phylogenet. Evol. 20, 390–408. https://doi.org/10.1016/j.ympev.2005.05.004 (2001).Article 
    CAS 

    Google Scholar 
    Nelson, J. S., Grande, T. C. & Wilson, M. V. Fishes of the World (Wiley, 2016).Book 

    Google Scholar 
    Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer’s Catalog of fishes: Genera, Species, references. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp) (Accessed 15 June 2022).Guimarães-Costa, A. et al. Molecular evidence of two new species of Eleotris (Gobiiformes: Eleotridae) in the western Atlantic. Mol. Phylogenet. Evol. 98, 52–56. https://doi.org/10.1016/j.ympev.2016.01.014 (2016).Article 

    Google Scholar 
    Thacker, C. E. & Hardman, M. A. Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Mol. Phylogenet. Evol. 37, 858–887. https://doi.org/10.1016/j.ympev.2005.05.004 (2005).Article 
    CAS 

    Google Scholar 
    Nordlie, F. G. Life-history characteristics of eleotrid fishes of the western hemisphere, and perils of life in a vanishing environment. Rev. Fish Biol. Fisher. 22(1), 189–224. https://doi.org/10.1007/s11160-011-9229-3 (2012).Article 

    Google Scholar 
    Berra, T. M. Freshwater Fish Distribution (Academic Press, 2001).
    Google Scholar 
    Graham, J. B. Air-Breathing Fishes: Evolution, Diversity, and Adaptation (Academic Press, 1997).Book 

    Google Scholar 
    Thacker, C. E. Phylogeny of Gobioidea and its placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. Copeia 1, 93–104. https://doi.org/10.1643/CI-08-004 (2009).Article 

    Google Scholar 
    Chakrabarty, P., Davis, M. P. & Sparks, J. S. The first record of a trans-oceanic sister-group relationship between obligate vertebrate troglobites. PLoS One 7, e44083. https://doi.org/10.1371/journal.pone.0044083 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Agorreta, A. et al. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol. Phylogenet. Evol. 69, 619–633. https://doi.org/10.1016/j.ympev.2013.07.017 (2013).Article 

    Google Scholar 
    McCraney, W. T., Thacker, C. E. & Alfaro, M. E. Supermatrix phylogeny resolves goby lineages and reveals unstable root of Gobiaria. Mol. Phylogenet. Evol. 151, 106862. https://doi.org/10.1016/j.ympev.2020.106862 (2020).Article 

    Google Scholar 
    Karl, S. A. & Avise, J. C. Balancing selection at allozyme loci in oysters: Implications from nuclear RFLPs. Science 256, 100. https://doi.org/10.1126/science.1348870 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Hey, J. & Machado, C. A. The study of structured populations—New hope for a difficult and divided science. Nat. Rev. Genet. 4, 535–543. https://doi.org/10.1038/nrg1112 (2003).Article 
    CAS 

    Google Scholar 
    Castroviejo-Fisher, S., Guayasamin, J. M., Gonzalez-Voyer, A. & Vilà, C. Neotropical diversification seen through glassfrogs. J. Biogeogr. 41, 66–80. https://doi.org/10.1111/jbi.12208 (2014).Article 

    Google Scholar 
    Dornburg, A., Townsend, J. P., Friedman, M. & Near, T. J. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evol. Biol. 14, 169. https://doi.org/10.1186/s12862-014-0169-0 (2014).Article 

    Google Scholar 
    Hundt, P. J., Iglésias, S. P., Hoey, A. S. & Simons, A. M. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats. Mol. Phylogenet. Evol. 70, 47–56. https://doi.org/10.1016/j.ympev.2013.09.001 (2014).Article 

    Google Scholar 
    Olave, M., Avila, L. J., Sites, J. W. & Morando, M. Multilocus phylogeny of the widely distributed South American lizard clade Eulaemus (Liolaemini, Liolaemus). Zool. Scr. 43, 323–337. https://doi.org/10.1111/zsc.12053 (2014).Article 

    Google Scholar 
    Meyer, B. S., Matschiner, M. & Salzburger, W. A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach. Mol. Phylogenet. Evol. 83, 56–71. https://doi.org/10.1016/j.ympev.2014.10.009 (2015).Article 

    Google Scholar 
    Jønsson, K. A. et al. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). Mol. Phylogenet. Evol. 94, 87–94. https://doi.org/10.1016/j.ympev.2015.08.020 (2016).Article 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475(7357), 493–496. https://doi.org/10.1038/nature10231 (2011).Article 
    CAS 

    Google Scholar 
    Frantz, R. S. X-efficiency: Theory, Evidence and Applications Vol. 2 (Springer Science & Business Media, 2013).
    Google Scholar 
    Bessa-Silva, A. et al. The roles of vicariance and dispersal in the differentiation of two species of the Rhinella marina species complex. Mol. Phylogenet. Evol. 145, 106723. https://doi.org/10.1016/j.ympev.2019.106723 (2020).Article 

    Google Scholar 
    Leutenegger, W. Maternal-fetal weight relationships in primates. Folia Primatol. 20(4), 280–293. https://doi.org/10.1159/000155580 (1973).Article 
    CAS 

    Google Scholar 
    Yeh, J. The effect of miniaturized body size on skeletal morphology in frogs. Evolution 56(3), 628–641. https://doi.org/10.1111/j.0014-3820.2002.tb01372.x (2002).Article 

    Google Scholar 
    Daza, J. D. et al. An enigmatic miniaturized and attenuate whole lizard from the Mid-Cretaceous amber of Myanmar. Breviora 563(1), 1–18. https://doi.org/10.3099/MCZ49.1 (2018).Article 

    Google Scholar 
    Hanken, J. & Wake, D. B. Miniaturization of body size: Organismal consequences and evolutionary significance. Annu. Rev. Ecol. Evol. Syst. 24(1), 501–519. https://doi.org/10.1146/annurev.es.24.110193.002441 (1993).Article 

    Google Scholar 
    Britz, R. & Conway, K. W. Osteology of Paedocypris, a miniature and highly developmentally truncated fish (Teleostei: Ostariophysi: Cyprinidae). J. Morphol. 270(4), 389–412. https://doi.org/10.1002/jmor.10698 (2009).Article 
    CAS 

    Google Scholar 
    Britz, R., Conway, K. W. & Ruber, L. Spectacular morphological novelty in a miniature cyprinid fish, Danionella dracula n. sp.. Proc. R. Soc. Lond. 276(1665), 2179–2186. https://doi.org/10.1098/rspb.2009.0141 (2009).Article 

    Google Scholar 
    Weitzman, S. H. & Vari, R. P. Miniaturization in South American freshwater fishes; an overview and discussion. Proc. Biol. Soc. Wash. 101(2), 444–465 (1988).
    Google Scholar 
    Toledo-Piza, M., Mattox, G. M. & Britz, R. Priocharax nanus, a new miniature characid from the rio Negro, Amazon basin (Ostariophysi: Characiformes), with an updated list of miniature Neotropical freshwater fishes. Neotrop. Ichthyol. 12(2), 229–246. https://doi.org/10.1590/1982-0224-20130171 (2014).Article 

    Google Scholar 
    Caires, R. A. & Figueiredo, J. L. Review of the genus Microphilypnus Myers, 1927 (Teleostei: Gobioidei: Eleotridae) from the lower Amazon basin, with description of one new species. Zootaxa 3036, 39–57. https://doi.org/10.11646/zootaxa.3036.1.3 (2011).Article 

