More stories

  • in

    Potential hazard characteristics of trees with hollows, cavities and fruiting bodies growing along pedestrian routes

    Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 30(7), e02149 (2020).Article 

    Google Scholar 
    Li, Z. & Ma, J. Discussing street tree planning based on pedestrian volume using machine learning and computer vision. Build. Environ. 219, 109178 (2022).Article 

    Google Scholar 
    Tan, X. & Shibata, S. Factors influencing street tree health in constrained planting spaces: Evidence from Kyoto City, Japan. Urban For. Urban Green. 67, 127416 (2022).Article 

    Google Scholar 
    Plant, L. & Sipe, N. Adapting and applying evidence gathering techniques for planning and investment in street trees: A case study from Brisbane. Australia. Urban For. Urban Green. 19, 79–87 (2016).Article 

    Google Scholar 
    Dümpelmann, S. Urban trees in times of crisis: Palliatives, mitigators, and resources. One Earth 2, 402–404 (2020).Article 
    ADS 

    Google Scholar 
    Liu, J. & Slik, F. Are street trees friendly to biodiversity?. Landsc. Urban Plan. 218, 104304 (2022).Article 

    Google Scholar 
    Suchocka, M. et al. Old trees are perceived as a valuable element of the municipal forest landscape. PeerJ 10, 12700 (2022).Article 

    Google Scholar 
    Marselle, M. R. et al. Urban Street tree biodiversity and antidepressant prescriptions. Sci. Rep. 10, 22445 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Radu, S. The ecological role of deadwood in natural forests. In Nature Conservation. Environmental Science and Engineering (eds Gafta, D. & Akeroyd, J.) (Springer, 2006).
    Google Scholar 
    Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).Article 

    Google Scholar 
    Ferenc, M., Sedláček, O. & Fuchs, R. How to improve urban greenspace for woodland birds: Site and local-scale determinants of bird species richness. Urban Ecosyst. 17, 625–640 (2014).Article 

    Google Scholar 
    Birch, J. D., Lutz, J. A., Turner, B. L. & Karst, J. Divergent, age-associated fungal communities of Pinus flexilis and Pinus longaeva. For. Ecol. Manage. 494, 119277 (2021).Article 

    Google Scholar 
    Siitonen, J., Ranius, T. The importance of veteran trees for saproxylic insects. In Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (2015).Polyakov, A. Y., Weller, T. J. & Tietje, W. D. Remnant trees increase bat activity and facilitate the use of vineyards by edge-space bats. Agr. Ecosyst. Environ. 281, 56–63 (2019).Article 

    Google Scholar 
    Hall, S. J. G. & Bunce, R. G. H. Mature trees as keystone structures in Holarctic ecosystems – a quantitative species comparison in a northern English park. Plant Ecol. Divers. 4, 243–250 (2011).Article 

    Google Scholar 
    Suchocka, M. et al. Transit versus Nature. Depreciation of environmental values of the road alleys. Case study: Gamerki-Jonkowo, Poland. Sustain. 11(6), 1816 (2019).Article 

    Google Scholar 
    What Are Ancient & Veteran Trees. Ancient Tree Forum | Championing the Biological, Cultural And Heritage Value Of The UK’s Ancient Trees. URL https://www.ancienttreeforum.org.uk/ancient-trees/what-are-ancient-veteran-trees/ (2022).Fay, N. Environmental arboriculture, tree ecology and veteran tree management. Arbor. J. 26, 213–236 (2002).Article 

    Google Scholar 
    Dujesiefken, D., Fay, N., De Groot, J. W. & De Berker, N. Trees—a lifespan approach. Contributions to arboriculture from European practitioners (eds. Witkoś-Gnach, K., Tyszko-Chmielowiec, P.) (Fundacja EkoRozwoju, 2016).Roman, L. How many trees are enough? Tree death and the urban canopy. Scenar. J. 04, 8 (2014).
    Google Scholar 
    Roman, L. A. & Scatena, F. N. Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban For. Urban Green. 10(4), 269–274 (2011).Article 

    Google Scholar 
    Czaja, M., Kołton, A. & Muras, P. The complex issue of urban trees—stress factor accumulation and ecological service possibilities. Forests 11, 932 (2020).Article 

    Google Scholar 
    Olchowik, J., Suchocka, M., Jankowski, P., Malewski, T. & Hilszczańska, D. The ectomycorrhizal community of urban linden trees in Gdańsk, Poland. PlosOne. 16(4), e0237551 (2021).Article 
    CAS 

    Google Scholar 
    Nilsson, K., Konijnendijk, C. C. & Nielsen, A. B. Urban forest function, design and management. In Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) https://doi.org/10.1007/978-1-4419-0851-3_218 (Springer, New York, NY, 2013).Chapter 

    Google Scholar 
    Pokorny, J.D. Urban tree risk management, a Community Guide to Program Design and Implementation. USDA Forest Service Northeastern Area State and Private Forestry (2003).James, K. R., Haritos, N. & Ades, P. K. Mechanical stability of trees under dynamic loads. Am. J. Bot. 93(10), 1361–1369 (2006).Article 

    Google Scholar 
    Hickman, G. W., Perry, E. & Evans, R. Validation of a tree failure evaluation system. J. Arboric. 21(5), 233–234 (1995).
    Google Scholar 
    Klein, R., Koeser, A., Hauer, R., Hansen, G. & Escobedo, F. Risk assessment and risk perception of trees: A review of literature relating to arboriculture and urban forestry. Arboric. Urban For. 45(1), 26–38 (2019).
    Google Scholar 
    Smiley, E. T. Root pruning and stability of young willow oak. Arboric. Urban For. 34(2), 123–128 (2008).Article 

    Google Scholar 
    Terho, M. & Hallaksela, A.-M. Decay characteristics of hazardous Tilia, Betula, and Acer trees felled by municipal urban tree managers in the Helsinki city area. Forestry 81(2), 151–159. https://doi.org/10.1093/forestry/cpn002 (2008).Article 

    Google Scholar 
    Terho, M. An assessment of decay among urban Tilia, Betula, and Acer trees felled as hazardous. Urban For. Urban Green. 8, 77–85 (2009).Article 

    Google Scholar 
    Koeser, A. K., Klein, R. W., Hasing, G. & Northrop, R. J. Factors driving professional and public urban tree risk perception. Urban For. Urban Green. 14(4), 968–974 (2015).Article 

    Google Scholar 
    Johnson, G. R. Storms over Minnesota. Minn. Shade Tree Advocate 2(1), 1–12 (1999).ADS 

    Google Scholar 
    Zhang, Y., Hussain, A., Deng, J. & Letson, L. Public attitudes toward urban trees and supporting urban tree programs. Environ. Behav. 39(6), 797–814 (2007).Article 

    Google Scholar 
    Suchocka, M., Swoczyna, T., Kosno-Jończy, J. & Kalaji, H. M. Impact of heavy pruning on development and photosynthesis of Tilia cordata Mill Trees. PLoS ONE 16(8), e0256465. https://doi.org/10.1371/journal.pone.0256465 (2021).Article 
    CAS 

    Google Scholar 
    Gilman, E. F. & Knox, G. Pruning type affects ecay and structure of crape myrtle. J. Arboric. 31, 38–47 (2005).
    Google Scholar 
    Gilman, E. F. & Lilly, S. J. Best Management Practices: Tree Pruning (International Society of Arboriculture, 2008).
    Google Scholar 
    Perrette, G., Delagrange, S., Ramirez, J. A. & Messier, C. Optimisingreduction pruning under electrical lines: The influence of tree vitality before pruning on traumatic responses. Urban For. Urban Green. 63, 127139 (2021).Article 

    Google Scholar 
    von Döhren, P. & Haase, D. Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin. Germany. Ecosyst. Serv. 40, 101031 (2019).Article 

    Google Scholar 
    Papandrea, S. F., Cataldo, M. F., Zimbalatti, G. & Proto, A. R. Comparative evaluation of inspection techniques for decay detection in urban trees. Environ. Sci. Proc. 3, 14 (2021).
    Google Scholar 
    McPherson, G. & Peper, P. P. Costs of street tree damage to infrastructure. Arbor. J. 20, 143–160 (1996).Article 

    Google Scholar 
    Mullaney, J., Lucke, T. & Trueman, S. J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 134, 157–166 (2015).Article 

    Google Scholar 
    Vogt, J., Hauer, R. J. & Fischer, B. C. The costs of maintaining and not maintaining the urban forest: A review of the urban forestry and arboriculture literature. Arboric. Urban For. 41(6), 293–323 (2015).
    Google Scholar 
    Mattheck, C. & Breloer, H. Field guide for visual tree assessment (VTA). Arboric. J. 18(1), 1–23 (1994).Article 

    Google Scholar 
    Smiley E.T., Matheny N., & Lilly S. Best management practices: Tree risk assessment. In International Society of Arboriculture, 86 (Champaign, Illinois, 2011).Dunster J.A., Smiley E.T., Matheny N., Lilly S. Tree risk assessment manual. International Society of Arboriculture 194 (Champaign, Illinois, 2013).Li, H., Zhang, X., Li, Z., Wen, J. & Tan, X. A review of research on tree risk assessment methods. Forests 13, 1556 (2022).Article 

    Google Scholar 
    Koeser, A. K., Hauer, R. J., Klein, R. W. & Miesbauer, J. W. Assessment of likelihood of failure using limited visual, basic, and advanced assessment techniques. Urban For. 24, 71–79 (2017).
    Google Scholar 
    TRAQ [URL TRAQandOtherTreeRiskAssessmentMethodsforEvaluationandPrioritizingTreeRiskConditions(forestmetrix.com) (2021).TRAQ Tree Risk Assessment Qualification Application Guide https://www.isa-arbor.com/Portals/0/Assets/PDF/Certification-Applications/TRAQ-App-Guide.pdf (2021).Matheny N. P., Clark J. R. A photographic guide to the evaluation of hazard trees in urban areas. In International Society of Arboriculture 85 (Champaign, 1994).Linhares, C. S. F., Gonçalves, R., Martins, L. M. & Knapic, S. Structural stability of urban trees using visual and instrumental techniques: A review. Forests 12, 1752. https://doi.org/10.3390/f12121752 (2021).Article 

    Google Scholar 
    Ellison, M. Quantified tree risk assessment: Nota De procedimiento V5.2.3 (ES)2018-01 Quantified Tree Risk Assessment Limited (2018).Forbes-Laird, J. THREATS – tree hazard risk evaluation and treatment system – Guidance note for users Retrieved March 27th, 2020 from Forbes-Laird Arboricultural Consultancy http://www.flac.uk.com/wp-content/uploads/2010/07/THREATS-GN-June-2010.pdf, (2010).Guyon C. Cleaver M. Jackson A. Saavedra P. Zambino A. Guide to Identifying, Assessing, and Managing Hazard Trees in Developed Recreational Sites of the Northern Rocky Mountains and the Intermountain West Retrieved March 31st, 2020 from USDA Forest Service, Northern and Intermountain Regions (2017). https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd571021.pdfBlodgett, J. T., Burns, K. S., Worrall J. J.Guide to hazard tree management Retrieved March 31st, 2020 from USDA Forest Service, Rocky Mountain Region (2017) https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd572690.pdf (2017).Norris M. A review of methods used to undertake risk assessments of urban trees. MSc. Thesis (2007).Smiley, E. T., Matheny, N., Lilly, S. Best management practices: Tree risk assessment. International Society of Arboriculture 86 (Champaign, Illinois, 2011).ALARP – Hart, A, 2013, ALARP – Recent Developments, ALARP: Learning from the Experiences of Others, London: IMechE, 4th June 2013 (2013).HSE, 2001 Reducing risks, protecting people, HSE’s decision making process, Liverpool: Health and Safety Executive. (2001).Rinn, F. Holzanatomische Grundlagen mechanischer impuls – Tomographie an Baumen [Wood anatomy background through mechanical pulses – tomografy of trees]. Allg. Forstwirtsch. 8, 450–456 (2003).
    Google Scholar 
    Gilbert, E. A. & Smiley, E. T. Picus sonic tomography for the quantification of decay in white oak (Quercus alba) and hickory (Carya spp.). J. Arboric 30, 277–281 (2004).
    Google Scholar 
    Wang, X. & Allison, R. B. Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboric. Urban For. 34(1), 1–4 (2008).Article 

