More stories

  • in

    Recent global decline in rainfall interception loss due to altered rainfall regimes

    Savenije, H. H. G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 18, 1507–1511 (2004).Article 
    ADS 

    Google Scholar 
    Gerrits, A. M. J., Pfister, L. & Savenije, H. H. G. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol. Process. 24, 3011–3025 (2010).Article 
    ADS 

    Google Scholar 
    Porada, P., Van Stan, J. T. & Kleidon, A. Significant contribution of non-vascular vegetation to global rainfall interception. Nat. Geosci. 11, 563–567 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: moisture recycling. Earth Syst. Dyn. 5, 471–489 (2014).Article 
    ADS 

    Google Scholar 
    Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).Article 
    ADS 

    Google Scholar 
    Coenders-Gerrits, A. M. et al. Uncertainties in transpiration estimates. Nature 506, E1–E2 (2014).Article 
    CAS 

    Google Scholar 
    Chang, L.-L. et al. Why do large-scale land surface models produce a low ratio of transpiration to evapotranspiration? J. Geophys. Res. Atmos. 123, 9109–9130 (2018).Article 

    Google Scholar 
    Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).Article 
    ADS 

    Google Scholar 
    Cuartas, L. A. et al. Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia: Marked differences between normal and dry years. Agric. For. Meteorol. 145, 69–83 (2007).Article 
    ADS 

    Google Scholar 
    Yue, K. et al. Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob. Change Biol. 27, 3350–3357 (2021).Article 

    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).Article 

    Google Scholar 
    Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Jung, M., Reichstein, M. & Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6, 2001–2013 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, X. et al. Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years. Agric. For. Meteorol. 259, 131–140 (2018).Article 
    ADS 

    Google Scholar 
    Koppa, A., Rains, D., Hulsman, P., Poyatos, R. & Miralles, D. G. A deep learning-based hybrid model of global terrestrial evaporation. Nat. Commun. 13, 1912 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Zheng, C. & Jia, L. Global canopy rainfall interception loss derived from satellite Earth observations. Ecohydrology 13, e2186 (2019).
    Google Scholar 
    Muzylo, A. et al. A review of rainfall interception modelling. J. Hydrol. 370, 191–206 (2009).Article 
    ADS 

    Google Scholar 
    Miralles, D. G., Gash, J. H., Holmes, T. R. H., de Jeu, R. A. M., & Dolman, A. J. Global canopy interception from satellite observations. J. Geophys. Res. 115, D16122 (2010).Article 
    ADS 

    Google Scholar 
    Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).Article 
    ADS 

    Google Scholar 
    Oleson, K. et al. Technical Description of Version 4.5 of the Community Land Model (CLM) Report NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M (2013).Gash, J. An analytical model of rainfall interception by forests. Q. J. Roy. Meteor. Soc. 105, 43–55 (1979).Article 
    ADS 

    Google Scholar 
    Fan, Y. et al. Reconciling canopy interception parameterization and rainfall forcing frequency in the Community Land Model for simulating evapotranspiration of rainforests and oil palm plantations in Indonesia. J. Adv. Model. Earth Syst. 11, 732–751 (2019).Article 
    ADS 

    Google Scholar 
    Návar, J. Modeling rainfall interception loss components of forests. J. Hydrol. 584, 124449 (2019).Article 

    Google Scholar 
    Kang, M., Kwon, H., Cheon, J. H. & Kim, J. On estimating wet canopy evaporation from deciduous and coniferous forests in the Asian monsoon climate. J. Hydrometeorol. 13, 950–965 (2012).Article 
    ADS 

    Google Scholar 
    Llorens, P., Domingo, F., Garcia-Estringana, P., Muzylo, A. & Gallart, F. Canopy wetness patterns in a Mediterranean deciduous stand. J. Hydrol. 512, 254–262 (2014).Article 
    ADS 

    Google Scholar 
    Czikowsky, M. J. & Fitzjarrald, D. R. Detecting rainfall interception in an Amazonian rain forest with eddy flux measurements. J. Hydrol. 377, 92–105 (2009).Article 
    ADS 

    Google Scholar 
    Renninger, H. J., Phillips, N. & Salvucci, G. D. Wet- vs. dry-season transpiration in an Amazonian rain forest palm iriartea deltoidea. Biotropica 42, 470–478 (2010).Article 

    Google Scholar 
    Zhao, W. et al. Physics-constrained machine learning of evapotranspiration. Geophys. Res. Lett. 46, 14496–14507 (2019).Article 
    ADS 

    Google Scholar 
    Zabret, K. & Šraj, M. How characteristics of a rainfall event and the meteorological conditions determine the development of stemflow: A case study of a birch tree. Front. Glob. Change 4, 663100 (2022).Article 

    Google Scholar 
    Calder, I. R. Dependence of rainfall interception on drop size: 1. Development of the two-layer stochastic model. J. Hydrol. 185, 363–378 (1996).Article 
    ADS 

    Google Scholar 
    Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).Article 

    Google Scholar 
    Gordon, D. A. R., Coenders-Gerrits, M., Sellers, B. A., Sadeghi, S., & Van Stan II, J. T. Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel). Hydrol. Earth Syst. Sci. 24, 4587–4599 (2020).Article 
    ADS 

    Google Scholar 
    Ciruzzi, D. M. & Loheide, S. P. II Monitoring tree sway as an indicator of interception dynamics before, during, and following a storm. Geophys. Res. Lett. 48, e2021GL094980 (2021).Article 
    ADS 

    Google Scholar 
    Karimi, P., Bastiaanssen, W. G. & Molden, D. Water Accounting Plus (WA+)–a water accounting procedure for complex river basins based on satellite measurements. Hydrol. Earth Syst. Sci. 17, 2459–2472 (2013).Article 
    ADS 

    Google Scholar 
    del Campo, A. D., González-Sanchis, M., Lidón, A., Ceacero, C. J. & García-Prats, A. Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. J. Hydrol. 565, 74–86 (2018).Article 

    Google Scholar 
    Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).Article 
    ADS 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 
    ADS 

    Google Scholar 
    Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).Article 
    ADS 

    Google Scholar 
    Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. N. Phytol. 219, 1156–1169 (2018).Article 

    Google Scholar 
    Aparecido, L. M. T., Miller, G. R., Cahill, A. T. & Moore, G. W. Comparison of tree transpiration under wet and dry canopy conditions in a Costa Rican premontane tropical forest. Hydrol. Process. 30, 5000–5011 (2016).Article 
    ADS 

    Google Scholar 
    Huang, L. & Zhang, Z. Effect of rainfall pulses on plant growth and transpiration of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China. CATENA 137, 269–276 (2016).Article 

    Google Scholar 
    Fathizadeh, O., Hosseini, S., Zimmermann, A., Keim, R. & Boloorani, A. D. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Sci. Total Environ. 601, 1824–1837 (2017).Article 
    ADS 

    Google Scholar 
    Zhang, Z.-S., Zhao, Y., Li, X.-R., Huang, L. & Tan, H.-J. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert. Sci. Rep. 6, 26030 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    de Groen, M. M. & Savenije, H. H. G. A monthly interception equation based on the statistical characteristics of daily rainfall. Water Resour. Res. 42, W12417 (2006).Article 
    ADS 

    Google Scholar 
    Chinita, M. J., Richardson, M., Teixeira, J. & Miranda, P. M. A. Global mean frequency increases of daily and sub-daily heavy precipitation in ERA5. Environ. Res. Lett. 16, 074035 (2021).Article 
    ADS 

    Google Scholar 
    Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).Article 
    ADS 

    Google Scholar 
    IPCC. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al) (Cambridge Univ. Press, 2021).Ficklin, D. L., Null, S. E., Abatzoglou, J. T., Novick, K. A. & Myers, D. T. Hydrological intensification will increase the complexity of water resource management. Earth’s Futur. 10, e2021EF002487 (2022).Article 
    ADS 

    Google Scholar 
    Haslwanter, A., Hammerle, A. & Wohlfahrt, G. Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: a long-term perspective. Agric. For. Meteorol. 149, 291–302 (2009).Article 
    ADS 

    Google Scholar 
    Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, W. et al. The effect of relative humidity on eddy covariance latent heat flux measurements and its implication for partitioning into transpiration and evaporation. Preprint at https://doi.org/10.2139/ssrn.4106267 (2022).van Dijk, A. I. J. M. et al. Rainfall interception and the coupled surface water and energy balance. Agric. For. Meteorol. 214–215, 402–415 (2015).Article 

    Google Scholar 
    Barr, A. G., Morgenstern, K., Black, T. A., McCaughey, J. H. & Nesic, Z. Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric. Meteorol. 140, 322–337 (2006).Article 

