More stories

  • in

    Diversity of Trichoderma species associated with soil in the Zoige alpine wetland of Southwest China

    Trichoderma species collectionEighty strains were obtained from 100 soil samples collected from Zoige alpine wetland ecological regions in China. Details of the strains isolated from soil samples are given in Table 1. All strains were subsequently used for morphological identification, while fifty-seven were used for phylogenetic analysis.Table 1 Details of 80 Trichoderma isolates from the Zoige alpine wetland in this study.Full size tablePhylogenetic analysisThe ITS region used preliminarily as a species identification criterion was applied to TrichOKey at www.ISTH.info70. However, the ITS region has a low number of variable sites and long insertions in certain species; thus, it is unsuitable for a phylogenetic reconstruction of this group41. Our study successfully amplified most fragments of the genes tef1, rpb2, and acl1. We also designed a pair of new primers based on the full-length tef1 gene, 5′-GAGAAGTTCGAGAAGGTGAGC-3′ and 5′-ATGTCACGGACGGCGAAAC-3′, with which a 1.4-kb fragment was amplified for most isolates.All samples analyzed in our study were divided into 4 primary clades based on the gpd gene region, including 49 strains from the T. harzianum complex, 3 T. rossicum strains, 1 T. polysporum strain and one unknown species (4 Trichoderma sp. strains) (Fig. 1). Maximum parsimony analysis was conducted among 101 strains, with Protocrea farinosa (CPK 2472) and P. pallida (CBS 299.78) used as outgroup (Table 2). The dataset for the rpb2, tef1 and acl1 genes contained 3403 characteristics, among which 1152 were parsimony-informative, 988 were variable and parsimony-uninformative, and 1263 were constant. The most parsimonious trees are shown in Fig. 2 (tree length = 5054, consistency index = 0.6005, homoplasy index = 0.3995, retention index = 0.8105, rescaled consistency index = 0.4867).Figure 1Neighbor-joining tree based on partial gpd gene sequences from 57 Trichoderma isolates. Parsimony bootstrap values of more than 50% are shown at nodes.Full size imageTable 2 Trichoderma strain included in the multi-gene sequence analysis, with details of clade, strain number, location, and GenBank accessions of the sequences generated.Full size tableFigure 2Maximum parsimony tree of Trichoderma species inferred from the combined rpb2, tef1 and acl1 partial sequences. Maximum parsimony bootstrap values above 50% are shown at nodes. The tree was rooted with Protocrea farinose and P. pallida Isolates from this study are shown in red (new species in bold).Full size imageThe phylogram showed that 57 stains belonged to the following four clades: Harzianum, Polysporum, Stromaticum, and Longibrachiatum. The strains of the first three clades with neighboring named species were well supported by bootstrap values greater than 90%. The Harzianum clade contained T. alni, T. atrobrunneum, T. harzianum and T. pyramidale of the Trichoderma species complex. The Polysporum clade contained only T. polysporum, and the Stromaticum clade contained T. rossicum. The Longibrachiatum clade contained four strains of Trichoderma sp., T25, T43, T44 and T48, which were separated from any other known taxa of this clade showed a low bootstrap value (MPBP = 62%) with T. citrinoviride and T. saturnisporum. We thus regarded it as a new species and named it Trichoderma zoigense, as described in the next section.Growth ratesAs shown in Fig. 3, the genus Trichoderma from Zoige alpine wetland ecological regions was able to grow in a range from 15 to 35 °C, and the suitable growth temperature for most species ranged from 20 to 30 °C. All seven species identified had normal viability at relatively low temperature (15 °C), and they rarely grew well over 35 °C except for T. zoigense. For T. atrobrunneum, T. harzianum and T. pyramidale, the optimum growth temperature on CMD was 25 to 30 °C. T. alni and T. rossicum preferred a cool growth environment, with an optimum temperature of 25 °C, whereas T. zoigense was more partial to a hot environment, with an optimum temperature of 30 °C, and it even grew well up to 35 °C. T. polysporum was the only slow-growing species that grew with less than 6.0 mm/day between 15 and 30 °C and did not survive at 35 °C. The above results showed that all species had different growth rates but were not completely differentiated from each other on CMD. These species were roughly divided into four groups based on their optimum growth temperature.Figure 3Growth rates of 7 species of Trichoderma on CMD given as mm per day at five temperatures. The values were the means of 3–5 experiments, with 1–3 representative isolates per species.Full size imageRelationship with ecological factorsOur results revealed a substantial disparity in the number and distribution of Trichoderma species among Zoige alpine wetland ecological regions (Tables 3, 4). Table 3 showed that T. harzianum was found in all four soil types, but most isolates of this species were obtained from peat soil. T. rossicum, T. alni and T. zoigense were also present in meadow soil and subalpine meadow soil, whereas T. atrobrunneum was found in aeolian sandy soil and peat soil. T. polysporum was found only in peat soil.Table 3 Isolation frequency of Trichoderma species in different soil types (%).Full size tableTable 4 Isolation frequency of Trichoderma species in different soil layers (%) species.Full size tableIn regard to the different soil layers shown in Table 4, T. harzianum was widely distributed in the five soil layers at depths of 0–100 cm. T. rossicum, T. alni and T. zoigense were isolated mainly from the soil layers at depths of 0–50 cm. Both T. atrobrunneum and T. pyramidale were isolated from depths of 0–10 cm, and T. polysporum was found only in the soil layers at depths of 50–100 cm.Regarding isolation frequency, T. harzianum was the most common of the seven species with a 23% isolation frequency, and it was therefore the dominant species in the zone, while the rare species T. polysporum and T. pyramidale had the lowest isolation frequencies at 1%.TaxonomyNew speciesTrichoderma zoigense G.S. Gong & G.T. Tang, sp. nov. (Fig. 4).Figure 4Cultures and asexual morph of Trichoderma zoigense. (a–d). Cultures at 20 °C [(a) on CMD, 7 days; (b) on MEA, 4 days; (c) on PDA, 4 days; and (d) on SNA, 7 days]. (e) Conidiation tuft (CMD, 4 days). (f–k) Conidiophores and phialides (CMD, 5–7 days). (l) Chlamydospores (PDA, 8 days). (m) Conidia (CMD, 5 days). Scale bars: (e) = 2 mm; (f–m) = 10 μm.Full size imageMycoBank: MB 82114.Typification: CHINA. SICHUAN PROVINCE: Zoige Alpine Wetland, on soil, 29 June 2013, G.S. Gong T44 (holotype CGMCC3.20145). GenBank: ITS = KX632531; TEF = KX632588; RPB2 = KX632645; ACL1 = KX632702; GPD = KX632759.Etymology: zoigense (Latin), the specific epithet about the place where the type was found.Description: Cultures and anamorph: optimal growth at 25 °C on all four media. On CMD after 72 h, growth is 25–28 mm at 20 °C and 28–31 mm at 25 °C. Colony is dense and has a wavy to crenate margin. Surface becomes distinctly zonate and white to grayish-green but celadon to atrovirens later, and it is granular in the center and distinctly radially downy outside and shows whitish surface hyphae and reverse-diffusing croci to pale brown pigment (Fig. 4a). Aerial hyphae are numerous to punctate and long, forming radial strands, with white mycelial patches appearing in aged cultures (Fig. 4e). Autolytic excretions are rare, with no coilings observed. Conidiation was noted after 3–4 d at 25 °C, a yellow or greenish color appears after 7 days, conidiation is effuse, and in intense tufts, erect conidiophores occur around the plug and on aerial hyphae. They are mainly concentrated along the colony center, show a white color that turns green, and then finally degenerate, with conidia often adhering in chains. Conidiophores are short and simple with asymmetric branches. Branches produce phialides directly. Phialides are generally solitary along main axes and side branches and sometimes paired in the terminal position of the main axes, sometimes in whorls of 2–3. Phialides are 4.5–10.5 × 2–5 μm ((overline{x }) = 7.5 ± 1.5 × 3 ± 0.5, n = 50) and 1.5–2.5 μm ((overline{x }) = 2 ± 0.2) wide at the base, lageniform or ampulliform, mostly uncinate or slightly curved, less straight, and often distinctly widened in the middle (Fig. 4f–k). Conidia are 3–4.5 × 2.3–4 μm ((overline{x }) = 3.5 ± 0.3 × 3 ± 0.3, n = 50) and initially hyaline, and they turn green and are oblong or ellipsoidal, almost with constricted sides, and smooth, eguttulate or with minute guttules, with indistinct scars (Fig. 4m).On PDA, after 72 h, growth is 35–41 mm at 20 °C and 50–55 mm at 25 °C; and mycelium covers the plate after 5 days at 25 °C. Colonies are dense with wavy to crenate margins; and mycelia are conspicuously differentiated in width of the primary and secondary hyphae. Surface becomes distinctly zonate, yellowish-green to prasinous in color and celadon to atrovirens later, and it is farinose to granular in the center, distinctly radially downy outside, with whitish of surface hyphae and reverse-diffusing brilliant yellow to fruit-green pigment (Fig. 4c). Aerial hyphae are numerous, long and ascend several millimeters, forming radial strands, with white mycelial patches appearing in aged cultures. Autolytic excretions are rare; and no coilings are observed. Odor is indistinct or fragrant. Chlamydospores examined after 7 days at 4.5–9 × 4.5–7.5 μm ((overline{x }) = 6 ± 1.1 × 6 ± 0.7, n = 50), and they are terminal, intercalary, globose or ellipsoidal, and smooth (Fig. 4l). Conidiation is noted after 3–4 days and yellow or greenish after 7 days. Conidiophores are short and simple with asymmetric branches; conidia are greenish, ellipsoidal, and smooth.On SNA, after 72 h, growth is 13–15 mm at 20 °C and, 16–21 mm at 25 °C; and mycelium covers the plate after 12–13 days at 25 °C. Colony is similar to that on CMD, with a little wave margin, although mycelia are looser and slower on the agar surface. Aerial hyphae are relatively inconspicuous and long along the colony margin. Autolytic activity and coiling are absent or inconspicuous. No diffusing pigment or distinct odor are produced (Fig. 4d). Conidiation was noted after 3–4 days at 25 °C, and many amorphous, loose white or aqua cottony tufts occur, mostly median from the plug outwards, and they are confluent to masses up and white but then turn green. After 4–5 days, conidiation becomes dense within the tufts, which are loose at their white margins with long, straight, or slightly sinuous sterile ends in the periphery. Tufts consisting of a loose reticulum with branches often at right angles, give rise to several main axes. Main axes are regular and tree-like, with few or many paired or unpaired side branches. Branches are flexuous, and phialides are solitary along the main axes and side branches, and they are sometimes paired in the terminal position of the main axes, sometimes in whorls of 2–3 that are often cruciform or in pseudo-whorls up to 4. Phialides and conidia are similar to that on CMD.New records for ChinaTrichoderma atrobrunneum F. B. Rocha et al., Mycologia 107: 571, 2015 (Fig. 5).Figure 5Cultures and asexual morph of Trichoderma atrobrunneum. (a–d) Cultures at 25 °C [(a) on CMD, 7 days; (b) on MEA, 4 days; (c) on PDA, 15 days; and (d) on SNA, 7 days]. (e) Conidiation tuft (SNA, 7 days). (f–i,k,l) Conidiophores and phialides (CMD, 5–7 days). (j) Conidia (CMD, 6 days). (m) Chlamydospores (PDA, 7 days). Scale bars: (e) = 2 mm; (f–m) = 10 μm.Full size imageSpecimen examined: CHINA. SICHUAN PROVINCE: Zoige Alpine Wetland, on soil, 29 June 2013, G.S. Gong T42 (holotype CGMCC.20167). GenBank: ITS = KX632514; TEF = KX632571; RPB2 = KX632628; ACL1 = KX632685; GPD = KX632742.Description: Cultures and anamorph: optimal growth at 25 °C on all media. On CMD, after 72 h, growth is 35–37 mm at 20 °C and 46–53 mm at 25 °C; mycelium covers the plate after 5–6 days at 25 °C. Colonies show distinct zonation. Mycelia are loose and thin; hyphae are narrow, sinuous and often form strands on the margin (Fig. 5a). Aerial hyphae are slight, forming a thin white to green downy fluffy or floccose mat. The light brown or brown pigment is observed, with no distinct odor noted. Conidiophores are pyramidal, often with opposing and somewhat widely spaced branches, with the main axis and each branch terminating in a cruciate, sometimes verticillate, whorl of up to four phialides. Phialides are ampulliform to lageniform and 4.9–7.6 × 2.2–3.0 μm ((overline{x }) = 6 ± 0.7 × 2.5 ± 0.2, n = 50) and 1.5–2.5 μm ((overline{x }) = 1.5 ± 0.3) wide at the base (Fig. 5f–i,k,l). Conidia are 2.5–4 × 2.5–3.5 μm ((overline{x }) = 3 ± 0.3 × 3 ± 0.2, n = 50), yellow to green, smooth, and circular to ellipsoidal (Fig. 5j).On PDA, after 72 h, growth is 41–43 mm at 20 °C and 50–55 mm at 25 °C; and mycelium covers the plate after 5–6 days at 25 °C. Colonies show indistinct zonation. Mycelia are dense, opaque, and thick; hyphae are wide, sinuous and often form strands on the margin (Fig. 5c). Margin is thick and defined. Aerial hyphae are abundant and form a thick green downy mat. Conidiation forms abundantly within 4 days in broad concentric rings. Chlamydospores examined after 7 days are 5–9 × 5.5–8.5 μm ((overline{x }) = 6.5 ± 0.9 × 6.5 ± 0.9, n = 30), globose when terminal, smooth, and intercalary (Fig. 5m).On SNA, after 72 h, growth is 33–35 mm at 20 °C and 38–40 mm at 25 °C; and mycelium covers the plate after 7–8 days at 25 °C. Colonies show distinct zonation. Mycelia are thin and yellow to green; hyphae are wide and sinuous, with indistinct strands on the margin (Fig. 5d). Margin is thin and ill-defined. Aerial hyphae are slight, forming a thin green downy fluff appearing in the colony (Fig. 5e). Diffusing pigment was observed in a ring, and no distinct odor was noted. Conidiation is similar to CMD.Accepted species previously reported in ChinaTrichoderma alni Jaklitsch, Mycologia 100: 799. 