    Google Scholar 
    Caires, R. A. Microphilypnus tapajosensis, a new species of eleotridid from the Tapajós basin, Brazil (Gobioidei: Eleotrididae). Ichthyol. Explor. Freshw. 23, 155–160 (2013).
    Google Scholar 
    Caires, R. A. & Guimarães-Costa, A. Family Eleotridae. In Field Guide to Amazonian Fishes (eds van Sleen, P. & Albert, J.) 388–391 (Princeton University Press, 2017).
    Google Scholar 
    Caires, R. A. & Toledo-Piza, M. A New species of miniature fish of the genus Microphilypnus (Gobioidei: Eleotridae) from the upper Rio Negro Basin, Amazonas Brazil. Copeia 106(1), 49–55. https://doi.org/10.1643/CI-17-634 (2018).Article 

    Google Scholar 
    Roberts, T.R. Leptophilypnion, a new genus with two new species of tiny central Amazonian gobioid fishes (Teleostei, Eleotridae). Aqua (2013).Gould, R. E. & Delevoryas, T. The biology of Glossopteris: Evidence from petrified seed-bearing and pollen-bearing organs. Alcheringa 1(4), 387–399 (1977).Article 

    Google Scholar 
    Rüber, L., Kottelat, M., Tan, H. H., Ng, P. K. & Britz, R. Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world’s smallest vertebrate. BMC Evol. Biol. 7(1), 1–10. https://doi.org/10.1186/1471-2148-7-38 (2007).Article 
    CAS 

    Google Scholar 
    Britz, R., Conway, K. W. & Rüber, L. Miniatures, morphology and molecules: Paedocypris and its phylogenetic position (Teleostei, Cypriniformes). Zool. J. Linn. Soc. 172(3), 556–615. https://doi.org/10.1111/zoj.12184 (2014).Article 

    Google Scholar 
    Bloom, D. D., Kolmann, M., Foster, K. & Watrous, H. Mode of miniaturisation influences body shape evolution in New World anchovies (Engraulidae). J. Fish Biol. 96(1), 194–201 (2019).Article 

    Google Scholar 
    Thacker, C. E. Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei). Mol. Phylogenet. Evol. 26, 354–368. https://doi.org/10.1016/S1055-7903(02)00361-5 (2003).Article 
    CAS 

    Google Scholar 
    Birdsong, R. S., Murdy, E. O. & Pezold, F. L. A study of the vertebral column and median fin osteology in gobioid fishes with comments on gobioid relationships. Bull. Mar. Sci. 42(2), 174–214 (1988).
    Google Scholar 
    Thacker, C. E. Patterns of divergence in fish species separated by the Isthmus of Panama. BMC Evol. Biol. 17(1), 1–14. https://doi.org/10.1186/s12862-017-0957-4 (2017).Article 

    Google Scholar 
    Galván-Quesada, S. et al. Molecular phylogeny and biogeography of the amphidromous fish genus Dormitator Gill 1861 (Teleostei: Eleotridae). PLoS One 11(4), e0153538. https://doi.org/10.1371/journal.pone.0153538 (2016).Article 
    CAS 

    Google Scholar 
    Lessios, H. A. The great American schism: Divergence of marine organisms after therise of the central American isthmus. Annu. Rev. Ecol. Evol. Syst. 2008(39), 63–92. https://doi.org/10.1146/annurev.ecolsys.38.091206.095815 (2008).Article 

    Google Scholar 
    Lovejoy, N. R., Albert, J. S. & Crampton, W. G. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. J. S. Am. Earth Sci. 21, 5–13. https://doi.org/10.1016/j.jsames.2005.07.009 (2006).Article 

    Google Scholar 
    Cooke, G. M., Chao, N. L. & Beheregaray, L. B. Marine incursions, cryptic species and ecological diversification in Amazonia: The biogeographic history of the croaker genus Plagioscion (Sciaenidae). J. Biogeogr. 39, 724–738. https://doi.org/10.1111/j.1365-2699.2011.02635.x (2012).Article 

    Google Scholar 
    Bloom, D. D. & Lovejoy, N. R. On the origins of marine-derived freshwater fishes in South America. J. Biogeogr. 44(9), 1927–1938. https://doi.org/10.1111/jbi.12954 (2017).Article 

    Google Scholar 
    Monsch, K. A. Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 143, 31–50. https://doi.org/10.1016/S0031-0182(98)00064-9 (1998).Article 

    Google Scholar 
    Hoorn, C. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 267–309. https://doi.org/10.1016/0031-0182(93)90087-Y (1993).Article 

    Google Scholar 
    Hoorn, C., Guerrero, J., Sarmiento, G. A. & Lorente, M. A. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23, 237–240. https://doi.org/10.1130/0091-7613(1995)023%3C0237:ATAACF%3E2.3.CO;2 (1995).Article 
    ADS 

    Google Scholar 
    Gingras, M. K., Rasanen, M. E., Pemberton, S. G. & Romero, L. P. Ichnology and sedimentology reveal depositional characteristics of bay-margin parasequences in the Miocene Amazonian foreland basin. J. Sediment. Res. 72, 871–883. https://doi.org/10.1306/052002720871 (2002).Article 
    ADS 

    Google Scholar 
    Wesselingh, F. P. et al. Lake Pebas: A palaeoecological reconstruction of a Miocene, long-lived lake complex in western Amazonia. Cainoz. Res. 1, 35–81 (2002).
    Google Scholar 
    Bloom, D. D. & Lovejoy, N. R. Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae). J. Evol. Biol. 25(4), 701–715 (2012).Article 

    Google Scholar 
    Ward, A. B. & Azizi, E. Convergent evolution of the head retraction escape response in elongate fishes and amphibians. Zoology 107(3), 205–217. https://doi.org/10.1016/j.zool.2004.04.003 (2004).Article 

    Google Scholar 
    Palumbi, S. R. & Benzie, J. Large mitochondrial DNA differences between morphologically similar penaeid shrimp. Mol. Mar. Biol. Biotechnol. 1, 27–34 (1991).CAS 

    Google Scholar 
    Chen, W. J., Bonillo, C. & Lecointre, G. Repeatability of clades as criterion of reliability: A case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol. Phylogenet. Evol. 26, 262–288. https://doi.org/10.1016/j.gene.2008.07.016 (2003).Article 
    CAS 

    Google Scholar 
    Chen, W. J., Miya, M., Saitoh, K. & Mayden, R. L. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: The order Cypriniformes (Ostariophysi) as a case study. Gene 423, 125–134. https://doi.org/10.1016/j.gene.2008.07.016 (2008).Article 
    CAS 

    Google Scholar 
    Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. PNAS 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463 (1977).Article 
    ADS 
    CAS 

    Google Scholar 
    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).Article 
    CAS 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msw260 (2016).Article 

    Google Scholar 
    Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8(1), 1–15. https://doi.org/10.1186/1471-2148-8-289 (2008).Article 
    CAS 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).Article 
    CAS 

    Google Scholar 
    Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4(5), e88. https://doi.org/10.1371/journal.pbio.0040088 (2006).Article 
    CAS 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5), 901. https://doi.org/10.1093/sysbio/syy032 (2018).Article 
    CAS 

    Google Scholar 
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. https://doi.org/10.1186/1471-2148-7-214 (2007).Article 
    CAS 

    Google Scholar 
    Rambaut, A. FigTree, a graphical viewer of phylogenetic trees (Version 1.4.3) (2017).Betancur-R, R. et al. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17(1), 1–40. https://doi.org/10.1186/s12862-017-0958-3 (2017).Article 

    Google Scholar 
    Jones, G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J. Math. Biol. 74, 447–467 (2017).Article 
    MathSciNet 
    MATH 

    Google Scholar  More

  • in

    2-D sex images elicit mate copying in fruit flies

    Bovet, D. & Vauclair, J. Picture recognition in animals and humans. Behav. Brain. Res. 109, 143–165 (2000).Article 
    CAS 