    Google Scholar 
    Wu, Y. & Shao, Z. Measurement and mechanical analysis of the strains–stresses induced by tree-pulling experiments in tree stems. Trees 30, 675–684 (2016).Article 

    Google Scholar 
    Schindler, D. & Kolbe, S. Assessment of the response of a scots pine tree to effective wind loading. Forests 11(2), 145 (2020).Article 

    Google Scholar 
    Koeser, A. K. & Smiley, E. T. Impact of assessor on tree risk assessment ratings and prescribed mitigation measures. Urban For. 24, 109–115 (2017).
    Google Scholar 
    Klein, R. W. et al. Assessing the consequences of tree failure. Urban Forestry & Urban Greening 65, 127307 (2021).Article 

    Google Scholar 
    Renn, O. Perception of risks. Toxicol. Lett. 149(1), 405–413 (2004).Article 
    CAS 

    Google Scholar 
    Hasan, R., Othman, N. & Ismail, F. Roadside tree management in urban area for public safety and properties. Asian J. Quality Life 3, 10–21834 (2018).Article 

    Google Scholar 
    Williams, V. How do You Decide When to Remove a Tree? (University Of Maryland extension, 2018).Rhoades, H. Filling holes in tree trunks: how to patch a hole in a tree trunk or a hollow tree. https://www.gardeningknowhow.com/ornamental/trees/tgen/patching-tree-hole.htm (2020).Terho, M. & Hallaksela, A. M. Potential hazard characteristics of Tilia, Betula, and Acer trees removed in the Helsinki City Area during 2001–2003. Urban For. Urban Green. 3, 113–120 (2005).Article 

    Google Scholar 
    Nagendra, H. & Gopal, D. Tree diversity, distribution, history and change in urban parks: Studies in Bangalore India. Urban Ecosyst. 14, 211–223 (2011).Article 

    Google Scholar 
    Lindenmayer, D. B., Blanchard, W., Blair, D. & McBurney, L. The road to oblivion – Quantifying pathways in the decline of large old trees. For. Ecol. Manage. 430, 259–264 (2018).Article 

    Google Scholar 
    Lusk, A. C., da Silva Filho, D. F. & Dobbert, L. Pedestrian and cyclist preferences for tree locations by sidewalks and cycle tracks and associated benefits: Worldwide implications from a study in Boston, MA. Cities 106, 102111 (2020).Article 

    Google Scholar 
    Galenieks, A. Importance of urban street tree policies: A comparison of neighboring southern California Cities. Urban For. Urban Green. 22, 105–110 (2017).Article 

    Google Scholar 
    Wessolly, L. Material and structural features of trees Contribution to the Stargardt strength catalogue. In Proceedings of the 15th Bad Goteborg Tree Seminar (1992).Schwarze, F. Diagnosis and prognosis of the development of wood decay in urban trees. Agrios GN 1997 Plant Patology. (Academic Press, San Diego, 2008).Footway. Cycling Embassy Of Great Britain [https://www.cycling-embassy.org.uk/dictionary/footway] (2022).Roloff, A. Handbuch Baumdiagnostik Baum-Korpersprache und Baum-Beurtailung (Ulmer Verlag, 2015).
    Google Scholar 
    Koeser, A. K., Hasing, G., McLean, D., Northrop R. Tree risk assessment methods: A comparison of three common evaluation forms Retrieved March 24th, 2020 from https://edis.ifas.ufl.edu/ep487 (2016).Smiley, E. T. & Kumamoto, H. Qualitative Tree Risk Assessment. 12–18 (2012).Mattheck, C. Trees: The Mechanical Design (Springer, 1991).Book 

    Google Scholar 
    R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Olchowik, J. et al. The ectomycorrhizal community of crimean linden trees in Warsaw, Poland. Forests 11(9), 926 (2020).Article 

    Google Scholar 
    Dupre, S., Thiebaut, B. & Tessier du Cros, E. Morphologie architecture des jeunes hfitres (Fagus sylvatica L.). Influence du milieu variability genetique. Ann. Sci. For. 43, 85–102 (1986).Article 

    Google Scholar 
    Power, S. A., Ashmore, M. R. & Ling, K. A. Recent trends in beech tree health in southern Britain and the influence of soil type. Water Air Soil Pollut. 85, 1293–1298 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Masarovičova, E. & Štefančik, L. Some ecophysiological features in sun and shade leaves of tall beech trees. Biol. Plant 32, 374–387 (1990).Article 

    Google Scholar 
    Nicolini, E. & Caraglio, Y. L’influence de divers caracteres architecturaux sur l’apparition de la fourche chez le Fagus sylvatica, en fonction de l’absence ou de la presence d’un couvert. Botany 72, 1723–1734 (1994).
    Google Scholar 
    van Wassenaer, P. V. & Richardson, M. A review of tree risk assessment using minimally invasive technologies and two case studies. Arboric. J. 32, 275–292 (2009).Article 

    Google Scholar 
    dos Reis, M. N., Gonçalves, R., Brazolin, S. & de Assis Palma, S. S. Strength loss inference due to decay or cavities in tree trunks using tomographic imaging data applied to equations proposed in the literature. Forests 13, 596 (2022).Article 

    Google Scholar 
    Kanea, B., Warrena, P. S. & Lermanab, S. B. A broad scale analysis of tree risk, mitigation and potential habitat for cavity-nesting birds. Urban For. 14, 1137–1146 (2015).
    Google Scholar 
    Wolf, K. L. Roadside urban trees—balancing safety and community values. Arborist News 15, 25–27 (2006).
    Google Scholar 
    Hightshoe, G. L. Native Trees, Shrubs and Vines for Urban and Rural America (Wiley and Sons, 1988).
    Google Scholar 
    Costello, L. R. & Jones, K. S. Western chapter of the international society of arboriculture. In Reducing Infrastructure Damage by The Tree Roots: A Compendium of Strategies. 64–65 (2003).Kjaer, E. D. Introduction part 2. Consequences of ash dieback: Damage level, resistance and resilience of European Ash Forests. Balt. For. 23, 141–143 (2017).
    Google Scholar 
    Timmermann, V., Nagy, N., Hietala, A., Børja, I. & Solheim, H. Progression of ash dieback in Norway related to tree age, disease history and regional aspects. Balt. For. 23, 150–158 (2017).
    Google Scholar 
    Zajączkowska, U., Kaczmarczyk, K. & Liana, J. Birch sap exudation: influence of tree position in a forest stand on birch sap production, trunk wood anatomy and radial bending strength. Silva Fennica 53(2), 10048. https://doi.org/10.14214/sf.10048 (2019).Article 

    Google Scholar 
    Reed, H. J. Veteran Trees: A Guide to Good Management (England Nature, 2000).
    Google Scholar  More

  • in

    Varied response of carbon dioxide emissions to warming in oxic, anoxic and transitional soil layers in a drained peatland

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
    Google Scholar 
    Joosten, H., Tapio-BiströmM, L. & Susanna, T. Peatlands: guidance for climate change mitigation through conservation, rehabilitation and sustainable use. Food and Agriculture Organization of the United Nations and Wetlands International. FAO (2012).IUCN. Issues brief: peatlands and climate change. www.icun.org (2017).Joosten, H. Peatlands, Climate Change Mitigation and Biodiversity Conservation. An Issue Brief on the Importance of Peatlands for Carbon and Biodiversity Conservation and the Role of Drained Peatlands as Greenhouse Gas Emission Hotspots (Nordic Council of Ministers, 2015).Moore, T. R. & Knowles, R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci. 69, 33–38 (1989).CAS 

    Google Scholar 
    Tfaily, M. M. et al. Organic matter transformation in the peat column at Marcell Experimental Forest: humification and vertical stratification. J. Geophys. Res. Biogeosci. 119, 661–675 (2014).CAS 

    Google Scholar 
    Clymo, R. S. & Bryant, C. L. Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim. Cosmochim. Acta 72, 2048–2066 (2008).CAS 

    Google Scholar 
    Clymo, R. S. The limits to peat bog growth. Philos. Trans. R. Soc. B 303, 605–654 (1984).
    Google Scholar 
    Qin, S. et al. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Sci. Adv. 5, eaau1218. 1211–1219 (2019).
    Google Scholar 
    Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).CAS 

    Google Scholar 
    Luo, Z. K., Wang, G. C. & Wang, E. L. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat. Commun. 10, 3688 (2019).
    Google Scholar 
    Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).CAS 

    Google Scholar 
    Sihi, D., Inglett, P. W. & Inglett, K. S. Carbon quality and nutrient status drive the temperature sensitivity of organic matter decomposition in subtropical peat soils. Biogeochemistry 131, 103–119 (2016).CAS 

    Google Scholar 
    Wang, Q., Liu, S. & Tian, P. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Glob. Chang. Biol. 24, 2841–2849 (2018).
    Google Scholar 
    Cheng, L. et al. Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME J. 11, 1825–1835 (2017).
    Google Scholar 
    Luan, J., Wu, J., Liu, S., Roulet, N. & Wang, M. Soil nitrogen determines greenhouse gas emissions from northern peatlands under concurrent warming and vegetation shifting. Commun. Biol. 2, 132 (2019).
    Google Scholar 
    Meyer, N. et al. Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil. Soil Biol. Biochem. 119, 152–161 (2018).CAS 

    Google Scholar 
    Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).CAS 

    Google Scholar 
    Moni, C. et al. Temperature response of soil organic matter mineralisation in arctic soil profiles. Soil Biol. Biochem. 88, 236–246 (2015).CAS 

    Google Scholar 
    Xu, X., Sherry, R. A., Niu, S., Zhou, J. & Luo, Y. Long-term experimental warming decreased labile soil organic carbon in a tallgrass prairie. Plant Soil 361, 307–315 (2012).CAS 

    Google Scholar 
    Broder, T., Blodau, C., Biester, H. & Knorr, K. H. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9, 1479–1491 (2012).CAS 

    Google Scholar 
    Adamczyk, M., Perez-Mon, C., Gunz, S. & Frey, B. Strong shifts in microbial community structure are associated with increased litter input rather than temperature in High Arctic soils. Soil Biol. Biochem. 151, 108054 (2020).CAS 

    Google Scholar 
    Hug, L. A. et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1, 22 (2013).
    Google Scholar 
    Yun, J. L., Ju, Y. W., Deng, Y. C. & Zhang, H. X. Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China. Microb. Ecol. 68, 360–369 (2014).
    Google Scholar 
    Zhong, Q. et al. Water table drawdown shapes the depth-dependent variations in prokaryotic diversity and structure in Zoige peatlands. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix049 (2017).Article 

    Google Scholar 
    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).CAS 

    Google Scholar 
    Thiessen, S., Gleixner, G., Wutzler, T. & Reichstein, M. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass – An incubation study. Soil Biol. Biochem. 57, 739–748 (2013).CAS 

    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8, 885–899 (2018).CAS 

    Google Scholar 
    Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Chang. Biol. 18, 1781–1796 (2012).
    Google Scholar 
    Conant, R. T. et al. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Global Chang. Biol. 17, 3392–3404 (2011).
    Google Scholar 
    Hietz, P. et al. Long-term change in the nitrogen cycle of tropical forests. Science 4, 334 (2011).
    Google Scholar 
    Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Agren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).CAS 

    Google Scholar 
    Sistla, S. A., Asao, S. & Schimel, J. P. Detecting microbial N-limitation in tussock tundra soil: Implications for Arctic soil organic carbon cycling. Soil Biol. Biochem. 55, 78–84 (2012).CAS 