2008 (Fig. 6).Figure 6Cultures and asexual morph of Trichoderma alni. (a–d). Cultures after 7 days at 25 °C [(a) on CMD; (b) on MEA; (c) on PDA; and (d) on SNA]. € Coilings of aerial hyphae (PDA, 6 days). (f–j,l). Conidiophores and phialides (CMD, 5–7 days). (k) Conidiation tuft (PDA, 7 days). (m) Conidia (CMD, 6 days). (n,o) Chlamydospores (PDA, 7 days). Scale bars: (e–j,l–o) = 10 μm; (k) = 2 mm.Full size imageDescription: Cultures and anamorph: Optimum growth at 25 °C on all media; no growth at 35 °C. On CMD, after 72 h, growth of 34–36 mm at 20 °C and 50–51 mm at 25 °C; and mycelium covers the plate after 5–6 days at 25 °C. Colonies show distinct zonation. Mycelia are loose and thin; hyphae are narrow and sinuous and often form strands on the margin (Fig. 6a). Aerial hyphae are slight and form a thin white to green downy, fluffy or floccose mat. No diffusing pigment or distinct odor is noted. Conidiophores are hyaline and thick, with side branches on several levels at the base of the elongations that are mostly paired and in right angles with phialides in whorls of 3–5. Phialides are 5.5–11.5 × 2–3.5 μm ((overline{x }) = 8 ± 1.4 × 2.5 ± 0.4, n = 50) and 1.5–2.5 μm ((overline{x }) = 2 ± 0.4) wide at the base, often short and wide, and ampulliform (Fig. 6f–j,l). Conidia are 3–4 × 2.5–3.5 μm ((overline{x }) = 3.5 ± 0.2 × 3 ± 0.2, n = 50), dark green, smooth, and ellipsoidal (Fig. 6m).On PDA, after 72 h, growth is 33–35 mm at 20 °C and 41–43 mm at 25 °C; and mycelium covers the plate after 6–7 days at 25 °C. Colonies show indistinct zonation. Mycelia are dense, opaque, and thick; hyphae are wide, sinuous and often form strands on the margin (Fig. 6c). Margin is thin and ill defined. Aerial hyphae are slight, coiled (Fig. 6e), forming a thin white to green downy, fluffy or floccose mat (Fig. 6k). Chlamydospores examined after 7 days are 6–9.5 × 5–8 μm ((overline{x }) = 7.5 ± 0.9 × 7 ± 0.9, n = 30), globose to oval when terminal, and smooth, and few are intercalary (Fig. 6n,o).On SNA, after 72 h, growth is 18–19 mm at 20 °C and 28–32 mm at 25 °C; and mycelium covers the plate after 6–7 days at 25 °C. Colonies show distinct zonation. Mycelia are thin and yellow to green; hyphae are wide and sinuous and show indistinct strands on the margin (Fig. 6d). Margin is thin and ill-defined. Aerial hyphae are slight and form a thin white downy, fluffy, or floccose mat appearing in distal parts of the colony. No diffusing pigment or distinct odor was noted. Conidiation is similar to CMD.Trichoderma harzianum Rifai, Mycol. Pap. 116: 38, 1969 (Fig. 7).Figure 7Cultures and asexual morph of Trichoderma harzianum. (a–d) Cultures after 7 days at 20 °C [(a) on CMD; (b) on MEA; (c) on PDA; and (d) on SNA]. (e) Conidiation tuft (CMD, 7 days). (f–j) Conidiophores and phialides (CMD, 5–7 days). (k) Conidia (CMD, 5 days). (l,m) Chlamydospores (PDA, 7 days). Scale bars: (e) = 2 mm; (f–m) = 10 μm.Full size imageDescription: Cultures and anamorph: optimal growth at 25 °C on all media. On CMD, after 72 h, growth is 34–38 mm at 20 °C and 46–53 mm at 25 °C; mycelium covers the plate after 5–6 days at 25 °C. Colonies show distinct zonation. Mycelia are loose and thin; hyphae are narrow, sinuous, and often form strands on the margin (Fig. 7a). Aerial hyphae are abundant and radiating and form thick green downy, fluffy, or floccose mats (Fig. 7e). No diffusing pigment, but fragrant odor noted. Conidiophores are pyramidal with opposing branches, with each branch terminating in a cruciate whorl of up to four or five phialides. Phialides are frequently solitary or in a whorl of three or four. Phialides are ampulliform to lageniform and often constricted below the tip to form a narrow neck of 4.5–8 × 2–3.5 μm ((overline{x }) = 6 ± 0.8 × 2.5 ± 0.3, n = 50) and 1–2.5 μm ((overline{x }) = 2 ± 0.3) wide at the base (Fig. 7f–j). Conidia are subglobose to ovoid, 3–4.5 × 2.5–3.3 μm ((overline{x }) = 3.5 ± 0.3 × 3 ± 0.2, n = 50), laurel-green to bright green, smooth, and ellipsoidal (Fig. 7k).On PDA, after 72 h, growth is 41–43 mm at 20 °C and 50–55 mm at 25 °C; and mycelium covers the plate after 5–6 days at 25 °C. Colonies show distinct zonation. Mycelia are dense, opaque, and thick; hyphae are wide and sinuous and often form strands on the margin (Fig. 7c). Margin is thick and ill defined. Aerial hyphae are abundant and radiating and form thick green downy, fluffy or floccose mats. Chlamydospores examined after 7 days are 5.5–9 × 5.5–9.0 μm ((overline{mathrm{x} }) = 7 ± 0.8 × 7 ± 0.8, n = 30), globose to oval when terminal and smooth, showing an almost unobserved intercalary (Fig. 7l,m).On SNA, after 72 h, growth is 33–35 mm at 20 °C and 38–40 mm at 25 °C; and mycelium covers the plate after 7–8 days at 25 °C. Colonies show distinct zonation. Mycelia are thin and green; hyphae are narrow and sinuous and show indistinct strands on the margin (Fig. 7d). Margin is thin and ill defined. Aerial hyphae are slight and form a thick downy, fluffy, or floccose mat appearing in the colony. No diffusing pigment or distinct fragrant odor was noted. Conidiation was similar to CMD.Trichoderma polysporum Rifai, Mycol. Pap. 116: 18, 1969 (Fig. 8).Figure 8Cultures and asexual morph of Trichoderma polysporum. (a–d) Cultures at 20 °C [(a) on CMD, 7 days; (b) on MEA, 15 days; (c) on PDA, 15 days; and (d) on SNA, 15 days]. (i) Conidiation tuft (PDA, 15 days). (e–h,j) Conidiophores and phialides (CMD, 5–7 days). (k) Chlamydospores (CMD, 7 days). (l) Conidia (PDA, 6 days). Scale bars: (i) = 2 mm; (e–h,j) = 10 μm.Full size imageDescription: Cultures and anamorph: optimal growth at 20 °C on all media, no growth at 35 °C. On CMD, after 72 h, growth is 14–16 mm at 20 °C and 9–12 mm at 25 °C; and mycelium covers the plate after 9–10 days at 20 °C. A colony is hyaline, thin and loose, with little mycelium on the agar surface, and it is indistinctly zonate but becomes zonate by conidiation in white tufts after 4–5 d and grass green to green after 6 days (Fig. 8a). Aerial hyphae are long and dense and forming little greenish aggregates that are granular to pulvinate. No pigment or odor. Conidiation noted after 4–5 days, and it is white to greenish, with sterile smooth to rough helical elongations in the distal zones from pustules. Conidiophores are hyaline and thick with side branches on several levels at the base of the elongations that are mostly paired and at right angles with phialides in whorls of 2–5. Phialides are 5–10.5 × 2.5–4 μm ((overline{x }) = 7 ± 1.9 × 3.5 ± 0.4, n = 50) and 2–4 μm ((overline{x }) = 3 ± 0.5) wide at the base, often short and wide and ampulliform (Fig. 8e–h,j). Conidia are 2.5–4 × 2–3 μm ((overline{x }) = 3.5 ± 0.4 × 2.5 ± 0.2, n = 50), hyaline, smooth, and ellipsoidal (Fig. 10l).On PDA, after 72 h, growth is 24–26 mm at 20 °C and 13–16 mm at 25 °C; and mycelium covers the plate after 8–9 days at 20 °C. A colony is densest, distinctly zonate, and grass green to spearmint green; mycelia are conspicuously dense; and surface hyphae form radial strands (Fig. 8c). Aerial hyphae are long and dense and form greenish aggregates that are granular to pulvinate (Fig. 8i). No diffusing pigment and odor. Chlamydospores examined after 7 days are 5.5–9 × 5–7.5 μm ((overline{x }) = 7 ± 0.9 × 6 ± 0.6, n = 30), globose to oval when terminal, and smooth, with an almost unobserved intercalary (Fig. 8k).On SNA, growth is approximately 7 mm/day at 20 °C and 5 mm/day at 25 °C; and mycelium covers the plate after 10 days at 20 °C. A colony is hyaline, thin, and loose, with little mycelium on the agar surface, not or indistinctly zonate, but becomes zonate by conidiation in white tufts after 4–5 days; and the margin is downy by long aerial hyphae, which degenerating/dissolving soon (Fig. 8d).Trichoderma pyramidale W. Jaklitsch & P. Chaverri, Mycologia 107: 581, 2015 (Fig. 9).Figure 9Cultures and asexual morph of Trichoderma pyramidale. (a–d) Cultures at 25 °C [(a) on CMD, 7 days; (b) on MEA, 4 days; (c) on PDA, 4 days; and (d) on SNA, 4 days]. (e) Conidiation tuft (PDA, 7 days). (f–j) Conidiophores and phialides (CMD, 5–7 days). (k) Conidia (CMD, 6 days). (l) Chlamydospores (PDA, 7 days). Scale bars: (e) = 2 mm; (f–l) = 10 μm.Full size imageDescription: Cultures and anamorph: optimal growth at 25 °C on all media, with little growth at 35 °C. On CMD, after 72 h, growth is 29–32 mm at 20 °C and 48–53 mm at 25 °C; and mycelium covers the plate after 5–6 days at 25 °C. Colonies show distinct zonation. Mycelium is loose and thin; hyphae are narrow, sinuous, and often form strands on the margin (Fig. 9a). Aerial hyphae are slight, forming a thin white to green downy, fluffy or floccose mat. Brown pigment is shown, but no distinct odor noted. Conidiophores are hyaline and thick with side branches on several levels at the base of the elongations that are mostly paired and at right angles with phialides in whorls of 3–5. Phialides are 5–9.5 × 2.5–3 μm ((overline{x }) = 7 ± 1.1 × 3 ± 0.3, n = 50) and 1–2.5 μm ((overline{x }) = 1.5 ± 0.3) wide at the base and often short, wide, and ampulliform (Fig. 9f–j). Conidia are 2.5–4 × 2.5–3.5 μm ((overline{x }) = 3.5 ± 0.3 × 3 ± 0.2, n = 50), green, smooth, and ellipsoidal (Fig. 9k).On PDA, after 72 h, growth is 41–43 mm at 20 °C and 50–55 mm at 25 °C; and mycelium covers the plate after 5–6 days at 25 °C. Colonies show indistinct zonation. Mycelia are dense, opaque, and thick; hyphae are wide, sinuous and often form strands on the margin (Fig. 9c). Margin is thin and ill defined. Aerial hyphae are slight and form a thin white to green downy, fluffy or floccose mat (Fig. 9e). Chlamydospores examined after 7 days are 5.5–10 × 5.5–10 μm ((overline{x }) = 7 ± 0.9 × 7 ± 0.9, n = 30), globose to oval when terminal or intercalary, and smooth (Fig. 9l).On SNA, after 72 h, growth is 33–35 mm at 20 °C and 38–40 mm at 25 °C; and mycelium covers the plate after 7–8 days at 25 °C. Colonies show distinct zonation. Mycelium is thin, yellow to green; hyphae are wide, sinuous, with indistinct strands on the margin (Fig. 9d). Margin is thin and ill defined. Aerial hyphae are slight and form a thin white downy, fluffy or floccose mat in distal parts of the colony. No diffusing pigment or distinct odor noted. Conidiation similar to CMD.Trichoderma rossicum Bissett et al., Canad. J. Bot. 81: 578, 2003 (Fig. 10).Figure 10Cultures and asexual morph of Trichoderma rossicum. (a–d) Cultures after 7 days at 25 °C [(a) on CMD; (b) on MEA; (c) on PDA; and (d) on SNA]. € Conidiation tuft (PDA, 7 days). (f–h,j,k) Conidiophores and phialides (CMD, 5–7 days). (i) Elongations (CMD, 6 days). (l,n) Conidia (CMD, 6 days). (m) Chlamydospores (PDA, 7 days). Scale bars: (e) = 2 mm; (f–n) = 10 μm.Full size imageDescription: Cultures and anamorph: optimal growth at 25 °C on all media. On CMD, growth of 10–11 mm/day at 20 °C and 15–17 mm/day at 25 °C; and mycelium covers the plate after 6–7 days at 20 °C. Colony is dense with a wavy margin, and the surface becomes distinctly zonate (Fig. 10a). Aerial hyphae are numerous, long, elongate, and villiform in the plate (Fig. 10i). No diffusing pigment or odor. Autolytic activity is variable, and coilings are scarce or inconspicuous. Conidiation noted after 3–4 days at 20 °C. Conidiation is effuse and in intense tufts that are hemispherical or irregular, and they show wide wheel grain banding that is gray green to deep green. Conidiophores radiate from the reticulum and are broad, straight, sinuous or helically twisted, show distally slightly pointed elongations, taper from the main axes to top branches, and present primary branches arranged in pairs or in whorls of 2–3, with secondary branches to solitary. Phialides are 4.5–14 × 2.5–4 μm ((overline{x }) = 7 ± 1.5 × 3.5 ± 0.3, n = 50) and 2–3.5 μm ((overline{x }) = 3 ± 0.4) wide at the base, ampulliform, and in whorls of 3–6 (Fig. 10f–h,j,k). Conidia are 3.5–5.5 × 2.5–4 μm ((overline{x }) = 4.5 ± 0.5 × 3 ± 0.2, n = 50), short cylindrical, and a gray color when single and pea green to yellow green in a group (Fig. 10l,n).On PDA, growth is 12–15 mm/day at 20 °C, 12–16 mm/day at 25 °C; and mycelium covers the plate after 4–5 days at 25 °C. Colony is denser with a wavy margin than that on CMD, and the surface is distinctly zonate (Fig. 10c). Aerial hyphae are numerous, long, and villiform to pulvinate in the plate. No diffusing pigment and odor (Fig. 10e). Autolytic activity is variable, coilings are scarce or inconspicuous. Chlamydospores examined after 7 days are 6.5–9.5 × 6–9 μm ((overline{x }) = 7 ± 1.0 × 7 ± 0.9, n = 30), terminal and intercalary, globose or ellipsoidal, and smooth (Fig. 10m).On SNA, growth is 8–13 mm/day at 20 °C and 8–12 mm/day at 25 °C; and mycelium covers the plate after 6–7 day at 25 °C. Colony is hyaline, thin and dense; and mycelium degenerate rapidly (Fig. 10d). Aerial hyphae are inconspicuous, autolytic activity is scant, and coilings are distinct. Conidiation noted after approximately 4 days and starts in white fluffy tufts spreading from the center to form concentric zones, and they compact to pustules with a white to greenish color. More