    Google Scholar 
    Anonymous. Tinder for Orangutans. Dublin Zoo. https://www.dublinzoo.ie/news/tinder-for-orangutans (2020).Henley, J. “Tinder for Orangutans”: Dutch zoo to let female choose mate on a tablet. The Guardian. https://www.theguardian.com/environment/2017/jan/31/tinder-for-orangutans-dutch-zoo-to-let-female-choose-mate-on-a-tablet (2017).Gierszewski, S. et al. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II validation. Curr. Zool. 6, 65–74 (2017).Article 

    Google Scholar 
    Dolins, F. L., Klimowicz, C., Kelley, J. & Menzel, C. R. Using virtual reality to investigate comparative spatial cognitive abilities in chimpanzees and humans. Am. J. Primat. 76, 496–513 (2014).Article 

    Google Scholar 
    Faria, J. J. et al. A novel method for investigating the collective behaviour of fish: Introducing ‘Robofish’. Behav. Ecol. Sociobiol. 64, 1211–1218 (2010).Article 

    Google Scholar 
    Kozak, E. C. & Uetz, G. W. Male courtship signal modality and female mate preference in the wolf spider Schizocosa ocreata: results of digital multimodal playback studies. Curr. Zool. 65, 705–711 (2019).Article 

    Google Scholar 
    Loukola, O. J., Perry, C. J., Coscos, L. & Chittka, L. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355, 833–836 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    MacLaren, R. D. Evidence of an emerging female preference for an artificial male trait and the potential for spread via mate choice copying in Poecilia latipinna. Ethology 125, 575–586 (2019).
    Google Scholar 
    Rönkä, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654–1663 (2020).Article 

    Google Scholar 
    Rosenthal, G. G., Rand, A. S. & Ryan, M. J. The vocal sac as a visual cue in anuran communication: An experimental analysis using video playback. Anim. Behav. 68, 55–58 (2004).Article 

    Google Scholar 
    Thurley, K. & Ayaz, A. Virtual reality systems for rodents. Curr. Zool. 63, 109–119 (2017).Article 

    Google Scholar 
    Ware, E. L., Saunders, D. R. & Troje, N. F. Social interactivity in pigeon courtship behavior. Curr. Zool. 63, 85–95 (2017).Article 

    Google Scholar 
    Wang, D. et al. The influence of model quality on self-other mate choice copying. Pers. Ind. Diff. 17, 110481 (2021).Article 

    Google Scholar 
    Gray, J. R., Pawlowski, V. & Willis, M. A. A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space. J. Neurosci. Meth. 120, 211–223 (2002).Article 

    Google Scholar 
    Strauss, R., Schuster, S. & Götz, K. G. Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 1281–1296 (1997).Article 
    CAS 

    Google Scholar 
    Kemppainen, J. et al. Binocular mirror-symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision. PNAS 119, e2109717119 (2022).Article 
    CAS 

    Google Scholar 
    Bowers, R. I., Place, S. S., Todd, P. M., Penke, L. & Asendorpf, J. B. Generalization in mate-choice copying in humans. Behav. Ecol. 23, 112–124 (2012).Article 

    Google Scholar 
    Pruett-Jones, S. Independent versus nonindependent mate choice: do females copy each other? Am. Nat. 140, 1000–1006 (1992).Article 
    CAS 

    Google Scholar 
    Dagaeff, A.-C., Pocheville, A., Nöbel, S., Isabel, G. & Danchin, E. Drosophila mate copying correlates with atmospheric pressure in a speed learning situation. Anim. Behav. 121, 163–174 (2016).Article 

    Google Scholar 
    Mery, F. et al. Public versus personal information for mate copying in an invertebrate. Curr. Biol. 19, 730–734 (2009).Article 
    CAS 

    Google Scholar 
    Danchin, E. et al. Cultural flies: Conformist social learning in fruitflies predicts long-lasting mate-choice traditions. Science 362, 1025–1030 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Monier, M., Nöbel, S., Isabel, G. & Danchin, E. Effects of a sex ratio gradient on female mate-copying and choosiness in Drosophila melanogaster. Curr. Zool. 64, 251–258 (2018).Article 

    Google Scholar 
    Monier, M., Nöbel, S., Danchin, E. & Isabel, G. Dopamine and serotonin are both required for mate-copying in Drosophila melanogaster. Front. Behav. Neurosci. 12, 334 (2019).Article 

    Google Scholar 
    Nöbel, S., Allain, M., Isabel, G. & Danchin, E. Mate copying in Drosophila melanogaster males. Anim. Behav. 141, 9–15 (2018).Article 

    Google Scholar 
    Nöbel, S., Danchin, E. & Isabel, G. Mate-copying for a costly variant in Drosophila melanogaster females. Behav. Ecol. 29, 1150–1156 (2018).Article 

    Google Scholar 
    Dukas, R. Natural history of social and sexual behavior in fruit flies. Sci. rep. 10, 1–11 (2020).Article 

    Google Scholar 
    Chouinard-Thuly, L. et al. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr. Zool. 63, 5–19 (2017).Article 

    Google Scholar 
    Nöbel, S. et al. Female fruit flies copy the acceptance, but not the rejection, of a mate. Behav. Ecol. 33, 1018–1024 (2022)Article 

    Google Scholar 
    Bretman, A., Westmancoat, J. D., Gage, M. J. G. & Chapman, T. Males use multiple, redundant cues to detect mating rivals. Curr. Biol. 21, 617–622 (2011).Article 
    CAS 

    Google Scholar 
    Greenspan, R. J. & Ferveur, J. F. Courtship in drosophila. Ann. Rev. Gen. 34, 205 (2000).Article 
    CAS 

    Google Scholar 
    Grillet, M., Dartevelle, L. & Ferveur, J. F. A Drosophila male pheromone affects female sexual receptivity. Proc. Roy. Soc. B. 273, 315–323 (2006).Article 
    CAS 

    Google Scholar 
    Borst, A. Drosophila’s view on insect vision. Curr. Biol. 19, R36–R47 (2009).Article 
    CAS 

    Google Scholar 
    Paulk, A., Millard, S. & van Swinderen, B. Vision in Drosophila: Seeing the world through a model´s eye. Ann. Rev. Entomol. 58, 313–332 (2013).Article 
    CAS 

    Google Scholar 
    Antony, C. & Jallon, J. M. The chemical basis for sex recognition in Drosophila melanogaster. J. Insect. Physiol. 28, 873–880 (1982).Article 
    CAS 

    Google Scholar 
    Keesey, I. W. et al. Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J. Chem. Ecol. 42, 739–747 (2016).Article 
    CAS 

    Google Scholar 
    Talyn, B. C. & Bowse, H. B. The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Anim. Behav. 68, 1165–1180 (2004).Article 

    Google Scholar 
    von Schilcher, F. The function of pulse song and sine song in the courtship of Drosophila melanogaster. Anim. Behav. 24, 622–6251976 (1976).Article 

    Google Scholar 
    McGregor, P. K. et al. Design of playback experiments: The Thornbridge hall NATO ARW consensus. In Playback and Studies of Animal Communication (ed. McGregor, P.) 1–9 (Plenum Press, New York, 1992).Chapter 

    Google Scholar 
    Richmond, J. The three Rs. In The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals (eds Hubrecht, R. & Kirkwood, J.) 5–22 (Wiley-Blackwell, Hoboken, 2002).
    Google Scholar 
    Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique (Methuen & Co Ltd, 1959).
    Google Scholar 
    Schlupp, I., Ryan, M. & Waschulewski, M. Female preferences for naturally-occurring novel male traits. Behaviour 136, 519–527 (1999).Article 

    Google Scholar 
    Witte, K. & Klink, K. No pre-existing bias in sailfin molly females, Poecilia latipinna, for a sword in males. Behaviour 142, 283–303 (2005).Article 