    Google Scholar 
    Chen, L. et al. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat. Commun. 9, 3951 (2018).
    Google Scholar 
    Soong, J. L. et al. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci. Adv. 7, eabd1343 (2021).Chen, L. et al. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat. Commun. 7, 13046 (2016).CAS 

    Google Scholar 
    Girkin, N. T. et al. Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat. Biogeochemistry 147, 87–97 (2019).
    Google Scholar 
    Swails, E. et al. Will CO2 emissions from drained tropical peatlands decline over time? Links between soil organic matter quality, nutrients, and C mineralization rates. Ecosystems 21, 868–885 (2017).
    Google Scholar 
    Ismawi, S., Gandaseca, S. & Ahmed, O. Effects of deforestation on soil major macro-nutrient and other selected chemical properties of secondary tropical peat swamp forest. Int. J. Phys. Sci. 7, 2225–2228 (2012).CAS 

    Google Scholar 
    Kimura, S., Melling, L. & Goh, K. Influence of soil aggregate size on greenhouse gas emission and uptake rate from tropical peat soil in forest and different oil palm development years. Geoderma 185, 1–5 (2012).
    Google Scholar 
    Takakai, F. et al. Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia. Soil Sci. Plant Nutr. 52, 662–674 (2006).CAS 

    Google Scholar 
    Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E. M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Chang. Biol. 19, 1160–1172 (2013).
    Google Scholar 
    Treat, C. C. et al. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Glob. Chang. Biol. 20, 2674–2686 (2014).CAS 

    Google Scholar 
    Hobbie, S. E., Schimel, J. P., Trumbore, S. E. & Randerson, J. Controls over carbon storage and tureover in high-latitude soils. Glob. Chang. Biol. 6, 196–210 (2000).
    Google Scholar 
    Keller, J. K., Bauers, A. K., Bridgham, S. D., Kellogg, L. E. & Iversen, C. M. Nutrient control of microbial carbon cycling along an ombrotrophic-minerotrophic peatland gradient. J. Geophys. Res. https://doi.org/10.1029/2005jg000152 (2006).Chen, H. et al. A historical overview about basic issues and studies of mires (in Chinese). Sci. Sin. 51, 15–26 (2020).
    Google Scholar 
    Ridl, J. et al. Plants rather than mineral fertilization shape microbial community structure and functional potential in legacy contaminated soil. Front. Microbiol. 7, 1–10 (2016).
    Google Scholar 
    Kane, E. S. et al. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen. Soil Biol. Biochem. 58, 50–60 (2013).CAS 

    Google Scholar 
    Carrell, A. A. et al. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Glob. Chang. Biol. 25, 2993–3004 (2019).
    Google Scholar 
    Lamit, L. J. et al. Patterns and drivers of fungal community depth stratification in Sphagnum peat. FEMS Microbiol. Ecol. 93, fix082 (2017).
    Google Scholar 
    Harrison, R. B., Footen, P. W. & Strahm, B. D. Deep soil horizons: contribution and importance to soil carbon pools and in assessing whole-ecosystem response to management and global change. Forest Sci. 57, 67–76 (2011).
    Google Scholar 
    Krüger, J. P., Leifeld, J., Glatzel, S., Szidat, S. & Alewell, C. Biogeochemical indicators of peatland degradation – a case study of a temperate bog in northern Germany. Biogeosciences 12, 2861–2871 (2015).
    Google Scholar 
    Franzén, L. G. Increased decomposition of subsurface peat in Swedish raised bogs: are temperate peatlands still net sinks of carbon? Mires Peat 1, 3 (2006).
    Google Scholar 
    Eilers, K. G., Lauber, C. L., Knight, R. & Fierer, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42, 896–903 (2010).CAS 

    Google Scholar 
    de Graaff, M. A., Jastrow, J. D., Gillette, S., Johns, A. & Wullschleger, S. D. Differential priming of soil carbon driven by soil depth and root impacts on carbon availability. Soil Biol. Biochem. 69, 147–156 (2014).
    Google Scholar 
    Peay, K. G., Kennedy, P. G. & Brun, T. D. Fungal community ecology: a hybrid beast with a molecular master. BioScience 58, 799–810 (2008).
    Google Scholar 
    Gillabel, J., Cebrian, B., Six, J. & Merckx, R. Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob. Chang. Biol. 16, 2789–2798 (2010).
    Google Scholar 
    Pries, C. E. H., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).
    Google Scholar 
    Hicks Pries, C. E., Schuur, E. A. G. & Crummer, K. G. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ13C and ∆14C. Global Chang. Biol. 19, 649–661 (2013).
    Google Scholar 
    Tian, J. et al. Aerobic environments in combination with substrate additions to soil significantly reshape depth-dependent microbial distribution patterns in Zoige peatlands, China. Appl.Soil Ecol. 170, 104252 (2022).
    Google Scholar 
    Feng, W. et al. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming. Glob. Chang. Biol. 00, 1–12 (2017).
    Google Scholar 
    Feng, W. et al. Methodological uncertainty in estimating carbon turnover times of soil fractions. Soil Biol. Biochem. 100, 118–124 (2016).CAS 

    Google Scholar 
    Liang, J. et al. Methods for estimating temperature sensitivity of soil organic matter based on incubation data: A comparative evaluation. Soil Biol. Biochem. 80, 127–135 (2015).CAS 

    Google Scholar 
    Cai, A., Feng, W., Zhang, W. & Xu, M. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China. J. Environ. Manag. 172, 2–9 (2016).CAS 

    Google Scholar 
    Liu, L. et al. Response of anaerobic mineralization of different depths peat carbon to warming on Zoige plateau. Geoderma 337, 1218–1226 (2019).CAS 

    Google Scholar 
    Waldrop, M. et al. Molecular investigations into a globally important carbon pool: permafrost protected carbon in Alaskan soils. Glob. Chang. Biol. 16, 2543–2554 (2014).
    Google Scholar 
    Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S. & Richter, A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front. Microbiol. 5, 22 (2014).
    Google Scholar 
    Blagodatskaya, E. & Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol. Fertil. Soils 45, 115–131 (2008).
    Google Scholar 
    Chen, H. et al. The carbon stock of alpine peatlands on the Qinghai–Tibetan Plateau during the Holocene and their future fate. Quat. Sci. Rev. 95, 151–158 (2014).
    Google Scholar 
    Sun, G. A study on the mineral formation law, classifictation and reserves of the peat in the Rouergai Plateau. J. Nat. Res. 7, 334–345 (1992).
    Google Scholar 
    Liu, L. et al. Responses of peat carbon at different depths to simulated warming and oxidizing. Sci. Total Environ. 548-549, 429–440 (2016).CAS 

    Google Scholar 
    Liu, L. et al. Water table drawdown reshapes soil physicochemical characteristics in Zoige peatlands. Catena 170, 119–128 (2018).CAS 

    Google Scholar 
    Liu, L. et al. Carbon stock stability in drained peatland after simulated plant carbon addition: Strong dependence on deeper soil. Sci. Total Environ. 848, 157539 (2022).CAS 

    Google Scholar 
    Yang, Z. et al. Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China. Environ. Monit. Assess 188, 678 (2016).
    Google Scholar 
    Simpson, M. J. & Simpson, A. J. The chemical ecology of soil organic matter molecular constituents. J. Chem. Ecol. 38, 768–784 (2012).CAS 

    Google Scholar 
    Lalonde, K., Mucci, A., Ouellet, A. & Gelinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).CAS 

    Google Scholar 
    Deforest, J. L., zak, D. R., Pregitzer, K. S. & Burtonf, A. J. Atomspheric nitrate deposition and enhanced dissolved organic carbon leaching: test of a potential mechanism. Soil Sci. Soc. Am. J. 69, 1233–1237 (2005).CAS 

    Google Scholar 
    Schadel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Chang. Biol. 20, 641–652 (2014).
    Google Scholar 
    Bell, M. & Lawrence, D. Soil carbon sequestration – myths and mysteries. Department of Primary Industries and Fisheries, Queensland Government (2009).Schadel, C., Luo, Y., David Evans, R., Fei, S. & Schaeffer, S. M. Separating soil CO2 efflux into C-pool-specific decay rates via inverse analysis of soil incubation data. Oecologia 171, 721–732 (2013).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).CAS 

    Google Scholar 
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 

    Google Scholar 
    White, T. J. in PCR-Protocols: A Guide to Methods and Applications (Academic Press, 1990).Bell, C. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 81, e50961 (2013).
    Google Scholar 
    DeForest, J. L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biol. Biochem. 41, 1180–1186 (2009).CAS 

    Google Scholar 
    Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 29, 535–562 (2001).CAS 

    Google Scholar 
    Trumbore, S. E. Potential responses of soil organic carbon to global environmental change. Proc. Natl Acad. Sci. USA 94, 8284–8291 (1997).CAS 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org (2017).Oksanen, J. et al. vegan: community ecology package. R Packag version 24-1 (2016).Asshauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).CAS 

    Google Scholar  More

  • in

    Ecological study of ambient air pollution exposure and mortality of cardiovascular diseases in elderly

    Franchini, M. & Mannucci, P. M. Air pollution and cardiovascular disease. Thromb. Res. 129, 230–234 (2012).Article 
    CAS 

    Google Scholar 
    Langrish, J. P. et al. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease. Environ. Health Perspect. 120, 367–372 (2012).Article 
    CAS 

    Google Scholar 
    Tanwar, V., Katapadi, A., Adelstein, J. M., Grimmer, J. A. & Wold, L. E. Cardiac pathophysiology in response to environmental stress: A current review. Curr. Opin. Physiol. 1, 198–205 (2018).Article 

    Google Scholar 
    Franchini, M. & Mannucci, P. M. Particulate air pollution and cardiovascular risk: short-term and long-term effects. in Seminars in Thrombosis and Hemostasis. Vol. 35. 665–670 (© Thieme Medical Publishers, 2009).Shah, A. S. V. et al. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 382, 1039–1048 (2013).Article 
    CAS 

    Google Scholar 
    Cesaroni, G. et al. Long term exposure to ambient air pollution and incidence of acute coronary events: Prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 348, f7412 (2014).Article 

    Google Scholar 
    Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378 (2010).Article 
    CAS 

    Google Scholar 
    Héroux, M.-E. et al. Quantifying the health impacts of ambient air pollutants: Recommendations of a WHO/Europe project. Int. J. Public Health 60, 619–627 (2015).Article 

    Google Scholar 
    An, Z., Jin, Y., Li, J., Li, W. & Wu, W. Impact of particulate air pollution on cardiovascular health. Curr. Allergy Asthma Rep. 18, 1–7 (2018).Article 
    CAS 

    Google Scholar 
    Zanobetti, A., Baccarelli, A. & Schwartz, J. Gene-air pollution interaction and cardiovascular disease: A review. Prog. Cardiovasc. Dis. 53, 344–352 (2011).Article 
    CAS 

    Google Scholar 
    Liang, R. et al. Effect of exposure to PM2.5 on blood pressure: A systematic review and meta-analysis. J. Hypertens. 32, 2130–2141 (2014).Article 
    CAS 

    Google Scholar 
    Jerrett, M. et al. Traffic-related air pollution and obesity formation in children: A longitudinal, multilevel analysis. Environ. Heal. 13, 49 (2014).Article 

    Google Scholar 
    McConnell, R. et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: The Southern California Children’s Health Study. Environ. Health Perspect. 123, 360–366 (2015).Article 

    Google Scholar 
    Renzi, M. et al. Air pollution and occurrence of type 2 diabetes in a large cohort study. Environ. Int. 112, 68–76 (2018).Article 
    CAS 

    Google Scholar 
    Jomova, K. et al. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 31, 95–107 (2011).CAS 

    Google Scholar 
    Al-Kindi, S. G., Brook, R. D., Biswal, S. & Rajagopalan, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 17, 656–672 (2020).Article 

