More stories

  • in

    Bioenergetic control of soil carbon dynamics across depth

    Further details about radiocarbon and thermal analysis, isotopic partitioning procedures and quantification of their uncertainty, and statistical analyses can be found in Supplementary Methods.Study soils, experimental design and soil samplingWe selected three soil types: eutric cambisol, chromic vertisol and silandic andosol70. The three soil profiles studied were found in long-term semi-natural grasslands located relatively close to each other ( More

  • in

    Assessing the drivers of gut microbiome composition in wild redfronted lemurs via longitudinal metacommunity analysis

    Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 148, 1258–1270 (2012).Article 

    Google Scholar 
    Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).Article 

    Google Scholar 
    Parfrey, L. W., Walters, W. A. & Knight, R. Microbial eukaryotes in the human microbiome: Ecology, evolution, and future directions. Front. Microbiol. 2, 1–6 (2011).Article 

    Google Scholar 
    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).Article 

    Google Scholar 
    Björk, J. R., Dasari, M., Grieneisen, L. & Archie, E. A. Primate microbiomes over time: Longitudinal answers to standing questions in microbiome research. Am. J. Primatol. 81, 1–23 (2019).Article 

    Google Scholar 
    Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).Article 
    ADS 

    Google Scholar 
    Miller, E. T., Svanbäck, R. & Bohannan, B. J. M. Microbiomes as metacommunities: Understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).Article 

    Google Scholar 
    McKenney, E. A., Koelle, K., Dunn, R. R. & Yoder, A. D. The ecosystem services of animal microbiomes. Mol. Ecol. 27, 2164–2172 (2018).Article 

    Google Scholar 
    Koskella, B., Hall, L. J. & Metcalf, C. J. E. The microbiome beyond the horizon of ecological and evolutionary theory. Nat. Ecol. Evol. 1, 1606–1615 (2017).Article 

    Google Scholar 
    Sarkar, A. et al. Microbial transmission in animal social networks and the social microbiome. Nat. Ecol. Evol. 4, 1020–1035 (2020).Article 

    Google Scholar 
    Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).Article 
    ADS 

    Google Scholar 
    Degnan, P. H. et al. Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. Proc. Natl. Acad. Sci. 109, 13034–13039 (2012).Article 
    ADS 

    Google Scholar 
    Bennett, G. et al. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am. J. Primatol. 78, 883–892 (2016).Article 

    Google Scholar 
    Amato, K. R. et al. Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. Microb. Ecol. 74, 250–258 (2017).Article 

    Google Scholar 
    Raulo, A. et al. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. J. Anim. Ecol. 87, 388–399 (2017).Article 

    Google Scholar 
    Springer, A. et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecol. Evol. 7, 5732–5745 (2017).Article 

    Google Scholar 
    Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. Elife 2015, 1–18 (2015).
    Google Scholar 
    Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).Article 
    ADS 

    Google Scholar 
    Perofsky, A. C., Lewis, R. J., Abondano, L. A., Di Fiore, A. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc. R. Soc. B Biol. Sci. 284, 20172274 (2017).Article 

    Google Scholar 
    Raulo, A. et al. Social networks strongly predict the gut microbiota of wild mice. ISME J. 15, 2601–2613 (2021).Article 

    Google Scholar 
    Arrieta, M. C., Stiemsma, L. T., Amenyogbe, N., Brown, E. & Finlay, B. The intestinal microbiome in early life: Health and disease. Front. Immunol. 5, 1–18 (2014).Article 

    Google Scholar 
    Ren, T., Grieneisen, L. E., Alberts, S. C., Archie, E. A. & Wu, M. Development, diet and dynamism: Longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ. Microbiol. 18, 1312–1325 (2016).Article 

    Google Scholar 
    Jagsi, R. et al. Seasonal cycling in the gut microbiome of the Hadza Hunter-Gatherers of Tanzania. Science 357, 802–806 (2017).Article 

    Google Scholar 
    Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).Article 
    ADS 

    Google Scholar 
    Murillo, T., Schneider, D., Fichtel, C. & Daniel, R. Dietary shifts and social interactions drive temporal fluctuations of the gut microbiome from wild redfronted lemurs. ISME Commun. 2, 3 (2022).Article 

    Google Scholar 
    Laforest-Lapointe, I. & Arrieta, M.-C. Microbial eukaryotes: A missing link in gut microbiome studies. mSystems 3, e00201-17 (2018).Article 

    Google Scholar 
    Mann, A. E. et al. Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME J. 14, 609–622 (2020).Article 

    Google Scholar 
    Vlčková, K. et al. Relationships between gastrointestinal parasite infections and the fecal microbiome in free-ranging western lowland gorillas. Front. Microbiol. 9, 1–12 (2018).Article 

    Google Scholar 
    Renelies-Hamilton, J. et al. Exploring interactions between Blastocystis sp., Strongyloides spp. and the gut microbiomes of wild chimpanzees in Senegal. Infect. Genet. Evol. 74, 104010 (2019).Article 

    Google Scholar 
    Martínez-Mota, R., Righini, N., Mallott, E. K., Gillespie, T. R. & Amato, K. R. The relationship between pinworm (Trypanoxyuris) infection and gut bacteria in wild black howler monkeys (Alouatta pigra). Am. J. Primatol. 83, e23330 (2021).Article 

    Google Scholar 
    Pereira, M. E., Kaufman, R., Kappeler, P. M. & Overdoff, D. J. Female dominance does not characterize all of the lemuridae. Folia Primatol. 55, 96–103 (1990).Article 

    Google Scholar 
    Ostner, J. & Kappeler, P. M. Central males instead of multiple pairs in redfronted lemurs, Eulemur fulvus rufus (Primates, Lemuridae)?. Anim. Behav. 58, 1069–1078 (1999).Article 

    Google Scholar 
    Kappeler, P. M. & Fichtel, C. A 15-year perspective on the social organization and life history of sifaka in Kirindy Forest. In Long-Term Field Studies of Primates 101–121 (Springer, 2012).Chapter 

    Google Scholar 
    Koch, F., Ganzhorn, J. U., Rothman, J. M., Chapman, C. A. & Fichtel, C. Sex and seasonal differences in diet and nutrient intake in Verreaux’s sifakas (Propithecus verreauxi). Am. J. Primatol. 79, 1–10 (2017).Article 

    Google Scholar 
    Scholz, F. & Kappeler, P. M. Effects of seasonal water scarcity on the ranging behavior of Eulemur fulvus rufus. Int. J. Primatol. 25, 599–613 (2004).Article 

    Google Scholar 
    Amoroso, C. R., Kappeler, P. M., Fichtel, C. & Nunn, C. L. Water availability impacts habitat use by red-fronted lemurs (Eulemur rufifrons): An experimental and observational study. Int. J. Primatol. 41, 61–80 (2020).Article 

    Google Scholar 
    Clough, D., Heistermann, M. & Kappeler, P. M. Host intrinsic determinants and potential consequences of parasite infection in free-ranging red-fronted lemurs (Eulemur fulvus rufus). Am. J. Phys. Anthropol. 142, 441–452 (2010).Article 

    Google Scholar 
    Ostner, J., Kappeler, P. & Heistermann, M. Androgen and glucocorticoid levels reflect seasonally occurring social challenges in male redfronted lemurs (Eulemur fulvus rufus). Behav. Ecol. Sociobiol. 62, 627–638 (2008).Article 

    Google Scholar 
    Heistermann, M., Palme, R. & Ganswindt, A. Comparison of different enzymeimmunoassays for assessment of adrenocortical activity in primates based on fecal analysis. Am. J. Primatol. 68, 257–273 (2006).Article 

    Google Scholar 
    Kappeler, P. M. & Fichtel, C. Female reproductive competition in Eulemur rufifrons: Eviction and reproductive restraint in a plurally breeding Malagasy primate. Mol. Ecol. 21, 685–698 (2012).Article 

    Google Scholar 
    Ostner, J., Kappeler, P. M. & Heistermann, M. Seasonal variation and social correlates of androgen excretion in male redfronted lemurs (Eulemur fulvus rufus). Behav. Ecol. Sociobiol. 52, 485–495 (2002).Article 

    Google Scholar 
    Clough, D. Gastro-intestinal parasites of red-fronted lemurs in Kirindy Forest, western Madagascar. J. Parasitol. 96, 245–251 (2010).Article 

    Google Scholar 
    Gogarten, J. F. et al. Metabarcoding of eukaryotic parasite communities describes diverse parasite assemblages spanning the primate phylogeny. Mol. Ecol. Resour. 20, 204–215 (2020).Article 

    Google Scholar 
    Barton, R. A. Allogrooming as mutualism in diurnal lemurs. Primates 28, 539–542 (1987).Article 

    Google Scholar 
    Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci. 5, 171743 (2018).Article 
    ADS 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, 1–11 (2013).Article 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 

    Google Scholar 
    Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).Article 

    Google Scholar 
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, 597–604 (2013).Article 

    Google Scholar 
    Gao, X., Lin, H., Revanna, K. & Dong, Q. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy. BMC Bioinform. 18, 1–10 (2017).Article 

    Google Scholar 
    Reitmeier, S. et al. Handling of spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling. ISME Commun. 1, 1–12 (2021).Article 

    Google Scholar 
    Shutt, K., Setchell, J. M. & Heistermann, M. Non-invasive monitoring of physiological stress in the Western lowland gorilla (Gorilla gorilla gorilla): Validation of a fecal glucocorticoid assay and methods for practical application in the field. Gen. Comp. Endocrinol. 179, 167–177 (2012).Article 

    Google Scholar 
    Hämäläinen, A., Heistermann, M., Fenosoa, Z. S. E. & Kraus, C. Evaluating capture stress in wild gray mouse lemurs via repeated fecal sampling: Method validation and the influence of prior experience and handling protocols on stress responses. Gen. Comp. Endocrinol. 195, 68–79 (2014).Article 

    Google Scholar 
    Rudolph, K., Fichtel, C., Heistermann, M. & Kappeler, P. M. Dynamics and determinants of glucocorticoid metabolite concentrations in wild Verreaux’s sifakas. Horm. Behav. 124, 104760 (2020).Article 

    Google Scholar 
    Heitlinger, E., Ferreira, S. C. M., Thierer, D., Hofer, H. & East, M. L. The intestinal eukaryotic and bacterial biome of spotted hyenas: The impact of social status and age on diversity and composition. Front. Cell Infect. Microbiol. 7, 262 (2017).Article 