    Google Scholar 
    Gerlai, R. Animated images in the analysis of zebrafish behavior. Curr. Zool. 63, 35–44 (2017).Article 

    Google Scholar 
    Ioannou, C. C., Guttal, V. & Couzin, I. D. Predatory fish select for coordinated collective motion in virtual prey. Science 337, 1212–1215 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Little, A. C., Jones, B. C. & DeBruine, L. M. Preferences for variation in masculinity in real male faces change across the menstrual cycle: Women prefer more masculine faces when they are more fertile. Pers. Ind. Diff. 45, 478–482 (2008).Article 

    Google Scholar 
    Little, A. C., Jones, B. C. & DeBruine, L. M. Facial attractiveness: Evolutionary based research. Phil. Trans. R. Soc. B. 366, 1638–1659 (2011).Article 

    Google Scholar 
    Morrison, E. R., Clark, A. P., Tiddeman, B. P. & Penton-Voak, I. S. Manipulating shape cues in dynamic human faces: Sexual dimorphism is preferred in female but not male faces. Ethology 116, 1234–1243 (2010).Article 

    Google Scholar 
    Kacsoh, B. Z., Bozler, J., Ramaswami, M. & Bosco, G. Social communication of predator-induced changes in Drosophila behavior and germ line physiology. eLife. 4, e07423 (2015).Article 

    Google Scholar 
    Caruana, N. & Seymour, K. Objects that induce face pareidolia are prioritized by the visual system. Brit. J. Psychol. 113, 496–507 (2022).Article 

    Google Scholar 
    Agrawal, S., Safarik, S. & Dickinson, M. The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster. J. Exp. Biol. 217, 2796–2805 (2014).
    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (Austria, Vienna, 2021).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression 2nd edn. (Sage Publishing, London, 2001).
    Google Scholar  More

  • in

    Seasonal range fidelity of a megaherbivore in response to environmental change

    Richard, E., Said, S., Hamann, J. L. & Gaillard, J. M. Daily, seasonal and annual variations in individual home range overlap of two sympatric spacies of deer. Can. J. Zool. 92, 853–859 (2014).Article 

    Google Scholar 
    Sorensen, A. A., Stenhouse, G. B., Bourbonnais, M. L. & Nelson, T. A. Effects of habitat quality and anthropogenic disturbance on grizzly bear (Ursus arctos horribilis) home-range fidelity. Can. J. Zool. 93, 857–865 (2015).Article 

    Google Scholar 
    van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).Article 

    Google Scholar 
    Naidoo, R., Du, P., Weaver, G. S. L. C., Jago, M. & Wegmann, M. Factors affecting intraspecific variation in home range size of a large African herbivore. Landsc. Ecol. 27, 1523–1534 (2012).Article 

    Google Scholar 
    Bose, S. et al. Implications of fidelity and philopatry for the population structure of female black-tailed deer. Behav. Ecol. 28, 983–990 (2017).Article 

    Google Scholar 
    Northrup, J. M., Anderson, C. R. Jr. & Wittemyer, G. Environmental dynamics and anthropogenic development alter philopatry and space-use in a North American cervid. Divers. Distrib. 22, 547–557 (2016).Article 

    Google Scholar 
    Passadore, C., Möller, L., Diaz-aguirre, F. & Parra, G. J. High site fidelity and restricted ranging patterns in southern Australian bottlenose dolphins. Ecol. Evol. 8, 242–256 (2018).Article 

    Google Scholar 
    Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B Biol. Sci. 365, 2289–2301 (2010).Article 

    Google Scholar 
    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).Article 

    Google Scholar 
    Morrison, T. A. et al. Drivers of site fidelity in ungulates. J. Anim. Ecol. 00, 1–12 (2021).
    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).Article 

    Google Scholar 
    Barraquand, F. & Benhamou, S. Animal movements in heterogeneous landscapes: Identifying profitable places and homogeneous movement bouts. Ecology 89, 3336–3348 (2008).Article 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments: From individual behaviors to population distributions. Oikos 117, 654–664 (2008).Article 

    Google Scholar 
    Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. H. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88, 450–460 (2019).
    Google Scholar 
    Shakeri, Y. N., White, K. S. & Waite, J. N. Staying close to home: Ecological constraints on space use and range fidelity in a mountain ungulate. Ecol. Evol. 11, 11051–11064 (2021).Article 

    Google Scholar 
    Damuth, J. Home range, home range overlap, and species energy use among herbivorous mammals. Biol. J. Linn. Soc. 15, 185–193 (1981).Article 

    Google Scholar 
    Lindstedt, S. L., Miller, B. J. & Buskirk, S. W. Home range, time, and body size in mammals. Ecol. Soc. Am. 67, 413–418 (1986).
    Google Scholar 
    Ofstad, E. G., Herfindal, I., Solberg, E. J. & Sæther, B. E. Home ranges, habitat and body mass: Simple correlates of home range size in ungulates. Proc. R. Soc. B Biol. Sci. 283, 20161234 (2016).Article 

    Google Scholar 
    Gehr, B. et al. Stay home, stay safe—Site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J. Anim. Ecol. 89, 1329–1339 (2020).Article 

    Google Scholar 
    Sach, F., Dierenfeld, E. S., Langley-Evans, S. C., Watts, M. J. & Yon, L. African savanna elephants (Loxodonta africana) as an example of a herbivore making movement choices based on nutritional needs. PeerJ 7, 1–27 (2019).Article 

    Google Scholar 
    Pretorius, Y. et al. Diet selection of African elephant over time shows changing optimization currency. Oikos 121, 2110–2120 (2012).Article 

    Google Scholar 
    Chamaillé-Jammes, S., Valeix, M. & Fritz, H. Managing heterogeneity in elephant distribution: Interactions between elephant population density and surface-water availability. J. Appl. Ecol. 44, 625–633 (2007).Article 

    Google Scholar 
    Purdon, A. & van Aarde, R. J. Water provisioning in Kruger National Park alters elephant spatial utilisation patterns. J. Arid Environ. 141, 45–51 (2017).Article 
    ADS 

    Google Scholar 
    Shannon, G., Matthews, W. S., Page, B. R., Parker, G. E. & Smith, R. J. The affects of artificial water availability on large herbivore ranging patterns in savanna habitats: A new approach based on modelling elephant path distributions. Divers. Distrib. 15, 776–783 (2009).Article 

    Google Scholar 
    Kos, M. et al. Seasonal diet changes in elephant and impala in mopane woodland. Eur. J. Wildl. Res. 58, 279–287 (2012).Article 

    Google Scholar 
    Shannon, G., Mackey, R. L. & Slotow, R. Diet selection and seasonal dietary switch of a large sexually dimorphic herbivore. Acta Oecologica 46, 48–55 (2013).Article 
    ADS 

    Google Scholar 
    Loarie, S. R., van Aarde, R. J. & Pimm, S. L. Elephant seasonal vegetation preferences across dry and wet savannas. Biol. Conserv. 142, 3099–3107 (2009).Article 

    Google Scholar 
    Scogings, P. F. et al. Seasonal variations in nutrients and secondary metabolites in semi-arid savannas depend on year and species. J. Arid Environ. 114, 54–61 (2015).Article 
    ADS 

    Google Scholar 
    Birkett, P. J., Vanak, A. T., Muggeo, V. M. R., Ferreira, S. M. & Slotow, R. Animal perception of seasonal thresholds: Changes in elephant movement in relation to rainfall patterns. PLoS ONE 7, 1–8 (2012).Article 

    Google Scholar 
    Cushman, S. A., Chase, M. & Griffin, C. Elephants in space and time. Oikos 109, 331–341 (2005).Article 