  • in

    High-resolution tracking of hyrax social interactions highlights nighttime drivers of animal sociality

    Siegel, J. M. Do all animals sleep? Trends Neurosci. 31, 208–213 (2008).Article 
    CAS 

    Google Scholar 
    Lima, S. L., Rattenborg, N. C., Lesku, J. A. & Amlaner, C. J. Sleeping under the risk of predation. Anim. Behav. 70, 723–736 (2005).Article 

    Google Scholar 
    Tougeron, K. & Abram, P. K. An Ecological Perspective on Sleep Disruption. Am. Nat. 190, 55–66 (2017).Article 

    Google Scholar 
    Lesku, J. A., Aulsebrook, A. E., Kelly, M. L. & Tisdale, R. K. Evolution of Sleep and Adaptive Sleeplessness. Handbook of Behavioral Neuroscience vol. 30 (Elsevier B.V., 2019).Smeltzer, E. A. et al. Social sleepers: The effects of social status on sleep in terrestrial mammals. Horm. Behav. 143, 105181 (2022).Article 
    CAS 

    Google Scholar 
    Chu, H. S., Oh, J. & Lee, K. The Relationship between Living Arrangements and Sleep Quality in Older Adults: Gender Differences. Int. J. Environ. Res. Public Health 19, 3893 (2022).Karamihalev, S., Flachskamm, C., Eren, N., Kimura, M. & Chen, A. Social context and dominance status contribute to sleep patterns and quality in groups of freely-moving mice. Sci. Rep. 9, 1–9 (2019).Article 
    CAS 

    Google Scholar 
    Capellini, I., Barton, R. A., McNamara, P., Preston, B. T. & Nunn, C. L. Phylogenetic analysis of the ecology and evolution of mammalian sleep. Evolution 62, 1764–1776 (2008).Article 

    Google Scholar 
    Ogawa, H., Idani, G., Moore, J., Pintea, L. & Hernandez-Aguilar, A. Sleeping Parties and nest distribution of chimpanzees in the Savanna woodland, Ugalla, Tanzania. Int. J. Primatol. 28, 1397–1412 (2007).Article 

    Google Scholar 
    Mulavwa, M. N. et al. Nest groups of wild bonobos at Wamba: Selection of vegetation and tree species and relationships between nest group size and party size. Am. J. Primatol. 72, 575–586 (2010).
    Google Scholar 
    Matsuda, I., Tuuga, A. & Higashi, S. Effects of water level on sleeping-site selection and inter-group association in proboscis monkeys: Why do they sleep alone inland on flooded days? Ecol. Res. 25, 475–482 (2010).Article 

    Google Scholar 
    Schreier, A. L. & Swedell, L. Ecology and sociality in a multilevel society: Ecological determinants of spatial cohesion in hamadryas baboons. Am. J. Phys. Anthropol. 148, 580–588 (2012).Article 

    Google Scholar 
    Kummer, H. & Kurt, F. Social units of free-living population of hamadryas baboons. Folia Primotol. 1, 4–19 (1963).Ogawa, H. & Takahashi, H. Triadic positions of Tibetan macaques huddling at a sleeping site. Int. J. Primatol. 24, 591–606 (2002).Article 

    Google Scholar 
    Snyder-Mackler, N., Beehner, J. C. & Bergman, T. J. Defining Higher Levels in the Multilevel Societies of Geladas (Theropithecus gelada). Int. J. Primatol. 33, 1054–1068 (2012).Article 

    Google Scholar 
    Mochida, K. & Nishikawa, M. Sleep duration is affected by social relationships among sleeping partners in wild Japanese macaques. Behav. Process. 103, 102–104 (2014).Article 

    Google Scholar 
    Di Bitetti, M. S., Vidal, E. M. L., Baldovino, M. C. & Benesovsky, V. Sleeping site preferences in tufted capuchin monkeys (Cebus apella nigritus). Am. J. Primatol. 50, 257 (2000).Article 

    Google Scholar 
    Takahashi, H. Huddling relationships in night sleeping groups among wild Japanese macaques in Kinkazan Island during winter. Primates 38, 57–68 (1997).Article 

    Google Scholar 
    Park, O., Barden, A. & Williams, E. Studies in Nocturnal Ecology, IX. Further Analysis of Activity of Panama Rain Forest Animals. Ecology 21, 122 (1940).Article 

    Google Scholar 
    Gaston, K. J. Nighttime ecology: The “nocturnal problem” revisited. Am. Nat. 193, 481–502 (2019).Article 

    Google Scholar 
    Börger, L. et al. Biologging Special Feature. J. Anim. Ecol. 89, 6–15 (2020).Article 

    Google Scholar 
    Krause, J. et al. Reality mining of animal social systems. Trends Ecol. Evol. 28, 541–551 (2013).Article 

    Google Scholar 
    Zeus, V. M., Puechmaille, S. J. & Kerth, G. Conspecific and heterospecific social groups affect each other’s resource use: a study on roost sharing among bat colonies. Anim. Behav. 123, 329–338 (2017).Article 

    Google Scholar 
    Wey, T. W., Burger, J. R., Ebensperger, L. A. & Hayes, L. D. Reproductive correlates of social network variation in plurally breeding degus (Octodon degus). Anim. Behav. 85, 1407–1414 (2013).Article 

    Google Scholar 
    Hirsch, B. T., Prange, S., Hauver, S. A. & Gehrt, S. D. Genetic relatedness does not predict racoon social network structure. Anim. Behav. 85, 463–470 (2013).Article 

    Google Scholar 
    Robitaille, A. L., Webber, Q. M. R., Turner, J. W. & Wal Eric, V. The problem and promise of scale in multilayer animal social networks. Curr. Zool. 67, 113–123 (2021).Article 

    Google Scholar 
    Smith, J. E. et al. Split between two worlds: Automated sensing reveals links between above- and belowground social networks in a free-living mammal. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170249 (2018).Silk, M. J. et al. Seasonal variation in daily patterns of social contacts in the European badger Meles meles. Ecol. Evol. 7, 9006–9015 (2017).Article 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).Article 
    CAS 

    Google Scholar 
    Barry, R. E. & Mundy, P. J. Seasonal variation in the degree of heterospecific association of two syntopic hyraxes (Heterohyrax brucei and Procavia capensis) exhibiting synchronous parturition. Behav. Ecol. Sociobiol. 52, 177–181 (2002).Article 

    Google Scholar 
    Barocas, A., Ilany, A., Koren, L., Kam, M. & Geffen, E. Variance in centrality within rock hyrax social networks predicts adult longevity. PLoS ONE 6, 1–8 (2011).Article 

    Google Scholar 
    Ilany, A., Barocas, A., Koren, L., Kam, M. & Geffen, E. Structural balance in the social networks of a wild mammal. Anim. Behav. 85, 1397–1405 (2013).Article 

    Google Scholar 
    Gravett, N., Bhagwandin, A., Lyamin, O. I., Siegel, M. & Manger, P. R. Sleep in the Rock Hyrax, Procavia capensis. Brain Behav. Evol. 79, 155–169 (2012).Coe, M. J. Notes on the habits of the mount kenya hyrax (Procavia johnstoni mackinderi thomas). Proc. Zool. Soc. Lond. 138, 638–644 (1961).
    Google Scholar 
    Viblanc, V. A., Pasquaretta, C., Sueur, C., Boonstra, R. & Dobson, F. S. Aggression in Columbian ground squirrels: relationships with age, kinship, energy allocation, and fitness. Behav. Ecol. 27, arw098 (2016).Article 

    Google Scholar 
    Wolf, J. B. W., Mawdsley, D., Trillmich, F. & James, R. Social structure in a colonial mammal: unravelling hidden structural layers and their foundations by network analysis. Anim. Behav. 74, 1293–1302 (2007).Article 

    Google Scholar 
    Podgórski, T., Lusseau, D., Scandura, M., Sönnichsen, L. & Jȩdrzejewska, B. Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS ONE 9, 1–11 (2014).Article 

    Google Scholar 
    Druce, D. J. et al. Scale-dependent foraging costs: Habitat use by rock hyraxes (Procavia capensis) determined using giving-up densities. Oikos 115, 513–525 (2006).Article 