    Google Scholar 
    Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 68, 255–278 (2013).Article 

    Google Scholar 
    Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, 1–27 (2021).Article 

    Google Scholar 
    De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).Article 

    Google Scholar 
    Silk, J., Cheney, D. & Seyfarth, R. A practical guide to the study of social relationships. Evol. Anthropol. 22, 213–225 (2013).Article 

    Google Scholar 
    Ostner, J., Nunn, C. L. & Schülke, O. Female reproductive synchrony predicts skewed paternity across primates. Behav. Ecol. 19, 1150–1158 (2008).Article 

    Google Scholar 
    Bailey, M. T. et al. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 25, 397–407 (2011).Article 

    Google Scholar 
    Bailey, M. T. et al. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect. Immun. 78, 1509–1519 (2010).Article 

    Google Scholar 
    Stothart, M. R. et al. Stress and the microbiome: Linking glucocorticoids to bacterial community dynamics in wild red squirrels. Biol. Lett. 12, 20150875 (2016).Article 

    Google Scholar 
    Vlčková, K. et al. Impact of stress on the gut microbiome of free-ranging western lowland gorillas. Microbiol 164, 40–44 (2018).Article 

    Google Scholar 
    Chu, H. & Mazmanian, S. K. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat. Immunol. 14, 668–675 (2013).Article 

    Google Scholar 
    Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).Article 

    Google Scholar 
    Ley, R. E. Prevotella in the gut: Choose carefully. Nat. Rev. Gastroenterol. Hepatol. 13, 69–70 (2016).Article 

    Google Scholar 
    Manara, S. et al. Microbial genomes from non-human primate gut metagenomes expand the primate-associated bacterial tree of life with over 1000 novel species. Genome Biol. 20, 299 (2019).Article 

    Google Scholar 
    Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).Article 

    Google Scholar 
    Maltz, R. M. et al. Prolonged restraint stressor exposure in outbred CD-1 mice impacts microbiota, colonic inflammation, and short chain fatty acids. PLoS ONE 13, 1–19 (2018).Article 

    Google Scholar 
    Ostner, J. & Heistermann, M. Endocrine characterization of female reproductive status in wild redfronted lemurs (Eulemur fulvus rufus). Gen. Comp. Endocrinol. 131, 274–283 (2003).Article 

    Google Scholar 
    Peckre, L. R., Defolie, C., Kappeler, P. M. & Fichtel, C. Potential self-medication using millipede secretions in red-fronted lemurs: Combining anointment and ingestion for a joint action against gastrointestinal parasites?. Primates 59, 483–494 (2018).Article 

    Google Scholar 
    Jenkins, T. P. et al. Infections by human gastrointestinal helminths are associated with changes in faecal microbiota diversity and composition. PLoS ONE 12, 1–18 (2017).Article 

    Google Scholar 
    Rosa, B. A. et al. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia. Microbiome 6, 1–19 (2018).Article 

    Google Scholar 
    Reynolds, L. A., Finlay, B. B. & Maizels, R. M. Cohabitation in the intestine: Interactions among helminth parasites, bacterial microbiota, and host immunity. J. Immunol. 195, 4059–4066 (2015).Article 

    Google Scholar 
    Toro-Londono, M. A., Bedoya-Urrego, K., Garcia-Montoya, G. M., Galvan-Diaz, A. L. & Alzate, J. F. Intestinal parasitic infection alters bacterial gut microbiota in children. PeerJ 2019, 1–24 (2019).
    Google Scholar 
    Vacca, M. et al. The controversial role of human gut Lachnospiraceae. Microorganisms 8, 1–25 (2020).Article 

    Google Scholar 
    Wei, Z. et al. The effects of non-fiber carbohydrate content and forage type on rumen microbiome of dairy cows. Animals 11, 1–17 (2021).Article 

    Google Scholar 
    Kaakoush, N. O. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell Infect. Microbiol. 5, 1–4 (2015).Article 

    Google Scholar 
    Ricaboni, D. et al. ‘Colidextribacter massiliensis’ gen. nov., sp. nov., isolated from human right colon. New Microbes New Infect. 17, 27–29 (2017).Article 

    Google Scholar 
    Qin, P. et al. Characterization a novel butyric acid-producing bacterium Collinsella aerofaciens subsp. shenzhenensis subsp. nov. Microorganisms 7, 78 (2019).Article 

    Google Scholar 
    Wei, Y. et al. Commensal bacteria impact a protozoan’s integration into the murine gut microbiota in a dietary nutrient-dependent manner. Appl. Environ. Microbiol. 86, e00303-20 (2020).Article 
    ADS 

    Google Scholar 
    Perofsky, A. C., Ancel Meyers, L., Abondano, L. A., Di Fiore, A. & Lewis, R. J. Social groups constrain the spatiotemporal dynamics of wild sifaka gut microbiomes. Mol. Ecol. 30, 6759–6775 (2021).Article 

    Google Scholar 
    Pyritz, L., Kappeler, P. M. & Fichtel, C. Coordination of group movements in wild red-fronted lemurs (Eulemur rufifrons): Processes and influence of ecological and reproductive seasonality. Int. J. Primatol. 32, 1325–1347 (2011).Article 

    Google Scholar 
    Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).Article 

    Google Scholar 
    Hippe, H., Hagelstein, A., Kramer, I., Swiderski, J. & Stackebrandt, E. Phylogenetic analysis of Formivibrio citricus, Propionivibrio dicarboxylicus, Anaerobiospirillum thomasii, Succinirnonas amylolytica and Succinivibrio dextrinosolvens and proposal of Succinivibrionaceae fam. nov. Int. J. Syst. Evol. Microbiol. 49, 779–782 (1999).Article 

    Google Scholar 
    Grieneisen, L. E., Livermore, J., Alberts, S., Tung, J. & Archie, E. A. Group living and male dispersal predict the core gut microbiome in wild baboons. Integr. Comp. Biol. 57, 770–785 (2017).Article 

    Google Scholar 
    Amoroso, C. R., Kappeler, P. M., Fichtel, C. & Nunn, C. L. Fecal contamination, parasite risk, and waterhole use by wild animals in a dry deciduous forest. Behav. Ecol. Sociobiol. 73, 1–11 (2019).Article 

    Google Scholar 
    Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).Article 

    Google Scholar 
    Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).Article 
    ADS 

    Google Scholar 
    Sonnenburg, J. L. & Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).Article 
    ADS 

    Google Scholar 
    Zmora, N., Suez, J. & Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 25–56 (2018).
    Google Scholar 
    Ortmann, S., Bradley, B. J., Stolter, C. & Ganzhorn, J. U. Estimating the quality and composition of wild animal diets—a critical survey of methods. In Feeding Ecology in Apes and Other Primates. Ecological, Physical, and Behavioral Aspects (eds Hohmann, G. et al.) 395–418 (Cambridge University Press, 2006).
    Google Scholar  More

  • in

    Re-examining extreme carbon isotope fractionation in the coccolithophore Ochrosphaera neapolitana

    Laboratory cultureOchrosphaera neapolitana (RCC1357) was precultured in K/2 medium without Tris buffer8 using artificial seawater (ASW) supplemented with NaHCO3 and HCl to yield an initial DIC of 2050 µM. In triplicate, 1-L bottles were filled with 150 mL of seawater medium with air in the bottle headspace and inoculated with a mid-log phase preculture at an initial cell concentration of 104 cells mL−1. Cultures were grown at 18 °C under a warm white LED light at 100 ± 20 µE on a 16h-light/8h-dark cycle. Bottles were orbitally shaken at 60 rpm to keep cells in suspension. Cell growth was monitored with a Multisizer 4e particle counter and sizer (Beckman Coulter). At ~1.4 × 105 cells mL−1, cells were diluted up to 300 mL to 2–3 × 104 cells mL−1 and harvested after 2 days of more exponential growth up to 7.9 ± 0.6 × 104 cells mL−1. More detailed culture results are listed in the Supplementary Note 1.Immediately after harvesting, pH was measured using a pH probe calibrated with Mettler Toledo NBS standards (it should be noted here that high ionic strength calibration standards would be optimal for pH measurement of liquids like seawater). There was a carbonate system shift during the batch culture and more details are shown in Supplementary Fig. S1. Cells in 50 mL were pelleted by centrifuging at ~1650 × g for 5 min. Seawater supernatant was analyzed for DIC and δ13CDIC by injecting 3.5 mL into an Apollo analyzer and injecting 1 mL into He-flushed glass vials containing H3PO4 for the Gas Bench.For seawater DIC, an Apollo SciTech DIC-C13 Analyzer coupled to a Picarro CO2 analyzer was calibrated with in-house NaHCO3 standards dissolved in deionized water at different known concentrations and δ13C values from −4.66 to −7.94‰. δ13CDIC in media were measured with a Gas Bench II with an autosampler (CTC Analytics AG, Switzerland) coupled to ConFlow IV Interface and a Delta V Plus mass spectrometer (Thermo Fischer Scientific). Pelleted cells were snap-frozen with N2 (l) and stored at −80 °C. For PIC analysis, pellet was resuspended in 1 mL methanol and vortexed. After centrifugation, the methanol phase with extracted organics was removed and the pellet containing the coccoliths was dried at 60 °C overnight. About 300 mg of dried coccolith powder were placed in air-tight glass vials, flushed with He and reacted with five drops of phosphoric acid at 70 °C. PIC δ13C and δ18O were measured by the same Gas Bench system. The system and abovementioned in-house standards were calibrated using international standards NBS 18 (δ13C = −5.01‰, δ18O = +23.00‰) and NBS 19 (δ13C = +1.95‰, δ18O = +2.2‰). The analytical error for DIC concentration and δ13C is More

  • in

    Long-term maintenance of a heterologous symbiont association in Acropora palmata on natural reefs

    Hoegh-Guldberg O, Smith JG. The effect of sudden changes in temperature, light, and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata (Esper) and Seriatopora hysterix (Dana). J Exp Mar Biol Ecol. 1989;129:279–303.Article 

    Google Scholar 
    Glynn PW. Coral reef bleaching: ecological perspectives. Coral Reefs. 1993;12:1–17.Article 

    Google Scholar 
    Berkelmans R, van Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc B: Biol Sci. 2006;273:2305–12.Article 