    Google Scholar 
    Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 1–12 (2014).Article 

    Google Scholar 
    Purdon, A., Mole, M. A., Chase, M. J. & van Aarde, R. J. Partial migration in savanna elephant populations distributed across southern Africa. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Shannon, G., Page, B. R., Duffy, K. J. & Slotow, R. The ranging behaviour of a large sexually dimorphic herbivore in response to seasonal and annual environmental variation. Austral Ecol. 35, 731–742 (2010).Article 

    Google Scholar 
    Tsalyuk, M., Kilian, W., Reineking, B. & Getz, W. M. Temporal variation in resource selection of African elephants follows long-term variability in resource availability. Ecol. Monogr. 89, 1–19 (2019).Article 

    Google Scholar 
    Thaker, M., Prins, H. H. T., Slotow, R., Vanak, A. T. & Gupte, P. R. Fine-scale tracking of ambient temperature and movement reveals shuttling behavior of elephants to water. Front. Ecol. Evol. 7, 1–12 (2019).Article 

    Google Scholar 
    Govender, N., Trollope, W. S. W. & Van Wilgen, B. W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 43, 748–758 (2006).Article 

    Google Scholar 
    MacFadyen, S., Hui, C., Verburg, P. H. & Van Teeffelen, A. J. A. Spatiotemporal distribution dynamics of elephants in response to density, rainfall, rivers and fire in Kruger National Park, South Africa. Divers. Distrib. 25, 880–894 (2019).Article 

    Google Scholar 
    Edwards, M. A., Nagy, J. A. & Derocher, A. E. Low site fidelity and home range drift in a wide-ranging, large Arctic omnivore. Anim. Behav. 77, 23–28 (2009).Article 

    Google Scholar 
    Switzer, P. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7, 533–555 (1993).Article 

    Google Scholar 
    Kranstauber, B., Kays, R., Lapoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).Article 

    Google Scholar 
    Kranstauber, B., Smolla, M. & Safi, K. Similarity in spatial utilization distributions measured by the earth mover’s distance. Methods Ecol. Evol. 8, 155–160 (2017).Article 

    Google Scholar 
    Wartmann, F., Juarez, C. & Fernandez-duque, E. Size, site fidelity, and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of Northern Argentina. Int. J. Primatol. 35, 919–939 (2014).Article 

    Google Scholar 
    Pringle, R. M. Elephants as agents of habitat creation for small vertebrates at the patch scale. Ecology 89, 26–33 (2008).Article 

    Google Scholar 
    Valeix, M. et al. Elephant-induced structural changes in the vegetation and habitat selection by large herbivores in an African savanna. Biol. Conserv. 144, 902–912 (2011).Article 

    Google Scholar 
    Coverdale, T. C. et al. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology 97, 3219–3230 (2016).Article 

    Google Scholar 
    Gertenbach, W. Rainfall patterns in the Kruger National Park. Koedoe 23, 35–43 (1980).Article 

    Google Scholar 
    Venter, F. J., Scholes, R. J. & Eckhardt, H. C. The abiotic template and its associated vegetation pattern. In The Kruger Experience (eds du Toit, J. T. et al.) 83–129 (Island Press, 2003).
    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. The influence of increasing population size and vegetation productivity on elephant distribution in the Kruger National Park. Austral Ecol. 34, 329–342 (2009).Article 

    Google Scholar 
    Ferreira, S. M., Greaver, C. & Simms, C. Elephant population growth in Kruger National Park, South Africa, under a landscape management approach. Koedoe 59, 1–6 (2017).Article 

    Google Scholar 
    Brownrigg, R. Package ‘Maps’: Draw Geographical Maps (2022).Kranstauber, B. & Smolla, M. Move: Visualizing and analyzing animal track data. R package version 2.1.0 (2013).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. URL https://www.R-project.org/ (2017).Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movement using Brownian bridges. Ecology 88, 2354–2363 (2007).Article 

    Google Scholar 
    Wato, Y. A. et al. Movement patterns of African elephants (Loxodonta africana) in a semi-arid savanna suggest that they have information on the location of dispersed water sources. Front. Ecol. Evol. 6, 1–8 (2018).Article 

    Google Scholar 
    Polansky, L., Kilian, W. & Wittemyer, G. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models. Proc. R. Soc. B Biol. Sci. 282, 1–7 (2015).
    Google Scholar 
    Archibald, S. & Scholes, R. J. Leaf green-up in a semi-arid African savanna–separating tree and grass responses to environmental cues. J. Veg. Sci. 18, 583–594 (2007).
    Google Scholar 
    Majozi, N. P. et al. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa. Hydrol. Earth Syst. Sci. 21, 3401–3415 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1, 1–14 (2013).Article 

    Google Scholar 
    Didan, K. MOD13Q1 MODIS/terra vegetation indices 16-day L3 global 250m SIN Grid V006. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Redfern, J. V., Grant, C. C., Gaylard, A. & Getz, W. M. Surface water availability and the management of herbivore distributions in an African savanna ecosystem. J. Arid Environ. 63, 406–424 (2005).Article 
    ADS 

    Google Scholar 
    Young, K. D., Ferreira, S. M. & van Aarde, R. J. Elephant spatial use in wet and dry savannas of southern Africa. J. Zool. 278, 189–205 (2009).Article 

    Google Scholar 
    Goldenberg, S. Z., Douglas-Hamilton, I. & Wittemyer, G. Inter-generational change in African elephant range use is associated with poaching risk, primary productivity and adult mortality. Proc. R. Soc. B Biol. Sci. 285, 1–8 (2018).
    Google Scholar 
    Woolley, L.-A. et al. Population and individual elephant response to a catastrophic fire in Pilanesberg National Park. PLoS ONE 3, 1–10 (2008).Article 

    Google Scholar 
    Eby, S. L., Anderson, T. M., Mayemba, E. P. & Ritchie, M. E. The effect of fire on habitat selection of mammalian herbivores: The role of body size and vegetation characteristics. J. Anim. Ecol. 83, 1196–1205 (2014).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).van Moorter, B. et al. Memory keeps you at home: A mechanistic model for home range emergence. Oikos 118, 641–652 (2009).Article 

    Google Scholar 
    Guldemond, R. A. R., Purdon, A. & van Aarde, R. J. A systematic review of elephant impact across Africa. PLoS ONE 12, 1–12 (2017).Article 

    Google Scholar 
    Abraham, J. O., Goldberg, E. R., Botha, J. & Staver, A. C. Heterogeneity in African savanna elephant distributions and their impacts on trees in Kruger National Park, South Africa. Ecol. Evol. 11, 5624–5634 (2021).Article 

    Google Scholar 
    Wall, J., Douglas-Hamilton, I. & Vollrath, F. Elephants avoid costly mountaineering. Curr. Biol. 16, 527–529 (2006).Article 

    Google Scholar 
    Presotto, A., Fayrer-Hosken, R., Curry, C. & Madden, M. Spatial mapping shows that some African elephants use cognitive maps to navigate the core but not the periphery of their home ranges. Anim. Cogn. 22, 251–263 (2019).Article 

    Google Scholar 
    Landman, M., Schoeman, D. S., Hall-Martin, A. J. & Kerley, G. I. H. Understanding long-term variations in an elephant piosphere effect to manage impacts. PLoS ONE 7, 1–11 (2012).Article 

    Google Scholar 
    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).Article 

    Google Scholar 
    Hamm, M. & Drossel, B. Habitat heterogeneity hypothesis and edge effects in model metacommunities. J. Theor. Biol. 426, 40–48 (2017).Article 
    ADS 

    Google Scholar 
    Katayama, N. et al. Landscape heterogeneity-biodiversity relationship: Effect of range size. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).Article 