    Google Scholar 
    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhi, W. et al. From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale? Environ. Sci. Technol. 55, 2357–2368 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Kraft, B., Jung, M., Körner, M. & Reichstein, M. Hybrid modeling: fusion of a deep approach and physics-based model for global hydrological modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 43, 1537–1544 (2020).Article 

    Google Scholar 
    Hoffmann, L. et al. From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 19, 3097–3124 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, D., Wang, G. & Anagnostou, E. N. Evaluation of canopy interception schemes in land surface models. J. Hydrol. 347, 308–318 (2007).Article 
    ADS 

    Google Scholar 
    Wang, G. & Eltahir, E. A. Modeling the biosphere–atmosphere system: The impact of the subgrid variability in rainfall interception. J. Clim. 13, 2887–2899 (2000).Article 
    ADS 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article 
    ADS 

    Google Scholar 
    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Potential hazard characteristics of trees with hollows, cavities and fruiting bodies growing along pedestrian routes

    Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 30(7), e02149 (2020).Article 

    Google Scholar 
    Li, Z. & Ma, J. Discussing street tree planning based on pedestrian volume using machine learning and computer vision. Build. Environ. 219, 109178 (2022).Article 

    Google Scholar 
    Tan, X. & Shibata, S. Factors influencing street tree health in constrained planting spaces: Evidence from Kyoto City, Japan. Urban For. Urban Green. 67, 127416 (2022).Article 

    Google Scholar 
    Plant, L. & Sipe, N. Adapting and applying evidence gathering techniques for planning and investment in street trees: A case study from Brisbane. Australia. Urban For. Urban Green. 19, 79–87 (2016).Article 

    Google Scholar 
    Dümpelmann, S. Urban trees in times of crisis: Palliatives, mitigators, and resources. One Earth 2, 402–404 (2020).Article 
    ADS 

    Google Scholar 
    Liu, J. & Slik, F. Are street trees friendly to biodiversity?. Landsc. Urban Plan. 218, 104304 (2022).Article 

    Google Scholar 
    Suchocka, M. et al. Old trees are perceived as a valuable element of the municipal forest landscape. PeerJ 10, 12700 (2022).Article 

    Google Scholar 
    Marselle, M. R. et al. Urban Street tree biodiversity and antidepressant prescriptions. Sci. Rep. 10, 22445 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Radu, S. The ecological role of deadwood in natural forests. In Nature Conservation. Environmental Science and Engineering (eds Gafta, D. & Akeroyd, J.) (Springer, 2006).
    Google Scholar 
    Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).Article 

    Google Scholar 
    Ferenc, M., Sedláček, O. & Fuchs, R. How to improve urban greenspace for woodland birds: Site and local-scale determinants of bird species richness. Urban Ecosyst. 17, 625–640 (2014).Article 

    Google Scholar 
    Birch, J. D., Lutz, J. A., Turner, B. L. & Karst, J. Divergent, age-associated fungal communities of Pinus flexilis and Pinus longaeva. For. Ecol. Manage. 494, 119277 (2021).Article 

    Google Scholar 
    Siitonen, J., Ranius, T. The importance of veteran trees for saproxylic insects. In Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (2015).Polyakov, A. Y., Weller, T. J. & Tietje, W. D. Remnant trees increase bat activity and facilitate the use of vineyards by edge-space bats. Agr. Ecosyst. Environ. 281, 56–63 (2019).Article 

    Google Scholar 
    Hall, S. J. G. & Bunce, R. G. H. Mature trees as keystone structures in Holarctic ecosystems – a quantitative species comparison in a northern English park. Plant Ecol. Divers. 4, 243–250 (2011).Article 

    Google Scholar 
    Suchocka, M. et al. Transit versus Nature. Depreciation of environmental values of the road alleys. Case study: Gamerki-Jonkowo, Poland. Sustain. 11(6), 1816 (2019).Article 

    Google Scholar 
    What Are Ancient & Veteran Trees. Ancient Tree Forum | Championing the Biological, Cultural And Heritage Value Of The UK’s Ancient Trees. URL https://www.ancienttreeforum.org.uk/ancient-trees/what-are-ancient-veteran-trees/ (2022).Fay, N. Environmental arboriculture, tree ecology and veteran tree management. Arbor. J. 26, 213–236 (2002).Article 

    Google Scholar 
    Dujesiefken, D., Fay, N., De Groot, J. W. & De Berker, N. Trees—a lifespan approach. Contributions to arboriculture from European practitioners (eds. Witkoś-Gnach, K., Tyszko-Chmielowiec, P.) (Fundacja EkoRozwoju, 2016).Roman, L. How many trees are enough? Tree death and the urban canopy. Scenar. J. 04, 8 (2014).
    Google Scholar 
    Roman, L. A. & Scatena, F. N. Street tree survival rates: Meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban For. Urban Green. 10(4), 269–274 (2011).Article 

    Google Scholar 
    Czaja, M., Kołton, A. & Muras, P. The complex issue of urban trees—stress factor accumulation and ecological service possibilities. Forests 11, 932 (2020).Article 

    Google Scholar 
    Olchowik, J., Suchocka, M., Jankowski, P., Malewski, T. & Hilszczańska, D. The ectomycorrhizal community of urban linden trees in Gdańsk, Poland. PlosOne. 16(4), e0237551 (2021).Article 
    CAS 

    Google Scholar 
    Nilsson, K., Konijnendijk, C. C. & Nielsen, A. B. Urban forest function, design and management. In Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) https://doi.org/10.1007/978-1-4419-0851-3_218 (Springer, New York, NY, 2013).Chapter 

    Google Scholar 
    Pokorny, J.D. Urban tree risk management, a Community Guide to Program Design and Implementation. USDA Forest Service Northeastern Area State and Private Forestry (2003).James, K. R., Haritos, N. & Ades, P. K. Mechanical stability of trees under dynamic loads. Am. J. Bot. 93(10), 1361–1369 (2006).Article 

    Google Scholar 
    Hickman, G. W., Perry, E. & Evans, R. Validation of a tree failure evaluation system. J. Arboric. 21(5), 233–234 (1995).
    Google Scholar 
    Klein, R., Koeser, A., Hauer, R., Hansen, G. & Escobedo, F. Risk assessment and risk perception of trees: A review of literature relating to arboriculture and urban forestry. Arboric. Urban For. 45(1), 26–38 (2019).
    Google Scholar 
    Smiley, E. T. Root pruning and stability of young willow oak. Arboric. Urban For. 34(2), 123–128 (2008).Article 

    Google Scholar 
    Terho, M. & Hallaksela, A.-M. Decay characteristics of hazardous Tilia, Betula, and Acer trees felled by municipal urban tree managers in the Helsinki city area. Forestry 81(2), 151–159. https://doi.org/10.1093/forestry/cpn002 (2008).Article 

    Google Scholar 
    Terho, M. An assessment of decay among urban Tilia, Betula, and Acer trees felled as hazardous. Urban For. Urban Green. 8, 77–85 (2009).Article 

    Google Scholar 
    Koeser, A. K., Klein, R. W., Hasing, G. & Northrop, R. J. Factors driving professional and public urban tree risk perception. Urban For. Urban Green. 14(4), 968–974 (2015).Article 

    Google Scholar 
    Johnson, G. R. Storms over Minnesota. Minn. Shade Tree Advocate 2(1), 1–12 (1999).ADS 

    Google Scholar 
    Zhang, Y., Hussain, A., Deng, J. & Letson, L. Public attitudes toward urban trees and supporting urban tree programs. Environ. Behav. 39(6), 797–814 (2007).Article 

    Google Scholar 
    Suchocka, M., Swoczyna, T., Kosno-Jończy, J. & Kalaji, H. M. Impact of heavy pruning on development and photosynthesis of Tilia cordata Mill Trees. PLoS ONE 16(8), e0256465. https://doi.org/10.1371/journal.pone.0256465 (2021).Article 
    CAS 

    Google Scholar 
    Gilman, E. F. & Knox, G. Pruning type affects ecay and structure of crape myrtle. J. Arboric. 31, 38–47 (2005).
    Google Scholar 
    Gilman, E. F. & Lilly, S. J. Best Management Practices: Tree Pruning (International Society of Arboriculture, 2008).
    Google Scholar 
    Perrette, G., Delagrange, S., Ramirez, J. A. & Messier, C. Optimisingreduction pruning under electrical lines: The influence of tree vitality before pruning on traumatic responses. Urban For. Urban Green. 63, 127139 (2021).Article 