    Google Scholar 
    Goll, Y. et al. Sex-associated and context-dependent leadership in the rock hyrax. iScience 104063 https://doi.org/10.1016/j.isci.2022.104063 (2022).Kelley, J. L., Morrell, L. J., Inskip, C., Krause, J. & Croft, D. P. Predation risk shapes social networks in fission-fusion populations. PLoS One 6, e24280 (2011).Article 
    CAS 

    Google Scholar 
    Brown, K. J. Seasonal variation in the thermal biology of the rock hyrax (Procavia capensis) (Document N° 10413/10124) [Master Dissertation, University of KwaZulu-Natal]. ResearchSpace Digital Library for UKZN scholarly research. http://hdl.handle.net/10413/10124.Bar Ziv, E. et al. Individual, social, and sexual niche traits affect copulation success in a polygynandrous mating system. Behav. Ecol. Sociobiol. 70, 901–912 (2016).Article 

    Google Scholar 
    McDonald, G. C., Spurgin, L. G., Fairfield, E. A., Richardson, D. S. & Pizzari, T. Differential female sociality is linked with the fine-scale structure of sexual interactions in replicate groups of red junglefowl, Gallus gallus. Proc. R. Soc. B Biol. Sci. 286, 20191734 (2019).Stanley, C. R., Liddiard Williams, H. & Preziosi, R. F. Female clustering in cockroach aggregations—A case of social niche construction? Ethology 124, 706–718 (2018).Article 

    Google Scholar 
    Pilastro, A., Benetton, S. & Bisazza, A. Female aggregation and male competition reduce costs of sexual harassment in the mosquitofish Gambusia holbrooki. Anim. Behav. 65, 1161–1167 (2003).Article 

    Google Scholar 
    Schoepf, I. & Schradin, C. Better off alone! Reproductive competition and ecological constraints determine sociality in the African striped mouse (Rhabdomys pumilio). J. Anim. Ecol. 81, 649–656 (2012).Article 

    Google Scholar 
    Brent, L. J. N., MacLarnon, A., Platt, M. L. & Semple, S. Seasonal changes in the structure of rhesus macaque social networks. Behav. Ecol. Sociobiol. 67, 349–359 (2013).Article 

    Google Scholar 
    Sundaresan, S. R., Fischhoff, I. R., Dushoff, J. & Rubenstein, D. I. Network metrics reveal differences in social organization between two fission-fusion species, Grevy’s zebra and onager. Oecologia 151, 140–149 (2007).Article 

    Google Scholar 
    Hasenjager, M. J. & Dugatkin, L. A. Fear of predation shapes social network structure and the acquisition of foraging information in guppy shoals. Proc. R. Soc. B Biol. Sci. 284, 20172020 (2017).Heathcote, R. J. P., Darden, S. K., Franks, D. W., Ramnarine, I. W. & Croft, D. P. Fear of predation drives stable and differentiated social relationships in guppies. Sci. Rep. 7, 1–10 (2017).Article 

    Google Scholar 
    Dunbar, R. I. M. Social structure as a strategy to mitigate the costs of group living: a comparison of gelada and guereza monkeys. Anim. Behav. 136, 53–64 (2018).Article 
    CAS 

    Google Scholar 
    Sutcliffe, A., Dunbar, R., Binder, J. & Arrow, H. Relationships and the social brain: Integrating psychological and evolutionary perspectives. Br. J. Psychol. 103, 149–168 (2012).Article 

    Google Scholar 
    Brown, M. R. Comparing the Fission-Fusion Dynamics of Spider Monkeys (Ateles geoffroyi) From Day to Night. https://doi.org/10.11575/PRISM/25371 (2014).Fanson, K. V., Fanson, B. G. & Brown, J. S. Using path analysis to explore vigilance behavior in the rock hyrax (Procavia capensis). J. Mammal. 92, 78–85 (2011).Article 

    Google Scholar 
    Santema, P. & Clutton-Brock, T. Meerkat helpers increase sentinel behaviour and bipedal vigilance in the presence of pups. Anim. Behav. 85, 655–661 (2013).Article 

    Google Scholar 
    Wright, J., Berg, E., De Kort, S. R., Khazin, V. & Maklakov, A. A. Cooperative sentinel behaviour in the Arabian babbler. Anim. Behav. 62, 973–979 (2001).Article 

    Google Scholar 
    Moscovice, L. R., Sueur, C. & Aureli, F. How socio-ecological factors influence the differentiation of social relationships: An integrated conceptual framework. Biol. Lett. 16, 20200384 (2020).Kotler, B. P., Brown, J. S. & Knight, M. H. Habitat and patch use by hyraxes: There’s no place like home? Ecol. Lett. 2, 82–88 (1999).Article 

    Google Scholar 
    Margolis, E. Dietary composition of the wolf Canis lupus in the Ein Gedi area according to analysis of their droppings (in Hebrew). In Proceedings of 45th Meeting of the Israel Zoological Society, Isr. J. Ecol. Evol. 55, 157–180 (2008).Firth, J. A. & Sheldon, B. C. Social carry-over effects underpin trans-seasonally linked structure in a wild bird population. Ecol. Lett. 19, 1324–1332 (2016).Article 

    Google Scholar 
    Olds, N. & Shoshani, J. Procavia capensis. Mammalian Species 171, 1–7 (2016).Fourie, L. J. & Perrin, M. R. Social behaviour and spatial relationships of the rock hyrax. South 17, 91–98 (1987).Montiglio, P.-O., Ferrari, C. & Réale, D. Social niche specialization under constraints: Personality, social interactions and environmental heterogeneity. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120343 (2013).Article 

    Google Scholar 
    Dunbar, R. I. M. Time: a hidden constraint on the behavioural ecology of baboons. Behav. Ecol. Sociobiol. 31, 35–49 (1992).Article 

    Google Scholar 
    Dunbar, R. I. M., Korstjens, A. H. & Lehmann, J. Time as an ecological constraint. Biol. Rev. 84, 413–429 (2009).Article 
    CAS 

    Google Scholar 
    Zahavi, A. Arabian babbler. In Cooperative Breeding in Birds (eds. Staceyp, B. & Koenigw, D.) 103-130 (Cambridge University Press, 1990).Smith, J. E. et al. Greetings promote cooperation and reinforce social bonds among spotted hyenas. Anim. Behav. 81, 401–415 (2011).Article 

    Google Scholar 
    Aureli, F. & Schaffner, C. M. Aggression and conflict management at fusion in spider monkeys. Biol. Lett. 3, 147–149 (2007).Article 

    Google Scholar 
    Deag, J. M. The diurnal patterns of behaviour of the wild Barbary macaque Macaca sylvanus. J. Zool. 206, 403–413 (1985).Article 

    Google Scholar 
    Canteloup, C., Cera, M. B., Barrett, B. J. & van de Waal, E. Processing of novel food reveals payoff and rank-biased social learning in a wild primate. Sci. Rep. 11, 1–13 (2021).Article 

    Google Scholar 
    Dragić, N., Keynan, O. & Ilany, A. Multilayer social networks reveal the social complexity of a cooperatively breeding bird. iScience 24, 103336 (2021).Kulahci, I. G., Ghazanfar, A. A. & Rubenstein, D. I. Knowledgeable Lemurs Become More Central in Social Networks. Curr. Biol. 28, 1306–1310.e2 (2018).Article 
    CAS 

    Google Scholar 
    Schino, G. Grooming and agonistic support: A meta-analysis of primate reciprocal altruism. Behav. Ecol. 18, 115–120 (2007).Article 

    Google Scholar 
    Kutsukake, N. & Clutton-Brock, T. H. Social functions of allogrooming in cooperatively breeding meerkats. Anim. Behav. 72, 1059–1068 (2006).Article 

    Google Scholar 
    Schweinfurth, M. K., Stieger, B. & Taborsky, M. Experimental evidence for reciprocity in allogrooming among wild-type Norway rats. Sci. Rep. 7, 1–8 (2017).Article 
    CAS 

    Google Scholar 
    Nandini, S., Keerthipriya, P. & Vidya, T. N. C. Group size differences may mask underlying similarities in social structure: A comparison of female elephant societies. Behav. Ecol. 29, 145–159 (2018).Article 

    Google Scholar 
    Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).Article 

    Google Scholar 
    Henkel, S., Heistermann, M. & Fischer, J. Infants as costly social tools in male Barbary macaque networks. Anim. Behav. 79, 1199–1204 (2010).Article 

    Google Scholar 
    Prehn, S. G. et al. Seasonal variation and stability across years in a social network of wild giraffe. Anim. Behav. 157, 95–104 (2019).Article 

    Google Scholar 
    Borgeaud, C., Sosa, S., Sueur, C. & Bshary, R. The influence of demographic variation on social network stability in wild vervet monkeys. Anim. Behav. 134, 155–165 (2017).Article 

    Google Scholar 
    Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B 278, 2761–2767 (2011).Article 

    Google Scholar 
    Silk, J. B. et al. The benefits of social capital: Close social bonds among female baboons enhance offspring survival. Proc. R. Soc. B Biol. Sci. 276, 3099–3104 (2009).Article 

    Google Scholar 
    Riehl, C. & Strong, M. J. Stable social relationships between unrelated females increase individual fitness in a cooperative bird. Proc. R. Soc. B Biol. Sci. 285, 20180130 (2018).Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. 31, 1–11 (2020).Article 

    Google Scholar 
    Sick, C. et al. Evidence for varying social strategies across the day in chacma baboons. Biol. Lett. 10, 3–6 (2014).Article 

    Google Scholar 
    Barrett, L., Peter Henzi, S. & Lusseau, D. Taking sociality seriously: The structure of multi-dimensional social networks as a source of information for individuals. Philos. Trans. R. Soc. B Biol. Sci. 367, 2108–2118 (2012).Article 

    Google Scholar 
    Henzi, S. P., Lusseau, D., Weingrill, T., Van Schaik, C. P. & Barrett, L. Cyclicity in the structure of female baboon social networks. Behav. Ecol. Sociobiol. 63, 1015–1021 (2009).Article 

    Google Scholar 
    Ripperger, S. P. & Carter, G. G. Social foraging in vampire bats is predicted by long-term cooperative relationships. PLoS Biol. 19, 1–17 (2021).Article 

    Google Scholar 
    Wittemyer, G., Douglas-Hamilton, I. & Getz, W. M. The socioecology of elephants: analysis of the processes creating multitiered social structures. Anim. Behav. 69, 1357–1371 (2005).Article 

    Google Scholar 
    Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: A contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).Article 

    Google Scholar 
    Gelardi, V., Fagot, J., Barrat, A. & Claidière, N. Detecting social (in)stability in primates from their temporal co-presence network. Anim. Behav. 157, 239–254 (2019).Article 

    Google Scholar 
    Hobson, E. A., Ferdinand, V., Kolchinsky, A. & Garland, J. Rethinking animal social complexity measures with the help of complex systems concepts. Anim. Behav. 155, 287–296 (2019).Article 

    Google Scholar 
    Kappeler, P. M. A framework for studying social complexity. Behav. Ecol. Sociobiol. 73, 13 (2019).Ballerini, M. et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl Acad. Sci. USA 105, 1232–1237 (2008).Article 
    CAS 

    Google Scholar 
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12, 188–193 (1997).Article 
    CAS 

    Google Scholar 
    Wickramasinghe, A. & Muthukumarana, S. Assessing the impact of the density and sparsity of the network on community detection using a Gaussian mixture random partition graph generator. Int. J. Inf. Technol. 14, 607–618 (2022).
    Google Scholar 
    Motalebi, N., Stevens, N. T. & Steiner, S. H. Hurdle Blockmodels for Sparse Network Modeling. Am. Stat. 75, 383–393 (2021).Article 

    Google Scholar 
    Gokcekus, S., Cole, E. F., Sheldon, B. C. & Firth, J. A. Exploring the causes and consequences of cooperative behaviour in wild animal populations using a social network approach. Biol. Rev. 96, 2355–2372 (2021).Article 

    Google Scholar 
    Koren, L., Mokady, O. & Geffen, E. Social status and cortisol levels in singing rock hyraxes. Horm. Behav. 54, 212–216 (2008).Article 
    CAS 

    Google Scholar 
    Boyland, N. K., James, R., Mlynski, D. T., Madden, J. R. & Croft, D. P. Spatial proximity loggers for recording animal social networks: Consequences of inter-logger variation in performance. Behav. Ecol. Sociobiol. 67, 1877–1890 (2013).Article 