    Google Scholar 
    Cunning R, Gillette P, Capo T, Galvez K, Baker AC. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs. 2015;34:155–60.Article 

    Google Scholar 
    Scharfenstein HJ, Chan WY, Buerger P, Humphrey C, van Oppen MJH. Evidence for de novo acquisition of microalgal symbionts by bleached adult corals. ISME J. 2022;16:1676–9.Article 

    Google Scholar 
    Goulet TL. Most corals may not change their symbionts. Mar Ecol Prog Ser. 2006;321:1–7.Article 

    Google Scholar 
    Jones A, Berkelmans R. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS ONE. 2010;5:e10437.Article 

    Google Scholar 
    van Oppen MJH, Oliver JK, Putnam HM, Gates RD. Building coral reef resilience through assisted evolution. Proc R Soc B: Biol Sci. 2015;112:2307–13.
    Google Scholar 
    Buerger P, Alvarez C, Coppin CW, Pearce SL, Chakravarti LJ, Oakeshott JG, et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci Adv. 2020;6:eaba2498.Kuffner IB, Toth LT. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv Biol: J Soc Conserv Biol. 2016;30:706–15.Article 

    Google Scholar 
    Young CN, Schopmeyer SA, Lirman D. A review of reef restoration and Coral propagation using the threatened genus Acropora in the Caribbean and western Atlantic. Bull Mar Sci. 2012;88:1075–98.Article 

    Google Scholar 
    Reich HG, Kitchen SA, Stankiewicz KH, Devlin-Durante M, Fogarty ND, Baums IB. Genomic variation of an endosymbiotic dinoflagellate (Symbiodinium fitti) among closely related coral hosts. Mol Ecol. 2021;30:3500–14.Article 

    Google Scholar 
    Baums IB, Devlin-Durante MK, Lajeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol. 2014;23:4203–15.Article 

    Google Scholar 
    Gantt SE, Keister E, Manfroy A, Merck D, Fitt W, Muller E, et al. Wild and nursery-raised corals: comparative physiology of two framework coral species. Coral Reefs. (In Press).Hume BCC, Smith EG, Ziegler M, Hugh J, Warrington M, Burt J, et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour. 2019;19:1063–80.Article 

    Google Scholar 
    Randall CJ, Negri AP, Quigley KM, Foster T, Ricardo GF, Webster NS, et al. Sexual production of corals for reef restoration in the Anthropocene. Mar Ecol Prog Ser. 2020;635:203–32.Article 

    Google Scholar 
    Bay LK, Cumbo VR, Abrego D, Kool JT, Ainsworth TD, Willis BL. Infection dynamics vary between Symbiodinium types and cell surface treatments during establishment of endosymbiosis with coral larvae. Diversity. 2011;3:356–74.Article 

    Google Scholar 
    Abrego D, van Oppen MJH, Willis BL. Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol. 2009;18:3518–31.Article 

    Google Scholar 
    Cunning R, Silverstein RN, Baker AC. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc R Soc B: Biol Sci. 2015;282:20141725.Chamberland VF, Petersen D, Latijnhouwers KRW, Snowden S, Mueller B, Vermeij MJA. Four-year-old Caribbean Acropora colonies reared from field-collected gametes are sexually mature. Bull Mar Sci. 2016;92:263–4.Silverstein RN, Correa AMS, Baker AC. Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change. Proc R Soc B: Biol Sci. 2012;279:2609–18.Article 

    Google Scholar  More

  • in

    Machine learning prediction of connectivity, biodiversity and resilience in the Coral Triangle

    Ravindran, S. Coral reefs at a tipping point. Proc. Natl Acad. Sci. 113, 5140–5141 (2016).CAS 

    Google Scholar 
    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).CAS 

    Google Scholar 
    Veron, J. E. N. et al. Delineating the Coral Triangle. Galaxea J. Coral Reef. Stud. 11, 91–100 (2009).
    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science 318, 1737–1742 (2007).CAS 

    Google Scholar 
    Brown, C., Corcoran, E. & Herkenrath, P. Marine and coastal ecosystems and human well-being: a synthesis report based on the findings of the Millennium Ecosystem Assessment. (2006).Heinze, C. et al. The quiet crossing of ocean tipping points. Proc. Natl Acad. Sci. 118, e2008478118 (2021).CAS 

    Google Scholar 
    Barber, P. H. The challenge of understanding the Coral Triangle biodiversity hotspot. J. Biogeogr. 36, 1845–1846 (2009).
    Google Scholar 
    Ekman, S. Zoogeography of the Sea. (Sidgwick & Jackson, 1953).Ladd, H. S. Origin of the Pacific island molluscan fauna. Am. J. Sci. 256, 137–150 (1960).
    Google Scholar 
    Woodland, D. J. Zoogeography of the Siganidae (Pisces): an interpretation of distribution and richness patterns. Bull. Mar. Sci. 33, 713–717 (1983).
    Google Scholar 
    Loveland, T. R. & Merchant, J. M. Ecoregions and ecoregionalization: geographical and ecological perspectives. Environ. Manag. 34, S1–S13 (2004).
    Google Scholar 
    Levins, R. Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control. Bull. Entomol. Soc. Am. 15, 237–240 (1969).
    Google Scholar 
    Obura, D. The Diversity and Biogeography of Western Indian Ocean Reef-Building Corals. PLoS One. 7, e45013 (2012).CAS 

    Google Scholar 
    Fontoura, L. et al. Protecting connectivity promotes successful biodiversity and fisheries conservation. Science 375, 336–340 (2022).CAS 

    Google Scholar 
    Roberts, C. M. Connectivity and Management of Caribbean Coral Reefs. Science 278, 1454–1457 (1997).CAS 

    Google Scholar 
    Ayre, D. J. & Hughes, T. P. Climate change, genotypic diversity and gene flow in reef-building corals: Gene flow in reef building corals. Ecol. Lett. 7, 273–278 (2004).
    Google Scholar 
    Graham, N. A. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. 103, 8425–8429 (2006).CAS 

    Google Scholar 
    McClanahan, T. R. et al. Prioritizing Key Resilience Indicators to Support Coral Reef Management in a Changing Climate. PLoS One. 7, e42884 (2012).CAS 

    Google Scholar 
    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an Isolated Coral Reef System Following Severe Disturbance. Science 340, 69–71 (2013).
    Google Scholar 
    Grayson, N., Clements, C. S., Towner, A. A., Beatty, D. S. & Hay, M. E. Did the historic overharvesting of sea cucumbers make coral more susceptible to pathogens? Coral Reefs. 41, 447–453 (2022).
    Google Scholar 
    Spalding, M. D. et al. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 57, 573–583 (2007).
    Google Scholar 
    Berline, L., Rammou, A.-M., Doglioli, A., Molcard, A. & Petrenko, A. A Connectivity-Based Eco-Regionalization Method of the Mediterranean Sea. PLoS ONE. 9, e111978 (2014).
    Google Scholar 
    Ser-Giacomi, E., Rossi, V., López, C. & Hernández-García, E. Flow networks: A characterization of geophysical fluid transport. Chaos Interdiscip. J. Nonlinear Sci. 25, 036404 (2015).
    Google Scholar 
    Thompson, D. M. et al. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity? Prog. Oceanogr. 165, 110–122 (2018).
    Google Scholar 
    Treml, E. A., Halpin, P. N., Urban, D. L. & Pratson, L. F. Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landsc. Ecol. 23, 19–36 (2008).
    Google Scholar 
    Liu, G., Bracco, A., Quattrini, A. M. & Herrera, S. Kilometer-Scale Larval Dispersal Processes Predict Metapopulation Connectivity Pathways for Paramuricea biscaya in the Northern Gulf of Mexico. Front. Mar. Sci. 8, 790927 (2021).
    Google Scholar 
    Fountalis, I., Dovrolis, C., Bracco, A., Dilkina, B. & Keilholz, S. δ-MAPS: from spatio-temporal data to a weighted and lagged network between functional domains. Appl. Netw. Sci. 3, 21 (2018).
    Google Scholar 
    Falasca, F., Bracco, A., Nenes, A. & Fountalis, I. Dimensionality Reduction and Network Inference for Climate Data Using δ‐MAPS: Application to the CESM Large Ensemble Sea Surface Temperature. J. Adv. Model. Earth Syst. 11, 1479–1515 (2019).
    Google Scholar 
    Novi, L., Bracco, A. & Falasca, F. Uncovering marine connectivity through sea surface temperature. Sci. Rep. 11, 8839 (2021).CAS 

    Google Scholar 
    Kleypas, J. A., Castruccio, F. S., Curchitser, E. N. & Mcleod, F. The impact of ENSO on coral heat stress in the western equatorial Pacific. Glob. Change Biol. 21, 2525–2539 (2015).
    Google Scholar 
    GLOBAL_REANALYSIS_001_030. Global Ocean Physics Reanalysis GLORYS12V1 1/12° product. MERCATOR GLORYS12V1 (global-reanalysis-001-030-monthly). E.U. Copernicus Marine Service Information (CMEMS). https://doi.org/10.48670/moi-00021.Lellouche, J.-M. et al. The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis. Front. Earth Sci. 9, 698876 (2021).
    Google Scholar 
    Treml, E. A. & Halpin, P. N. Marine population connectivity identifies ecological neighbors for conservation planning in the Coral Triangle: Ecological neighbors in conservation. Conserv. Lett. 5, 441–449 (2012).
    Google Scholar 
    Meyers, G. Variation of Indonesian throughflow and the El Niño-Southern Oscillation. J. Geophys. Res. Oceans 101, 12255–12263 (1996).
    Google Scholar 
    Wolfram Research (2012), FindGraphCommunities, Wolfram Language function. https://reference.wolfram.com/language/ref/FindGraphCommunities.html (updated 2015).MacArthur, R. H. & Wilson, E. O. The theory of island biogeography. In The Theory of Island Biogeography (Princeton university press, 2016).Brin, S. & Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998).
    Google Scholar 
    Wolfram Research (2010), PageRankCentrality, Wolfram Language function. https://reference.wolfram.com/language/ref/PageRankCentrality.html (Updated 2015).NOAA Coral Reef Watch program, 20180813, NOAA Coral Reef Watch Version 3.1 Daily Global 5km Satellite Coral Bleaching Heat Stress Monitoring Product Suite: NOAA Coral Reef Watch program, College Park, Maryland, USA. https://coralreefwatch.noaa.gov/product/5km/.Liu, G. et al. Reef-Scale Thermal Stress Monitoring of Coral Ecosystems: New 5-km Global Products from NOAA Coral Reef Watch. Remote Sens. 6, 11579–11606 (2014).
    Google Scholar 
    Liu, G. et al. NOAA Coral Reef Watch’s 5km Satellite Coral Bleaching Heat Stress Monitoring Product Suite Version 3 and Four-Month Outlook Version 4. 32, 7 (2017).Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J. & Baum, J. K. Global patterns and impacts of El Niño events on coral reefs: A meta-analysis. PLOS ONE 13, e0190957 (2018).
    Google Scholar 
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).CAS 