    Google Scholar 
    von Döhren, P. & Haase, D. Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin. Germany. Ecosyst. Serv. 40, 101031 (2019).Article 

    Google Scholar 
    Papandrea, S. F., Cataldo, M. F., Zimbalatti, G. & Proto, A. R. Comparative evaluation of inspection techniques for decay detection in urban trees. Environ. Sci. Proc. 3, 14 (2021).
    Google Scholar 
    McPherson, G. & Peper, P. P. Costs of street tree damage to infrastructure. Arbor. J. 20, 143–160 (1996).Article 

    Google Scholar 
    Mullaney, J., Lucke, T. & Trueman, S. J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 134, 157–166 (2015).Article 

    Google Scholar 
    Vogt, J., Hauer, R. J. & Fischer, B. C. The costs of maintaining and not maintaining the urban forest: A review of the urban forestry and arboriculture literature. Arboric. Urban For. 41(6), 293–323 (2015).
    Google Scholar 
    Mattheck, C. & Breloer, H. Field guide for visual tree assessment (VTA). Arboric. J. 18(1), 1–23 (1994).Article 

    Google Scholar 
    Smiley E.T., Matheny N., & Lilly S. Best management practices: Tree risk assessment. In International Society of Arboriculture, 86 (Champaign, Illinois, 2011).Dunster J.A., Smiley E.T., Matheny N., Lilly S. Tree risk assessment manual. International Society of Arboriculture 194 (Champaign, Illinois, 2013).Li, H., Zhang, X., Li, Z., Wen, J. & Tan, X. A review of research on tree risk assessment methods. Forests 13, 1556 (2022).Article 

    Google Scholar 
    Koeser, A. K., Hauer, R. J., Klein, R. W. & Miesbauer, J. W. Assessment of likelihood of failure using limited visual, basic, and advanced assessment techniques. Urban For. 24, 71–79 (2017).
    Google Scholar 
    TRAQ [URL TRAQandOtherTreeRiskAssessmentMethodsforEvaluationandPrioritizingTreeRiskConditions(forestmetrix.com) (2021).TRAQ Tree Risk Assessment Qualification Application Guide https://www.isa-arbor.com/Portals/0/Assets/PDF/Certification-Applications/TRAQ-App-Guide.pdf (2021).Matheny N. P., Clark J. R. A photographic guide to the evaluation of hazard trees in urban areas. In International Society of Arboriculture 85 (Champaign, 1994).Linhares, C. S. F., Gonçalves, R., Martins, L. M. & Knapic, S. Structural stability of urban trees using visual and instrumental techniques: A review. Forests 12, 1752. https://doi.org/10.3390/f12121752 (2021).Article 

    Google Scholar 
    Ellison, M. Quantified tree risk assessment: Nota De procedimiento V5.2.3 (ES)2018-01 Quantified Tree Risk Assessment Limited (2018).Forbes-Laird, J. THREATS – tree hazard risk evaluation and treatment system – Guidance note for users Retrieved March 27th, 2020 from Forbes-Laird Arboricultural Consultancy http://www.flac.uk.com/wp-content/uploads/2010/07/THREATS-GN-June-2010.pdf, (2010).Guyon C. Cleaver M. Jackson A. Saavedra P. Zambino A. Guide to Identifying, Assessing, and Managing Hazard Trees in Developed Recreational Sites of the Northern Rocky Mountains and the Intermountain West Retrieved March 31st, 2020 from USDA Forest Service, Northern and Intermountain Regions (2017). https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd571021.pdfBlodgett, J. T., Burns, K. S., Worrall J. J.Guide to hazard tree management Retrieved March 31st, 2020 from USDA Forest Service, Rocky Mountain Region (2017) https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd572690.pdf (2017).Norris M. A review of methods used to undertake risk assessments of urban trees. MSc. Thesis (2007).Smiley, E. T., Matheny, N., Lilly, S. Best management practices: Tree risk assessment. International Society of Arboriculture 86 (Champaign, Illinois, 2011).ALARP – Hart, A, 2013, ALARP – Recent Developments, ALARP: Learning from the Experiences of Others, London: IMechE, 4th June 2013 (2013).HSE, 2001 Reducing risks, protecting people, HSE’s decision making process, Liverpool: Health and Safety Executive. (2001).Rinn, F. Holzanatomische Grundlagen mechanischer impuls – Tomographie an Baumen [Wood anatomy background through mechanical pulses – tomografy of trees]. Allg. Forstwirtsch. 8, 450–456 (2003).
    Google Scholar 
    Gilbert, E. A. & Smiley, E. T. Picus sonic tomography for the quantification of decay in white oak (Quercus alba) and hickory (Carya spp.). J. Arboric 30, 277–281 (2004).
    Google Scholar 
    Wang, X. & Allison, R. B. Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboric. Urban For. 34(1), 1–4 (2008).Article 

    Google Scholar 
    Wu, Y. & Shao, Z. Measurement and mechanical analysis of the strains–stresses induced by tree-pulling experiments in tree stems. Trees 30, 675–684 (2016).Article 

    Google Scholar 
    Schindler, D. & Kolbe, S. Assessment of the response of a scots pine tree to effective wind loading. Forests 11(2), 145 (2020).Article 

    Google Scholar 
    Koeser, A. K. & Smiley, E. T. Impact of assessor on tree risk assessment ratings and prescribed mitigation measures. Urban For. 24, 109–115 (2017).
    Google Scholar 
    Klein, R. W. et al. Assessing the consequences of tree failure. Urban Forestry & Urban Greening 65, 127307 (2021).Article 

    Google Scholar 
    Renn, O. Perception of risks. Toxicol. Lett. 149(1), 405–413 (2004).Article 
    CAS 

    Google Scholar 
    Hasan, R., Othman, N. & Ismail, F. Roadside tree management in urban area for public safety and properties. Asian J. Quality Life 3, 10–21834 (2018).Article 

    Google Scholar 
    Williams, V. How do You Decide When to Remove a Tree? (University Of Maryland extension, 2018).Rhoades, H. Filling holes in tree trunks: how to patch a hole in a tree trunk or a hollow tree. https://www.gardeningknowhow.com/ornamental/trees/tgen/patching-tree-hole.htm (2020).Terho, M. & Hallaksela, A. M. Potential hazard characteristics of Tilia, Betula, and Acer trees removed in the Helsinki City Area during 2001–2003. Urban For. Urban Green. 3, 113–120 (2005).Article 

    Google Scholar 
    Nagendra, H. & Gopal, D. Tree diversity, distribution, history and change in urban parks: Studies in Bangalore India. Urban Ecosyst. 14, 211–223 (2011).Article 

    Google Scholar 
    Lindenmayer, D. B., Blanchard, W., Blair, D. & McBurney, L. The road to oblivion – Quantifying pathways in the decline of large old trees. For. Ecol. Manage. 430, 259–264 (2018).Article 

    Google Scholar 
    Lusk, A. C., da Silva Filho, D. F. & Dobbert, L. Pedestrian and cyclist preferences for tree locations by sidewalks and cycle tracks and associated benefits: Worldwide implications from a study in Boston, MA. Cities 106, 102111 (2020).Article 

    Google Scholar 
    Galenieks, A. Importance of urban street tree policies: A comparison of neighboring southern California Cities. Urban For. Urban Green. 22, 105–110 (2017).Article 

    Google Scholar 
    Wessolly, L. Material and structural features of trees Contribution to the Stargardt strength catalogue. In Proceedings of the 15th Bad Goteborg Tree Seminar (1992).Schwarze, F. Diagnosis and prognosis of the development of wood decay in urban trees. Agrios GN 1997 Plant Patology. (Academic Press, San Diego, 2008).Footway. Cycling Embassy Of Great Britain [https://www.cycling-embassy.org.uk/dictionary/footway] (2022).Roloff, A. Handbuch Baumdiagnostik Baum-Korpersprache und Baum-Beurtailung (Ulmer Verlag, 2015).
    Google Scholar 
    Koeser, A. K., Hasing, G., McLean, D., Northrop R. Tree risk assessment methods: A comparison of three common evaluation forms Retrieved March 24th, 2020 from https://edis.ifas.ufl.edu/ep487 (2016).Smiley, E. T. & Kumamoto, H. Qualitative Tree Risk Assessment. 12–18 (2012).Mattheck, C. Trees: The Mechanical Design (Springer, 1991).Book 

    Google Scholar 
    R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Olchowik, J. et al. The ectomycorrhizal community of crimean linden trees in Warsaw, Poland. Forests 11(9), 926 (2020).Article 