    Google Scholar 
    Drewe, J. A. et al. Performance of proximity loggers in recording Intra- and Inter-species interactions: A laboratory and field-based validation study. PLoS ONE 7, e39068 (2012).Hoppitt, W. & Farine, D. Association Indices For Quantifying Social Relationships: How To Deal With Missing Observations Of Individuals Or Groups. Anim. Behav. 136, 227–238 (2018).Article 

    Google Scholar 
    Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).Bejder, L., Fletcher, D. & Bräger, S. A method for testing association patterns of social animals. Anim. Behav. 56, 719–725 (1998).Article 
    CAS 

    Google Scholar 
    Kalinka, A. T. & Tomancak, P. linkcomm: An R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27, 2011–2012 (2011).Article 
    CAS 

    Google Scholar 
    R Core Team, R. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).Wild, F. lsa: Latent Semantic Analysis. R package version 0.73.2. https://CRAN.R-project.org/package=lsa (2020).Han, J., Kamber, M. & Pei, J. Getting to Know Your Data. An R Companion Third Ed. Fundam. Polit. Sci. Res. https://doi.org/10.1016/B978-0-12-381479-1.00002-2 (2021).Benjamini, Y. Controlling the false discovery rate – A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
    Google Scholar 
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Syst. 1695, 1–9 (2006).Dai, H., Leeder, J. S. & Cui, Y. A modified generalized fisher method for combining probabilities from dependent tests. Front. Genet. 20, 2–7 (2014).
    Google Scholar  More

  • in

    Anthrax hotspot mapping in Kenya support establishing a sustainable two-phase elimination program targeting less than 6% of the country landmass

    Data sourcesThis study builds on two datasets; 666 livestock anthrax outbreaks collected over 60 years (1957–2017) by the Kenya Directorate of Veterinary Services (KDVS), and 13 reported anthrax outbreaks we investigated between 2017 and 201811,13. These datasets were combined with data from targeted active anthrax surveillance we conducted in 2019–2020 (see below) to define anthrax suitable areas in Kenya, including hotspots, and subsequently assessed effectiveness of livestock vaccination as a control strategy.Targeted active surveillance-collected anthrax data, 2019–2020Active anthrax surveillance was conducted for 12 months between 2019 and 2020 in randomly selected areas to ensure representation of all AEZs of the country. AEZs are land units defined based on the patterns of soil, landforms and climatic characteristics. Kenya has seven AEZs that include agro-alpine, high potential, medium potential, semi-arid, arid, very-arid and desert. In 2013, Kenya devolved governance into 47 semi-autonomous counties that are subdivided into 290 subcounties which are in turn divided into 1450 administrative wards, the smallest administrative units in the country. Using a geographic map that condensed Kenya into five AEZs; agro-alpine, high potential, medium potential, semi-arid, and arid/very arid zones, we randomly selected 4 administrative sub-counties from each AEZ (N = 20). To increase geographic spread of the study and enhance detection of anthrax outbreaks, we surveilled the larger administrative county (consisting of 20 to 45 administrative wards) where the randomly selected sub-counties were located. As shown in Fig. S1, we ultimately carried out the active anthrax surveillance in 18 counties, containing 523 administrative wards, the latter being used for measuring spatial association (see below).We conducted the surveillance between April 2019 and June 2020, through 523 animal health practitioners (AHPs), one in each ward, after intensive training to identify anthrax using a standard case definition, and to collect and electronically transmit the data weekly using telephone-based short messaging system (SMS) to a central server hosted by KDVS. Regarding case definition, any livestock death classified as anthrax through clinical or laboratory diagnosis was considered an anthrax event. Using standard guidelines issued by the KDVS, a clinical diagnosis was made by the AHPs across the country as an acute cattle, sheep or goat disease characterized by sudden death with or without bleeding from natural orifices, accompanied by absence of rigor mortis. Further, if the carcass was accidentally opened, failure of blood to clot and/or the presence of splenomegaly were included. In pigs, symptoms included swelling of the face and neck with oedema. A laboratory confirmed anthrax was diagnosed using Gram and methylene blue stains followed by identification of the capsule and typical rod-shaped B. anthracis in clinical specimens that the AHPs submitted to the central or regional veterinary investigation laboratories in Kenya. One case of anthrax in either species was considered an outbreak.During the surveillance, the programmed server sent prompting texts directly to the AHPs’ cell phones every Friday of each week for the 52 weeks. The AHPs interacted with the platform by responding to prompting questions sent via SMS to their telephones. Data were securely stored in an online encrypted platform which was subsequently downloaded into Ms Excel for analysis. This surveillance detected 119 anthrax outbreaks, whose partial data were used to model effects of climate change on future anthrax distribution in Kenya14. Here, we integrated these active surveillance data with other datasets to conduct detailed ENM and kernel-smoothed density mapping with a goal of refining suitable anthrax areas including crystalizing hotspots in the country.Anthrax outbreak incidence per livestock population by countyWe knew the total number of livestock per county and wards by species for the active surveillance period. The counties represented the level of disease management including vaccine distribution while the wards within counties represented the modeling unit for targeting control. Therefore, we estimated the outbreak incidence as the total number of outbreaks per livestock species per 100,000 head of that species.Ecological niche modeling and validationWe used boosted regression tree (BRT) algorithm as previously published13. In those studies, we estimated the geographic distribution of anthrax in southern Kenya using 69 spatially unique outbreak points (thinned from the 86 outbreaks in the records) and 18 environmental variables resampled to 250 m resolution. In this study, the final experiments were run with a learning rate (lr) = 0.001, bagging fraction (br) = 5, and maximum tree = 2500. We then mapped anthrax suitability as the mean output of the 100 experiments and the lower 2.5% and upper 97.5% mapped as confidence intervals. We determined variable contribution and derived partial dependence as previously described13. As BRTs are a random walk and each experiment randomly resamples training and test data, it was necessary to repeat those outputs along with the map predictions.Here, our goal was to evaluate the BRT models built with records data from 2011 to 2017 data and use the predict function to calculate model accuracy metrics using the 2017–2020 outbreaks as presence points and the sub-counties reporting zero outbreaks during the 2019–2020 active surveillance period as absence points. The model of southern Kenya was projected onto all of Kenya using climate variables clipped to the whole of Kenya. We tested the BRT models in two ways; first, evaluating 2011–2017 data models with holdout data using a random resampling and multi-modeling approach. Here, we report the area under curve (AUC) for each of the original training/testing split into the 69 historical points and the 2017–2020 data serving as independent data, the latter representing true model validation. Second, to determine the total percentage of surveillance data predicted and map areas of anthrax suitability to compare with kernel density estimates (see below), we produced a dichotomized map using the Youden index cutoff17 following Otieno et al.14.Outbreak concentrations from kernel density estimation (KDE)To describe the spatial concentration of reported outbreaks, we calculated descriptive spatial statistics, including the spatial mean, standard distance, and standard deviational ellipse of outbreak locations from the prospective surveillance dataset following Blackburn et al.18 These spatial statistics help to differentiate the geographic focus (spatial mean) and dispersion of outbreak reports from year to year and across the sampling period. We then conducted kernel density estimation (KDE) to visualize the concentration of anthrax outbreaks per square kilometer per year and across the study period18. We used the spatstat package for all KDE analyses using the quadratic kernel function19:$$fleft( x right) = frac{1}{{nh^{2} }} mathop sum limits_{i = 1}^{n} Kleft( {frac{{x – X_{i} }}{h}} right)$$where h is the bandwidth, x-Xi is the distance to each anthrax outbreak i. Finally, K is the quadratic kernel function, defined as:$$Kleft( x right) = frac{3}{4}left( {1 – x^{2} } right), left| x right| le 1$$$$Kleft( x right) = 0,x > 1$$This function was employed to estimate anthrax outbreak concentration across space using each outbreak weighted as one. We calculated the bandwidth (kernel) using hopt that uses the sample size (number of outbreaks) and the standard distance to estimate bandwidth. Finally, we estimated bandwidth for each year and then averaged them to apply the same fixed bandwidth for each year under study in Q-GIS version 3.1.8. The resulting outputs were map surfaces representing the spatial concentrations of outbreaks across the country per 1 km2 for each study year and all study years combined. For this study, we used the cutoff criteria of Nelson and Boots19 to identify outbreak hotspots as areas with density values in the upper 25%, 10%, and 5% of outbreak concentrations. The analyses identified these areas by year (2017–2020) and for all surveillance years combined.Local spatial clustering at the ward levelAnthrax outbreak incidence per livestock speciesThe ENM and KDE-derived maps provide a first estimate of potential risk and outbreak concentration, respectively. We were also interested in estimating anthrax outbreak intensity relative to livestock populations at a local level. For the active surveillance period, we knew the total number of outbreaks per ward (the smallest administrative spatial unit) by livestock species. For this two-year period, we estimated the ward-level outbreak incidence as the total number of outbreaks per livestock species per 10,000 head of that species. To estimate livestock population per ward, we extracted the values in the raster file of the areal weighted gridded livestock of the world data using the zonal statistic routine in Q-GIS version 3.1.8, into the polygon consisting of all pixels per ward as the total population19,20. We calculated outbreak incidence as the number of outbreaks per ward cattle population per 10,000 cattle for each administrative ward. We limited this analysis to those 18 counties participating in the active surveillance study (Fig. S1), as we could appropriately assume any ward with no reports was a ‘true zero’ for the estimation. Given that most reported outbreaks were in domestic cattle (see results below), we here report those results involving cattle alone. Given the overall high number of wards and the high number of wards without outbreaks, we performed the empirical Bayes smoothing and spatial Bayes smoothing routines in GeoDa version 1.12.1.161 to reduce the variance in anthrax incidence estimates20,21. To evaluate smoothing routine performance, we box plotted rates per ward and selected the method with the greatest reduction in outliers21. Smoothed rates were mapped as choropleth map in Q-GIS version 3.1.8 using the four equal area bins.Spatial cluster analysisWe used Local Moran’s I16 to test for spatial cluster of livestock anthrax in cattle using the smoothed outbreak incidence estimates. The Local Moran’s I statistic tests whether individual wards are part of spatial cluster, like incidence estimates surrounded by similar estimate (high-high or low-low) or spatial outliers where wards with significantly high or low estimates are surrounded by dissimilar values (high-low or low–high). The local Moran’s I is written as16:$$I_{i} = Z_{i} sum W_{ij} Z_{j}$$where Ii is the statistic for a ward i, Zi is the difference between the incidence at i and the mean anthrax incidence rate for all of wards in the study, Zj is the difference between anthrax risk at ward j and the mean for all wards. Wij is the weights matrix. In this study, the 1st order queen contiguity was employed. Here, Wij equals 1/n if a ward shared a boundary or vertex and 0 if not. For this study, Local Moran’s I was performed on the wards using 999 permutations and p = 0.05 using GeoDa version 1.12.1.161.Assessing effectiveness of cattle vaccination in burden hotspotsAs a first estimate of how we might scale up livestock anthrax vaccination efforts in Kenya, we slightly adjusted a simple published anthrax outbreak simulation model in a cattle population. For this study we applied an early mathematical approach of Funiss and Hahn22 to simulate anthrax at the ward level. While other recent models are available23,24, these are difficult to parameterize or require time series data we could not derive with the surveillance approach in this study. Like the more recent models, Funiss and Hahn22 assumed anthrax transmission was driven by cattle accessing spore-contaminated environments. Here the proportion of infected cattle each day depended on the population of susceptible animals in the population and probability of getting infected. This probability depends on environmental contamination (“a”), and a fraction of anthrax carcasses in the environment on a day (“f,”). Each day, the newly infected cattle are transferred to an incubation period vector, “d,” waiting to die following a probability “p”. In this model, all infected animals, “n,” die following the incubation periods given by the vector, “p”, in which pi is the probability of a cow dying i days after the infection. Following death, the cattle are transferred to a carcass state, providing a direct infection source to the susceptible cattle via environmental contamination. Environmental contamination “a,” is therefore defined as the number of spores ingested by an animal in a day. This environmental contamination depends on spores from carcasses and an assumed spore decay rate γ22.The complete set of difference equations with a daily time step is given by:$${text{S}}_{(t + 1)} = {text{S}}_{(t)} – {text{ S}}_{(t)} *left( {{1} – {text{e}}^{{ – left( {{text{a}}_{t} + gamma {text{f}}_{{{text{t}} + 1}} } right)}} } right)$$$${text{I}}_{(t + 1)} = {text{I}}_{(t)} + {text{ S}}_{(t)} *left( {{1} – {text{e}}^{{ – left( {{text{a}}_{{text{t}}} + gamma {text{f}}_{{{text{t}} + {1}}} } right)}} } right)$$where the expression (left( {{1} – {text{e}}^{{ – left( {{text{a}}_{t} + gamma {text{f}}_{{{text{t}} + 1}} } right)}} } right)) denotes the probability of an animal becoming infected and at + γft+1 is the mean number of spores ingested by a cow in a day. The equation for environmental contamination, a, is given by:$${text{a}}_{t + 1} {-}{text{a}}_{{text{t}}} = alpha {text{a}}_{{text{t}}} + beta {text{c}}_{{{text{t}} + {1}}}$$The newly infected animals die after a certain number of days. The distribution of incubation periods is given by the vector, p. On each day, the new cases are placed in a due-to-die vector, d, and when they die, they are subsequently moved down one step to fresh carcasses, ft. The fresh carcasses provide a direct source of infection to the susceptible cattle via the ‘fresh carcass term’, γ. These carcasses decay or are scavenged or disposed by man. The equation expressing the disseminating carcasses, c, is:$${text{C}}_{t + 1} – {text{c}}_{t} = {text{f}}_{t + 1} – delta {text{c}}_{t}$$The model parameters variables are provided in Table 1 and are similar to those used by Funiss and Hahn22 to generate a standard run. We ran the model for one year and extrapolated to cattle population in the identified hotspot wards.Table 1 Model parameters and variables.Full size table More