    Google Scholar 
    Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).
    Google Scholar 
    Dance, A. These corals could survive climate change—and help save the world’s reefs. Nature 575, 580–582 (2019).CAS 

    Google Scholar 
    Renema, W. et al. Hopping Hotspots: Global Shifts in Marine Biodiversity. Science 321, 654–657 (2008).CAS 

    Google Scholar 
    Weiss, T. L., Denniston, R. F., Wanamaker, A. D., Villarini, G. & von der Heydt, A. S. El Niño–Southern Oscillation–like variability in a late Miocene Caribbean coral. Geology 45, 643–646 (2017).
    Google Scholar 
    Watanabe, T. et al. Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature 471, 209–211 (2011).CAS 

    Google Scholar 
    Von Der Heydt, A. S. & Dijkstra, H. A. The impact of ocean gateways on ENSO variability in the Miocene. Geol. Soc. Lond. Spec. Publ. 355, 305–318 (2011).
    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. 117, 12891–12896 (2020).CAS 

    Google Scholar 
    Falasca, F., Crétat, J., Bracco, A., Braconnot, P. & Marti, O. Climate change in the Indo-Pacific basin from mid- to late Holocene. Clim. Dyn. 59, 753–766 (2022).
    Google Scholar 
    Treml, E. A., Ford, J. R., Black, K. P. & Swearer, S. E. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea. Mov. Ecol. 3, 17 (2015).
    Google Scholar 
    Hackerott, S., Martell, H. A. & Eirin-Lopez, J. M. Coral environmental memory: causes, mechanisms, and consequences for future reefs. Trends Ecol. Evol. 36, 1011–1023 (2021).
    Google Scholar 
    Ogle, K. et al. Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 18, 221–235 (2015).
    Google Scholar 
    Peterson, G. D. Contagious Disturbance, Ecological Memory, and the Emergence of Landscape Pattern. Ecosystems 5, 329–338 (2002).
    Google Scholar 
    Thomas, L., López, E. H., Morikawa, M. K. & Palumbi, S. R. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef‐building corals. Mol. Ecol. 28, 3371–3382 (2019).
    Google Scholar 
    Dziedzic, K. E., Elder, H., Tavalire, H. & Meyer, E. Heritable variation in bleaching responses and its functional genomic basis in reef‐building corals (Orbicella faveolata). Mol. Ecol. 28, 2238–2253 (2019).
    Google Scholar 
    Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).CAS 

    Google Scholar 
    Harrison, H. B., Bode, M., Williamson, D. H., Berumen, M. L. & Jones, G. P. A connectivity portfolio effect stabilizes marine reserve performance. Proc. Natl Acad. Sci. 117, 25595–25600 (2020).CAS 

    Google Scholar 
    Leeuwenburgh, O. & Stammer, D. The Effect of Ocean Currents on Sea Surface Temperature Anomalies. J. Phys. Oceanogr. 31, 2340–2358 (2001).
    Google Scholar 
    Box, G. E., Jenkins, G. M. & Reinsel, G. C. Time series analysis: forecasting and control. (Wiley, 2011).Falasca, F. & Bracco, A. Exploring the tropical Pacific manifold in models and observations. Phys. Rev. X 12, 021054 (2022).CAS 

    Google Scholar 
    NOAA (National Oceanic and Atmospheric Administration), (2019a). Nino regions. https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/nino_regions.shtml.NOAA (National Oceanic and Atmospheric Administration), (2019b). Cold and warm episodes by season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.Baird, A. et al. Coral Spawning Database. 10552719 Bytes https://doi.org/10.25405/DATA.NCL.13082333.V1 (2020).UNEP-WCMC, WorldFish Centre, WRI, TNC (2021). Global distribution of warm-water coral reefs, compiled from multiple sources including the Millennium Coral Reef Mapping Project. Version 4.1. Includes contributions from IMaRS-USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. (2001). Cambridge (UK): UN Environment World Conservation Monitoring Centre. Data https://doi.org/10.34892/t2wk-5t34.IMaRS-USF, IRD (Institut de Recherche pour le Developpement) (2005). Millennium Coral Reef Mapping Project. Validated maps. Cambridge (UK): UNEP World Conservation Monitoring Centre.IMaRS-USF (Institute for Marine Remote Sensing-University of South Florida) (2005). Millennium Coral Reef Mapping Project. Unvalidated maps. These maps are unendorsed by IRD, but were further interpreted by UNEP World Conservation Monitoring Centre. Cambridge (UK): UNEP World Conservation Monitoring Centre.Spalding, M., Ravilious, C. & Green, E. World atlas of coral reefs. Choice Rev. Online. 39, 39-2540–39–2540 (2002).
    Google Scholar  More

  • in

    Larvicidal and repellent potential of Ageratum houstonianum against Culex pipiens

    El-Naggar, H. A. & Hasaballah, A. I. Acute larvicidal toxicity and repellency effect of Octopus cyanea crude extracts against the filariasis vector, Culex pipiens. J. Egypt. Soc. Parasitol. 48(3), 721–728 (2018).Article 

    Google Scholar 
    Koenraadt, C. J. M., Möhlmann, T. W. R., Verhulst, N. O., Spitzen, J. & Vogels, C. B. F. Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens. Parasit. Vectors 12, 147. https://doi.org/10.1186/s13071-019-3400-4 (2019).Article 

    Google Scholar 
    Vloet, R. P. M. et al. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Negl. Trop. Dis. 11, e0006145. https://doi.org/10.1371/journal.pntd.0006145 (2017).Article 
    CAS 

    Google Scholar 
    Dyab, A. K., Galal, L. A., Mahmoud, A. E. & Mokhtar, Y. Finding Walachia in filarial larvae and culicidae mosquitoes in upper Egypt governorate. Korean J. Parasitol. 54, 265–272 (2016).Article 
    CAS 

    Google Scholar 
    Clements, A. N. & Harbach, R. E. Controversies over the scientific name of the principal mosquito vector of yellow fever virus—Expediency versus validity. J. Vector Ecol. 43, 1–14. https://doi.org/10.1111/jvec.12277 (2018).Article 

    Google Scholar 
    Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl. Trop. Dis. 13(4), 7229. https://doi.org/10.1371/journal.pntd.0007229 (2019).Article 

    Google Scholar 
    Shah, R. M. et al. Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say. Parasitol. Res. 115(11), 4345–4351 (2016).Article 

    Google Scholar 
    Senthil-Nathan, S. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front. Physiol. 10, 1591. https://doi.org/10.3389/fphys.2019.01591 (2020).Article 

    Google Scholar 
    Pavela, R. et al. Traditional herbal remedies and dietary spices from Cameroon as novel sources of larvicides against filariasis mosquitoes? Parasitol. Res. 115(12), 4617–4626 (2016).Article 

    Google Scholar 
    Samuel, T. et al. In vitro antimicrobial activity of Ageratum houstonianum Mill. (Asteraceae). Food Sci. 35, 2897–2900 (2011).
    Google Scholar 
    Boussaada, O. et al. Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bull. Insectol. 61(2), 8435 (2008).
    Google Scholar 
    Samuel, T., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).Article 

    Google Scholar 
    Samuel, T., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299 (2012).Article 

    Google Scholar 
    Tennyson, S. et al. In vitro antioxidant activity of Ageratum houstonianum Mill. (Asteraceae). Asian Pac. J. Trop. Dis. 2, S712–S714 (2012).Article 

    Google Scholar 
    Sharma, P. D. & Sharma, O. P. Natural products chemistry, and biological properties of the Ageratum plant. Toxicol. Environ. Chem. 50, 213–232 (1995).Article 
    CAS 

    Google Scholar 
    Bodner, C. C. & Gereau, R. E. A contribution of Bontoc ethnobotany. Econ. Bot. 42(3), 307–369 (1988).Article 

    Google Scholar 
    Wiedenfeld, H. & Andrade-Cetto, A. Pyrrolizidine alkaloids from Ageratum houstononiaum Mill.. Phytochemistry 57(8), 1269–1271 (2001).Article 
    CAS 

    Google Scholar 
    Siebertz, R., Proksch, P., Wray, V. & Witte, L. A benzofuran from Ageratum houstononiaum Mill.. Phytochemistry 27(12), 3996–3997 (1988).Article 
    CAS 

    Google Scholar 
    Quijano, L., Calderon, J. S., Garibay, E., Escobar, E. & Rios, T. Further polysubstituted flavones from Ageratum houstononiaum Mill.. Phytochemistry 26(7), 2075–2978 (1987).Article 
    CAS 

    Google Scholar 
    Kundu, A. & Vadassery, J. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. (Stuttg.) 21(2), 185–189. https://doi.org/10.1111/plb.12947 (2019).Article 
    CAS 

    Google Scholar 
    War, A. R. et al. Effect of plant secondary metabolites on legume pod borer Helicoverpa armigera. J. Pest Sci. 86, 399–408 (2013).Article 

    Google Scholar 
    Cipollini, D., Stevenson, R., Enright, S., Eyles, A. & Bonello, P. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects. J. Chem. Ecol. 34, 144–152. https://doi.org/10.1007/s10886-008-9426-2 (2008).Article 
    CAS 

    Google Scholar 
    Regnault-Roger, C. et al. Polyphenolic compounds of Mediterranean Lamiaceae and investigation of orientational effects on Acanthoscelides obtectus (Say). J. Stored Prod. Res. 40, 395–408 (2004).Article 
    CAS 