    Google Scholar 
    Dupre, S., Thiebaut, B. & Tessier du Cros, E. Morphologie architecture des jeunes hfitres (Fagus sylvatica L.). Influence du milieu variability genetique. Ann. Sci. For. 43, 85–102 (1986).Article 

    Google Scholar 
    Power, S. A., Ashmore, M. R. & Ling, K. A. Recent trends in beech tree health in southern Britain and the influence of soil type. Water Air Soil Pollut. 85, 1293–1298 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Masarovičova, E. & Štefančik, L. Some ecophysiological features in sun and shade leaves of tall beech trees. Biol. Plant 32, 374–387 (1990).Article 

    Google Scholar 
    Nicolini, E. & Caraglio, Y. L’influence de divers caracteres architecturaux sur l’apparition de la fourche chez le Fagus sylvatica, en fonction de l’absence ou de la presence d’un couvert. Botany 72, 1723–1734 (1994).
    Google Scholar 
    van Wassenaer, P. V. & Richardson, M. A review of tree risk assessment using minimally invasive technologies and two case studies. Arboric. J. 32, 275–292 (2009).Article 

    Google Scholar 
    dos Reis, M. N., Gonçalves, R., Brazolin, S. & de Assis Palma, S. S. Strength loss inference due to decay or cavities in tree trunks using tomographic imaging data applied to equations proposed in the literature. Forests 13, 596 (2022).Article 

    Google Scholar 
    Kanea, B., Warrena, P. S. & Lermanab, S. B. A broad scale analysis of tree risk, mitigation and potential habitat for cavity-nesting birds. Urban For. 14, 1137–1146 (2015).
    Google Scholar 
    Wolf, K. L. Roadside urban trees—balancing safety and community values. Arborist News 15, 25–27 (2006).
    Google Scholar 
    Hightshoe, G. L. Native Trees, Shrubs and Vines for Urban and Rural America (Wiley and Sons, 1988).
    Google Scholar 
    Costello, L. R. & Jones, K. S. Western chapter of the international society of arboriculture. In Reducing Infrastructure Damage by The Tree Roots: A Compendium of Strategies. 64–65 (2003).Kjaer, E. D. Introduction part 2. Consequences of ash dieback: Damage level, resistance and resilience of European Ash Forests. Balt. For. 23, 141–143 (2017).
    Google Scholar 
    Timmermann, V., Nagy, N., Hietala, A., Børja, I. & Solheim, H. Progression of ash dieback in Norway related to tree age, disease history and regional aspects. Balt. For. 23, 150–158 (2017).
    Google Scholar 
    Zajączkowska, U., Kaczmarczyk, K. & Liana, J. Birch sap exudation: influence of tree position in a forest stand on birch sap production, trunk wood anatomy and radial bending strength. Silva Fennica 53(2), 10048. https://doi.org/10.14214/sf.10048 (2019).Article 

    Google Scholar 
    Reed, H. J. Veteran Trees: A Guide to Good Management (England Nature, 2000).
    Google Scholar  More

  • in

    Suicidal chemotaxis in bacteria

    Surface-attached bacteria move towards antibiotics via twitching motilityWe used microfluidic devices and automated cell tracking to quantify the movement of P. aeruginosa cells as they are exposed to well-defined spatial gradients of antibiotics in developing biofilms (Fig. 1). We began with the antibiotic ciprofloxacin, which is widely used to treat P. aeruginosa infections27,28. To set a baseline, we first determined the minimum inhibitory concentration (hereafter MIC) of ciprofloxacin for P. aeruginosa (strain PAO1) in shaking cultures, which agrees with the published MIC of this strain (Fig. S129). We then exposed surface-attached cells to an antibiotic gradient in a microfluidic device where the antibiotic concentration ranged from zero to 10 times the MIC (Fig. 1A, B, Methods). After approximately 5 h of unbiased movement, we were surprised to see that twitching cells began to bias their movement towards increasing concentrations of ciprofloxacin (Fig. 1B, D, Movie 1). The movement bias, β, defined as the number of cells moving up the gradient divided by the number of cells moving down the gradient, peaks after approximately 10 h and then decays as the surface becomes crowded with cells (Movie 1) and tracking becomes difficult (Methods). The flow through the device also has a small influence on the direction of cell movement because it tends to pull cells in the downstream direction (Fig. 1B, C, E). However, this fluid flow is orthogonal to the direction of the antibiotic gradient, and so does not explain the movement towards antibiotics.Fig. 1: Twitching P. aeruginosa cells bias their motility towards increasing antibiotic concentrations.A A dual-inlet microfluidic device generates steady antibiotic gradients (e.g. ciprofloxacin, CMAX = 10X MIC) via molecular diffusion. Isocontours were calculated using mathematical modelling (Methods) and background shading shows approximate ciprofloxacin distribution visualised using fluorescein. B Red (blue) cell trajectories are moving towards (away from) increasing [ciprofloxacin]. Inset: A circular histogram of cell movement direction reveals movement bias towards increasing [ciprofloxacin]. A two-sided binomial test rejects the null hypothesis that trajectories are equally likely to be directed up or down the [ciprofloxacin] gradient (p  More

  • in

    Uptrend in global managed honey bee colonies and production based on a six-decade viewpoint, 1961–2017

    Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49(1), 1–6 (2010).Article 

    Google Scholar 
    Osterman, J. et al. Global trends in the number and diversity of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653. https://doi.org/10.1016/j.agee.2021.107653 (2021).Article 

    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).Article 

    Google Scholar 
    Hristov, P., Shumkova, R., Palova, N. & Neov, B. Factors associated with honey bee colony losses: A mini-review. Vet. Sci. 7(4), 166 (2020).Article 

    Google Scholar 
    Dukas, R. Mortality rates of honey bees in the wild. Insectes Soc. 55, 252–255 (2008).Article 

    Google Scholar 
    Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and colony collapse disorder in the United States. J. Apic. Res. 49, 134–136 (2010).Article 

    Google Scholar 
    Vanengelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103(Suppl 1), S80-95 (2010).Article 

    Google Scholar 
    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).Article 

    Google Scholar 
    Patel, V., Pauli, N., Biggs, E., Barbour, L. & Boruff, B. Why bees are critical for achieving sustainable development. Ambio 50, 49–59 (2021).Article 

    Google Scholar 
    Aylanc, V., Falcão, S. I., Ertosun, S. & Vilas-Boas, M. From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends Food Sci. Tech. 109, 464–481 (2021).Article 
    CAS 

    Google Scholar 
    Kieliszek, M. et al. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Tech. 71, 170–180 (2018).Article 
    CAS 

    Google Scholar 
    Bixby, M. et al. Honey bee queen production: Canadian costing case study and profitability analysis. J. Econ. Entomol. 113, 1618–1627 (2020).Article 

    Google Scholar 
    Ghosh, S., Jung, C. & Meyer-Rochow, V. B. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J. Asia-Pac. Entomol. 19, 487–495 (2016).Article 
    CAS 

    Google Scholar 
    Ulmer, M., Smetana, S. & Heinz, V. Utilizing honeybee drone brood as a protein source for food products: Life cycle assessment of apiculture in Germany. Resour. Conser. Recy. 154, 104576. https://doi.org/10.1016/j.resconrec.2019.104576 (2020).Article 

    Google Scholar 
    FAO. Value-added products from beekeeping. FAO Agricultural Services Bulletin. https://www.fao.org/publications/card/en/c/a76265ff-7440-57a6-82da-21976b9fde8d (1996).FAO. Beekeeping and sustainable livelihoods. Diversification booklet 1. https://www.fao.org/3/y5110e/y5110e00.htm (2004).Halvorson, K., Baumung, R., Leroy, G., Chen, C. & Boettcher, P. Protection of honeybees and other pollinators: One global study. Apidologie 52, 535–547 (2021).Article 

    Google Scholar 
    Moritz, R. F. A. & Erler, S. Lost colonies found in a data mine: Global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agr. Ecosyst. Environ. 216, 44–50 (2016).Article 

    Google Scholar 
    Naug, D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. 142, 2369–2372 (2009).Article 

    Google Scholar 
    Pohorecka, K., Szczęsna, T., Witek, M., Miszczak, A. & Sikorski, P. The exposure of honey bees to pesticide residues in the hive environment with regard to winter colony losses. J. Apicult. Sci. 61, 105 (2017).Article 
    CAS 

    Google Scholar 
    Van Dooremalen, C. et al. Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS ONE 7, e36285. https://doi.org/10.1371/journal.pone.0036285 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Steinhauer, N. et al. Drivers of colony losses. Curr. Opin. Insect Sci. 26, 142–148 (2018).Article 