    Google Scholar 
    O’Connor, T. G., Goodman, P. S. & Clegg, B. A functional hypothesis of the threat of local extirpation of woody plant species by elephant in Africa. Biol. Conserv. 136, 329–345 (2007).Article 

    Google Scholar 
    Codron, J. et al. Elephant (Loxodonta africana) diets in Kruger National Park, South Africa: Spatial and landscape differences. J. Mammal. 87, 27–34 (2006).Article 

    Google Scholar 
    Mduma, S. A. R., Sinclair, A. R. E. & Hilborn, R. Food regulates the Serengeti wildebeest: A 40-year record. J. Anim. Ecol. 68, 1101–1122 (1999).Article 

    Google Scholar 
    Ogutu, J. O. & Owen-Smith, N. ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol. Lett. 6, 412–419 (2003).Article 

    Google Scholar 
    Codron, J. et al. Landscape-scale feeding patterns of African elephant inferred from carbon isotope analysis of feces. Oecologia 165, 89–99 (2011).Article 
    ADS 

    Google Scholar 
    Woolley, L.-A., Millspaugh, J. J., Woods, R. J., Page, B. R. & Slotow, R. Intraspecific strategic responses of African elephants to temporal variation in forage quality. J. Wildl. Manag. 73, 827–835 (2009).Article 

    Google Scholar 
    Dube, K. & Nhamo, G. Evidence and impact of climate change on South African national parks. Potential implications for tourism in the Kruger National Park. Environ. Dev. 33, 1–11 (2020).Article 

    Google Scholar 
    Tshipa, A. et al. Partial migration links local surface-water management to large-scale elephant conservation in the world’s largest transfrontier conservation area. Biol. Conserv. 215, 46–50 (2017).Article 

    Google Scholar 
    Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science (80-.) 375, 1–12 (2022).Article 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science (80-.) 348, 1222–1232 (2015).Article 
    CAS 

    Google Scholar 
    Mpakairi, K. S., Ndaimani, H., Tagwireyi, P., Zvidzai, M. & Madiri, T. H. Futuristic climate change scenario predicts a shrinking habitat for the African elephant (Loxodonta africana): Evidence from Hwange National Park, Zimbabwe. Eur. J. Wildl. Res. 66, 1–10 (2020).Article 

    Google Scholar 
    Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).Article 

    Google Scholar 
    Asner, G. P., Vaughn, N., Smit, I. P. J. & Levick, S. Ecosystem-scale effects of megafauna in African savannas. Ecography (Cop.) 39, 240–252 (2016).Article 

    Google Scholar 
    Shannon, G. et al. Relative impacts of elephant and fire on large trees in a savanna ecosystem. Ecosystems 14, 1372–1381 (2011).Article 

    Google Scholar 
    Mole, M. A., DÁraujo, S. R., van Aarde, R. J., Mitchell, D. & Fuller, A. Coping with heat: Behavioural and physiological responses of savanna elephants in their natural habitat. Conserv. Physiol. 4, 1–11 (2016).Article 

    Google Scholar 
    Ncongwane, K. P., Botai, J. O., Sivakumar, V., Botai, C. M. & Adeola, A. M. Characteristics and long-term trends of heat stress for South Africa. Sustainability 13, 1–20 (2021).Article 

    Google Scholar 
    Lagendijk, G., Mackey, R. L., Page, B. R. & Slotow, R. The effects of herbivory by a mega- and mesoherbivore on tree recruitment in sand forest, South Africa. PLoS ONE 6, 1–9 (2011).Article 

    Google Scholar 
    Wells, H. B. M. et al. Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species’ traits. J. Anim. Ecol. 90, 2510–2522 (2021).Article 

    Google Scholar 
    Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: Effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).Article 

    Google Scholar 
    Fležar, U. et al. Simulated elephant-induced habitat changes can create dynamic landscapes of fear. Biol. Conserv. 237, 267–279 (2019).Article 

    Google Scholar 
    Brennan, A. et al. Characterizing multispecies connectivity across a transfrontier conservation landscape. J. Appl. Ecol. 57, 1700–1710 (2020).Article 

    Google Scholar 
    Roever, C. L., van Aarde, R. J. & Leggett, K. Functional connectivity within conservation networks: Delineating corridors for African elephants. Biol. Conserv. 157, 128–135 (2013).Article 

    Google Scholar 
    Green, S. E., Davidson, Z., Kaaria, T. & Doncaster, C. P. Do wildlife corridors link or extend habitat? Insights from elephant use of a Kenyan wildlife corridor. Afr. J. Ecol. 56, 860–871 (2018).Article 

    Google Scholar  More

  • in

    Divergent roles of herbivory in eutrophying forests

    FAO. Global forest resources assessment. www.fao.org/publications (2015).Finlayson, M. et al. A Report of the Millennium Ecosystem Assessment. (The Cropper Foundation, 2005).Lal, R., & Lorenz, K. In Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R., Lorenz, K., Hüttl, R. F., Schneider, B. U. & von Braun, J.) Ch. 9 (Springer, 2012).Gilliam, F. S. Forest ecosystems of temperate climatic regions: from ancient use to climate change. N. Phytologist 212, 871–887 (2016).Article 

    Google Scholar 
    de Gouvenain, R. C. & Silander, J. A. Temperate forests in Reference Module in Life Sciences (Elsevier, 2017).Keith, S. A., Newton, A. C., Morecroft, M. D., Bealey, C. E. & Bullock, J. M. Taxonomic homogenization of woodland plant communities over 70 years. Proc. R. Soc. B: Biol. Sci. 276, 3539–3544 (2009).Article 

    Google Scholar 
    Rackham, O. Ancient woodlands: modern threats. N. Phytologist 180, 571–586 (2008).Article 

    Google Scholar 
    Bernhardt-Römermann, M. et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob. Chang. Biol. 21, 3726–3737 (2015).Article 
    ADS 

    Google Scholar 
    Waller, D. M. & Alverson, W. S. The white-tailed deer: a keystone herbivore. Wildl. Soc. Bull. 25, 217–226 (1997).
    Google Scholar 
    Ramirez, J. I. Uncovering the different scales in deer–forest interactions. Ecol. Evol. 11, 5017–5024 (2021).Article 

    Google Scholar 
    Rooney, T. P., Wiegmann, S. M., Rogers, D. A. & Waller, D. M. Biotic impoverishment and homogenization in unfragmented forest understory communities. Conserv. Biol. 18, 787–798 (2004).Stockton, S. A., Allombert, S., Gaston, A. J. & Martin, J. L. A natural experiment on the effects of high deer densities on the native flora of coastal temperate rain forests. Biol. Conserv 126, 118–128 (2005).Article 

    Google Scholar 
    Hegland, S. J., Lilleeng, M. S. & Moe, S. R. Old-growth forest floor richness increases with red deer herbivory intensity. Ecol. Manag. 310, 267–274 (2013).Article 

    Google Scholar 
    Simončič, T., Bončina, A., Jarni, K. & Klopčič, M. Assessment of the long-term impact of deer on understory vegetation in mixed temperate forests. J. Veg. Sci. 30, 108–120 (2019).Article 

    Google Scholar 
    Vild, O. et al. The paradox of long-term ungulate impact: increase of plant species richness in a temperate forest. Appl. Veg. Sci. 20, 282–292 (2017).Article 

    Google Scholar 
    Russell, F. L., Zippin, D. B. & Fowler, N. L. Effects of white-tailed deer (Odocoileus virginianus) on plants, plant populations and communities: a review. Am. Midl. Nat. 146, 1–26 (2001).Article 

    Google Scholar 
    Öllerer, K. et al. Beyond the obvious impact of domestic livestock grazing on temperate forest vegetation–A global review. Biol. Conserv. 237, 209–219 (2019).Article 