  • in

    Obscured fishing activity

    Welch and colleagues analysed 3.7 billion AIS messages recorded between 2017 and 2019 in the global Fishing Watch AIS dataset, identifying more than 55,000 suspected intentional disabling events in waters more than 50 nautical miles from shore, amounting to 6% ( >4.9 million hours) of obscured vessel activity. Hotspots of disabling activity were located near several regions of IUU concern and transshipment hotspots, including in the exclusive economic zones of Argentina and West African nations and in the Northwest Pacific. Using individual boosted regression tree models for the four dominant gear types (squid jiggers, trawlers, tuna purse seines and drifting longlines) and a full model that included all suspected disabling events (that is, the four gear types listed above and additional gears such as gillnet and troll), Welch and colleagues found that loitering by transshipment vessels (a proxy for potential transshipment events) was the most important driver in the full model and squid jigger model and more than half of the disabling events by squid jiggers were close enough to undertake transshipment to refrigerated cargo vessels. More

  • in

    Edaphic controls of soil organic carbon in tropical agricultural landscapes

    Study area and soil collectionTwenty NRCS map units were selected across Hawaii Commercial & Sugar Company (HC&S) in central Maui that represented seven soil orders, 10 NRCS soil series, and approximately 77% of the total plantation area (Fig. 1). Soil heterogeneity across the landscape allowed for the comparison of a continuum of soil and soil properties that have experienced the same C4 grass inputs and agricultural treatment under sugarcane production for over 100 years. Conventional sugarcane production involved 2-year growth followed by harvest burn, collection of remaining stalks by mechanical ripper, deep tillage to 40 cm, no crop rotations, and little to no residue return. The sampled soils, collected from September-August 2015, thus represent a baseline of SOC after input-intensive tropical agriculture and long-term soil disturbance. Elemental analyses from this work show consistent agricultural disturbances led to degraded SOC content ranging from 0.23 to 2.91% SOC of soil mass with an average of only 1.16% SOC across all locations and depths.Figure 1Hawaiian Commercial and Sugar in central Maui with main Hawaiian Islands inset (left). Soil series identified by NRCS across HC&S fields (right) with black dots indicating 20 locations where soils were sampled to test landscape level differences in topical soil kinetics and associated soil properties under conventional sugarcane. Maps from Ref.19 created using ESRI ArcGIS with soil series data from: Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, Web Soil Survey, Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed [07/30/2016]19.Full size imageThe homogenized land use history allowed focused investigation of soil property effects on SOC storage across heterogenous soils (Table 1). Though soil inputs (e.g. water, nutrients, root inputs, residue removal) and disturbance regimes (e.g. burn, rip, till, compaction, no crop rotation) were consistent across the 20 field locations, average annual surface temperatures varied from 22.9 to 25.1 °C with a mean of 24.4 °C, average annual relative humidity varied from 70.4 to 79.2% with a mean of 73.4%, and average annual rainfall varied from 306 to 1493 mm with a mean of 575 mm. Gradients of rainfall, relative humidity, and elevation across the site generally increase in an east/north-east direction towards the prevailing winds and up the western slope of Haleakalā. In contrast, surface temperatures increase in the opposite direction towards Kihei and the southern tip of the West Maui Mountains.Table 1 NRCS soil classification and environmental conditions at 20 field sites.Full size tableaSoil descriptions26.bInterpolated estimates from Ref.25.Soil sampling and analysisPit locations were identified with a handheld GPS and were sampled using NRCS Rapid Carbon Assessment methods27. A total of 75 horizons were identified from the 20 selected map units to a depth of 1 m28,29. The central depth of each horizon was sampled using volumetric bulk density cores up to 50 cm. After 50 cm, a hand auger was used to check for any further horizon changes. The bulk density of horizons past 50 cm were estimated using collected soil mass and known auger size. Collected soils were air dried, processed through a 2 mm sieve, and analyzed for total C and nitrogen percent, SOC percent, soil texture, iron (Fe) and aluminum (Al) minerals, pH, cation and anion exchange capacity, extractable cations, wet and dry size classes, aggregate stability, and soil water potential at -15 kPa. Total C and nitrogen were measured by elemental analysis (Costech, ECS 4010, Valencia, CA), with SOC content determined by elemental analysis after hydrochloric acid digestion to remove carbonates. Soil texture was measured using sedimentary separation, while a 10:1 soil slurry in water was used to test soil pH. Soil pressure plates were used to measure soil water potential at -15 kPa.Fe and Al oxides were quantified in mineral phases using selective dissolutions of collected soils, including: (1) a 20:1 sodium citrate to sodium dithionite extraction, shaken 16 h, to quantify total free minerals30, (2) 0.25 M hydroxylamine hydrochloride and hydrochloric acid extraction, shaken 16 h, to quantify amorphous minerals31, and (3) 0.1 M sodium pyrophosphate (pH 10), shaken 16 h and centrifuged at 20,000g, to quantify organo-bound metals30. Extracted Fe, Al, and Si from al extractions were measured by inductively coupled plasma analysis (PerkinElmer, Optima ICP-OES, Norwalk, CT). Exploratory ratios of Fe/Al, Fe/Si, and Al/Si for the citrate/dithionite (c), hydroxylamine (h), and pyrophosphate (p) extractions were calculated. Crystalline Fe, operationally-defined as the difference between the citrate dithionite and hydroxylamine extraction, and Al + ½ Fe32 were calculated for each extraction.Plant-available phosphorus was extracted by the Olsen method using 0.5 M sodium bicarbonate adjusted to pH 8.5 and measured by continuous flow colorimetry (Hach, Lachat Quickchem 8500, Loveland, CO). Exchangeable cations (i.e. calcium, magnesium, potassium, and sodium), effective cation exchange capacity, and anion exchange capacity were measured by compulsive exchange using barium chloride and magnesium sulfate33. Cations were quantified by continuous flow colorimetry and flame-spectroscopy (Hach, Lachat Quickchem 8500, Loveland, CO). Field soils were air dried and initially passed through a 2 mm sieve before size classes of macroaggregate (2 mm – 250 µm) and microaggregate ( More