    Google Scholar 
    Brodschneider, R. et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J. Apic. Res. 57, 452–457 (2018).Article 

    Google Scholar 
    Degrandi-Hoffman, G., Graham, H., Ahumada, F., Smart, M. & Ziolkowski, N. The economics of honey bee (Hymenoptera: Apidae) management and overwintering strategies for colonies used to pollinate almonds. J. Econ. Entomol. 112(6), 2524–2533 (2019).Article 
    CAS 

    Google Scholar 
    Porto, R. G. et al. Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Sec. 12, 1425–1442 (2020).Article 

    Google Scholar 
    Kielmanowicz, M. G. et al. Prospective large-scale field study generates predictive model identifying major contributors to colony losses. PLoS Pathog. 11, e1004816. https://doi.org/10.1371/journal.ppat.1004816 (2015).Article 
    CAS 

    Google Scholar 
    Kulhanek, et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 56(4), 328–340 (2017).Article 

    Google Scholar 
    van Engelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103, S80–S95 (2010).Article 

    Google Scholar 
    Caron, D. M., Burgett, M., Rucker, R. & Thurman, W. Honey bee colony mortality in the Pacific Northwest winter 2008/2009. Am. Bee J. 150, 265–269 (2010).
    Google Scholar 
    Mashilingi, S. K., Zhang, H., Garibaldi, L. A. & An, J. Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agric. Ecosyst. Environ. 335, 108003. https://doi.org/10.1016/j.agee.2022.108003 (2022).Article 

    Google Scholar 
    Kohsaka, R., Park, M. S. & Uchiyama, Y. Beekeeping and honey production in Japan and South Korea: Past and present. J. Ethn. Foods 4(2), 72–79 (2017).Article 

    Google Scholar 
    Walker, M. J., Cowen, S., Gray, K., Hancock, P. & Burns, D. T. Honey authenticity: The opacity of analytical reports – part 1 defining the problem. npj Sci. Food 6(1), 1–9 (2022).
    Google Scholar 
    Fakhlaei, R. et al. The toxic impact of honey adulteration: A review. Foods 9(11), 1538. https://doi.org/10.3390/foods9111538 (2020).Article 
    CAS 

    Google Scholar 
    Rogers, R., Hassler, E., Carey, Q. & Cazier, J. More time to fly: With a warming climate the Western honey bee (Apis mellifera, Linnaeus) now has more temperature-eligible flight hours than 40 years ago. J. Apic. Res. https://doi.org/10.1080/00218839.2022.2073633 (2022).Article 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).Article 
    CAS 

    Google Scholar 
    FAO. Data collection. Food and Agriculture Statistics. https://www.fao.org/food-agriculture-statistics/data-collection/en/ (2022).Le Conte, Y. & Navajas, M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. 27(2), 499–510 (2008).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2022).FAO. Crops and livestock products. FAOSTAT. https://www.fao.org/faostat/en/#data/QCL (2022).Global Change Data Lab. Global and regional population estimates (US Census Bureau vs. UN), World. Our World in Data. https://ourworldindata.org/grapher/global-and-regional-population-estimates-us-census-bureau-vs-un (2021).van Brakel, J. Peak signal detection in realtime timeseries data: Robust peak detection algorithm (using z-scores). Stack Overflow. https://stackoverflow.com/questions/22583391/ (2014).Rykov, Y., Thach, T.-Q., Bojic, I., Christopoulos, G. & Car, J. Digital biomarkers for depression screening with wearable devices: Cross-sectional study with machine learning modeling. JMIR Mhealth Uhealth 9, e24872 (2021).Article 

    Google Scholar  More

  • in

    Ecological study of ambient air pollution exposure and mortality of cardiovascular diseases in elderly

    Franchini, M. & Mannucci, P. M. Air pollution and cardiovascular disease. Thromb. Res. 129, 230–234 (2012).Article 
    CAS 

    Google Scholar 
    Langrish, J. P. et al. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease. Environ. Health Perspect. 120, 367–372 (2012).Article 
    CAS 

    Google Scholar 
    Tanwar, V., Katapadi, A., Adelstein, J. M., Grimmer, J. A. & Wold, L. E. Cardiac pathophysiology in response to environmental stress: A current review. Curr. Opin. Physiol. 1, 198–205 (2018).Article 

    Google Scholar 
    Franchini, M. & Mannucci, P. M. Particulate air pollution and cardiovascular risk: short-term and long-term effects. in Seminars in Thrombosis and Hemostasis. Vol. 35. 665–670 (© Thieme Medical Publishers, 2009).Shah, A. S. V. et al. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 382, 1039–1048 (2013).Article 
    CAS 

    Google Scholar 
    Cesaroni, G. et al. Long term exposure to ambient air pollution and incidence of acute coronary events: Prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 348, f7412 (2014).Article 

    Google Scholar 
    Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378 (2010).Article 
    CAS 

    Google Scholar 
    Héroux, M.-E. et al. Quantifying the health impacts of ambient air pollutants: Recommendations of a WHO/Europe project. Int. J. Public Health 60, 619–627 (2015).Article 

    Google Scholar 
    An, Z., Jin, Y., Li, J., Li, W. & Wu, W. Impact of particulate air pollution on cardiovascular health. Curr. Allergy Asthma Rep. 18, 1–7 (2018).Article 
    CAS 

    Google Scholar 
    Zanobetti, A., Baccarelli, A. & Schwartz, J. Gene-air pollution interaction and cardiovascular disease: A review. Prog. Cardiovasc. Dis. 53, 344–352 (2011).Article 
    CAS 

    Google Scholar 
    Liang, R. et al. Effect of exposure to PM2.5 on blood pressure: A systematic review and meta-analysis. J. Hypertens. 32, 2130–2141 (2014).Article 
    CAS 

    Google Scholar 
    Jerrett, M. et al. Traffic-related air pollution and obesity formation in children: A longitudinal, multilevel analysis. Environ. Heal. 13, 49 (2014).Article 

    Google Scholar 
    McConnell, R. et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: The Southern California Children’s Health Study. Environ. Health Perspect. 123, 360–366 (2015).Article 

    Google Scholar 
    Renzi, M. et al. Air pollution and occurrence of type 2 diabetes in a large cohort study. Environ. Int. 112, 68–76 (2018).Article 
    CAS 

    Google Scholar 
    Jomova, K. et al. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 31, 95–107 (2011).CAS 

    Google Scholar 
    Al-Kindi, S. G., Brook, R. D., Biswal, S. & Rajagopalan, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 17, 656–672 (2020).Article 

    Google Scholar 
    Noroozian, M. The elderly population in iran: An ever growing concern in the health system. Iran. J. Psychiatry Behav. Sci. 6, 1 (2012).
    Google Scholar 
    Chokshi, D. A. & Farley, T. A. The cost-effectiveness of environmental approaches to disease prevention. N. Engl. J. Med. 367, 295–297 (2012).Article 
    CAS 

    Google Scholar 
    Nieuwenhuijsen, M. J. Influence of urban and transport planning and the city environment on cardiovascular disease. Nat. Rev. Cardiol. 15, 432–438 (2018).Article 

    Google Scholar 
    Barnett, A. G. et al. The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in Australian and New Zealand cities. Environ. Health Perspect. 114, 1018–1023 (2006).Article 
    CAS 

    Google Scholar 
    Koken, P. J. M. et al. Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ. Health Perspect. 111, 1312–1317 (2003).Article 

    Google Scholar 
    Institute for Health Metrics and Evaluation. GBD 2019. (University of Washington, 2022).IHME. GBD 2019 Data and Tools Overview. (University of Washington, 2020).Dicker, D. et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1684–1735 (2018).Article 

    Google Scholar 
    Miller, D. C. & Salkind, N. J. Handbook of Research Design and Social Measurement (Sage, 2002).Book 

    Google Scholar 
    Rosenthal, F. S., Carney, J. P. & Olinger, M. L. Out-of-hospital cardiac arrest and airborne fine particulate matter: A case–crossover analysis of emergency medical services data in Indianapolis, Indiana. Environ. Health Perspect. 116, 631–636 (2008).Article 

    Google Scholar 
    Ensor, K. B., Raun, L. H. & Persse, D. A case-crossover analysis of out-of-hospital cardiac arrest and air pollution. Circulation 127, 1192–1199 (2013).Article 
    CAS 

    Google Scholar 
    Forastiere, F. et al. A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am. J. Respir. Crit. Care Med. 172, 1549–1555 (2005).Article 

    Google Scholar 
    Levy, D. et al. A case-crossover analysis of particulate matter air pollution and out-of-hospital primary cardiac arrest. Epidemiology 12, 193–199 (2001).Article 
    CAS 