    Google Scholar 
    Noroozian, M. The elderly population in iran: An ever growing concern in the health system. Iran. J. Psychiatry Behav. Sci. 6, 1 (2012).
    Google Scholar 
    Chokshi, D. A. & Farley, T. A. The cost-effectiveness of environmental approaches to disease prevention. N. Engl. J. Med. 367, 295–297 (2012).Article 
    CAS 

    Google Scholar 
    Nieuwenhuijsen, M. J. Influence of urban and transport planning and the city environment on cardiovascular disease. Nat. Rev. Cardiol. 15, 432–438 (2018).Article 

    Google Scholar 
    Barnett, A. G. et al. The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in Australian and New Zealand cities. Environ. Health Perspect. 114, 1018–1023 (2006).Article 
    CAS 

    Google Scholar 
    Koken, P. J. M. et al. Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ. Health Perspect. 111, 1312–1317 (2003).Article 

    Google Scholar 
    Institute for Health Metrics and Evaluation. GBD 2019. (University of Washington, 2022).IHME. GBD 2019 Data and Tools Overview. (University of Washington, 2020).Dicker, D. et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1684–1735 (2018).Article 

    Google Scholar 
    Miller, D. C. & Salkind, N. J. Handbook of Research Design and Social Measurement (Sage, 2002).Book 

    Google Scholar 
    Rosenthal, F. S., Carney, J. P. & Olinger, M. L. Out-of-hospital cardiac arrest and airborne fine particulate matter: A case–crossover analysis of emergency medical services data in Indianapolis, Indiana. Environ. Health Perspect. 116, 631–636 (2008).Article 

    Google Scholar 
    Ensor, K. B., Raun, L. H. & Persse, D. A case-crossover analysis of out-of-hospital cardiac arrest and air pollution. Circulation 127, 1192–1199 (2013).Article 
    CAS 

    Google Scholar 
    Forastiere, F. et al. A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am. J. Respir. Crit. Care Med. 172, 1549–1555 (2005).Article 

    Google Scholar 
    Levy, D. et al. A case-crossover analysis of particulate matter air pollution and out-of-hospital primary cardiac arrest. Epidemiology 12, 193–199 (2001).Article 
    CAS 

    Google Scholar 
    Silverman, R. A. et al. Association of ambient fine particles with out-of-hospital cardiac arrests in New York City. Am. J. Epidemiol. 172, 917–923 (2010).Article 

    Google Scholar 
    Naghavi, M. et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1151–1210 (2017).Article 

    Google Scholar 
    Berend, N. Contribution of air pollution to COPD and small airway dysfunction. Respirology 21, 237–244 (2016).Article 

    Google Scholar 
    Vahedian, M., Khanjani, N., Mirzaee, M. & Koolivand, A. Associations of short-term exposure to air pollution with respiratory hospital admissions in Arak, Iran. J. Environ. Health Sci. Eng. 15, 17 (2017).Yaser, H. S., Narges, K., Yaser, S. & Rasoul, M. Air pollution and cardiovascular mortality in Kerman from 2006 to 2011. Am. J. Cardiovasc. Dis. Res. 2, 27–30 (2014).
    Google Scholar 
    Khaefi, M. et al. Association of particulate matter impact on prevalence of chronic obstructive pulmonary disease in Ahvaz, southwest Iran during 2009–2013. Aerosol Air Qual. Res. 17, 230–237 (2017).Article 
    CAS 

    Google Scholar 
    Khaniabadi, Y. O. et al. Exposure to PM10, NO2, and O3 and impacts on human health. Environ. Sci. Pollut. Res. Int. 24, 2781–2789 (2017).Article 
    CAS 

    Google Scholar 
    Momtazan, M. et al. An investigation of particulate matter and relevant cardiovascular risks in Abadan and Khorramshahr in 2014–2016. Toxin Rev. 38, 1–8 (2018).Martinelli, N., Olivieri, O. & Girelli, D. Air particulate matter and cardiovascular disease: A narrative review. Eur. J. Intern. Med. 24, 295–302 (2013).Article 
    CAS 

    Google Scholar 
    Khaniabadi, Y. O. et al. Mortality and morbidity due to ambient air pollution in Iran. Clin. Epidemiol. Glob. Health 7, 222–227 (2019).Article 

    Google Scholar 
    Almeida-Silva, M. et al. Exposure and dose assessment to particle components among an elderly population. Atmos. Environ. 102, 156–166 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Suh, H. H., Zanobetti, A., Schwartz, J. & Coull, B. A. Chemical properties of air pollutants and cause-specific hospital admissions among the elderly in Atlanta, Georgia. Environ. Health Perspect. 119, 1421–1428 (2011).Article 

    Google Scholar 
    Chien, L.-C., Yang, C.-H. & Yu, H.-L. Estimated effects of Asian dust storms on spatiotemporal distributions of clinic visits for respiratory diseases in Taipei children (Taiwan). Environ. Health Perspect. 120, 1215–1220 (2012).Article 

    Google Scholar 
    Khaniabadi, Y. O. et al. Chronic obstructive pulmonary diseases related to outdoor PM10, O3, SO2, and NO2 in a heavily polluted megacity of Iran. Environ. Sci. Pollut. Res. 25, 17726–17734 (2018).Article 
    CAS 

    Google Scholar 
    Omidi Khaniabadi, Y. et al. Air quality modeling for health risk assessment of ambient PM10, PM2.5 and SO2 in Iran. Hum. Ecol. Risk Assess. Int. J. 25, 1298–1310 (2019).Newell, K., Kartsonaki, C., Lam, K. B. H. & Kurmi, O. P. Cardiorespiratory health effects of particulate ambient air pollution exposure in low-income and middle-income countries: A systematic review and meta-analysis. Lancet Planet. Health 1, e368–e380 (2017).Article 

    Google Scholar 
    Dominici, F. et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295, 1127–1134 (2006).Article 
    CAS 

    Google Scholar 
    Qiu, H. et al. Inflammatory and oxidative stress responses of healthy elders to solar-assisted large-scale cleaning system (SALSCS) and changes in ambient air pollution: A quasi-interventional study in Xi’an, China. Sci. Total Environ. 806, 151217 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Fiordelisi, A. et al. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail. Rev. 22, 337–347 (2017).Article 
    CAS 

    Google Scholar 
    Yang, D., Yang, X., Deng, F. & Guo, X. Ambient air pollution and biomarkers of health effect. Ambient Air Pollut. Health Impact China 1017, 59–102 (2017).Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).Article 

    Google Scholar 
    Newby, D. E. et al. Expert position paper on air pollution and cardiovascular disease. Eur. Heart J. 36, 83–93 (2015).Article 
    CAS 

    Google Scholar 
    Brook, R. D., Newby, D. E. & Rajagopalan, S. Air pollution and cardiometabolic disease: An update and call for clinical trials. Am. J. Hypertens. 31, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Kang, S.-H. et al. Ambient air pollution and out-of-hospital cardiac arrest. Int. J. Cardiol. 203, 1086–1092 (2016).Article 

    Google Scholar 
    Thurston, G. D. et al. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ. Health Perspect. 124, 484–490 (2016).Article 

    Google Scholar 
    Gallagher, L. G. et al. Applying a moving total mortality count to the cities in the NMMAPS database to estimate the mortality effects of particulate matter air pollution. Circulation 172, 872–879 (2010).
    Google Scholar 
    Rodopoulou, S., Samoli, E., Chalbot, M.-C.G. & Kavouras, I. G. Air pollution and cardiovascular and respiratory emergency visits in Central Arkansas: A time-series analysis. Sci. Total Environ. 536, 872–879 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Teng, T.-H.K. et al. A systematic review of air pollution and incidence of out-of-hospital cardiac arrest. J. Epidemiol. Commun. Health 68, 37–43 (2014).Article 

    Google Scholar 
    Brook, R. D. et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 109, 2655–2671 (2004).Article 

    Google Scholar 
    Raza, A. et al. Short-term effects of air pollution on out-of-hospital cardiac arrest in Stockholm. Eur. Heart J. 35, 861–868 (2014).Article 
    CAS 

    Google Scholar 
    Baccarelli, A. et al. Effects of exposure to air pollution on blood coagulation. J. Thromb. Haemost. 5, 252–260 (2007).Article 
    CAS 

    Google Scholar 
    Franchini, M. & Mannucci, P. M. Thrombogenicity and cardiovascular effects of ambient air pollution. Blood 118, 2405–2412 (2011).Article 
    CAS 

    Google Scholar 
    Yin, F. et al. Diesel exhaust induces systemic lipid peroxidation and development of dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arterioscler. Thromb. Vasc. Biol. 33, 1153–1161 (2013).Article 
    CAS 

    Google Scholar 
    Chirinos, J. A. et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J. Am. Coll. Cardiol. 45, 1467–1471 (2005).Article 
    CAS 

    Google Scholar 
    Adar, S. D. et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: A prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 10, e1001430 (2013).Article 

    Google Scholar 
    Kampfrath, T. et al. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ. Res. 108, 716–726 (2011).Article 
    CAS 

    Google Scholar 
    Sun, Q. et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 294, 3003–3010 (2005).Article 
    CAS 

    Google Scholar 
    Dennekamp, M. et al. Outdoor air pollution as a trigger for out-of-hospital cardiac arrests. Epidemiology 21, 494–500 (2010).Straney, L. et al. Evaluating the impact of air pollution on the incidence of out-of-hospital cardiac arrest in the Perth Metropolitan Region: 2000–2010. J. Epidemiol. Commun. Health 68, 6–12 (2014).Article 

    Google Scholar 
    Sullivan, J. et al. Exposure to ambient fine particulate matter and primary cardiac arrest among persons with and without clinically recognized heart disease. Am. J. Epidemiol. 157, 501–509 (2003).Article 
    CAS 

    Google Scholar 
    Barton, T. J. et al. Traditional cardiovascular risk factors strongly underestimate the 5-year occurrence of cardiovascular morbidity and mortality in spinal cord injured individuals. Arch. Phys. Med. Rehabil. 102, 27–34 (2021).Article 

    Google Scholar 
    Burg, M. M. et al. Risk for incident hypertension associated with PTSD in military veterans, and the effect of PTSD treatment. Psychosom. Med. 79, 181 (2017).Article 

    Google Scholar 
    Hinojosa, R. Veterans’ likelihood of reporting cardiovascular disease. J. Am. Board Fam. Med. 32, 50–57 (2019).Article 

    Google Scholar 
    Rush, T., LeardMann, C. A. & Crum-Cianflone, N. F. Obesity and associated adverse health outcomes among US military members and veterans: Findings from the millennium cohort study. Obesity 24, 1582–1589 (2016).Article 

    Google Scholar 
    Stefanovics, E. A., Potenza, M. N. & Pietrzak, R. H. Smoking, obesity, and their co-occurrence in the US military veterans: Results from the national health and resilience in veterans study. J. Affect. Disord. 274, 354–362 (2020).Article 

    Google Scholar 
    Brook, R. D. et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 54, 659–667 (2009).Article 
    CAS 

    Google Scholar 
    Rajagopalan, S. & Brook, R. D. Air pollution and type 2 diabetes: Mechanistic insights. Diabetes 61, 3037–3045 (2012).Article 
    CAS 

    Google Scholar 
    Franklin, S. S. & Wong, N. D. Hypertension and cardiovascular disease: Contributions of the Framingham Heart Study. Glob. Heart 8, 49–57 (2013).Article 

    Google Scholar 
    Gu, D. et al. Blood pressure and risk of cardiovascular disease in Chinese men and women. Am. J. Hypertens. 21, 265–272 (2008).Article 

    Google Scholar 
    Wang, H. et al. Blood pressure, body mass index and risk of cardiovascular disease in Chinese men and women. BMC Public Health 10, 189 (2010).Article 