    Google Scholar 
    Khan, S. et al. Bioactivity-guided isolation of rosmarinic acid as the principle bioactive compound from the butanol extract of Isodon rugosus against the pea aphid, Acyrthosiphon pisum. PLoS ONE 14(6), e0215048. https://doi.org/10.1371/journal.pone.0215048 (2019).Article 
    CAS 

    Google Scholar 
    War, A., Sharma, S. P. & Sharma, H. C. Differential induction of flavonoids in groundnut in response to Helicoverpa armigera and Aphis craccivora infestation. Int. J. Insect Sci. 8, 55–64. https://doi.org/10.4137/IJIS.S39619 (2016).Article 

    Google Scholar 
    Al Jabr, A. M., Hussain, A., Rizwan-ul-Haq, M. & Al-Ayedh, H. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules 22, 169. https://doi.org/10.3390/molecules22010169 (2017).Article 
    CAS 

    Google Scholar 
    Moreira, M. D. et al. Plant compounds insecticide activity against coleoptera pests of stored products. Pesqui. Agropecu. Bras. 42(7), 909–915 (2007).Article 

    Google Scholar 
    Ahuchaogu, A. A. et al. GC-MS analysis of bioactive compounds from whole plant chloroform extract of Ageratum conyzoides. Int. J. Med. Plants Nat. Prod. 4(2), 13–24. https://doi.org/10.20431/2454-7999.0402003 (2018).Article 

    Google Scholar 
    Zhao, P.-L., Li, J. & Yang, G.-F. Synthesis, and insecticidal activity of chromanone and chromone analogues of diacylhydrazines. Bioorg. Med. Chem. 15, 1888–1895 (2007).Article 
    CAS 

    Google Scholar 
    Hussein, M. A. et al. Synthesis, molecular docking and insecticidal activity evaluation of chromones of date palm pits extract against Culex pipiens (Diptera: Culicidae). Int. J. Mosq. Res. 5(4), 22–32 (2018).
    Google Scholar 
    Li, F. et al. Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem. 25(14), 3815–3826. https://doi.org/10.1016/j.bmc.2017.05.027 (2017).Article 
    CAS 

    Google Scholar 
    Feldlaufer, M. F. & Eberle, M. W. Insecticidal effect of precocene II on the human body louse, Pediculus humanus. Trans. R. Soc. Trop. Med. Hyg. 74(3), 398–399. https://doi.org/10.1016/0035-9203(80)90110-8 (1980).Article 
    CAS 

    Google Scholar 
    Lu, X. N., Liu, X. C., Liu, Q. Z. & Liu, Z. L. Isolation of insecticidal constituents from the essential oil of Ageratum houstonianum Mill. against Liposcelis bostrychophila Badonnel. J. Chem. 2014, 6. https://doi.org/10.1155/2014/645687 (2014).Article 
    CAS 

    Google Scholar 
    Pratt, G. & Bowers, W. Precocene II inhibits juvenile hormone biosynthesis by cockroach Corpora allata in vitro. Nature 265, 548–550. https://doi.org/10.1038/265548a0 (1977).Article 
    ADS 
    CAS 

    Google Scholar 
    Kumar, K. G. A. et al. Chemo-profiling and bioassay of phytoextracts from Ageratum conyzoides for acaricidal properties against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) infesting cattle and buffaloes in India. Ticks Tick-Borne Dis. 7(2), 342–349 (2016).Article 

    Google Scholar 
    Fahmi, A. G., Nassar, M., Mansour, E. & Salama, R. Toxicological and biochemical effects of precocene II against cotton leafworm, Spodoptera littoralis (boisd.). Egypt. J. Agric. Res. 97(1), 179–186. https://doi.org/10.21608/ejar.2019.68627 (2019).Article 

    Google Scholar 
    Benelli, G., Pavela, R., Drenaggi, E., Desneux, N. & Maggi, F. Phytol, (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Ind. Crops Prod. 155, 112844. https://doi.org/10.1016/j.indcrop.2020.112844 (2020).Article 
    CAS 

    Google Scholar 
    Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Ovicidal activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae. Asian Pac. J. Trop. Dis. 5, 199–203 (2015).Article 

    Google Scholar 
    Tennyson, S., Ravindran, K. J., Eapen, A. & William, S. J. Effect of Ageratum houstonianum Mill. (Asteraceae) leaf extracts on the oviposition activity of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 111, 2295–2299. https://doi.org/10.1007/s00436-012-3083-7 (2012).Article 

    Google Scholar 
    Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22(6), 298–307 (2007).Article 

    Google Scholar 
    Navarro-Roldán, M. A., Bosch, D., Gemeno, C. & Siegwart, M. Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests. Bull. Entomol. Res. https://doi.org/10.1017/S0007485319000415 (2020).Article 

    Google Scholar 
    Abdel Haleem, D. R., Gad, A. A. & Farag, S. M. Larvicidal, biochemical and physiological effects of acetamiprid and thiamethoxam against Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fish. 24(3), 271–283. https://doi.org/10.21608/ejabf.2020.91119 (2020).Article 

    Google Scholar 
    Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).Article 

    Google Scholar 
    Montella, I. R., Schama, R. & Valle, D. The classification of esterases: An important gene family involved in insecticide resistance—A review. Mem. Inst. Oswaldo Cruz. 107(4), 437–449 (2012).Article 
    CAS 

    Google Scholar 
    Vasantha-Srinivasan, P. et al. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L.. Ecotoxicol. Environ. Saf. 139, 439–446. https://doi.org/10.1016/j.ecoenv.2017.01.026 (2017).Article 
    CAS 

    Google Scholar 
    Ramasamy, V. et al. Chemical characterization of billy goat weed extracts Ageratum conyzoides (Asteraceae) and their mosquitocidal activity against three blood-sucking pests and their non-toxicity against aquatic predators. Environ. Sci. Pollut. Res. 28(22), 28456–28469. https://doi.org/10.1007/s11356-021-12362-6 (2021).Article 

    Google Scholar 
    Shoukat, R. F. et al. Larvicidal, ovicidal, synergistic, and repellent activities of Sophora alopecuroides and its dominant constituents against Aedes albopictus. Insects 11, 246. https://doi.org/10.3390/insects11040246 (2020).Article 

    Google Scholar 
    Boily, M., Sarrasin, B., Deblois, C., Aras, P. & Chagnon, M. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environ. Sci. Pollut. Res. Int. 20(8), 5603–5614. https://doi.org/10.1007/s11356-013-1568-2 (2013).Article 
    CAS 

    Google Scholar 
    Rajashekar, Y., Raghavendra, A. & Bakthavatsalam, N. Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of lantana camara in stored grain and household insect pests. Biomed. Res. Int. 2014, 1–6. https://doi.org/10.1155/2014/187019 (2014).Article 
    CAS 

    Google Scholar 
    Yuan, Y., Li, L., Zhao, J. & Chen, M. Effect of tannic acid on nutrition and activities of detoxification enzymes and acetylcholinesterase of the fall webworm (Lepidoptera: Arctiidae). J. Insect Sci. 20(1), 8 (2020).Article 

    Google Scholar 
    Koodalingam, A., Mullainadhan, P. & Arumugam, M. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae). Acta Trop. 118(1), 27–36 (2011).Article 
    CAS 

    Google Scholar 
    Nathan, S. S. et al. Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown plant hopper Nilaparvata lugens (Stål). Ecotoxicol. Environ. Saf. 70, 244–250 (2008).Article 
    CAS 

    Google Scholar 
    Abdel-Haleem, D. R., Genidy, N. A., Fahmy, A. R., Abu-El Azm, F. S. M. & Ismail, N. S. M. Comparative modeling, toxicological and biochemical studies of imidacloprid and thiamethoxam insecticides on the House Fly, Musca domestica L. (Diptera: Muscidae). Egypt. Acad. J. Biol. Sci. 11(1), 33–42. https://doi.org/10.21608/EAJB.2018.11977 (2018).Article 

    Google Scholar 
    Kliot, A., Kontsedalov, S., Ramsey, J. S., Jande, G. & Ghanim, M. Adaptation to nicotine in the facultative tobacco-feeding hemipteran Bemisia tabaci. Pest Manag. Sci 70, 1595–1603 (2014).Article 
    CAS 

    Google Scholar 
    Silva, T. R. F. B. et al. Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae) Fitossanidade. Acta Sci. Agron. 38(2), 165–170. https://doi.org/10.4025/actasciagron.v38i2.27956 (2016).Article 

    Google Scholar 
    Petschenka, G., Wagschal, V., Von Tschirnhaus, M., Donath, A. & Dobler, S. Convergently evolved toxic secondary metabolites in plants drive the parallel molecular evolution of insect resistance. Am. Nat. 190, 29–43 (2017).Article 

    Google Scholar 
    Emam, M. et al. Phytochemical profiling of Lavandula coronopifolia Poir. aerial parts extract and its larvicidal, antibacterial, and antibiofilm activity against Pseudomonas aeruginosa. Molecules 26, 1710. https://doi.org/10.3390/molecules26061710 (2021).Article 
    CAS 

    Google Scholar 
    El Hadidy, D., El Sayed, A. M., El Tantawy, M. & El Alfy, T. Phytochemical analysis and biological activities of essential oils of the leaves and flowers of Ageratum houstonianum Mill. cultivated in Egypt. J. Essent. Oil-Bear. Plants 22(5), 1241–1251. https://doi.org/10.1080/0972060X.2019.1673831 (2019).Article 

    Google Scholar 
    Tennyson, S., Ravindran, J., Eapen, A. & William, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2(6), 478–480 (2012).Article 

    Google Scholar 
    Pintong, A. et al. Insecticidal and histopathological effects of Ageratum conyzoides weed extracts against dengue vector, Aedes aegypti. Insects 11, 224 (2020).Article 

    Google Scholar 
    Parveen, S. et al. In vitro evaluation of ethanolic extracts of Ageratum conyzoides and Artemisia absinthium against cattle tick, Rhipicephalus microplus. Sci. World J. 2014, 858973 (2014).Article 
    CAS 

    Google Scholar 
    Ichihara, K. & Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 51(3), 635–640 (2010).Article 
    CAS 

    Google Scholar 
    Mruthunjaya, K. & Hukkeri, V. I. In vitro antioxidant and free radical scavenging potential of Parkinsonia aculeata Linn.. Pharmacogn. Mag. 4(13), 42–52 (2008).
    Google Scholar 
    Atanassova, M., Georgieva, S. & Ivancheva, K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J. Chem. Technol. Metall. 46(1), 81–88 (2011).CAS 