    Google Scholar 
    Silverman, R. A. et al. Association of ambient fine particles with out-of-hospital cardiac arrests in New York City. Am. J. Epidemiol. 172, 917–923 (2010).Article 

    Google Scholar 
    Naghavi, M. et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1151–1210 (2017).Article 

    Google Scholar 
    Berend, N. Contribution of air pollution to COPD and small airway dysfunction. Respirology 21, 237–244 (2016).Article 

    Google Scholar 
    Vahedian, M., Khanjani, N., Mirzaee, M. & Koolivand, A. Associations of short-term exposure to air pollution with respiratory hospital admissions in Arak, Iran. J. Environ. Health Sci. Eng. 15, 17 (2017).Yaser, H. S., Narges, K., Yaser, S. & Rasoul, M. Air pollution and cardiovascular mortality in Kerman from 2006 to 2011. Am. J. Cardiovasc. Dis. Res. 2, 27–30 (2014).
    Google Scholar 
    Khaefi, M. et al. Association of particulate matter impact on prevalence of chronic obstructive pulmonary disease in Ahvaz, southwest Iran during 2009–2013. Aerosol Air Qual. Res. 17, 230–237 (2017).Article 
    CAS 

    Google Scholar 
    Khaniabadi, Y. O. et al. Exposure to PM10, NO2, and O3 and impacts on human health. Environ. Sci. Pollut. Res. Int. 24, 2781–2789 (2017).Article 
    CAS 

    Google Scholar 
    Momtazan, M. et al. An investigation of particulate matter and relevant cardiovascular risks in Abadan and Khorramshahr in 2014–2016. Toxin Rev. 38, 1–8 (2018).Martinelli, N., Olivieri, O. & Girelli, D. Air particulate matter and cardiovascular disease: A narrative review. Eur. J. Intern. Med. 24, 295–302 (2013).Article 
    CAS 

    Google Scholar 
    Khaniabadi, Y. O. et al. Mortality and morbidity due to ambient air pollution in Iran. Clin. Epidemiol. Glob. Health 7, 222–227 (2019).Article 

    Google Scholar 
    Almeida-Silva, M. et al. Exposure and dose assessment to particle components among an elderly population. Atmos. Environ. 102, 156–166 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Suh, H. H., Zanobetti, A., Schwartz, J. & Coull, B. A. Chemical properties of air pollutants and cause-specific hospital admissions among the elderly in Atlanta, Georgia. Environ. Health Perspect. 119, 1421–1428 (2011).Article 

    Google Scholar 
    Chien, L.-C., Yang, C.-H. & Yu, H.-L. Estimated effects of Asian dust storms on spatiotemporal distributions of clinic visits for respiratory diseases in Taipei children (Taiwan). Environ. Health Perspect. 120, 1215–1220 (2012).Article 

    Google Scholar 
    Khaniabadi, Y. O. et al. Chronic obstructive pulmonary diseases related to outdoor PM10, O3, SO2, and NO2 in a heavily polluted megacity of Iran. Environ. Sci. Pollut. Res. 25, 17726–17734 (2018).Article 
    CAS 

    Google Scholar 
    Omidi Khaniabadi, Y. et al. Air quality modeling for health risk assessment of ambient PM10, PM2.5 and SO2 in Iran. Hum. Ecol. Risk Assess. Int. J. 25, 1298–1310 (2019).Newell, K., Kartsonaki, C., Lam, K. B. H. & Kurmi, O. P. Cardiorespiratory health effects of particulate ambient air pollution exposure in low-income and middle-income countries: A systematic review and meta-analysis. Lancet Planet. Health 1, e368–e380 (2017).Article 

    Google Scholar 
    Dominici, F. et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295, 1127–1134 (2006).Article 
    CAS 

    Google Scholar 
    Qiu, H. et al. Inflammatory and oxidative stress responses of healthy elders to solar-assisted large-scale cleaning system (SALSCS) and changes in ambient air pollution: A quasi-interventional study in Xi’an, China. Sci. Total Environ. 806, 151217 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Fiordelisi, A. et al. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail. Rev. 22, 337–347 (2017).Article 
    CAS 

    Google Scholar 
    Yang, D., Yang, X., Deng, F. & Guo, X. Ambient air pollution and biomarkers of health effect. Ambient Air Pollut. Health Impact China 1017, 59–102 (2017).Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).Article 

    Google Scholar 
    Newby, D. E. et al. Expert position paper on air pollution and cardiovascular disease. Eur. Heart J. 36, 83–93 (2015).Article 
    CAS 

    Google Scholar 
    Brook, R. D., Newby, D. E. & Rajagopalan, S. Air pollution and cardiometabolic disease: An update and call for clinical trials. Am. J. Hypertens. 31, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Kang, S.-H. et al. Ambient air pollution and out-of-hospital cardiac arrest. Int. J. Cardiol. 203, 1086–1092 (2016).Article 

    Google Scholar 
    Thurston, G. D. et al. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ. Health Perspect. 124, 484–490 (2016).Article 

    Google Scholar 
    Gallagher, L. G. et al. Applying a moving total mortality count to the cities in the NMMAPS database to estimate the mortality effects of particulate matter air pollution. Circulation 172, 872–879 (2010).
    Google Scholar 
    Rodopoulou, S., Samoli, E., Chalbot, M.-C.G. & Kavouras, I. G. Air pollution and cardiovascular and respiratory emergency visits in Central Arkansas: A time-series analysis. Sci. Total Environ. 536, 872–879 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Teng, T.-H.K. et al. A systematic review of air pollution and incidence of out-of-hospital cardiac arrest. J. Epidemiol. Commun. Health 68, 37–43 (2014).Article 

    Google Scholar 
    Brook, R. D. et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 109, 2655–2671 (2004).Article 

    Google Scholar 
    Raza, A. et al. Short-term effects of air pollution on out-of-hospital cardiac arrest in Stockholm. Eur. Heart J. 35, 861–868 (2014).Article 
    CAS 

    Google Scholar 
    Baccarelli, A. et al. Effects of exposure to air pollution on blood coagulation. J. Thromb. Haemost. 5, 252–260 (2007).Article 
    CAS 

    Google Scholar 
    Franchini, M. & Mannucci, P. M. Thrombogenicity and cardiovascular effects of ambient air pollution. Blood 118, 2405–2412 (2011).Article 
    CAS 

    Google Scholar 
    Yin, F. et al. Diesel exhaust induces systemic lipid peroxidation and development of dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arterioscler. Thromb. Vasc. Biol. 33, 1153–1161 (2013).Article 
    CAS 

    Google Scholar 
    Chirinos, J. A. et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J. Am. Coll. Cardiol. 45, 1467–1471 (2005).Article 
    CAS 

    Google Scholar 
    Adar, S. D. et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: A prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 10, e1001430 (2013).Article 

    Google Scholar 
    Kampfrath, T. et al. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ. Res. 108, 716–726 (2011).Article 
    CAS 

    Google Scholar 
    Sun, Q. et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 294, 3003–3010 (2005).Article 
    CAS 

    Google Scholar 
    Dennekamp, M. et al. Outdoor air pollution as a trigger for out-of-hospital cardiac arrests. Epidemiology 21, 494–500 (2010).Straney, L. et al. Evaluating the impact of air pollution on the incidence of out-of-hospital cardiac arrest in the Perth Metropolitan Region: 2000–2010. J. Epidemiol. Commun. Health 68, 6–12 (2014).Article 

    Google Scholar 
    Sullivan, J. et al. Exposure to ambient fine particulate matter and primary cardiac arrest among persons with and without clinically recognized heart disease. Am. J. Epidemiol. 157, 501–509 (2003).Article 
    CAS 

    Google Scholar 
    Barton, T. J. et al. Traditional cardiovascular risk factors strongly underestimate the 5-year occurrence of cardiovascular morbidity and mortality in spinal cord injured individuals. Arch. Phys. Med. Rehabil. 102, 27–34 (2021).Article 

    Google Scholar 
    Burg, M. M. et al. Risk for incident hypertension associated with PTSD in military veterans, and the effect of PTSD treatment. Psychosom. Med. 79, 181 (2017).Article 

    Google Scholar 
    Hinojosa, R. Veterans’ likelihood of reporting cardiovascular disease. J. Am. Board Fam. Med. 32, 50–57 (2019).Article 

    Google Scholar 
    Rush, T., LeardMann, C. A. & Crum-Cianflone, N. F. Obesity and associated adverse health outcomes among US military members and veterans: Findings from the millennium cohort study. Obesity 24, 1582–1589 (2016).Article 