    Google Scholar 
    Borer, E. T. et al. Nutrients cause grassland biomass to outpace herbivory. Nat. Commun. 11, 1–8 (2020).Article 
    ADS 

    Google Scholar 
    Kaarlejärvi, E., Eskelinen, A. & Olofsson, J. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains. Nat. Commun. 8, 1–8 (2017).
    Google Scholar 
    Simkin, S. M. et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl Acad. Sci. USA 113, 4086–4091 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 20, 30–59 (2010).Article 
    CAS 

    Google Scholar 
    Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J. Veg. Sci. 25, 113–121 (2014).Article 

    Google Scholar 
    Speed, J. D. M., Austrheim, G., Kolstad, A. L. & Solberg, E. J. Long-term changes in northern large-herbivore communities reveal differential rewilding rates in space and time. PLoS ONE 14, e0217166 (2019).Article 
    CAS 

    Google Scholar 
    Valente, A. M., Acevedo, P., Figueiredo, A. M., Fonseca, C. & Torres, R. T. Overabundant wild ungulate populations in Europe: management with consideration of socio-ecological consequences. Mamm. Rev. 50, 353–366 (2020).Article 

    Google Scholar 
    Linnell, J. D. C. et al. The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe’s Anthropocene. Biol. Conserv. 244, 108500 (2020).Waller, D. M. The Herbaceous Layer in Forests of Eastern North America (ed. Gilliam, F.) Ch. 16 (Oxford Univ. Press, 2014).Kerley, G. I. H., Kowalczyk, R. & Cromsigt, J. P. G. M. Conservation implications of the refugee species concept and the European bison: king of the forest or refugee in a marginal habitat? Ecography 35, 519–529 (2011).Svenning, J. C. A review of natural vegetation openness in north-western Europe. Biol. Conserv 104, 133–148 (2002).Article 

    Google Scholar 
    Sandom, C. J., Ejrnaes, R., Hansen, M. D. D. & Svenning, J. C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ramirez, J. I., Jansen, P. A., den Ouden, J., Goudzwaard, L. & Poorter, L. Long-term effects of wild ungulates on the structure, composition and succession of temperate forests. Ecol. Manag. 432, 478–488 (2019).Article 

    Google Scholar 
    Ramirez, J. I., Jansen, P. A. & Poorter, L. Effects of wild ungulates on the regeneration, structure and functioning of temperate forests: A semi-quantitative review. Ecol. Manag. 424, 406–419 (2018).Article 

    Google Scholar 
    Albert, A. et al. Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis. Oikos 124, 1109–1120 (2015).Article 

    Google Scholar 
    McNaughton, S. J. Grazing lawns: on domesticated and wild grazers. Am. Nat. 128, 937–939 (1986).Article 

    Google Scholar 
    Cromsigt, J. P. G. M. & Kuijper, D. P. J. Revisiting the browsing lawn concept: evolutionary Interactions or pruning herbivores? Perspect. Plant Ecol. 13, 207–215 (2011).Article 

    Google Scholar 
    Ramirez, J. I. et al. Temperate forests respond in a non-linear way to a population gradient of wild deer. Forestry 94, 502–511 (2021).Article 

    Google Scholar 
    Boulanger, V. et al. Ungulates increase forest plant species richness to the benefit of non‐forest specialists. Glob. Chang. Biol. 24, e485–e495 (2018).Article 

    Google Scholar 
    Kirby, K. J. The impact of deer on the ground flora of British broadleaved woodland. Forestry 74, 219–229 (2001).Article 

    Google Scholar 
    Royo, A. A., Collins, R., Adams, M. B., Kirschbaum, C. & Carson, W. P. Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. Ecology 91, 93–105 (2010).Happonen, K. et al. Trait-based responses to land use and canopy dynamics modify long-term diversity changes in forest understories. Glob. Ecol. Biogeogr. 30, 1863–1875 (2021).Article 

    Google Scholar 
    Peñuelas, J. & Sardans, J. The global nitrogen-phosphorus imbalance. Science 375, 266–267 (2022).Article 
    ADS 

    Google Scholar 
    Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).Article 

    Google Scholar 
    Newbold, T. et al. Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).Article 

    Google Scholar 
    Verheyen, K. et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Br. Ecol. Soc. J. Ecol. 100, 352–365 (2012).
    Google Scholar 
    Gilliam, F. S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 94, 1176–1191 (2006).Article 
    CAS 

    Google Scholar 
    de Schrijver, A. et al. Cumulative nitrogen input drives species loss in terrestrial ecosystems. Glob. Ecol. Biogeogr. 652, 803–816 (2011).Article 

    Google Scholar 
    de Frenne, P. et al. Light accelerates plant responses to warming. Nat. Plants 1, 15110 (2015).Article 

    Google Scholar 
    Baeten, L. et al. Herb layer changes (1954-2000) related to the conversion of coppice-with-standards forest and soil acidification. Appl. Veg. Sci. 12, 187–197 (2009).Article 

    Google Scholar 
    Becker, T., Spanka, J., Schröder, L. & Leuschner, C. Forty years of vegetation change in former coppice-with-standards woodlands as a result of management change and N deposition. Appl. Veg. Sci. 20, 304–313 (2017).Article 

    Google Scholar 
    van Calster, H. et al. Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Ecol. Manag. 256, 519–528 (2008).Article 

    Google Scholar 
    Luyssaert, S. et al. The European carbon balance. Part 3: forests. Glob. Chang. Biol. 16, 1429–1450 (2010).Article 
    ADS 

    Google Scholar 
    Kirby, K. J. et al. Five decades of ground flora changes in a temperate forest: the good, the bad and the ambiguous in biodiversity terms. Ecol. Manag. 505, 119896 (2022).Article 

    Google Scholar 
    Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Kowalczyk, R., Kamiński, T. & Borowik, T. Do large herbivores maintain open habitats in temperate forests? For. Ecol. Manag. 494, 119310 (2021).Dormann, C. F. et al. Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecol. 20, 1–9 (2020).Article 

    Google Scholar 
    Dirnböck, T. et al. Forest floor vegetation response to nitrogen deposition in Europe. Glob. Chang. Biol. 20, 429–440 (2014).Article 
    ADS 

    Google Scholar 
    Perring, M. P. et al. Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environ. Pollut. 242, 1787–1799 (2018).Article 
    CAS 

    Google Scholar 
    Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).Article 

    Google Scholar 
    Gough, L. & Grace, J. B. Herbivore effects on plant species density at varying productivity levels. Ecology 79, 1586–1594 (1998).Article 

    Google Scholar 
    Eskelinen, A., Harpole, W. S., Jessen, M.-T., Virtanen, R. & Hautier, Y. Light competition drives herbivore and nutrient effects on plant diversity. Nature 611, 301–305 (2022).Knight, T. M., Dunn, J. L., Smith, L. A., Davis, J. A. & Kalisz, S. Deer facilitate invasive plant success in a Pennsylvania forest understory. Nat. Areas 29, 110–116 (2009).Article 

    Google Scholar 
    Beguin, J., Pothier, D. & Côté, S. D. Deer browsing and soil disturbance induce cascading effects on plant communities: a multilevel path analysis. Ecol. Appl. 21, 439–451 (2011).Gilliam, F. S. et al. Twenty-five-year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition. Ecosphere 7, e01250 (2016).Article 

    Google Scholar 
    de Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).Article 
    ADS 

    Google Scholar 
    Hedwall, P. O. et al. Half a century of multiple anthropogenic stressors has altered northern forest understory plant communities. Ecol. Appl. 29, e01874 (2019).Perring, M. P. et al. Global environmental change effects on plant community composition trajectories depend upon management legacies. Glob. Chang. Biol. 24, 1722–1740 (2018).Article 
    ADS 