    Google Scholar 
    O’Brien, E. The Lancet Commission on hypertension: Addressing the global burden of raised blood pressure on current and future generations. J. Clin. Hypertens. 19, 564–568 (2017).Article 

    Google Scholar 
    Cai, Y. et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis. Hypertension 68, 62–70 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, Z., Laden, F., Forman, J. P. & Hart, J. E. Long-term exposure to particulate matter and self-reported hypertension: A prospective analysis in the Nurses’ Health Study. Environ. Health Perspect. 124, 1414–1420 (2016).Article 

    Google Scholar 
    Cosselman, K. E., Navas-Acien, A. & Kaufman, J. D. Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 12, 627 (2015).Article 
    CAS 

    Google Scholar 
    Baccarelli, A. et al. Effects of particulate air pollution on blood pressure in a highly exposed population in Beijing, China: A repeated-measure study. Environ. Heal. 10, 108 (2011).Article 

    Google Scholar 
    Mordukhovich, I. et al. Black carbon exposure, oxidative stress genes, and blood pressure in a repeated-measures study. Environ. Health Perspect. 117, 1767–1772 (2009).Article 
    CAS 

    Google Scholar 
    Chen, H. et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation 129, 562–569 (2014).Article 
    CAS 

    Google Scholar 
    Honjo, K. et al. The effects of smoking and smoking cessation on mortality from cardiovascular disease among Japanese: Pooled analysis of three large-scale cohort studies in Japan. Tob. Control 19, 50–57 (2010).Article 

    Google Scholar 
    Lawlor, D. A., Song, Y.-M., Sung, J., Ebrahim, S. & Smith, G. D. The association of smoking and cardiovascular disease in a population with low cholesterol levels: A study of 648 346 men from the Korean national health system prospective cohort study. Stroke 39, 760–767 (2008).Article 
    CAS 

    Google Scholar 
    Wold, L. E. et al. Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ. Hear. Fail. 5, 452–461 (2012).Article 
    CAS 

    Google Scholar 
    Zoeller, R. T. et al. Endocrine-disrupting chemicals and public health protection: A statement of principles from The Endocrine Society. Endocrinology 153, 4097–4110 (2012).Article 
    CAS 

    Google Scholar 
    Ruiz, D., Becerra, M., Jagai, J. S., Ard, K. & Sargis, R. M. Disparities in environmental exposures to endocrine-disrupting chemicals and diabetes risk in vulnerable populations. Diabetes Care 41, 193–205 (2018).Article 
    CAS 

    Google Scholar 
    Taylor, D. Toxic Communities: Environmental Racism, Industrial Pollution, and Residential Mobility (NYU Press, 2014).
    Google Scholar 
    Newbold, R. R., Padilla-Banks, E. & Jefferson, W. N. Environmental estrogens and obesity. Mol. Cell. Endocrinol. 304, 84–89 (2009).Article 
    CAS 

    Google Scholar 
    Szyszkowicz, M., Rowe, B. H. & Brook, R. D. Even low levels of ambient air pollutants are associated with increased emergency department visits for hypertension. Can. J. Cardiol. 28, 360–366 (2012).Article 
    CAS 

    Google Scholar 
    van den Hooven, E. H. et al. Air pollution, blood pressure, and the risk of hypertensive complications during pregnancy: The generation R study. Hypertension 57, 406–412 (2011).Article 

    Google Scholar 
    Vali, M. et al. Effect of meteorological factors and Air Quality Index on the COVID-19 epidemiological characteristics: An ecological study among 210 countries. Environ. Sci. Pollut. Res. 38, 1–11 (2021).Kiani, B. et al. Association between heavy metals and colon cancer: An ecological study based on geographical information systems in North-Eastern Iran. BMC Cancer 21, 1–12 (2021).Article 

    Google Scholar 
    Cyranoski, D. China tests giant air cleaner to combat smog. Nature 555, 152–154 (2018).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Uptrend in global managed honey bee colonies and production based on a six-decade viewpoint, 1961–2017

    Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49(1), 1–6 (2010).Article 

    Google Scholar 
    Osterman, J. et al. Global trends in the number and diversity of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653. https://doi.org/10.1016/j.agee.2021.107653 (2021).Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).Article 

    Google Scholar 
    Hristov, P., Shumkova, R., Palova, N. & Neov, B. Factors associated with honey bee colony losses: A mini-review. Vet. Sci. 7(4), 166 (2020).Article 

    Google Scholar 
    Dukas, R. Mortality rates of honey bees in the wild. Insectes Soc. 55, 252–255 (2008).Article 

    Google Scholar 
    Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and colony collapse disorder in the United States. J. Apic. Res. 49, 134–136 (2010).Article 

    Google Scholar 
    Vanengelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103(Suppl 1), S80-95 (2010).Article 

    Google Scholar 
    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).Article 

    Google Scholar 
    Patel, V., Pauli, N., Biggs, E., Barbour, L. & Boruff, B. Why bees are critical for achieving sustainable development. Ambio 50, 49–59 (2021).Article 

    Google Scholar 
    Aylanc, V., Falcão, S. I., Ertosun, S. & Vilas-Boas, M. From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends Food Sci. Tech. 109, 464–481 (2021).Article 
    CAS 

    Google Scholar 
    Kieliszek, M. et al. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Tech. 71, 170–180 (2018).Article 
    CAS 

    Google Scholar 
    Bixby, M. et al. Honey bee queen production: Canadian costing case study and profitability analysis. J. Econ. Entomol. 113, 1618–1627 (2020).Article 

    Google Scholar 
    Ghosh, S., Jung, C. & Meyer-Rochow, V. B. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J. Asia-Pac. Entomol. 19, 487–495 (2016).Article 
    CAS 

    Google Scholar 
    Ulmer, M., Smetana, S. & Heinz, V. Utilizing honeybee drone brood as a protein source for food products: Life cycle assessment of apiculture in Germany. Resour. Conser. Recy. 154, 104576. https://doi.org/10.1016/j.resconrec.2019.104576 (2020).Article 

    Google Scholar 
    FAO. Value-added products from beekeeping. FAO Agricultural Services Bulletin. https://www.fao.org/publications/card/en/c/a76265ff-7440-57a6-82da-21976b9fde8d (1996).FAO. Beekeeping and sustainable livelihoods. Diversification booklet 1. https://www.fao.org/3/y5110e/y5110e00.htm (2004).Halvorson, K., Baumung, R., Leroy, G., Chen, C. & Boettcher, P. Protection of honeybees and other pollinators: One global study. Apidologie 52, 535–547 (2021).Article 

    Google Scholar 
    Moritz, R. F. A. & Erler, S. Lost colonies found in a data mine: Global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agr. Ecosyst. Environ. 216, 44–50 (2016).Article 

    Google Scholar 
    Naug, D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. 142, 2369–2372 (2009).Article 

    Google Scholar 
    Pohorecka, K., Szczęsna, T., Witek, M., Miszczak, A. & Sikorski, P. The exposure of honey bees to pesticide residues in the hive environment with regard to winter colony losses. J. Apicult. Sci. 61, 105 (2017).Article 
    CAS 

    Google Scholar 
    Van Dooremalen, C. et al. Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS ONE 7, e36285. https://doi.org/10.1371/journal.pone.0036285 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Steinhauer, N. et al. Drivers of colony losses. Curr. Opin. Insect Sci. 26, 142–148 (2018).Article 

    Google Scholar 
    Brodschneider, R. et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J. Apic. Res. 57, 452–457 (2018).Article 

    Google Scholar 
    Degrandi-Hoffman, G., Graham, H., Ahumada, F., Smart, M. & Ziolkowski, N. The economics of honey bee (Hymenoptera: Apidae) management and overwintering strategies for colonies used to pollinate almonds. J. Econ. Entomol. 112(6), 2524–2533 (2019).Article 
    CAS 

    Google Scholar 
    Porto, R. G. et al. Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Sec. 12, 1425–1442 (2020).Article 

    Google Scholar 
    Kielmanowicz, M. G. et al. Prospective large-scale field study generates predictive model identifying major contributors to colony losses. PLoS Pathog. 11, e1004816. https://doi.org/10.1371/journal.ppat.1004816 (2015).Article 
    CAS 

    Google Scholar 
    Kulhanek, et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 56(4), 328–340 (2017).Article 

    Google Scholar 
    van Engelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103, S80–S95 (2010).Article 

    Google Scholar 
    Caron, D. M., Burgett, M., Rucker, R. & Thurman, W. Honey bee colony mortality in the Pacific Northwest winter 2008/2009. Am. Bee J. 150, 265–269 (2010).
    Google Scholar 
    Mashilingi, S. K., Zhang, H., Garibaldi, L. A. & An, J. Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agric. Ecosyst. Environ. 335, 108003. https://doi.org/10.1016/j.agee.2022.108003 (2022).Article 

    Google Scholar 
    Kohsaka, R., Park, M. S. & Uchiyama, Y. Beekeeping and honey production in Japan and South Korea: Past and present. J. Ethn. Foods 4(2), 72–79 (2017).Article 

    Google Scholar 
    Walker, M. J., Cowen, S., Gray, K., Hancock, P. & Burns, D. T. Honey authenticity: The opacity of analytical reports – part 1 defining the problem. npj Sci. Food 6(1), 1–9 (2022).
    Google Scholar 
    Fakhlaei, R. et al. The toxic impact of honey adulteration: A review. Foods 9(11), 1538. https://doi.org/10.3390/foods9111538 (2020).Article 
    CAS 

    Google Scholar 
    Rogers, R., Hassler, E., Carey, Q. & Cazier, J. More time to fly: With a warming climate the Western honey bee (Apis mellifera, Linnaeus) now has more temperature-eligible flight hours than 40 years ago. J. Apic. Res. https://doi.org/10.1080/00218839.2022.2073633 (2022).Article 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).Article 
    CAS 

    Google Scholar 
    FAO. Data collection. Food and Agriculture Statistics. https://www.fao.org/food-agriculture-statistics/data-collection/en/ (2022).Le Conte, Y. & Navajas, M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. 27(2), 499–510 (2008).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2022).FAO. Crops and livestock products. FAOSTAT. https://www.fao.org/faostat/en/#data/QCL (2022).Global Change Data Lab. Global and regional population estimates (US Census Bureau vs. UN), World. Our World in Data. https://ourworldindata.org/grapher/global-and-regional-population-estimates-us-census-bureau-vs-un (2021).van Brakel, J. Peak signal detection in realtime timeseries data: Robust peak detection algorithm (using z-scores). Stack Overflow. https://stackoverflow.com/questions/22583391/ (2014).Rykov, Y., Thach, T.-Q., Bojic, I., Christopoulos, G. & Car, J. Digital biomarkers for depression screening with wearable devices: Cross-sectional study with machine learning modeling. JMIR Mhealth Uhealth 9, e24872 (2021).Article 

    Google Scholar  More

  • in

    Visual threats reduce blood-feeding and trigger escape responses in Aedes aegypti mosquitoes

    World Health Organization. World Health Statistics 2018. (WHO, 2018).Wynne, N. E., Lorenzo, M. G. & Vinauger, C. Mechanism and plasticity of vectors’ host-seeking behavior. Curr. Opin. Insect Sci. 40, 1–5 (2020).Article 

    Google Scholar 
    Carlile, P. A., Peters, R. A. & Evans, C. S. Detection of a looming stimulus by the Jacky dragon: Selective sensitivity to characteristics of an aerial predator. Anim. Behav. 72, 553–562 (2006).Article 

    Google Scholar 
    Ingle, D. J. Visually elicited evasive behavior in frogs. Bioscience 40, 284–291 (1990).Article 

    Google Scholar 
    Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).Article 
    CAS 

    Google Scholar 
    Temizer, I., Donovan, J. C., Baier, H. & Semmelhack, J. L. A visual pathway for looming-evoked escape in larval zebrafish. Curr. Biol. 25, 1823–1834 (2015).Article 
    CAS 