    Google Scholar 
    Stefanovics, E. A., Potenza, M. N. & Pietrzak, R. H. Smoking, obesity, and their co-occurrence in the US military veterans: Results from the national health and resilience in veterans study. J. Affect. Disord. 274, 354–362 (2020).Article 

    Google Scholar 
    Brook, R. D. et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 54, 659–667 (2009).Article 
    CAS 

    Google Scholar 
    Rajagopalan, S. & Brook, R. D. Air pollution and type 2 diabetes: Mechanistic insights. Diabetes 61, 3037–3045 (2012).Article 
    CAS 

    Google Scholar 
    Franklin, S. S. & Wong, N. D. Hypertension and cardiovascular disease: Contributions of the Framingham Heart Study. Glob. Heart 8, 49–57 (2013).Article 

    Google Scholar 
    Gu, D. et al. Blood pressure and risk of cardiovascular disease in Chinese men and women. Am. J. Hypertens. 21, 265–272 (2008).Article 

    Google Scholar 
    Wang, H. et al. Blood pressure, body mass index and risk of cardiovascular disease in Chinese men and women. BMC Public Health 10, 189 (2010).Article 

    Google Scholar 
    O’Brien, E. The Lancet Commission on hypertension: Addressing the global burden of raised blood pressure on current and future generations. J. Clin. Hypertens. 19, 564–568 (2017).Article 

    Google Scholar 
    Cai, Y. et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis. Hypertension 68, 62–70 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, Z., Laden, F., Forman, J. P. & Hart, J. E. Long-term exposure to particulate matter and self-reported hypertension: A prospective analysis in the Nurses’ Health Study. Environ. Health Perspect. 124, 1414–1420 (2016).Article 

    Google Scholar 
    Cosselman, K. E., Navas-Acien, A. & Kaufman, J. D. Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 12, 627 (2015).Article 
    CAS 

    Google Scholar 
    Baccarelli, A. et al. Effects of particulate air pollution on blood pressure in a highly exposed population in Beijing, China: A repeated-measure study. Environ. Heal. 10, 108 (2011).Article 

    Google Scholar 
    Mordukhovich, I. et al. Black carbon exposure, oxidative stress genes, and blood pressure in a repeated-measures study. Environ. Health Perspect. 117, 1767–1772 (2009).Article 
    CAS 

    Google Scholar 
    Chen, H. et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation 129, 562–569 (2014).Article 
    CAS 

    Google Scholar 
    Honjo, K. et al. The effects of smoking and smoking cessation on mortality from cardiovascular disease among Japanese: Pooled analysis of three large-scale cohort studies in Japan. Tob. Control 19, 50–57 (2010).Article 

    Google Scholar 
    Lawlor, D. A., Song, Y.-M., Sung, J., Ebrahim, S. & Smith, G. D. The association of smoking and cardiovascular disease in a population with low cholesterol levels: A study of 648 346 men from the Korean national health system prospective cohort study. Stroke 39, 760–767 (2008).Article 
    CAS 

    Google Scholar 
    Wold, L. E. et al. Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ. Hear. Fail. 5, 452–461 (2012).Article 
    CAS 

    Google Scholar 
    Zoeller, R. T. et al. Endocrine-disrupting chemicals and public health protection: A statement of principles from The Endocrine Society. Endocrinology 153, 4097–4110 (2012).Article 
    CAS 

    Google Scholar 
    Ruiz, D., Becerra, M., Jagai, J. S., Ard, K. & Sargis, R. M. Disparities in environmental exposures to endocrine-disrupting chemicals and diabetes risk in vulnerable populations. Diabetes Care 41, 193–205 (2018).Article 
    CAS 

    Google Scholar 
    Taylor, D. Toxic Communities: Environmental Racism, Industrial Pollution, and Residential Mobility (NYU Press, 2014).
    Google Scholar 
    Newbold, R. R., Padilla-Banks, E. & Jefferson, W. N. Environmental estrogens and obesity. Mol. Cell. Endocrinol. 304, 84–89 (2009).Article 
    CAS 

    Google Scholar 
    Szyszkowicz, M., Rowe, B. H. & Brook, R. D. Even low levels of ambient air pollutants are associated with increased emergency department visits for hypertension. Can. J. Cardiol. 28, 360–366 (2012).Article 
    CAS 

    Google Scholar 
    van den Hooven, E. H. et al. Air pollution, blood pressure, and the risk of hypertensive complications during pregnancy: The generation R study. Hypertension 57, 406–412 (2011).Article 

    Google Scholar 
    Vali, M. et al. Effect of meteorological factors and Air Quality Index on the COVID-19 epidemiological characteristics: An ecological study among 210 countries. Environ. Sci. Pollut. Res. 38, 1–11 (2021).Kiani, B. et al. Association between heavy metals and colon cancer: An ecological study based on geographical information systems in North-Eastern Iran. BMC Cancer 21, 1–12 (2021).Article 

    Google Scholar 
    Cyranoski, D. China tests giant air cleaner to combat smog. Nature 555, 152–154 (2018).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Visual threats reduce blood-feeding and trigger escape responses in Aedes aegypti mosquitoes

    World Health Organization. World Health Statistics 2018. (WHO, 2018).Wynne, N. E., Lorenzo, M. G. & Vinauger, C. Mechanism and plasticity of vectors’ host-seeking behavior. Curr. Opin. Insect Sci. 40, 1–5 (2020).Article 

    Google Scholar 
    Carlile, P. A., Peters, R. A. & Evans, C. S. Detection of a looming stimulus by the Jacky dragon: Selective sensitivity to characteristics of an aerial predator. Anim. Behav. 72, 553–562 (2006).Article 

    Google Scholar 
    Ingle, D. J. Visually elicited evasive behavior in frogs. Bioscience 40, 284–291 (1990).Article 

    Google Scholar 
    Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).Article 
    CAS 

    Google Scholar 
    Temizer, I., Donovan, J. C., Baier, H. & Semmelhack, J. L. A visual pathway for looming-evoked escape in larval zebrafish. Curr. Biol. 25, 1823–1834 (2015).Article 
    CAS 

    Google Scholar 
    Scarano, F., Tomsic, D. & Sztarker, J. Direction selective neurons responsive to horizontal motion in a crab reflect an adaptation to prevailing movements in flat environments. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0372-20.2020 (2020).Article 

    Google Scholar 
    Scarano, F. & Tomsic, D. Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli. J. Physiol. Paris 108, 141–147 (2014).Article 

    Google Scholar 
    Santer, R. D., Rind, F. C., Stafford, R. & Simmons, P. J. Role of an identified looming-sensitive neuron in triggering a flying locust’s escape. J. Neurophysiol. 95, 3391–3400 (2006).Article 

    Google Scholar 
    Simmons, P. J., Rind, F. C. & Santer, R. D. Escapes with and without preparation: The neuroethology of visual startle in locusts. J. Insect Physiol. 56, 876–883 (2010).Article 
    CAS 

    Google Scholar 
    Dupuy, F., Casas, J., Body, M. & Lazzari, C. R. Danger detection and escape behaviour in wood crickets. J. Insect Physiol. 57, 865–871 (2011).Article 
    CAS 

    Google Scholar 
    Muijres, F. T., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies evade looming targets by executing rapid visually directed banked turns. Science 344, 172–177 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ache, J. M. et al. Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. Curr. Biol. 29, 1073-1081.e4 (2019).Article 
    CAS 

    Google Scholar 
    Domenici, P., Booth, D., Blagburn, J. M. & Bacon, J. P. Cockroaches keep predators guessing by using preferred escape trajectories. Curr. Biol. 18, 1792–1796 (2008).Article 
    CAS 

    Google Scholar 
    Smolka, J., Zeil, J. & Hemmi, J. M. Natural visual cues eliciting predator avoidance in fiddler crabs. Proc. Biol. Sci. 278, 3584–3592 (2011).
    Google Scholar 
    Card, G. & Dickinson, M. Performance trade-offs in the flight initiation of Drosophila. J. Exp. Biol. 211, 341–353 (2008).Article 

    Google Scholar 
    Sun, Y. A. & Wyman, R. J. Neurons of the Drosophila giant fiber system: I. Dorsal longitudinal motor neurons. J. Comp. Neurol. 387, 157–166 (1997).Article 
    CAS 

    Google Scholar 
    von Reyn, C. R. et al. Feature integration drives probabilistic behavior in the Drosophila escape response. Neuron 94, 1190-1204.e6 (2017).Article 

    Google Scholar 
    Fotowat, H., Fayyazuddin, A., Bellen, H. J. & Gabbiani, F. A novel neuronal pathway for visually guided escape in Drosophila melanogaster. J. Neurophysiol. 102, 875–885 (2009).Article 