    Google Scholar 
    Mizzi, L., Chatzitzika, C., Gatt, R. & Valdramidis, V. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technol. Biotechnol. 58(1), 12–19. https://doi.org/10.17113/ftb.58.01.20.6395 (2020).Article 
    CAS 

    Google Scholar 
    Kasap, M. & Demirhan, H. The effect of various larval foods on the rate of adult emergence and fecundity of mosquitoes. Turk. Parasitol. Dergisi 161, 87–97 (1992).
    Google Scholar 
    WHO. Guidelines for Laboratory & Field Testing of Mosquito Larvicides 1–4 (Bulletin of the World Health Organization, 2005).
    Google Scholar 
    El-Sheikh, T., Bosly, H. & Shalaby, N. Insecticidal and repellent activities of methanolic extract of Tribulus terrestris L. (Zygophyllaceae) against the malarial vector Anopheles arabiensis (Diptera: Culicidae). Egypt. Acad. J. Biol. Sci. 5(2), 13–22 (2012).
    Google Scholar 
    Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 256–267 (1952).
    Google Scholar 
    Amin, T. R. Biochemical and Physiological Studies of Some Insect Growth Regulators on the Cotton Leafworm, Spodoptera littoralis (Boisd.). Ph.D. thesis, Faculty of Science, Cairo University (1998).Simpson, D. R., Bulland, D. L. & Linquist, D. A. A semimicrotechnique for estimation of cholinesterase activity in boll weevils. Ann. Entomol. Soc. Am. 57, 367–371 (1964).Article 
    CAS 

    Google Scholar 
    Amaral, M. C., Bonecker, A. C. T. & Ortiz, C. H. D. Activity determination of Na+ K+-ATPase and Mg++-ATPase enzymes in the gill of Poecilia vivpara (Osteichthyes, Cyprinodontiformes) in different salinities. Braz. Arch. Biol. Technol. 44, 1–6 (2001).Article 
    CAS 

    Google Scholar 
    Hansen, I. G. & Hodgson, E. Biochemical characteristics of insect microsomes, N-and o-demethylation. Biochem. Pharmacol. 20, 1569–1578 (1971).Article 
    CAS 

    Google Scholar 
    Finney, D. J. Probit Analysis 3rd edn. (Cambridge University Press, 1971).MATH 

    Google Scholar 
    Duncan, D. B. Multiple range, and multiple F tests. Biometrics 2, 1–42 (1955).Article 
    MathSciNet 

    Google Scholar  More

  • in

    Recent global decline in rainfall interception loss due to altered rainfall regimes

    Savenije, H. H. G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 18, 1507–1511 (2004).Article 
    ADS 

    Google Scholar 
    Gerrits, A. M. J., Pfister, L. & Savenije, H. H. G. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol. Process. 24, 3011–3025 (2010).Article 
    ADS 

    Google Scholar 
    Porada, P., Van Stan, J. T. & Kleidon, A. Significant contribution of non-vascular vegetation to global rainfall interception. Nat. Geosci. 11, 563–567 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: moisture recycling. Earth Syst. Dyn. 5, 471–489 (2014).Article 
    ADS 

    Google Scholar 
    Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).Article 
    ADS 

    Google Scholar 
    Coenders-Gerrits, A. M. et al. Uncertainties in transpiration estimates. Nature 506, E1–E2 (2014).Article 
    CAS 

    Google Scholar 
    Chang, L.-L. et al. Why do large-scale land surface models produce a low ratio of transpiration to evapotranspiration? J. Geophys. Res. Atmos. 123, 9109–9130 (2018).Article 

    Google Scholar 
    Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).Article 
    ADS 

    Google Scholar 
    Cuartas, L. A. et al. Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia: Marked differences between normal and dry years. Agric. For. Meteorol. 145, 69–83 (2007).Article 
    ADS 

    Google Scholar 
    Yue, K. et al. Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob. Change Biol. 27, 3350–3357 (2021).Article 

    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 

    Google Scholar 
    Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Jung, M., Reichstein, M. & Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6, 2001–2013 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, X. et al. Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years. Agric. For. Meteorol. 259, 131–140 (2018).Article 
    ADS 

    Google Scholar 
    Koppa, A., Rains, D., Hulsman, P., Poyatos, R. & Miralles, D. G. A deep learning-based hybrid model of global terrestrial evaporation. Nat. Commun. 13, 1912 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Zheng, C. & Jia, L. Global canopy rainfall interception loss derived from satellite Earth observations. Ecohydrology 13, e2186 (2019).
    Google Scholar 
    Muzylo, A. et al. A review of rainfall interception modelling. J. Hydrol. 370, 191–206 (2009).Article 
    ADS 

    Google Scholar 
    Miralles, D. G., Gash, J. H., Holmes, T. R. H., de Jeu, R. A. M., & Dolman, A. J. Global canopy interception from satellite observations. J. Geophys. Res. 115, D16122 (2010).Article 
    ADS 

    Google Scholar 
    Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).Article 
    ADS 

    Google Scholar 
    Oleson, K. et al. Technical Description of Version 4.5 of the Community Land Model (CLM) Report NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M (2013).Gash, J. An analytical model of rainfall interception by forests. Q. J. Roy. Meteor. Soc. 105, 43–55 (1979).Article 
    ADS 

    Google Scholar 
    Fan, Y. et al. Reconciling canopy interception parameterization and rainfall forcing frequency in the Community Land Model for simulating evapotranspiration of rainforests and oil palm plantations in Indonesia. J. Adv. Model. Earth Syst. 11, 732–751 (2019).Article 
    ADS 

    Google Scholar 
    Návar, J. Modeling rainfall interception loss components of forests. J. Hydrol. 584, 124449 (2019).Article 

    Google Scholar 
    Kang, M., Kwon, H., Cheon, J. H. & Kim, J. On estimating wet canopy evaporation from deciduous and coniferous forests in the Asian monsoon climate. J. Hydrometeorol. 13, 950–965 (2012).Article 
    ADS 

    Google Scholar 
    Llorens, P., Domingo, F., Garcia-Estringana, P., Muzylo, A. & Gallart, F. Canopy wetness patterns in a Mediterranean deciduous stand. J. Hydrol. 512, 254–262 (2014).Article 
    ADS 

    Google Scholar 
    Czikowsky, M. J. & Fitzjarrald, D. R. Detecting rainfall interception in an Amazonian rain forest with eddy flux measurements. J. Hydrol. 377, 92–105 (2009).Article 
    ADS 

    Google Scholar 
    Renninger, H. J., Phillips, N. & Salvucci, G. D. Wet- vs. dry-season transpiration in an Amazonian rain forest palm iriartea deltoidea. Biotropica 42, 470–478 (2010).Article 

    Google Scholar 
    Zhao, W. et al. Physics-constrained machine learning of evapotranspiration. Geophys. Res. Lett. 46, 14496–14507 (2019).Article 
    ADS 

    Google Scholar 
    Zabret, K. & Šraj, M. How characteristics of a rainfall event and the meteorological conditions determine the development of stemflow: A case study of a birch tree. Front. Glob. Change 4, 663100 (2022).Article 

    Google Scholar 
    Calder, I. R. Dependence of rainfall interception on drop size: 1. Development of the two-layer stochastic model. J. Hydrol. 185, 363–378 (1996).Article 
    ADS 

    Google Scholar 
    Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).Article 

    Google Scholar 
    Gordon, D. A. R., Coenders-Gerrits, M., Sellers, B. A., Sadeghi, S., & Van Stan II, J. T. Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel). Hydrol. Earth Syst. Sci. 24, 4587–4599 (2020).Article 
    ADS 

    Google Scholar 
    Ciruzzi, D. M. & Loheide, S. P. II Monitoring tree sway as an indicator of interception dynamics before, during, and following a storm. Geophys. Res. Lett. 48, e2021GL094980 (2021).Article 
    ADS 

    Google Scholar 
    Karimi, P., Bastiaanssen, W. G. & Molden, D. Water Accounting Plus (WA+)–a water accounting procedure for complex river basins based on satellite measurements. Hydrol. Earth Syst. Sci. 17, 2459–2472 (2013).Article 
    ADS 

    Google Scholar 
    del Campo, A. D., González-Sanchis, M., Lidón, A., Ceacero, C. J. & García-Prats, A. Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. J. Hydrol. 565, 74–86 (2018).Article 

    Google Scholar 
    Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).Article 
    ADS 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 
    ADS 

    Google Scholar 
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).Article 
    ADS 

    Google Scholar 
    Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. N. Phytol. 219, 1156–1169 (2018).Article 

    Google Scholar 
    Aparecido, L. M. T., Miller, G. R., Cahill, A. T. & Moore, G. W. Comparison of tree transpiration under wet and dry canopy conditions in a Costa Rican premontane tropical forest. Hydrol. Process. 30, 5000–5011 (2016).Article 
    ADS 

    Google Scholar 
    Huang, L. & Zhang, Z. Effect of rainfall pulses on plant growth and transpiration of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China. CATENA 137, 269–276 (2016).Article 

    Google Scholar 
    Fathizadeh, O., Hosseini, S., Zimmermann, A., Keim, R. & Boloorani, A. D. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Sci. Total Environ. 601, 1824–1837 (2017).Article 
    ADS 

    Google Scholar 
    Zhang, Z.-S., Zhao, Y., Li, X.-R., Huang, L. & Tan, H.-J. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert. Sci. Rep. 6, 26030 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    de Groen, M. M. & Savenije, H. H. G. A monthly interception equation based on the statistical characteristics of daily rainfall. Water Resour. Res. 42, W12417 (2006).Article 
    ADS 

    Google Scholar 
    Chinita, M. J., Richardson, M., Teixeira, J. & Miranda, P. M. A. Global mean frequency increases of daily and sub-daily heavy precipitation in ERA5. Environ. Res. Lett. 16, 074035 (2021).Article 
    ADS 

    Google Scholar 
    Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).Article 
    ADS 

    Google Scholar 
    IPCC. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al) (Cambridge Univ. Press, 2021).Ficklin, D. L., Null, S. E., Abatzoglou, J. T., Novick, K. A. & Myers, D. T. Hydrological intensification will increase the complexity of water resource management. Earth’s Futur. 10, e2021EF002487 (2022).Article 
    ADS 