    Google Scholar 
    Scarano, F., Tomsic, D. & Sztarker, J. Direction selective neurons responsive to horizontal motion in a crab reflect an adaptation to prevailing movements in flat environments. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0372-20.2020 (2020).Article 

    Google Scholar 
    Scarano, F. & Tomsic, D. Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli. J. Physiol. Paris 108, 141–147 (2014).Article 

    Google Scholar 
    Santer, R. D., Rind, F. C., Stafford, R. & Simmons, P. J. Role of an identified looming-sensitive neuron in triggering a flying locust’s escape. J. Neurophysiol. 95, 3391–3400 (2006).Article 

    Google Scholar 
    Simmons, P. J., Rind, F. C. & Santer, R. D. Escapes with and without preparation: The neuroethology of visual startle in locusts. J. Insect Physiol. 56, 876–883 (2010).Article 
    CAS 

    Google Scholar 
    Dupuy, F., Casas, J., Body, M. & Lazzari, C. R. Danger detection and escape behaviour in wood crickets. J. Insect Physiol. 57, 865–871 (2011).Article 
    CAS 

    Google Scholar 
    Muijres, F. T., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies evade looming targets by executing rapid visually directed banked turns. Science 344, 172–177 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ache, J. M. et al. Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. Curr. Biol. 29, 1073-1081.e4 (2019).Article 
    CAS 

    Google Scholar 
    Domenici, P., Booth, D., Blagburn, J. M. & Bacon, J. P. Cockroaches keep predators guessing by using preferred escape trajectories. Curr. Biol. 18, 1792–1796 (2008).Article 
    CAS 

    Google Scholar 
    Smolka, J., Zeil, J. & Hemmi, J. M. Natural visual cues eliciting predator avoidance in fiddler crabs. Proc. Biol. Sci. 278, 3584–3592 (2011).
    Google Scholar 
    Card, G. & Dickinson, M. Performance trade-offs in the flight initiation of Drosophila. J. Exp. Biol. 211, 341–353 (2008).Article 

    Google Scholar 
    Sun, Y. A. & Wyman, R. J. Neurons of the Drosophila giant fiber system: I. Dorsal longitudinal motor neurons. J. Comp. Neurol. 387, 157–166 (1997).Article 
    CAS 

    Google Scholar 
    von Reyn, C. R. et al. Feature integration drives probabilistic behavior in the Drosophila escape response. Neuron 94, 1190-1204.e6 (2017).Article 

    Google Scholar 
    Fotowat, H., Fayyazuddin, A., Bellen, H. J. & Gabbiani, F. A novel neuronal pathway for visually guided escape in Drosophila melanogaster. J. Neurophysiol. 102, 875–885 (2009).Article 

    Google Scholar 
    Card, G. & Dickinson, M. H. Visually mediated motor planning in the escape response of Drosophila. Curr. Biol. 18, 1300–1307 (2008).Article 
    CAS 

    Google Scholar 
    Matherne, M. E., Cockerill, K., Zhou, Y., Bellamkonda, M. & Hu, D. L. Mammals repel mosquitoes with their tails. J. Exp. Biol. 221, 178905 (2018).Article 

    Google Scholar 
    Cribellier, A. et al. Diurnal and nocturnal mosquitoes escape looming threats using distinct flight strategies. Curr. Biol. 32, 1232-1246.e5 (2022).Article 
    CAS 

    Google Scholar 
    Cribellier, A., Spitzen, J., Straw, A. D., van Leeuwen, J. L. & Muijres, F. T. Escape flight performances of night-active malaria mosquitoes: the role of visual and airflow cues of an approaching object. in Integrative and Comparative Biology. Vol. 61. E170–E171 (Oxford University Press Inc Journals Dept, 2021).Reid, J. A. Anopheline Mosquitoes of Malaya and Borneo. Studies from the Institute for Medical Research, Malaysia. (1968).Clements, A. N. The Biology of Mosquitoes. Volume 2: Sensory Reception and Behaviour (CABI Publishing, 1999).
    Google Scholar 
    Tuno, N., Tsuda, Y., Takagi, M. & Swonkerd, W. Pre- and postprandial mosquito resting behavior around cattle hosts. J. Am. Mosq. Control Assoc. 19, 211–219 (2003).
    Google Scholar 
    Day, J. F. & Edman, J. D. Mosquito engorgement on normally defensive hosts depends on host activity Patterns. J. Med. Entomol. 21, 732–740 (1984).Article 
    CAS 

    Google Scholar 
    Edman, J. D., Webber, L. A. & Kale, H. W. Effect of mosquito density on the interrelationship of host behavior and mosquito feeding success. Am. J. Trop. Med. Hyg. 21, 487–491 (1972).Article 
    CAS 

    Google Scholar 
    Christophers, S. R. Aedes aegypti: The Yellow Fever Mosquito. (1960).Ponlawat, A. & Harrington, L. C. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J. Med. Entomol. 42, 844–849 (2005).Article 

    Google Scholar 
    Walilko, T. J., Viano, D. C. & Bir, C. A. Biomechanics of the head for Olympic boxer punches to the face. Br. J. Sports Med. 39, 710–719 (2005).Article 
    CAS 

    Google Scholar 
    Reiser, M. B. & Dickinson, M. H. A modular display system for insect behavioral neuroscience. J. Neurosci. Methods 167, 127–139 (2008).Article 

    Google Scholar 
    Cribellier, A. Biomechanics of Flying Mosquitoes During Capture and Escape. Doctoral Dissertation. (Wageningen University, 2021).Hu, X., Leming, M. T., Whaley, M. A. & O’Tousa, J. E. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes. J. Exp. Biol. 217, 1003–1008 (2014).
    Google Scholar 
    Tammero, L. F., Frye, M. A. & Dickinson, M. H. Spatial organization of visuomotor reflexes in Drosophila. J. Exp. Biol. 207, 113–122 (2004).Article 

    Google Scholar 
    Tammero, L. F. & Dickinson, M. H. Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J. Exp. Biol. 205, 2785–2798 (2002).Article 

    Google Scholar 
    Muijres, F. T. et al. Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed. J. Exp. Biol. 220, 3751–3762 (2017).Article 
    CAS 

    Google Scholar 
    van Veen, W. G., van Leeuwen, J. L. & Muijres, F. T. Malaria mosquitoes use leg push-off forces to control body pitch during take-off. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 38–49 (2020).Article 

    Google Scholar 
    Caro, T. et al. Benefits of zebra stripes: Behaviour of tabanid flies around zebras and horses. PLoS ONE 14, e0210831 (2019).Article 
    CAS 

    Google Scholar 
    Edman, J. D., Webber, L. A. & Schmid, A. A. Effect of host defenses on the feeding pattern of Culex nigripalpus when offered a choice of blood sources. J. Parasitol. 60, 874–883 (1974).Article 
    CAS 

    Google Scholar 
    Walker, E. D. & Edman, J. D. The influence of host defensive behavior on mosquito (Diptera: Culicidae) biting persistence1. J. Med. Entomol. 22, 370–372 (1985).Article 
    CAS 

    Google Scholar 
    Warnes, M. L. & Finlayson, L. H. Effect of host behaviour on host preference in Stomoxys calcitrans. Med. Vet. Entomol. 1, 53–57 (1987).Article 
    CAS 

    Google Scholar 
    Vinauger, C. et al. Modulation of host learning in Aedes aegypti mosquitoes. Curr. Biol. 28, 333-344.e8 (2018).Article 
    CAS 

    Google Scholar 
    Wolff, G. H. & Riffell, J. A. Olfaction, experience and neural mechanisms underlying mosquito host preference. J. Exp. Biol. 221, 157131 (2018).Article 

    Google Scholar 
    Alonso San Alberto, D. et al. The olfactory gating of visual preferences to human skin and visible spectra in mosquitoes. Nat. Commun. 13, 1–14 (2022).Article 

    Google Scholar 
    van Breugel, F., Riffell, J., Fairhall, A. & Dickinson, M. H. Mosquitoes use vision to associate odor plumes with thermal targets. Curr. Biol. 25, 2123–2129 (2015).Article 

    Google Scholar 
    Vinauger, C. et al. Visual-olfactory integration in the human disease vector mosquito, Aedes aegypti. Curr. Biol. 29, 2509-2516.e5 (2019).Article 
    CAS 

    Google Scholar 
    Grant, A. J. & O’Connell, R. J. Age-related changes in female mosquito carbon dioxide detection. J. Med. Entomol. 44, 617–623 (2007).Article 
    CAS 

    Google Scholar 
    Tallon, A. K., Hill, S. R. & Ignell, R. Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. Sci. Rep. 9, 43 (2019).Article 
    ADS 

    Google Scholar 
    Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K. & Vinauger, C. Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects 9, 147 (2018).Article 

    Google Scholar 
    Taylor, B. & Jones, M. D. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L). The phase-setting effects of light-on and light-off. J. Exp. Biol. 51, 59–70 (1969).Article 
    CAS 

    Google Scholar 
    Peirce, J. et al. PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203 (2019).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. arXiv [stat.CO] (2014).Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Lund, U., & Agostinelli, C. Package “Circular”. Repository CRAN (2017).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Walker, J. A. Estimating velocities and accelerations of animal locomotion: A simulation experiment comparing numerical differentiation algorithms. J. Exp. Biol. 201, 981–995 (1998).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 
    MATH 

    Google Scholar  More

  • in

    Suicidal chemotaxis in bacteria

    Surface-attached bacteria move towards antibiotics via twitching motilityWe used microfluidic devices and automated cell tracking to quantify the movement of P. aeruginosa cells as they are exposed to well-defined spatial gradients of antibiotics in developing biofilms (Fig. 1). We began with the antibiotic ciprofloxacin, which is widely used to treat P. aeruginosa infections27,28. To set a baseline, we first determined the minimum inhibitory concentration (hereafter MIC) of ciprofloxacin for P. aeruginosa (strain PAO1) in shaking cultures, which agrees with the published MIC of this strain (Fig. S129). We then exposed surface-attached cells to an antibiotic gradient in a microfluidic device where the antibiotic concentration ranged from zero to 10 times the MIC (Fig. 1A, B, Methods). After approximately 5 h of unbiased movement, we were surprised to see that twitching cells began to bias their movement towards increasing concentrations of ciprofloxacin (Fig. 1B, D, Movie 1). The movement bias, β, defined as the number of cells moving up the gradient divided by the number of cells moving down the gradient, peaks after approximately 10 h and then decays as the surface becomes crowded with cells (Movie 1) and tracking becomes difficult (Methods). The flow through the device also has a small influence on the direction of cell movement because it tends to pull cells in the downstream direction (Fig. 1B, C, E). However, this fluid flow is orthogonal to the direction of the antibiotic gradient, and so does not explain the movement towards antibiotics.Fig. 1: Twitching P. aeruginosa cells bias their motility towards increasing antibiotic concentrations.A A dual-inlet microfluidic device generates steady antibiotic gradients (e.g. ciprofloxacin, CMAX = 10X MIC) via molecular diffusion. Isocontours were calculated using mathematical modelling (Methods) and background shading shows approximate ciprofloxacin distribution visualised using fluorescein. B Red (blue) cell trajectories are moving towards (away from) increasing [ciprofloxacin]. Inset: A circular histogram of cell movement direction reveals movement bias towards increasing [ciprofloxacin]. A two-sided binomial test rejects the null hypothesis that trajectories are equally likely to be directed up or down the [ciprofloxacin] gradient (p  More

  • in

    Urinary neopterin reflects immunological variation associated with age, helminth parasitism, and the microbiome in a wild primate

    Schneider-Crease, I. et al. Identifying wildlife reservoirs of neglected taeniid tapeworms: Non-invasive diagnosis of endemic Taenia serialis infection in a wild primate population. PLoS Negl Trop Dis 11, e0005709 (2017).Article 