  • in

    Logged tropical forests have amplified and diverse ecosystem energetics

    Human-modified forests, such as selectively logged forests, are often characterized as degraded ecosystems because of their altered structure and low biomass. The concept of ecosystem degradation can be a double-edged sword. It rightly draws attention to the conservation value of old-growth systems and the importance of ecosystem restoration. However, it can also suggest that human-modified ecosystems are of low ecological value and therefore, in some cases, suitable for conversion to agriculture (such as oil palm plantations) and other land uses3,4,5.Selectively logged and other forms of structurally altered forests are becoming the prevailing vegetation cover in much of the tropical forest biome2. Such disturbance frequently leads to a decline in old-growth specialist species1, and also in non-specialist species in some contexts6,7,8. However, species-focused biodiversity metrics are only one measure of ecosystem vitality and functionality, and rarely consider the collective role that suites of species play in maintaining ecological functions9.An alternative approach is to focus on the energetics of key taxonomic groups, and the number and relative dominance of species contributing to each energetic pathway. Energetic approaches to examining ecosystem structure and function have a long history in ecosystem ecology10. Virtually all ecosystems are powered by a cascade of captured sunlight through an array of autotroph tissues and into hierarchical assemblages of herbivores, carnivores and detritivores. Energetic approaches shine light on the relative significance of energy flows among key taxa and provide insight into the processes that shape biodiversity and ecosystem function. The common currency of energy enables diverse guilds and taxa to be compared in a unified and physically meaningful manner: dominant energetic pathways can be identified, and the resilience of each pathway to the loss of individual species can be assessed. Quantitative links can then be made between animal communities and the plant-based ecosystem productivity on which they depend. The magnitude of energetic pathways in particular animal groups can often be indicators of key associated ecosystem processes, such as nutrient cycling, seed dispersal and pollination, or trophic factors such as intensity of predation pressure or availability of resource supply, all unified under the common metric of energy flux11,12.Energetics approaches have rarely been applied in biodiverse tropical ecosystems because of the range of observations they require11,12,13. Such analyses rely on: population density estimates for a very large number of species; understanding of the diet and feeding behaviour of the species; and reliable estimation of net primary productivity (NPP). Here we take advantage of uniquely rich datasets to apply an energetics lens to examine and quantify aspects of the ecological function and vitality of habitats in Sabah, Malaysia, that comprise old-growth forests, logged forest and oil palm plantation (Fig. 1 and Extended Data Fig. 1). Our approach is to calculate the short-term equilibrium production or consumption rates of food energy by specific species, guilds or taxonomic groups. We focus on three taxonomic groups (plants, birds and mammals) that are frequently used indicators of biodiversity and are relatively well understood ecologically.Fig. 1: Maps of the study sites in Sabah, Borneo.a–d, Maps showing locations of NPP plots and biodiversity surveys in old-growth forest, logged forest and oil palm plantations in the Stability of Altered Forest Ecosystems Project landscape (a), Maliau Basin (b), Danum Valley (c) and Sepilok (d). The inset in a shows the location of the four sites in Sabah. The shade of green indicates old-growth (dark green), twice-logged (intermediate green) or heavily logged (light green) forests. The camera and trap grid includes cameras and small mammal traps. White areas indicate oil palm plantations.Full size imageWe are interested in the fraction of primary productivity consumed by birds and mammals, and how it varies along the disturbance gradient, and how and why various food energetic pathways in mammals and birds, and the diversity of species contributing to those pathways, vary along the disturbance gradient. To estimate the density of 104 mammal and 144 bird species in each of the three habitat types, we aggregated data from 882 camera sampling locations (a total of 42,877 camera trap nights), 508 bird point count locations, 1,488 small terrestrial mammal trap locations (34,058 live-trap nights) and 336 bat trap locations (Fig. 1 and Extended Data Fig. 1). We then calculated daily energetic expenditure for each species based on their body mass, assigned each species to a dietary group and calculated total food consumption in energy units. For primary productivity, we relied on 34 plot-years (summation of plots multiplied by the number of years each plot is monitored) of measurements of the key components of NPP (canopy litterfall, woody growth, fine root production) using the protocols of the Global Ecosystem Monitoring Network14,15,16 across old-growth (n = 4), logged (n = 5) and oil palm (n = 1) plots. This dataset encompasses more than 14,000 measurements of litterfall, 20,000 tree diameter measurements and 2,700 fine root samples.Overall bird species diversity is maintained across the disturbance gradient and peaks in the logged forest; for mammals, there is also a slight increase in the logged forest, followed by rapid decline in the oil palm (Fig. 2b,c). Strikingly, both bird and mammal biomass increases substantially (144% and 231%, respectively) in the logged forest compared to the old-growth forest, with mammals contributing about 75% of total (bird plus mammal) biomass in both habitat types (Fig. 2b,c).Fig. 2: Variation of ecosystem energetics along the disturbance gradient from old-growth forest through logged forest to oil palm.a, Total NPP along the gradient (mean of intensive 1-ha plots; n = 4 for old growth (OG), n = 5 for logged and n = 1 for oil palm (OP); error bars are 95% confidence intervals derived from propagated uncertainty in the individually measured NPP components), with individual plot data points overlaid. b,c, Total body mass (bars, left axis) and number of species counted (blue dots and line, right axis) of birds (b) and mammals (c). d,e, Total direct energetic food intake by birds (d) and mammals (e). f,g, Percentage of NPP directly consumed by birds (f) and mammals (g). In b–e, body mass and energetics were estimated for individual bird and mammal species, with the bars showing the sum. Error bars denote 95% confidence intervals derived from 10,000 Monte Carlo simulation estimates incorporating uncertainty in body mass, population density, the daily energy expenditure equation, assimilation efficiency of the different food types, composition of the diet of each species and NPP. In f,g, the grey bars indicate direct consumption of NPP, white bars denote the percentage of NPP indirectly supporting bird and mammal food intake when the mean trophic level of consumed invertebrates is assumed to be 2.5, with the error bars denoting assumed mean trophic levels of 2.4 and 2.6. Note the log scale of the y axis in f,g. Numbers for d,e provided in Supplementary Data Tables 1, 2.Full size imageThe total flow of energy through consumption is amplified across all energetic pathways by a factor of 2.5 (2.2–3.0; all ranges reported are 95% confidence intervals) in logged forest relative to old-growth forest. In all three habitat types, total energy intake by birds is much greater than by mammals (Fig. 2d,e and Extended Data Table 1). Birds account for 67%, 68% and 90% of the total direct consumption by birds and mammals combined in old-growth forests, logged forests and oil palm, respectively. Although mammal biomass is higher than bird biomass in the old-growth and logged forests, the metabolism per unit mass is much higher in birds because of their small body size; hence, in terms of the energetics and consumption rates, the bird community dominates. The total energy intake by birds alone increases by a factor of 2.6 (2.1–3.2) in the logged forest relative to old-growth forest. This is mainly driven by a 2.5-fold (1.7–2.8) increase in foliage-gleaning insectivory (the dominant energetic pathway), and most other feeding guilds also show an even larger increase (Figs. 2d and 3). However, total bird energy intake in the oil palm drops back to levels similar to those in the old-growth forest, with a collapse in multiple guilds. For mammals, there is a similar 2.4-fold (1.9–3.2) increase in total consumption when going from old-growth to logged forest, but this declines sharply in oil palm plantation. Most notable is the 5.7-fold (3.2–10.2) increase in the importance of terrestrial mammal herbivores in the logged relative to old-growth forests. All four individual old-growth forest sites show consistently lower bird and mammal energetics than the logged forests (Extended Data Fig. 5).Fig. 3: Magnitude and species diversity of energetic pathways in old-growth forest, logged forest and oil palm.The size of the circles indicates the magnitude of energy flow, and the colour indicates birds or mammals. S, number of species; E, ESWI, an index of species redundancy and, therefore, resilience (high values indicate high redundancy; see main text). For clarity, guilds with small energetic flows are not shown, but are listed in Supplementary Data 4. Images created by J. Bentley.Full size imageThe fraction of NPP flowing through the bird and mammal communities increases by a factor of 2.1 (1.5–3.0) in logged forest relative to old-growth forest. There is very little increase in NPP in logged relative to old-growth forests (Fig. 2a) because increased NPP in patches of relatively intact logged forest is offset by very low productivity in more structurally degraded areas such as former logging platforms14,15. In oil palm plantations, oil palm fruits account for a large proportion of NPP, although a large fraction of these is harvested and removed from the ecosystem17. As a proportion of NPP, 1.62% (1.35–2.13%) is directly consumed by birds and mammals in the old-growth forest; this rises to 3.36% (2.57–5.07%) in the logged forest but drops to 0.89% (0.57–1.44%) in oil palm (Fig. 2f,g and Extended Data Table 2).If all invertebrates consumed are herbivores or detritivores (that is, at a trophic level of 2.0), and trophic efficiency is 10% (ref. 10), the total amount of NPP supporting the combined bird and mammal food intake would be 9%, 16% and 5% for old-growth forest, logged forest and oil palm, respectively. However, if the mean trophic level of consumed invertebrates is 2.5 (that is, a mix of herbivores and predators), the corresponding proportions would be 27%, 51% and 17% (Fig. 2f,g). As insectivory is the dominant feeding mode for the avian community, these numbers are dominated by bird diets. For birds in the old-growth forests, 0.35% of NPP supports direct herbivory and frugivory, but around 22% of NPP (assumed invertebrate trophic level 2.5) is indirectly required to support insectivory. The equivalent numbers for birds in logged forest are 0.83% and 46%. Hence, birds account for a much larger indirect consumption of NPP. Bird diet studies in old-growth and logged forest in the region suggest that consumed invertebrates have a mean trophic level of 2.5 (ref. 18; K. Sam, personal communication), indicating that the higher-end estimates of indirect NPP consumption (that is, around 50% in logged forests) are plausible.It is interesting to compare such high fractions of NPP to direct estimates of invertebrate herbivory. Scans of tree leaf litter from these forests suggest that just 7.0% of tree canopy leaf area (1–3% of total NPP) is removed by tree leaf herbivory14,16, but such estimates do not include other pathways available to invertebrates, including herbivory of the understorey, aboveground and belowground sap-sucking, leaf-mining, fruit- and wood-feeding, and canopy, litter and ground-layer detritivory. An increase in invertebrate biomass and herbivory in logged forest compared to old-growth forest has previously been reported in fogging studies in this landscape19. Such high levels of consumption of NPP by invertebrates could have implications on ecosystem vegetation biomass production, suggesting, first, that invertebrate herbivory has a substantial influence on recovery from logging and, second, that insectivorous bird densities may exert substantial indirect controls on ecosystem recovery.The distributions of energy flows among feeding guilds are remarkably stable among habitat types (Fig. 3), indicating that the amplified energy flows in the logged forests do not distort the overall trophic structure of vertebrate communities. Overall bird diet energetics are dominated by insectivory, which accounts for a strikingly invariant 66%, 63% and 66% of bird energetic consumption in old-growth forest, logged forest and oil palm, respectively. Foliage-gleaning dominates as a mode of invertebrate consumption in all three habitat types, with frugivory being the second most energetically important feeding mode (26%, 27% and 19%, respectively). Mammal diet is more evenly distributed across feeding guilds, but frugivory (31%, 30%, 30%) and folivory (24%, 38%, 26%) dominate. Small mammal insectivores are probably under-sampled (see Methods) so the contribution of mammal insectivory may be slightly greater than that estimated here. The apparent constancy of relative magnitude of feeding pathways across the intact and disturbed ecosystems is noteworthy and not sensitive to plausible shifts in feeding behaviour between habitat types (see Supplementary Discussion). There is no evidence of a substantial shift in dominant feeding guild: the principal feeding pathways present in the old-growth forest are maintained in the logged forest.When examining change at species level in the logged forests, the largest absolute increases in bird food consumption were in arboreal insectivores and omnivores (Fig. 4a and Extended Data Fig. 2a). In particular, this change was characterized by large increases in the abundance of bulbul species (Pycnonotus spp.). No bird species showed a significant or substantial reduction in overall energy consumption. In the oil palm plantation, total food consumption by birds was less than in logged forests, but similar to that in old-growth forests. However, this was driven by very high abundance of a handful of species, notably a single arboreal omnivore (yellow-vented bulbul Pycnonotus goiavier) and three arboreal insectivores (Mixornis bornensis, Rhipidura javanica, Copsychus saularis), whereas energy flows through most other bird species were greatly reduced (Fig. 4b and Extended Data Fig. 2b).Fig. 4: Changes in energy consumption by species in logged forest and oil palm relative to old-growth forest.a,b, Changes in energy consumption by species in logged forest relative to old-growth forest (a) and in oil palm relative to old-growth forest (b). The 20 species experiencing the largest increase (red) and decrease (blue) in both habitat types are shown. Bird species are shown in a lighter tone and mammal species are shown in a darker tone. The error bars denote 95% confidence intervals, derived from 10,000 Monte Carlo simulation estimates incorporating uncertainty in body mass, population density, the daily energy expenditure equation, assimilation efficiency of the different food types and composition of the diet of each species.Full size imageFor mammals, the increase in consumption in logged forests is dominated by consumption by large terrestrial herbivores increasing by a factor of 5.7 (3.2–10.2), particularly sambar deer (Rusa unicolor) and Asian elephant (Elephas maximus; Fig. 4a and Extended Data Figs. 2b and 3), along with that by small omnivores, predominantly rodents (native spiny rats, non-native black rat; Fig. 4). A few rainforest species show a strong decline (for example, greater mouse-deer Tragulus napu and brown spiny rat Maxomys rajah). In the oil palm, most mammal species collapse (Fig. 4b) and the limited consumption is dominated by a few disturbance-tolerant habitat generalists (for example, red muntjac Muntiacus muntjak, black rat Rattus rattus, civets), albeit these species are at lower densities than observed in old-growth forest (Extended Data Fig. 2).With very few exceptions, the amplified energy flows in logged forest seem to retain the same level of resilience as in old-growth forest. The diversity and dominance of species within any pathway can be a measure of the resilience of that pathway to loss of species. We assessed energetic dominance within individual pathways by defining an energetic Shannon–Wiener index (ESWI) to examine distribution of energy flow across species; low ESWI indicates a pathway with high dependence on a few species and hence potential vulnerability (Fig. 3). The overall ESWI across guilds does not differ between the old-growth and logged forest (t2,34 = −0.363, P = 0.930), but does decline substantially from old-growth forest to oil palm (t2,34 = −3.826, P = 0.0015), and from logged forest to oil palm (t2,34 = −3.639, P = 0.0025; linear mixed-effects models, with habitat type as fixed effect and guild as random effect; for model coefficients see Supplementary Table 3).Hence, for birds, the diversity of species contributing to dominant energetic pathways is maintained in the transition from old-growth to logged forests but declines substantially in oil palm. Mammals generally show lower diversity and ESWI than birds, but six out of ten feeding guilds maintain or increase ESWI in logged forest relative to the old-growth forests but collapse in oil palm (Fig. 3). Terrestrial herbivory is the largest mammal pathway in the logged forest but is dependent on only four species and is probably the most vulnerable of the larger pathways: a few large mammals (especially sambar deer) play a dominant terrestrial herbivory role in the logged forest. In parallel, bearded pigs (Sus barbatus), the only wild suid in Borneo, form an important and functionally unique component of the terrestrial omnivory pathway. These larger animals are particularly sensitive to anthropogenic pressures such as hunting, or associated pathogenic pressures as evidenced by the recent precipitous decline of the bearded pig in Sabah due to an outbreak of Asian swine fever (after our data were collected)20.Vertebrate populations across the tropics are particularly sensitive to hunting pressure21. Our study site has little hunting, but as a sensitivity analysis we explored the energetic consequences of 50% reduction in population density of those species potentially affected by targeted and/or indiscriminate hunting (Extended Data Fig. 4). Targeted hunted species include commercially valuable birds, and gun-hunted mammals (bearded pig, ungulates, banteng and mammals with medicinal value). Indiscriminately hunted species include birds and mammals likely to be trapped with nets and snares. Hunting in the logged forests lowers both bird and mammal energy flows but still leaves them at levels higher than in faunally intact old-growth forests. Such hunting brings bird energetics levels close to (but still above) those of old-growth forests. For mammals, however, even intensively hunted logged forests seem to maintain higher energetic flows than the old-growth forests. Hence, only very heavy hunting is likely to ‘offset’ the amplified energetics in the logged forest.The amplified energetic pathways in our logged forest probably arise as a result of bottom-up trophic factors including increased resource supply, palatability and accessibility. The more open forest structure in logged forest results in more vegetation being near ground level22,23 and hence more accessible to large generalist mammal herbivores, which show the most striking increase of the mammal guilds. The increased prioritization by plants of competition for light and therefore rapid vegetation growth strategies in logged forests results in higher leaf nutrient content and reduced leaf chemical defences against herbivory24,25, along with higher fruiting and flowering rates19 and greater clumping in resource supply9. This increased resource availability and palatability probably supports high invertebrate and vertebrate herbivore densities25. The act of disturbance displaces the ecosystem from a conservative chemically defended state to a more dynamic state with amplified energy and nutrient flow, but not to an extent that causes heavy disruption in animal community composition. Top-down trophic factors might also play a role in amplifying the energy flows in intermediate trophic levels, through mechanisms such as increased protection of ground-dwelling or nesting mammals and birds from aerial predators in the dense vegetation ground layer. This might partially explain the increased abundance of rodents, but there is little evidence of trophic release at this site because of the persisting high density of mammal carnivores26. Overall, the larger number of bottom-up mechanisms and surge in invertebrate consumption suggest that increased resource supply and palatability largely explains the amplification of consumption pathways in the logged forest. An alternative possibility is that the amplified vertebrate energetics do not indicate amplified overall animal energetics but rather a large diversion of energy from unmeasured invertebrate predation pathways (for example, parasitoids); this seems unlikely but warrants further exploration.Oil palm plantations show a large decline in the proportion of NPP consumed by mammals and birds compared to logged forests12. Mammal populations collapse because they are more vulnerable and avoid humans, and there is no suite of mammal generalists that can step in27,28. Birds show a more modest decline, to levels similar to those observed in old-growth forests, as there is a broad suite of generalist species that are able to adapt to and exploit the habitat types across the disturbance gradient, and because their small size and mobility render them less sensitive to human activity29. There is a consistent decline in the oil palm in ESWI for birds and especially for mammals, indicating a substantial increase in ecosystem vulnerability in many pathways.In conclusion, our analysis demonstrates the tremendously dynamic and ecologically vibrant nature of the studied logged forests, even heavily and repeatedly logged forests such as those found across Borneo. It is likely that the patterns, mechanisms and basic ecological energetics we describe are general to most tropical forests; amplification of multiple ecosystem processes after logging has also been reported for logged forests in Kenya9, but similar detailed analyses are needed for a range of tropical forests to elucidate the importance of biogeographic, climatic or other factors. We stress that our findings do not diminish the importance of protecting structurally intact old-growth forests, but rather question the meaning of degradation by shining a new light on the ecological value of logged and other structurally ‘degraded’ forests, reinforcing their significance to the conservation agenda30. We have shown that a wide diversity of species not only persist but thrive in the logged forest environment. Moreover, such ecological vibrancy probably enhances the prospects for ecosystem structural recovery. In terms of faunal intactness, our study landscape is close to a best-case scenario because hunting pressures were low. If logged forests can be protected from heavy defaunation, our analysis demonstrates that they can be vibrant ecosystems, providing many key ecosystem functions at levels much higher than in old-growth forests. Conservation of logged forest landscapes has an essential role to play in the in the protection of global biodiversity and biosphere function. More