    Google Scholar 
    Haslwanter, A., Hammerle, A. & Wohlfahrt, G. Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: a long-term perspective. Agric. For. Meteorol. 149, 291–302 (2009).Article 
    ADS 

    Google Scholar 
    Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, W. et al. The effect of relative humidity on eddy covariance latent heat flux measurements and its implication for partitioning into transpiration and evaporation. Preprint at https://doi.org/10.2139/ssrn.4106267 (2022).van Dijk, A. I. J. M. et al. Rainfall interception and the coupled surface water and energy balance. Agric. For. Meteorol. 214–215, 402–415 (2015).Article 

    Google Scholar 
    Barr, A. G., Morgenstern, K., Black, T. A., McCaughey, J. H. & Nesic, Z. Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric. Meteorol. 140, 322–337 (2006).Article 

    Google Scholar 
    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhi, W. et al. From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale? Environ. Sci. Technol. 55, 2357–2368 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Kraft, B., Jung, M., Körner, M. & Reichstein, M. Hybrid modeling: fusion of a deep approach and physics-based model for global hydrological modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 43, 1537–1544 (2020).Article 

    Google Scholar 
    Hoffmann, L. et al. From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 19, 3097–3124 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, D., Wang, G. & Anagnostou, E. N. Evaluation of canopy interception schemes in land surface models. J. Hydrol. 347, 308–318 (2007).Article 
    ADS 

    Google Scholar 
    Wang, G. & Eltahir, E. A. Modeling the biosphere–atmosphere system: The impact of the subgrid variability in rainfall interception. J. Clim. 13, 2887–2899 (2000).Article 
    ADS 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article 
    ADS 

    Google Scholar 
    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Potential hazard characteristics of trees with hollows, cavities and fruiting bodies growing along pedestrian routes

    Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 30(7), e02149 (2020).Article 

    Google Scholar 
    Li, Z. & Ma, J. Discussing street tree planning based on pedestrian volume using machine learning and computer vision. Build. Environ. 219, 109178 (2022).Article 

    Google Scholar 
    Tan, X. & Shibata, S. Factors influencing street tree health in constrained planting spaces: Evidence from Kyoto City, Japan. Urban For. Urban Green. 67, 127416 (2022).Article 

    Google Scholar 
    Plant, L. & Sipe, N. Adapting and applying evidence gathering techniques for planning and investment in street trees: A case study from Brisbane. Australia. Urban For. Urban Green. 19, 79–87 (2016).Article 

    Google Scholar 
    Dümpelmann, S. Urban trees in times of crisis: Palliatives, mitigators, and resources. One Earth 2, 402–404 (2020).Article 
    ADS 

    Google Scholar 
    Liu, J. & Slik, F. Are street trees friendly to biodiversity?. Landsc. Urban Plan. 218, 104304 (2022).Article 

    Google Scholar 
    Suchocka, M. et al. Old trees are perceived as a valuable element of the municipal forest landscape. PeerJ 10, 12700 (2022).Article 

    Google Scholar 
    Marselle, M. R. et al. Urban Street tree biodiversity and antidepressant prescriptions. Sci. Rep. 10, 22445 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Radu, S. The ecological role of deadwood in natural forests. In Nature Conservation. Environmental Science and Engineering (eds Gafta, D. & Akeroyd, J.) (Springer, 2006).
    Google Scholar 
    Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).Article 

    Google Scholar 
    Ferenc, M., Sedláček, O. & Fuchs, R. How to improve urban greenspace for woodland birds: Site and local-scale determinants of bird species richness. Urban Ecosyst. 17, 625–640 (2014).Article 

    Google Scholar 
    Birch, J. D., Lutz, J. A., Turner, B. L. & Karst, J. Divergent, age-associated fungal communities of Pinus flexilis and Pinus longaeva. For. Ecol. Manage. 494, 119277 (2021).Article 

    Google Scholar 
    Siitonen, J., Ranius, T. The importance of veteran trees for saproxylic insects. In Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (2015).Polyakov, A. Y., Weller, T. J. & Tietje, W. D. Remnant trees increase bat activity and facilitate the use of vineyards by edge-space bats. Agr. Ecosyst. Environ. 281, 56–63 (2019).Article 

    Google Scholar 
    Hall, S. J. G. & Bunce, R. G. H. Mature trees as keystone structures in Holarctic ecosystems – a quantitative species comparison in a northern English park. Plant Ecol. Divers. 4, 243–250 (2011).Article 

    Google Scholar 
    Suchocka, M. et al. Transit versus Nature. Depreciation of environmental values of the road alleys. Case study: Gamerki-Jonkowo, Poland. Sustain. 11(6), 1816 (2019).Article 

    Google Scholar 
    What Are Ancient & Veteran Trees. Ancient Tree Forum | Championing the Biological, Cultural And Heritage Value Of The UK’s Ancient Trees. URL https://www.ancienttreeforum.org.uk/ancient-trees/what-are-ancient-veteran-trees/ (2022).Fay, N. Environmental arboriculture, tree ecology and veteran tree management. Arbor. J. 26, 213–236 (2002).Article 

    Google Scholar 
    Dujesiefken, D., Fay, N., De Groot, J. W. & De Berker, N. Trees—a lifespan approach. Contributions to arboriculture from European practitioners (eds. Witkoś-Gnach, K., Tyszko-Chmielowiec, P.) (Fundacja EkoRozwoju, 2016).Roman, L. How many trees are enough? Tree death and the urban canopy. Scenar. J. 04, 8 (2014).
    Google Scholar 
    Roman, L. A. & Scatena, F. N. Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban For. Urban Green. 10(4), 269–274 (2011).Article 

    Google Scholar 
    Czaja, M., Kołton, A. & Muras, P. The complex issue of urban trees—stress factor accumulation and ecological service possibilities. Forests 11, 932 (2020).Article 

    Google Scholar 
    Olchowik, J., Suchocka, M., Jankowski, P., Malewski, T. & Hilszczańska, D. The ectomycorrhizal community of urban linden trees in Gdańsk, Poland. PlosOne. 16(4), e0237551 (2021).Article 
    CAS 

    Google Scholar 
    Nilsson, K., Konijnendijk, C. C. & Nielsen, A. B. Urban forest function, design and management. In Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) https://doi.org/10.1007/978-1-4419-0851-3_218 (Springer, New York, NY, 2013).Chapter 

    Google Scholar 
    Pokorny, J.D. Urban tree risk management, a Community Guide to Program Design and Implementation. USDA Forest Service Northeastern Area State and Private Forestry (2003).James, K. R., Haritos, N. & Ades, P. K. Mechanical stability of trees under dynamic loads. Am. J. Bot. 93(10), 1361–1369 (2006).Article 

    Google Scholar 
    Hickman, G. W., Perry, E. & Evans, R. Validation of a tree failure evaluation system. J. Arboric. 21(5), 233–234 (1995).
    Google Scholar 
    Klein, R., Koeser, A., Hauer, R., Hansen, G. & Escobedo, F. Risk assessment and risk perception of trees: A review of literature relating to arboriculture and urban forestry. Arboric. Urban For. 45(1), 26–38 (2019).
    Google Scholar 
    Smiley, E. T. Root pruning and stability of young willow oak. Arboric. Urban For. 34(2), 123–128 (2008).Article 

    Google Scholar 
    Terho, M. & Hallaksela, A.-M. Decay characteristics of hazardous Tilia, Betula, and Acer trees felled by municipal urban tree managers in the Helsinki city area. Forestry 81(2), 151–159. https://doi.org/10.1093/forestry/cpn002 (2008).Article 

    Google Scholar 
    Terho, M. An assessment of decay among urban Tilia, Betula, and Acer trees felled as hazardous. Urban For. Urban Green. 8, 77–85 (2009).Article 

    Google Scholar 
    Koeser, A. K., Klein, R. W., Hasing, G. & Northrop, R. J. Factors driving professional and public urban tree risk perception. Urban For. Urban Green. 14(4), 968–974 (2015).Article 

    Google Scholar 
    Johnson, G. R. Storms over Minnesota. Minn. Shade Tree Advocate 2(1), 1–12 (1999).ADS 

    Google Scholar 
    Zhang, Y., Hussain, A., Deng, J. & Letson, L. Public attitudes toward urban trees and supporting urban tree programs. Environ. Behav. 39(6), 797–814 (2007).Article 

    Google Scholar 
    Suchocka, M., Swoczyna, T., Kosno-Jończy, J. & Kalaji, H. M. Impact of heavy pruning on development and photosynthesis of Tilia cordata Mill Trees. PLoS ONE 16(8), e0256465. https://doi.org/10.1371/journal.pone.0256465 (2021).Article 
    CAS 

    Google Scholar 
    Gilman, E. F. & Knox, G. Pruning type affects ecay and structure of crape myrtle. J. Arboric. 31, 38–47 (2005).
    Google Scholar 
    Gilman, E. F. & Lilly, S. J. Best Management Practices: Tree Pruning (International Society of Arboriculture, 2008).
    Google Scholar 
    Perrette, G., Delagrange, S., Ramirez, J. A. & Messier, C. Optimisingreduction pruning under electrical lines: The influence of tree vitality before pruning on traumatic responses. Urban For. Urban Green. 63, 127139 (2021).Article 

    Google Scholar 
    von Döhren, P. & Haase, D. Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin. Germany. Ecosyst. Serv. 40, 101031 (2019).Article 

    Google Scholar 
    Papandrea, S. F., Cataldo, M. F., Zimbalatti, G. & Proto, A. R. Comparative evaluation of inspection techniques for decay detection in urban trees. Environ. Sci. Proc. 3, 14 (2021).
    Google Scholar 
    McPherson, G. & Peper, P. P. Costs of street tree damage to infrastructure. Arbor. J. 20, 143–160 (1996).Article 

    Google Scholar 
    Mullaney, J., Lucke, T. & Trueman, S. J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 134, 157–166 (2015).Article 

    Google Scholar 
    Vogt, J., Hauer, R. J. & Fischer, B. C. The costs of maintaining and not maintaining the urban forest: A review of the urban forestry and arboriculture literature. Arboric. Urban For. 41(6), 293–323 (2015).
    Google Scholar 
    Mattheck, C. & Breloer, H. Field guide for visual tree assessment (VTA). Arboric. J. 18(1), 1–23 (1994).Article 