    Google Scholar 
    Schneider-Crease, I. et al. Ecology eclipses phylogeny as a major driver of nematode parasite community structure in a graminivorous primate. Funct. Ecol. 34, 1898–1906 (2020).Article 

    Google Scholar 
    Gillespie, T. R. Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. Int. J. Primatol. 27, 1129 (2006).Article 

    Google Scholar 
    Budischak, S. A., Hoberg, E. P., Abrams, A., Jolles, A. E. & Ezenwa, V. O. A combined parasitological molecular approach for noninvasive characterization of parasitic nematode communities in wild hosts. Mol. Ecol. Resour. 15, 1112–1119 (2015).Article 

    Google Scholar 
    Ghalehnoei, H., Bagheri, A., Fakhar, M. & Mishan, M. A. Circulatory microRNAs: promising non-invasive prognostic and diagnostic biomarkers for parasitic infections. Eur. J. Clin. Microbiol. Infect. Dis. 39, 395–402 (2020).Article 
    CAS 

    Google Scholar 
    Hing, S., Narayan, E. J., Andrew Thompson, R. C. & Godfrey, S. S. The relationship between physiological stress and wildlife disease: consequences for health and conservation. Wildl Res. 43, 51–60 (2016).Article 

    Google Scholar 
    Kersey, D. C. & Dehnhard, M. The use of noninvasive and minimally invasive methods in endocrinology for threatened mammalian species conservation. Gen. Comp. Endocrinol. 203, 296–306 (2014).Article 
    CAS 

    Google Scholar 
    Behringer, V. & Deschner, T. Non-invasive monitoring of physiological markers in primates. Horm. Behav. 91, 3–18 (2017).Article 
    CAS 

    Google Scholar 
    Higham, J. P., Stahl-Hennig, C. & Heistermann, M. Urinary suPAR: A non-invasive biomarker of infection and tissue inflammation for use in studies of large free-ranging mammals. R Soc Open Sci. 7, 191825 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Heistermann, M. & Higham, J. P. Urinary neopterin, a non-invasive marker of mammalian cellular immune activation, is highly stable under field conditions. Sci Rep. 5, 16308 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Higham, J. P. et al. Evaluating noninvasive markers of nonhuman primate immune activation and inflammation. Am. J. Phys. Anthropol. 158, 673–684 (2015).Article 

    Google Scholar 
    Behringer, V. et al. Elevated neopterin levels in wild, healthy chimpanzees indicate constant investment in unspecific immune system. BMC Zool. 4, 1–7 (2019).Article 

    Google Scholar 
    Dibakou, S. E., Basset, D., Souza, A., Charpentier, M. & Huchard, E. Determinants of variations in fecal neopterin in free-ranging mandrills. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00368 (2019).Article 

    Google Scholar 
    Löhrich, T., Behringer, V., Wittig, R. M., Deschner, T. & Leendertz, F. H. The use of neopterin as a noninvasive marker in monitoring diseases in wild chimpanzees. EcoHealth 15, 792–803 (2018).Article 

    Google Scholar 
    Behringer, V., Stevens, J. M. G., Leendertz, F. H., Hohmann, G. & Deschner, T. Validation of a method for the assessment of urinary neopterin levels to monitor health status in nonhuman primate species. Front Physiol. 8, 51 (2017).Article 

    Google Scholar 
    Negrey, J. D., Behringer, V., Langergraber, K. E. & Deschner, T. Urinary neopterin of wild chimpanzees indicates that cell-mediated immune activity varies by age, sex, and female reproductive status. Sci. Rep. 11, 9298 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Behringer, V. et al. Cell-mediated immune ontogeny is affected by sex but not environmental context in a long-lived primate species. Front. Ecol. Evol. 9, 272 (2021).Article 

    Google Scholar 
    Müller, N., Heistermann, M., Strube, C., Schülke, O. & Ostner, J. Age, but not anthelmintic treatment, is associated with urinary neopterin levels in semi-free ranging Barbary macaques. Sci. Rep. 7, 41973 (2017).Article 
    ADS 

    Google Scholar 
    Dibakou, S. E. et al. Ecological, parasitological and individual determinants of plasma neopterin levels in a natural mandrill population. Int. J. Parasitol. Parasites Wildl. 11, 198–206 (2020).Article 

    Google Scholar 
    Eisenhut, M. Neopterin in diagnosis and monitoring of infectious diseases. J. Biomark. 2013, 196432 (2013).Article 

    Google Scholar 
    Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol. A Biol. Sci. Med Sci. 69(Suppl 1), S4–9 (2014).Article 

    Google Scholar 
    Basha, S., Surendran, N. & Pichichero, M. Immune responses in neonates. Expert. Rev. Clin. Immunol. 10, 1171–1184 (2014).Article 
    CAS 

    Google Scholar 
    Werner, E. R. et al. Determination of neopterin in serum and urine. Clin. Chem. 33, 62–66 (1987).Article 
    CAS 

    Google Scholar 
    Lucore, J. M., Marshall, A. J., Brosnan, S. F. & Benítez, M. E. Validating urinary neopterin as a biomarker of immune response in captive and wild capuchin monkeys. Front. Vet. Sci. 9, 918036. https://doi.org/10.3389/fvets.2022.918036 (2022).Article 

    Google Scholar 
    Berdowska, A. & Zwirska-Korczala, K. Neopterin measurement in clinical diagnosis. J. Clin. Pharm. Ther. 26, 319–329 (2001).Article 
    CAS 

    Google Scholar 
    Denz, H. et al. Value of urinary neopterin in the differential diagnosis of bacterial and viral infections. Klin. Wochenschr. 68, 218–222 (1990).Article 
    CAS 

    Google Scholar 
    Reibnegger, G. et al. Urinary neopterin reflects clinical activity in patients with rheumatoid arthritis. Arthritis Rheum. 29, 1063–1070 (1986).Article 
    CAS 

    Google Scholar 
    Huber, C. et al. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J. Exp. Med. 160, 310–316 (1984).Article 
    CAS 

    Google Scholar 
    Horak, E., Gassner, I., Sölder, B., Wachter, H. & Fuchs, D. Neopterin levels and pulmonary tuberculosis in infants. Lung 176, 337–344 (1998).Article 
    CAS 

    Google Scholar 
    Fendrich, C. et al. Urinary neopterin concentrations in rhesus monkeys after infection with simian immunodeficiency virus (SIVmac 251). AIDS 3, 305–307 (1989).Article 
    CAS 

    Google Scholar 
    Chan, C. P. Y. et al. Detection of serum neopterin for early assessment of dengue virus infection. J. Infect. 53, 152–158 (2006).Article 

    Google Scholar 
    Wu, D. F., Behringer, V., Wittig, R. M., Leendertz, F. H. & Deschner, T. Urinary neopterin levels increase and predict survival during a respiratory outbreak in wild chimpanzees (Taï National Park, Côte d’Ivoire). Sci. Rep. 8, 13346 (2018).Article 
    ADS 

    Google Scholar 
    Maizels, R. M. & McSorley, H. J. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 138, 666–675 (2016).Article 
    CAS 

    Google Scholar 
    Maizels, R. M. & Yazdanbakhsh, M. Immune regulation by helminth parasites: Cellular and molecular mechanisms. Nat. Rev. Immunol. 3, 733–744 (2003).Article 
    CAS 

    Google Scholar 
    Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Faz-López, B., Morales-Montor, J. & Terrazas, L. I. Role of macrophages in the repair process during the tissue migrating and resident helminth infections. Biomed. Res. Int. 2016, 8634603 (2016).Article 

    Google Scholar 
    Garcia, H. H., Rodriguez, S., Friedland, J. S. Cysticercosis Working Group in Peru. Immunology of Taenia solium taeniasis and human cysticercosis. Parasite Immunol. 36, 388–396. https://doi.org/10.1111/pim.12126 (2014)Article 
    CAS 

    Google Scholar 
    Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Schneider-Crease, I. A., Griffin, R. H., Gomery, M. A., Bergman, T. J. & Beehner, J. C. High mortality associated with tapeworm parasitism in geladas (Theropithecus gelada) in the Simien Mountains National Park, Ethiopia. Am. J. Primatol. https://doi.org/10.1002/ajp.22684 (2017).Article 

    Google Scholar 
    Nguyen, N. et al. Fitness impacts of tapeworm parasitism on wild gelada monkeys at Guassa, Ethiopia. Am. J. Primatol. 77, 579–594 (2015).Article 

    Google Scholar 
    Schneider-Crease, I. A. et al. Helminth infection is associated with dampened cytokine responses to viral and bacterial stimulations in Tsimane forager-horticulturalists. Evol. Med. Public Health 9, 349–359 (2021).Article 

    Google Scholar 
    Roberts, E. K., Lu, A., Bergman, T. J. & Beehner, J. C. Female reproductive parameters in wild geladas (Theropithecus gelada). Int. J. Primatol. 38, 1–20 (2017).Article 

    Google Scholar 
    Beehner, J. C. et al. Corrigendum to “Testosterone related to age and life-history stages in male baboons and geladas” [Horm. Behav. 56/4 (2009) 472-480]. Horm Behav. 80, 149 (2016).Article 

    Google Scholar 
    Erb, R. E., Tillson, S. A., Hodgen, G. D. & Plotka, E. D. Urinary creatinine as an index compound for estimating rate of excretion of steroids in the domestic sow. J. Anim. Sci. 30, 79–85 (1970).Article 
    CAS 

    Google Scholar 
    Tinsley Johnson, E., Snyder-Mackler, N., Lu, A., Bergman, T. J. & Beehner, J. C. Social and ecological drivers of reproductive seasonality in geladas. Behav. Ecol. 29, 574–588 (2018).Article 

    Google Scholar 
    Kaushik, S. & Kaur, J. Effect of chronic cold stress on intestinal epithelial cell proliferation and inflammation in rats. Stress 8, 191–197 (2005).Article 
    CAS 

    Google Scholar 
    Jarvey, J. C., Low, B. S., Pappano, D. J. & Bergman, T. J. Graminivory and fallback foods: annual diet profile of geladas (Theropithecus gelada) living in the Simien Mountains National Park, Ethiopia. Int. J. Primatol. https://doi.org/10.1007/s10764-018-0018-x (2018).Article 

    Google Scholar 
    Gowda, C., Hadley, C. & Aiello, A. E. The association between food insecurity and inflammation in the US adult population. Am. J. Public Health. 102, 1579–1586 (2012).Article 

    Google Scholar 
    Becker, D. J. et al. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J. Anim. Ecol. 89, 972–995 (2020).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1, 1–7 (2014).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. https://www.R-project.org/.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).
    Google Scholar 
    Heinonen, S. et al. Infant immune response to respiratory viral infections. Immunol. Allergy Clin. North Am. 39, 361–376 (2019).Article 

    Google Scholar 
    Teran, R. et al. Immune system development during early childhood in tropical Latin America: Evidence for the age-dependent down regulation of the innate immune response. Clin. Immunol. 138, 299–310 (2011).Article 
    CAS 

    Google Scholar 
    van de Pol, M. & Verhulst, S. Age-dependent traits: a new statistical model to separate within- and between-individual effects. Am. Nat. 167, 766–773 (2006).Article 

    Google Scholar 
    Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).Article 
    CAS 

    Google Scholar 
    Petrovsky, N., McNair, P. & Harrison, L. C. Diurnal rhythms of pro-inflammatory cytokines: regulation by plasma cortisol and therapeutic implications. Cytokine 10, 307–312 (1998).Article 
    CAS 

    Google Scholar 
    Lasselin, J., Rehman, J.-U., Åkerstedt, T., Lekander, M. & Axelsson, J. Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations. Brain Behav. Immun. 47, 93–99 (2015).Article 

    Google Scholar 
    Auzéby, A., Bogdan, A., Krosi, Z. & Touitou, Y. Time-dependence of urinary neopterin, a marker of cellular immune activity. Clin Chem. 34, 1866–1867 (1988).Article 