    Google Scholar 
    Boulanger, V. et al. Decreasing deer browsing pressure influenced understory vegetation dynamics over 30 years. Ann. Sci. 72, 367–378 (2015).Article 

    Google Scholar 
    Bernes, C. et al. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates. A systematic review. Environ. Evid. 7, 1–32 (2018).Article 

    Google Scholar 
    Reimoser, F. Steering the impacts of ungulates on temperate forests. J. Nat. Conserv. 10, 243–252 (2003).Article 

    Google Scholar 
    Vavra, M., Parks, C. G. & Wisdom, M. J. Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. Ecol. Manag. 246, 66–72 (2007).Article 

    Google Scholar 
    Depauw, L. et al. Light availability and land-use history drive biodiversity and functional changes in forest herb layer communities. J. Ecol. 108, 1411–1425 (2020).Article 
    CAS 

    Google Scholar 
    Chevaux, L. et al. Effects of stand structure and ungulates on understory vegetation in managed and unmanaged forests. Ecol. Appl. 32, e01874 (2022).Gordon, I. J. Browsing and grazing ruminants: are they different beasts? Ecol. Manag. 181, 13–21 (2003).Article 

    Google Scholar 
    Brasseur, B. et al. What deep‐soil profiles can teach us on deep‐time pH dynamics after land use change? Land Degrad. Dev. 29, 2951–2961 (2018).Article 

    Google Scholar 
    Schmitz, A. et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 244, 980–994 (2019).Article 
    CAS 

    Google Scholar 
    Dirnböck, T. et al. Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests. Environ. Res. Lett. 13, 125010 (2018).Article 

    Google Scholar 
    Peterken, G. F. Natural Woodland: Ecology and Conservation in Northern Temperate Regions (Cambridge Univ. Press, 1996).Chamberlain, S. A. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. preprint. PeerJ Preprints 5, e3304v1 (2017).Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).Article 

    Google Scholar 
    Hédl, R., Kopecký, M. & Komárek, J. Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Divers Distrib. 16, 267–276 (2010).Article 

    Google Scholar 
    Giménez-Anaya, A., Herrero, J., Rosell, C., Couto, S. & García-Serrano, A. Food habits of wild boars (Sus scrofa) in a Mediterranean coastal wetland. Wetlands 28, 197–203 (2008).Article 

    Google Scholar 
    Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    Andersen, R. et al. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 25, 271–282 (2017).Article 

    Google Scholar 
    Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).Article 

    Google Scholar 
    van den Berg, L. J. L. et al. Evidence for differential effects of reduced and oxidised nitrogen deposition on vegetation independent of nitrogen load. Environ. Pollut. 208, 890–897 (2016).Article 

    Google Scholar 
    McNaughton, S. J., Oesterheld, M., Frank, D. A. & Williams, K. J. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341, 142–144 (1989).Article 
    ADS 
    CAS 

    Google Scholar 
    Koerner, S. E. et al. Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018).Article 

    Google Scholar 
    Fréjaville, T. & Garzón, M. B. The EuMedClim database: yearly climate data (1901-2014) of 1 km resolution grids for Europe and the Mediterranean Basin. Front. Ecol. Evol. 6, 1–5 (2018).Article 

    Google Scholar 
    Al‐Yaari, A. et al. Asymmetric responses of ecosystem productivity to rainfall anomalies vary inversely with mean annual rainfall over the conterminous United States. Glob. Chang. Biol. 26, 6959–6973 (2020).Article 
    ADS 

    Google Scholar 
    Szabó, P. & Hédl, R. Advancing the integration of history and ecology for conservation. Conserv. Biol. 25, 680–687 (2011).Article 

    Google Scholar 
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Spec. Feature Ecol. 80, 1150–1156 (1999).
    Google Scholar 
    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    Holz, H., Segar, J., Valdez, J. & Staude, I. R. Assessing extinction risk across the geographic ranges of plant species in Europe. Plants People Planet 4, 303–311 (2022).Article 

    Google Scholar 
    Staude, I. R. et al. Directional turnover towards larger‐ranged plants over time and across habitats. Ecol. Lett. 25, 466–482 (2021).Article 

    Google Scholar 
    Ellenberg, H., Weber, H. E., Düll, R., Wirth, V. & Werner, W. Zeigerwerte von Pflanzen in Mitteleuropa (Verlag Wrich Goltze, 2001).Chytrý, M., Tichý, L., Dřevojan, P., Sádlo, J. & Zelený, D. Ellenbergtype indicator values for the Czech flora. Preslia 90, 83–103 (2018).Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Dushoff, J., Kain, M. P. & Bolker, B. M. I can see clearly now: reinterpreting statistical significance. Methods Ecol. Evol. 10, 756–759 (2019).Article 

    Google Scholar 
    Bradshaw, L. & Waller, D. M. Impacts of white-tailed deer on regional patterns of forest tree recruitment. Ecol. Manag. 375, 1–11 (2016).Article 

    Google Scholar 
    McGarvey, J. C., Bourg, N. A., Thompson, J. R., McShea, W. J. & Shen, X. Effects of twenty years of deer exclusion on woody vegetation at three life-history stages in a mid-atlantic temperate deciduous forest. Northeast. Nat. 20, 451–468 (2013).Nuttle, T., Ristau, T. E. & Royo, A. A. Long-term biological legacies of herbivore density in a landscape-scale experiment: forest understoreys reflect past deer density treatments for at least 20 years. J. Ecol. 102, 221–228 (2013). More

  • in

    Author Correction: The hidden land use cost of upscaling cover crops

    Correction to: Communications Biology https://doi.org/10.1038/s42003-020-1022-1, published online 11 June 2020.In the original version of the Perspective, a unit conversion error affected calculations for cereal rye, triticale, barley, and oats. Further, berseem clover yield estimates were mistranscribed from the original source. These mistakes led to errors in Supplementary Data 1, Figure 2 and in the presentation of the data in the text.Supplementary Data 1 has now been replaced with a file containing the correct numbers.Figure 2 has been corrected:Original figure 2New figure 2The Abstract stated: “In this Perspective, we estimate land use requirements to supply the United States maize production area with cover crop seed, finding that across 18 cover crops, on average 3.8% (median 2.0%) of current production area would be required, with the popular cover crops rye and hairy vetch requiring as much as 4.5% and 11.9%, respectively”.The text should read: “In this Perspective, we estimate land use requirements to supply the United States maize production area with cover crop seed, finding that across 18 cover crops, on average 2.4% (median 2.1%) of current production area would be required, with the popular cover crops rye and hairy vetch requiring as much as 4.8% and 11.9%, respectively”.In the 1st paragraph of the right hand column on page 2, the text said: “(…), we find that the land requirements for production of cover crop seed would be on average 1.4 million hectares (median 746,000 ha), which is equivalent to 3.8% (median 2.0%) of the U.S. maize farmland. Rye (Secale cereale L.) – a midrange seed yielding cover crop and one of the most commonly used in the corn belt, would require as much as 1,661,000 hectares (4.5% of maize farmland), (…)”The text should read: “(…) we find that the land requirements for production of cover crop seed would be on average 892,526 hectares (median 774,417 ha), which is equivalent to 2.4% (median 2.1%) of the U.S. maize farmland. Rye (Secale cereale L.) – a midrange seed yielding cover crop and one of the most commonly used in the corn belt, would require as much as 1,779,770 hectares (4.8% of maize farmland), (…)”On page 3, second paragraph the text said: “Cover cropping the entire U.S. maize area would require the equivalent of as much as 18% (rye) to 49% (hairy vetch) (…)”The text should read: “Cover cropping the entire U.S. maize area would require the equivalent of as much as 19% (rye) to 49% (hairy vetch) (…)”This errors have now been corrected in the Perspective Article. More