  • in

    An energetic look at the life in logged forests

    Putz, F. E. et al. Conserv. Lett. 5, 296–303 (2012).Article 

    Google Scholar 
    Blaser, J., Sarre, A., Poore, D. & Johnson, S. Status of Tropical Forest Management 2011. ITTO Tech. Ser. No. 38 (International Tropical Timber Organization, 2011); available at https://go.nature.com/3usq2an
    Google Scholar 
    Malhi, Y. et al. Nature https://doi.org/10.1038/s41586-022-05523-1 (2022).Article 

    Google Scholar 
    Zwerts, J. A. et al. Conserv. Sci. Pract. 3, e568 (2021).Article 

    Google Scholar 
    Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).Article 
    PubMed 

    Google Scholar 
    Putz, F. E., Blate, G. M., Redford, K. H., Fimbel, R. & Robinson, J. Conserv. Biol. 15, 7–20 (2001).Article 

    Google Scholar  More

  • in

    Adaptations by the coral Acropora tenuis confer resilience to future thermal stress

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 
    CAS 

    Google Scholar 
    Frolicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Article 
    CAS 

    Google Scholar 
    Riegl, B. & Purkis, S. Coral population dynamics across consecutive mass mortality events. Glob. Chang Biol. 21, 3995–4005 (2015).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373−+ (2017).Article 

    Google Scholar 
    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 
    van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508–511 (2013).Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).Article 
    CAS 

    Google Scholar 
    Frieler, K. et al. Limiting global warming to 2 degrees C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).Article 

    Google Scholar 
    Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, https://doi.org/10.1371/journal.pone.0033353 (2012).Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30, 429–440 (2011).Article 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change 2, 116–120 (2012).Article 

    Google Scholar 
    Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, https://doi.org/10.1126/sciadv.1701413 (2017).Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    Edmunds, P. J., Gates, R. D. & Gleason, D. F. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989 (2001).Article 

    Google Scholar 
    Lager, C. V. A., Hagedorn, M., Rodgers, K. S. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. Peerj 8, https://doi.org/10.7717/peerj.9415 (2020).Ross, C., Ritson-Williams, R., Olsen, K. & Paul, V. J. Short-term and latent post-settlement effects associated with elevated temperature and oxidative stress on larvae from the coral Porites astreoides. Coral Reefs 32, 71–79 (2013).Article 

    Google Scholar 
    Putnam, H. M. & Gates, R. D. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J. Exp. Biol. 218, 2365–2372 (2015).Article 

    Google Scholar 
    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).Article 

    Google Scholar 
    Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876 (2019).Article 

    Google Scholar 
    Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19, 231–239 (2001).Article 

    Google Scholar 
    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516 (2016).Article 

    Google Scholar 
    Nozawa, Y. & Harrison, P. L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis. Mar. Biol. 152, 1181–1185 (2007).Article 

    Google Scholar 
    Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    Edmunds, P. J. Juvenile coral population dynamics track rising seawater temperature on a Caribbean reef. Mar. Ecol. Prog. Ser. 269, 111–119 (2004).Article 

    Google Scholar 
    Davis, K. & Marshall, D. J. Offspring size in a resident species affects community assembly. J. Anim. Ecol. 83, 322–331 (2014).Article 

    Google Scholar 
    Chua, C. M., Leggat, W., Moya, A. & Baird, A. H. Temperature affects the early life history stages of corals more than near future ocean acidification. Mar. Ecol. Prog. Ser. 475, 85–92 (2013).Article 

    Google Scholar 
    Schnitzler, C. E., Hollingsworth, L. L., Krupp, D. A. & Weis, V. M. Elevated temperature impairs onset of symbiosis and reduces survivorship in larvae of the Hawaiian coral, Fungia scutaria. Mar. Biol. 159, 633–642 (2012).Article 

    Google Scholar 
    Ward, S., Harrison, P. & Hoegh-Guldberg, O. in: Proceedings of the Ninth International Coral Reef Symposium, Bali, 23–27 October 2000. 1123–1128 (2000).Foster, T. & Gilmour, J. Egg size and fecundity of biannually spawning corals at Scott Reef. Sci Rep-Uk 10, https://doi.org/10.1038/s41598-020-68289-4 (2020).Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763 (2007).Article 

    Google Scholar 
    Randall, C. J. & Szmant, A. M. Elevated temperature affects development, survivorship, and settlement of the Elkhorn Coral, Acropora palmata (Lamarck 1816). Biol. Bull. 217, 269–282 (2009).Article 

    Google Scholar 
    Anlauf, H., D’Croz, L. & O’Dea, A. A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J. Exp. Mar. Biol. Ecol. 397, 13–20 (2011).Article 

    Google Scholar 
    Foster, T., Gilmour, J. P., Chua, C. M., Falter, J. L. & McCulloch, M. T. Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera. Coral Reefs 34, 1217–1226 (2015).Article 

    Google Scholar 
    Randall, C. J. & Szmant, A. M. Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28, 537–545 (2009).Article 

    Google Scholar 
    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).Article 

    Google Scholar 
    Doropoulos, C., Ward, S., Roff, G., Gonzalez-Rivero, M. & Mumby, P. J. Linking Demographic Processes of Juvenile Corals to Benthic Recovery Trajectories in Two Common Reef Habitats. PLoS ONE 10, https://doi.org/10.1371/journal.pone.0128535 (2015).Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30–32 (2012).Article 

    Google Scholar 
    Yuyama, I., Nakamura, T., Higuchi, T. & Hidaka, M. Different stress tolerances of juveniles of the Coral Acropora tenuis associated with clades C1 and D symbiodinium. Zool. Stud. 55, https://doi.org/10.6620/Zs.2016.55-19 (2016).Mumby, P. J. Can Caribbean coral populations be modelled at metapopulation scales? Mar. Ecol. Prog. Ser. 180, 275–288 (1999).Article 

    Google Scholar 
    Raymundo, L. J. & Maypa, A. P. Getting bigger faster: mediation of size-specific mortality via fusion in jevenile coral transplants. Ecol. Appl. 14, 281–295 (2004).Article 

    Google Scholar 
    Heyward, A. J. & Negri, A. P. Plasticity of larval pre-competency in response to temperature: observations on multiple broadcast spawning coral species. Coral Reefs 29, 631–636 (2010).Article 

    Google Scholar 
    Figueiredo, J., Baird, A. H., Harii, S. & Connolly, S. R. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Change 4, 498–502 (2014).Article 

    Google Scholar 
    Ward, S. & Harrison, P. Changes in gametogenesis and fecundity of acroporid corals that were exposed to elevated nitrogen and phosphorus during the ENCORE experiment. J. Exp. Mar. Biol. Ecol. 246, 179–221 (2000).Article 
    CAS 

    Google Scholar 
    Jones, A. M. & Berkelmans, R. Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium type-D. J. Mar. Biol. 2011, 185890 (2011).Harriott, V. Reproductive ecology of four scleratinian species at Lizard Island, Great Barrier Reef. Coral Reefs 2, 9–18 (1983).Article 

    Google Scholar 
    Hall, V. R. & Hughes, T. P. Reproductive strategies of modular organisms: Comparative studies of reef-building corals. Ecology 77, 950–963 (1996).Article 

    Google Scholar 
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Naturalist 108, 499–506 (1974).Article 

    Google Scholar 
    Hoegh-Guldberg, O. & Smith, G. J. Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar. Ecol. Prog. Ser. 57, 173–186 (1989).Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in ymbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).Article 
    CAS 

    Google Scholar 
    Jones, R. J., Hoegh-Guldberg, O., Larkum, A. W. D. & Schreiber, U. Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ. 21, 1219–1230 (1998).Article 
    CAS 

    Google Scholar 
    Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc. Natl Acad. Sci. USA 96, 8007–8012 (1999).Article 
    CAS 

    Google Scholar 
    McRae, C. J., Huang, W. B., Fan, T. Y. & Côté, I. M. Effects of thermal conditioning on the performance of Pocillopora acuta adult coral colonies and their offspring. Coral Reefs 40, 1491–1503 (2021).Article 

    Google Scholar 
    Howells, E. J. et al. Species-specific trends in the reproductive output of corals across environmental gradients and bleaching histories. Mar. Pollut. Bull. 105, 532–539 (2016).Article 
    CAS 

    Google Scholar 
    Galanto, N., Sartor, C., Moscato, V., Lizama, M. & Lemer, S. Effects of elevated temperature on reproduction and larval settlement in Leptastrea purpurea. Coral Reefs 41, 293–302 (2022).Article 

    Google Scholar 
    Hazraty-Kari, S., Masaya, M., Kawachi, M. & Harii, S. The early acquisition of symbiotic algae benefits larval survival and juvenile growth in the coral Acropora tenuis. J. Exp. Zool. A Ecol. Integr. Physiol. https://doi.org/10.1002/jez.2589 (2022).Moran, A. L. & Manahan, D. T. Energy metabolism during larval development of green and white abalone, Haliotis fulgens and H. sorenseni. Biol. Bull. 204, 270–277 (2003).Article 

    Google Scholar 
    Sewell, M. A. Utilization of lipids during early development of the sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 304, 133–142 (2005).Article 
    CAS 

    Google Scholar 
    Alexander, G., Hancock, J., Huffmyer, A. & Matsuda, S. Larval thermal conditioning does not improve post-settlement thermal tolerance in the dominant reef-building coral, Montipora capitata. Coral Reefs 41, 333–342 (2022).Rivest, E. B., Chen, C. S., Fan, T. Y., Li, H. H. & Hofmann, G. E. Lipid consumption in coral larvae differs among sites: a consideration of environmental history in a global ocean change scenario. Proc. Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.2825 (2017).Graham, E. M., Baird, A. H., Connolly, S. R., Sewell, M. A. & Willis, B. L. Uncoupling temperature-dependent mortality from lipid depletion for scleractinian coral larvae. Coral Reefs 36, 97–104 (2017).Article 

    Google Scholar 
    Graham, E. M., Baird, A. H., Connolly, S. R., Sewell, M. A. & Willis, B. L. Rapid declines in metabolism explain extended coral larval longevity. Coral Reefs 32, 539–549 (2013).Article 

    Google Scholar 
    Reid, E. C. et al. Internal waves influence the thermal and nutrient environment on a shallow coral reef. Limnol. Oceanogr. 64, 1949–1965 (2019).Article 

    Google Scholar 
    Maynard, J. A., Anthony, K. R. N., Marshall, P. A. & Masiri, I. Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155, 173–182 (2008).Article 

    Google Scholar 
    Siebeck, U. E., Marshall, N. J., Kluter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).Article 

    Google Scholar 
    Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O. & Osborn, J. A comparative study of methods for surface area and three-dimensional shape measurement of coral skeletons. Limnol. Oceanogr.-Meth 8, 241–253 (2010).Article 

    Google Scholar 
    Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).Article 
    CAS 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 

    Google Scholar 
    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria 2021). More