    Google Scholar 
    Ansari, A. & Williams, J. F. The eosinophilic response of the rat to infection with Taenia taeniaeformis. J. Parasitol. 62, 728–736 (1976).Article 
    CAS 

    Google Scholar 
    Schneider-Crease, I. A., Snyder-Mackler, N., Jarvey, J. C. & Bergman, T. J. Molecular identification of Taenia serialis coenurosis in a wild Ethiopian gelada (Theropithecus gelada). Vet. Parasitol. 198, 240–243 (2013).Article 
    CAS 

    Google Scholar 
    Terrazas, L. I., Bojalil, R., Govezensky, T. & Larralde, C. Shift from an early protective Th1-type immune response to a late permissive Th2-type response in murine cysticercosis (Taenia crassiceps). J. Parasitol. 84, 74–81 (1998).Article 
    CAS 

    Google Scholar 
    Toenjes, S. A., Spolski, R. J., Mooney, K. A. & Kuhn, R. E. The systemic immune response of BALB/c mice infected with larval Taenia crassiceps is a mixed Th1/Th2-type response. Parasitology 118(Pt 6), 623–633 (1999).Article 
    CAS 

    Google Scholar 
    Gaze, S. et al. Characterising the mucosal and systemic immune responses to experimental human hookworm infection. PLoS Pathog. 8, e1002520 (2012).Article 
    CAS 

    Google Scholar 
    Johnston, M. J. G., MacDonald, J. A. & McKay, D. M. Parasitic helminths: a pharmacopeia of anti-inflammatory molecules. Parasitology 136, 125–147 (2009).Article 
    CAS 

    Google Scholar 
    Cortés, A., Muñoz-Antoli, C., Esteban, J. G. & Toledo, R. Th2 and Th1 responses: Clear and hidden sides of immunity against intestinal helminths. Trends Parasitol. 33, 678–693 (2017).Article 

    Google Scholar 
    White, M. P. J., McManus, C. M. & Maizels, R. M. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. Immunology 160, 248–260 (2020).Article 
    CAS 

    Google Scholar 
    Maizels, R. M. & Holland, M. J. Parasite immunity: Pathways for expelling intestinal helminths. Curr Biol. 8, R711–R714 (1998).Article 
    CAS 

    Google Scholar 
    Zhang, D. & Frenette, P. S. Cross talk between neutrophils and the microbiota. Blood 133, 2168–2177 (2019).Article 
    CAS 

    Google Scholar 
    Wang, J., Chen, W.-D. & Wang, Y.-D. The relationship between gut microbiota and inflammatory diseases: The role of macrophages. Front. Microbiol. 11, 1065 (2020).Article 

    Google Scholar 
    Pallikkuth, S. et al. Age associated microbiome and microbial metabolites modulation and its association with systemic inflammation in a rhesus macaque model. Front. Immunol. 12, 748397 (2021).Article 
    CAS 

    Google Scholar 
    Pierce, Z. et al. The infant gut microbiome is associated with stool markers of macrophage and neutrophil activity. FASEB J. 30, 668–9 (2016).
    Google Scholar 
    Levast, B. et al. Impact on the gut microbiota of intensive and prolonged antimicrobial therapy in patients with bone and joint infection. Front. Med. https://doi.org/10.3389/fmed.2021.586875 (2021).Article 

    Google Scholar 
    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).Article 
    CAS 

    Google Scholar 
    Libertucci, J. & Young, V. B. The role of the microbiota in infectious diseases. Nat. Microbiol. 4, 35–45 (2019).Article 
    CAS 

    Google Scholar 
    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Blaser, M. J. & Falkow, S. What are the consequences of the disappearing human microbiota?. Nat. Rev. Microbiol. 7, 887–894 (2009).Article 
    CAS 

    Google Scholar 
    Brown, E. M., Kenny, D. J. & Xavier, R. J. Gut microbiota regulation of T cells during inflammation and autoimmunity. Annu. Rev. Immunol. 37, 599–624 (2019).Article 
    CAS 

    Google Scholar 
    Gollwitzer, E. S. & Marsland, B. J. Impact of early-life exposures on immune maturation and susceptibility to disease. Trends Immunol. 36, 684–696 (2015).Article 
    CAS 

    Google Scholar 
    Ravi, A. et al. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microbial. Genomics https://doi.org/10.1099/mgen.0.000293 (2019).McLaren, M. R. & Callahan, B. J. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190592 (2020).Article 

    Google Scholar 
    Ragonnaud, E. & Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing 18, 2 (2021).Article 

    Google Scholar 
    Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).Article 

    Google Scholar 
    Cattadori, I. M. et al. Impact of helminth infections and nutritional constraints on the small intestine microbiota. PLoS ONE 11, e0159770 (2016).Article 

    Google Scholar 
    Houlden, A. et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: Effects reversed by pathogen clearance. PLoS ONE 10, e0125945 (2015).Article 

    Google Scholar 
    Holm, J. B. et al. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli. PLoS ONE 10, e0125495 (2015).Article 

    Google Scholar 
    Peachey, L. E., Jenkins, T. P. & Cantacessi, C. This gut ain’t big enough for both of us. Or is it? Helminth–microbiota interactions in veterinary species. Trends Parasitol. 33, 619–632 (2017).Article 

    Google Scholar  More

  • in

    Seasonal peak photosynthesis is hindered by late canopy development in northern ecosystems

    Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).Article 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Xia, J., Niu, S., Ciais, P. & Janssens, I. A. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl Acad. Sci. USA 112, 2788–2793 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Yang, J. et al. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sens. Environ. 233, 111395 (2019).Article 

    Google Scholar 
    Huang, K., Xia, J., Wang, Y. & Ahlstrom, A. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).Article 
    PubMed 

    Google Scholar 
    Park, T., Chen, C. & Macias-Fauria, M. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol. 25, 2382–2395 (2019).Article 

    Google Scholar 
    Medlyn, B. E. Physiological basis of the light use efficiency model. Tree Physiol. 18, 167 (1998).Article 
    PubMed 

    Google Scholar 
    Turner, D. P., Urbanski, S., Bremer, D., Wofsy, S. C. & Gregory, M. A cross-biome comparison of daily light use efficiency for gross primary production. Glob. Change Biol. 9, 383–395 (2003).Article 

    Google Scholar 
    Monteith, J. L. Solar radiation and productivity in tropical ecosystems. Appl. Ecol. 9, 747–766 (1972).Article 

    Google Scholar 
    Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).Article 
    PubMed 
    CAS 

    Google Scholar 
    Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).Article 
    CAS 

    Google Scholar 
    Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).Article 

    Google Scholar 
    Yuan, H., Dai, Y., Xiao, Z., Ji, D. & Shangguan, W. Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sens. Environ. 115, 1171–1187 (2011).Article 

    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    Wang, X. et al. Globally consistent patterns of asynchrony in vegetation phenology derived from optical, microwave, and fluorescence satellite data. J. Geophys. Res. Biogeosci. 125, e2020JG005732 (2020).Article 

    Google Scholar 
    Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).Article 
    PubMed 
    CAS 

    Google Scholar 
    Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).Article 
    CAS 

    Google Scholar 
    Yuan, W. et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agric. For. Meteorol. 192-193, 108–120 (2014).Article 

    Google Scholar 
    Reich, P. B. et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proc. Natl Acad. Sci. USA 111, 13721–13726 (2014).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Wright, I. J., Reich, P. B. & Westoby, M. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).Article 
    PubMed 

    Google Scholar 
    Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184 (2013).Article 

    Google Scholar 
    Jiang, M., Caldararu, S., Zaehle, S., Ellsworth, D. S. & Medlyn, B. E. Towards a more physiological representation of vegetation phosphorus processes in land surface models. New Phytol. 222, 1223–1229 (2019).Article 
    PubMed 

    Google Scholar 
    Kergoat, L., Lafont, S., Arneth, A., Le Dantec, V. & Saugier, B. Nitrogen controls plant canopy light-use efficiency in temperate and boreal ecosystems. J. Geophys. Res. Biogeosci. 113, G04017 (2008).Article 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).Article 
    CAS 

    Google Scholar 
    Cleveland, C. C. et al. Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl Acad. Sci. USA 110, 12733–12737 (2013).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Veneklaas, E. J. et al. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 195, 306–320 (2012).Article 
    PubMed 
    CAS 

    Google Scholar 
    Janssens, I. A. & Luyssaert, S. Nitrogen’s carbon bonus. Nat. Geosci. 2, 318–319 (2009).Article 
    CAS 

    Google Scholar 
    Luo, X. et al. Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nat. Commun. 12, 4866 (2021).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Lambers, H., Iii, F. & Pons, T. L. Plant Physiological Ecology (Springer, 2008).Vose, J. M. et al. Factors influencing the amount and distribution of leaf area of pine stands. Ecol. Bull. 43, 102−114 (1994).Carter, S. K., Saenz, D. & Rudolf, V. H. W. Shifts in phenological distributions reshape interaction potential in natural communities. Ecol. Lett. 21, 1143–1151 (2018).Article 
    PubMed 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article 

    Google Scholar 
    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).Article 
    PubMed 
    CAS 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).Article 

    Google Scholar 
    Murray-Tortarolo, G. et al. Evaluation of land surface models in reproducing satellite-derived LAI over the high-latitude Northern Hemisphere. Part I: Uncoupled DGVMs. Remote Sens. 5, 4819–4838 (2013).Article 

    Google Scholar 
    Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).Article 

    Google Scholar 
    Goll, D. S., Winkler, A. J. & Raddatz, T. Carbon–nitrogen interactions in idealized simulations with JSBACH (version 3.10). Geosci. Model Dev. 10, 2009–2030 (2017).Article 
    CAS 

    Google Scholar 
    Goll, D. S., Vuichard, N. & Maignan, F. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10, 3745–3770 (2017).Article 
    CAS 

    Google Scholar 
    Sun, Y., Goll, D. S. & Chang, J. Global evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986). Geosci. Model Dev. 14, 1987–2010 (2021).Article 
    CAS 

    Google Scholar 
    Clark, D. B., Mercado, L. M. & Sitch, S. The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).Article 

    Google Scholar 
    Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).Article 
    CAS 

    Google Scholar 
    Reyes-Fox, M. et al. Elevated CO2 further lengthens growing season under warming conditions. Nature 510, 259–262 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl Acad. Sci. USA 111, E1327–E1333 (2014).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).Article 
    PubMed 

    Google Scholar 
    Joiner, J. et al. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sens. Environ. 152, 375–391 (2014).Article 

    Google Scholar 
    Chu, D. et al. Long time-series NDVI reconstruction in cloud-prone regions via spatio-temporal tensor completion. Remote Sens. Environ. 264, 112632 (2021).Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 6, 2803–2823 (2013).Article 

    Google Scholar 
    Zhang, Y., Joiner, J., Gentine, P. & Zhou, S. Reduced solar-induced chlorophyll fluorescence from GOME-2 during Amazon drought caused by dataset artifacts. Glob. Change Biol. 24, 2229–2230 (2018).Article 

    Google Scholar 
    Rodell, M., Houser, P. R. & Jambor, U. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).Article 

    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).Article 

    Google Scholar 
    LASSLOP, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Change Biol. 16, 187–208 (2010).Article 

    Google Scholar 
    Vautard, R., Yiou, P. & Ghil, M. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Phys. D. 58, 95–126 (1992).Article 

    Google Scholar 
    Zhou, S. et al. Dominant role of plant physiology in trend and variability of gross primary productivity in North America. Sci. Rep. 7, 41366 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Butler, E. E., Datta, A. & Flores-Moreno Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).Article 

    Google Scholar 
    Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the anthropocene. PLoS ONE 7, e30535 (2012).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Kier, G., Mutke, J., Dinerstein, E., Ricketts, T. H. & Barthlott, W. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).Article 

    Google Scholar 
    Boles, S. H. et al. Land cover characterization of temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sens. Environ. 90, 477–489 (2004).Article 

    Google Scholar  More