    Google Scholar 
    Smiley E.T., Matheny N., & Lilly S. Best management practices: Tree risk assessment. In International Society of Arboriculture, 86 (Champaign, Illinois, 2011).Dunster J.A., Smiley E.T., Matheny N., Lilly S. Tree risk assessment manual. International Society of Arboriculture 194 (Champaign, Illinois, 2013).Li, H., Zhang, X., Li, Z., Wen, J. & Tan, X. A review of research on tree risk assessment methods. Forests 13, 1556 (2022).Article 

    Google Scholar 
    Koeser, A. K., Hauer, R. J., Klein, R. W. & Miesbauer, J. W. Assessment of likelihood of failure using limited visual, basic, and advanced assessment techniques. Urban For. 24, 71–79 (2017).
    Google Scholar 
    TRAQ [URL TRAQandOtherTreeRiskAssessmentMethodsforEvaluationandPrioritizingTreeRiskConditions(forestmetrix.com) (2021).TRAQ Tree Risk Assessment Qualification Application Guide https://www.isa-arbor.com/Portals/0/Assets/PDF/Certification-Applications/TRAQ-App-Guide.pdf (2021).Matheny N. P., Clark J. R. A photographic guide to the evaluation of hazard trees in urban areas. In International Society of Arboriculture 85 (Champaign, 1994).Linhares, C. S. F., Gonçalves, R., Martins, L. M. & Knapic, S. Structural stability of urban trees using visual and instrumental techniques: A review. Forests 12, 1752. https://doi.org/10.3390/f12121752 (2021).Article 

    Google Scholar 
    Ellison, M. Quantified tree risk assessment: Nota De procedimiento V5.2.3 (ES)2018-01 Quantified Tree Risk Assessment Limited (2018).Forbes-Laird, J. THREATS – tree hazard risk evaluation and treatment system – Guidance note for users Retrieved March 27th, 2020 from Forbes-Laird Arboricultural Consultancy http://www.flac.uk.com/wp-content/uploads/2010/07/THREATS-GN-June-2010.pdf, (2010).Guyon C. Cleaver M. Jackson A. Saavedra P. Zambino A. Guide to Identifying, Assessing, and Managing Hazard Trees in Developed Recreational Sites of the Northern Rocky Mountains and the Intermountain West Retrieved March 31st, 2020 from USDA Forest Service, Northern and Intermountain Regions (2017). https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd571021.pdfBlodgett, J. T., Burns, K. S., Worrall J. J.Guide to hazard tree management Retrieved March 31st, 2020 from USDA Forest Service, Rocky Mountain Region (2017) https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd572690.pdf (2017).Norris M. A review of methods used to undertake risk assessments of urban trees. MSc. Thesis (2007).Smiley, E. T., Matheny, N., Lilly, S. Best management practices: Tree risk assessment. International Society of Arboriculture 86 (Champaign, Illinois, 2011).ALARP – Hart, A, 2013, ALARP – Recent Developments, ALARP: Learning from the Experiences of Others, London: IMechE, 4th June 2013 (2013).HSE, 2001 Reducing risks, protecting people, HSE’s decision making process, Liverpool: Health and Safety Executive. (2001).Rinn, F. Holzanatomische Grundlagen mechanischer impuls – Tomographie an Baumen [Wood anatomy background through mechanical pulses – tomografy of trees]. Allg. Forstwirtsch. 8, 450–456 (2003).
    Google Scholar 
    Gilbert, E. A. & Smiley, E. T. Picus sonic tomography for the quantification of decay in white oak (Quercus alba) and hickory (Carya spp.). J. Arboric 30, 277–281 (2004).
    Google Scholar 
    Wang, X. & Allison, R. B. Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboric. Urban For. 34(1), 1–4 (2008).Article 

    Google Scholar 
    Wu, Y. & Shao, Z. Measurement and mechanical analysis of the strains–stresses induced by tree-pulling experiments in tree stems. Trees 30, 675–684 (2016).Article 

    Google Scholar 
    Schindler, D. & Kolbe, S. Assessment of the response of a scots pine tree to effective wind loading. Forests 11(2), 145 (2020).Article 

    Google Scholar 
    Koeser, A. K. & Smiley, E. T. Impact of assessor on tree risk assessment ratings and prescribed mitigation measures. Urban For. 24, 109–115 (2017).
    Google Scholar 
    Klein, R. W. et al. Assessing the consequences of tree failure. Urban Forestry & Urban Greening 65, 127307 (2021).Article 

    Google Scholar 
    Renn, O. Perception of risks. Toxicol. Lett. 149(1), 405–413 (2004).Article 
    CAS 

    Google Scholar 
    Hasan, R., Othman, N. & Ismail, F. Roadside tree management in urban area for public safety and properties. Asian J. Quality Life 3, 10–21834 (2018).Article 

    Google Scholar 
    Williams, V. How do You Decide When to Remove a Tree? (University Of Maryland extension, 2018).Rhoades, H. Filling holes in tree trunks: how to patch a hole in a tree trunk or a hollow tree. https://www.gardeningknowhow.com/ornamental/trees/tgen/patching-tree-hole.htm (2020).Terho, M. & Hallaksela, A. M. Potential hazard characteristics of Tilia, Betula, and Acer trees removed in the Helsinki City Area during 2001–2003. Urban For. Urban Green. 3, 113–120 (2005).Article 

    Google Scholar 
    Nagendra, H. & Gopal, D. Tree diversity, distribution, history and change in urban parks: Studies in Bangalore India. Urban Ecosyst. 14, 211–223 (2011).Article 

    Google Scholar 
    Lindenmayer, D. B., Blanchard, W., Blair, D. & McBurney, L. The road to oblivion – Quantifying pathways in the decline of large old trees. For. Ecol. Manage. 430, 259–264 (2018).Article 

    Google Scholar 
    Lusk, A. C., da Silva Filho, D. F. & Dobbert, L. Pedestrian and cyclist preferences for tree locations by sidewalks and cycle tracks and associated benefits: Worldwide implications from a study in Boston, MA. Cities 106, 102111 (2020).Article 

    Google Scholar 
    Galenieks, A. Importance of urban street tree policies: A comparison of neighboring southern California Cities. Urban For. Urban Green. 22, 105–110 (2017).Article 

    Google Scholar 
    Wessolly, L. Material and structural features of trees Contribution to the Stargardt strength catalogue. In Proceedings of the 15th Bad Goteborg Tree Seminar (1992).Schwarze, F. Diagnosis and prognosis of the development of wood decay in urban trees. Agrios GN 1997 Plant Patology. (Academic Press, San Diego, 2008).Footway. Cycling Embassy Of Great Britain [https://www.cycling-embassy.org.uk/dictionary/footway] (2022).Roloff, A. Handbuch Baumdiagnostik Baum-Korpersprache und Baum-Beurtailung (Ulmer Verlag, 2015).
    Google Scholar 
    Koeser, A. K., Hasing, G., McLean, D., Northrop R. Tree risk assessment methods: A comparison of three common evaluation forms Retrieved March 24th, 2020 from https://edis.ifas.ufl.edu/ep487 (2016).Smiley, E. T. & Kumamoto, H. Qualitative Tree Risk Assessment. 12–18 (2012).Mattheck, C. Trees: The Mechanical Design (Springer, 1991).Book 

    Google Scholar 
    R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Olchowik, J. et al. The ectomycorrhizal community of crimean linden trees in Warsaw, Poland. Forests 11(9), 926 (2020).Article 

    Google Scholar 
    Dupre, S., Thiebaut, B. & Tessier du Cros, E. Morphologie architecture des jeunes hfitres (Fagus sylvatica L.). Influence du milieu variability genetique. Ann. Sci. For. 43, 85–102 (1986).Article 

    Google Scholar 
    Power, S. A., Ashmore, M. R. & Ling, K. A. Recent trends in beech tree health in southern Britain and the influence of soil type. Water Air Soil Pollut. 85, 1293–1298 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Masarovičova, E. & Štefančik, L. Some ecophysiological features in sun and shade leaves of tall beech trees. Biol. Plant 32, 374–387 (1990).Article 

    Google Scholar 
    Nicolini, E. & Caraglio, Y. L’influence de divers caracteres architecturaux sur l’apparition de la fourche chez le Fagus sylvatica, en fonction de l’absence ou de la presence d’un couvert. Botany 72, 1723–1734 (1994).
    Google Scholar 
    van Wassenaer, P. V. & Richardson, M. A review of tree risk assessment using minimally invasive technologies and two case studies. Arboric. J. 32, 275–292 (2009).Article 

    Google Scholar 
    dos Reis, M. N., Gonçalves, R., Brazolin, S. & de Assis Palma, S. S. Strength loss inference due to decay or cavities in tree trunks using tomographic imaging data applied to equations proposed in the literature. Forests 13, 596 (2022).Article 

    Google Scholar 
    Kanea, B., Warrena, P. S. & Lermanab, S. B. A broad scale analysis of tree risk, mitigation and potential habitat for cavity-nesting birds. Urban For. 14, 1137–1146 (2015).
    Google Scholar 
    Wolf, K. L. Roadside urban trees—balancing safety and community values. Arborist News 15, 25–27 (2006).
    Google Scholar 
    Hightshoe, G. L. Native Trees, Shrubs and Vines for Urban and Rural America (Wiley and Sons, 1988).
    Google Scholar 
    Costello, L. R. & Jones, K. S. Western chapter of the international society of arboriculture. In Reducing Infrastructure Damage by The Tree Roots: A Compendium of Strategies. 64–65 (2003).Kjaer, E. D. Introduction part 2. Consequences of ash dieback: Damage level, resistance and resilience of European Ash Forests. Balt. For. 23, 141–143 (2017).
    Google Scholar 
    Timmermann, V., Nagy, N., Hietala, A., Børja, I. & Solheim, H. Progression of ash dieback in Norway related to tree age, disease history and regional aspects. Balt. For. 23, 150–158 (2017).
    Google Scholar 
    Zajączkowska, U., Kaczmarczyk, K. & Liana, J. Birch sap exudation: influence of tree position in a forest stand on birch sap production, trunk wood anatomy and radial bending strength. Silva Fennica 53(2), 10048. https://doi.org/10.14214/sf.10048 (2019).Article 

    Google Scholar 
    Reed, H. J. Veteran Trees: A Guide to Good Management (England Nature, 2000).
    Google Scholar  More