    Google Scholar 
    Card, G. & Dickinson, M. H. Visually mediated motor planning in the escape response of Drosophila. Curr. Biol. 18, 1300–1307 (2008).Article 
    CAS 

    Google Scholar 
    Matherne, M. E., Cockerill, K., Zhou, Y., Bellamkonda, M. & Hu, D. L. Mammals repel mosquitoes with their tails. J. Exp. Biol. 221, 178905 (2018).Article 

    Google Scholar 
    Cribellier, A. et al. Diurnal and nocturnal mosquitoes escape looming threats using distinct flight strategies. Curr. Biol. 32, 1232-1246.e5 (2022).Article 
    CAS 

    Google Scholar 
    Cribellier, A., Spitzen, J., Straw, A. D., van Leeuwen, J. L. & Muijres, F. T. Escape flight performances of night-active malaria mosquitoes: the role of visual and airflow cues of an approaching object. in Integrative and Comparative Biology. Vol. 61. E170–E171 (Oxford University Press Inc Journals Dept, 2021).Reid, J. A. Anopheline Mosquitoes of Malaya and Borneo. Studies from the Institute for Medical Research, Malaysia. (1968).Clements, A. N. The Biology of Mosquitoes. Volume 2: Sensory Reception and Behaviour (CABI Publishing, 1999).
    Google Scholar 
    Tuno, N., Tsuda, Y., Takagi, M. & Swonkerd, W. Pre- and postprandial mosquito resting behavior around cattle hosts. J. Am. Mosq. Control Assoc. 19, 211–219 (2003).
    Google Scholar 
    Day, J. F. & Edman, J. D. Mosquito engorgement on normally defensive hosts depends on host activity Patterns. J. Med. Entomol. 21, 732–740 (1984).Article 
    CAS 

    Google Scholar 
    Edman, J. D., Webber, L. A. & Kale, H. W. Effect of mosquito density on the interrelationship of host behavior and mosquito feeding success. Am. J. Trop. Med. Hyg. 21, 487–491 (1972).Article 
    CAS 

    Google Scholar 
    Christophers, S. R. Aedes aegypti: The Yellow Fever Mosquito. (1960).Ponlawat, A. & Harrington, L. C. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J. Med. Entomol. 42, 844–849 (2005).Article 

    Google Scholar 
    Walilko, T. J., Viano, D. C. & Bir, C. A. Biomechanics of the head for Olympic boxer punches to the face. Br. J. Sports Med. 39, 710–719 (2005).Article 
    CAS 

    Google Scholar 
    Reiser, M. B. & Dickinson, M. H. A modular display system for insect behavioral neuroscience. J. Neurosci. Methods 167, 127–139 (2008).Article 

    Google Scholar 
    Cribellier, A. Biomechanics of Flying Mosquitoes During Capture and Escape. Doctoral Dissertation. (Wageningen University, 2021).Hu, X., Leming, M. T., Whaley, M. A. & O’Tousa, J. E. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes. J. Exp. Biol. 217, 1003–1008 (2014).
    Google Scholar 
    Tammero, L. F., Frye, M. A. & Dickinson, M. H. Spatial organization of visuomotor reflexes in Drosophila. J. Exp. Biol. 207, 113–122 (2004).Article 

    Google Scholar 
    Tammero, L. F. & Dickinson, M. H. Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J. Exp. Biol. 205, 2785–2798 (2002).Article 

    Google Scholar 
    Muijres, F. T. et al. Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed. J. Exp. Biol. 220, 3751–3762 (2017).Article 
    CAS 

    Google Scholar 
    van Veen, W. G., van Leeuwen, J. L. & Muijres, F. T. Malaria mosquitoes use leg push-off forces to control body pitch during take-off. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 38–49 (2020).Article 

    Google Scholar 
    Caro, T. et al. Benefits of zebra stripes: Behaviour of tabanid flies around zebras and horses. PLoS ONE 14, e0210831 (2019).Article 
    CAS 

    Google Scholar 
    Edman, J. D., Webber, L. A. & Schmid, A. A. Effect of host defenses on the feeding pattern of Culex nigripalpus when offered a choice of blood sources. J. Parasitol. 60, 874–883 (1974).Article 
    CAS 

    Google Scholar 
    Walker, E. D. & Edman, J. D. The influence of host defensive behavior on mosquito (Diptera: Culicidae) biting persistence1. J. Med. Entomol. 22, 370–372 (1985).Article 
    CAS 

    Google Scholar 
    Warnes, M. L. & Finlayson, L. H. Effect of host behaviour on host preference in Stomoxys calcitrans. Med. Vet. Entomol. 1, 53–57 (1987).Article 
    CAS 

    Google Scholar 
    Vinauger, C. et al. Modulation of host learning in Aedes aegypti mosquitoes. Curr. Biol. 28, 333-344.e8 (2018).Article 
    CAS 

    Google Scholar 
    Wolff, G. H. & Riffell, J. A. Olfaction, experience and neural mechanisms underlying mosquito host preference. J. Exp. Biol. 221, 157131 (2018).Article 

    Google Scholar 
    Alonso San Alberto, D. et al. The olfactory gating of visual preferences to human skin and visible spectra in mosquitoes. Nat. Commun. 13, 1–14 (2022).Article 

    Google Scholar 
    van Breugel, F., Riffell, J., Fairhall, A. & Dickinson, M. H. Mosquitoes use vision to associate odor plumes with thermal targets. Curr. Biol. 25, 2123–2129 (2015).Article 

    Google Scholar 
    Vinauger, C. et al. Visual-olfactory integration in the human disease vector mosquito, Aedes aegypti. Curr. Biol. 29, 2509-2516.e5 (2019).Article 
    CAS 

    Google Scholar 
    Grant, A. J. & O’Connell, R. J. Age-related changes in female mosquito carbon dioxide detection. J. Med. Entomol. 44, 617–623 (2007).Article 
    CAS 

    Google Scholar 
    Tallon, A. K., Hill, S. R. & Ignell, R. Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. Sci. Rep. 9, 43 (2019).Article 
    ADS 

    Google Scholar 
    Eilerts, D. F., VanderGiessen, M., Bose, E. A., Broxton, K. & Vinauger, C. Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects 9, 147 (2018).Article 

    Google Scholar 
    Taylor, B. & Jones, M. D. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L). The phase-setting effects of light-on and light-off. J. Exp. Biol. 51, 59–70 (1969).Article 
    CAS 

    Google Scholar 
    Peirce, J. et al. PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–203 (2019).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. arXiv [stat.CO] (2014).Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Lund, U., & Agostinelli, C. Package “Circular”. Repository CRAN (2017).Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).Article 

    Google Scholar 
    Walker, J. A. Estimating velocities and accelerations of animal locomotion: A simulation experiment comparing numerical differentiation algorithms. J. Exp. Biol. 201, 981–995 (1998).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 
    MATH 

    Google Scholar  More

  • in

    Urinary neopterin reflects immunological variation associated with age, helminth parasitism, and the microbiome in a wild primate

    Schneider-Crease, I. et al. Identifying wildlife reservoirs of neglected taeniid tapeworms: Non-invasive diagnosis of endemic Taenia serialis infection in a wild primate population. PLoS Negl Trop Dis 11, e0005709 (2017).Article 

    Google Scholar 
    Schneider-Crease, I. et al. Ecology eclipses phylogeny as a major driver of nematode parasite community structure in a graminivorous primate. Funct. Ecol. 34, 1898–1906 (2020).Article 

    Google Scholar 
    Gillespie, T. R. Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. Int. J. Primatol. 27, 1129 (2006).Article 

    Google Scholar 
    Budischak, S. A., Hoberg, E. P., Abrams, A., Jolles, A. E. & Ezenwa, V. O. A combined parasitological molecular approach for noninvasive characterization of parasitic nematode communities in wild hosts. Mol. Ecol. Resour. 15, 1112–1119 (2015).Article 

    Google Scholar 
    Ghalehnoei, H., Bagheri, A., Fakhar, M. & Mishan, M. A. Circulatory microRNAs: promising non-invasive prognostic and diagnostic biomarkers for parasitic infections. Eur. J. Clin. Microbiol. Infect. Dis. 39, 395–402 (2020).Article 
    CAS 

    Google Scholar 
    Hing, S., Narayan, E. J., Andrew Thompson, R. C. & Godfrey, S. S. The relationship between physiological stress and wildlife disease: consequences for health and conservation. Wildl Res. 43, 51–60 (2016).Article 

    Google Scholar 
    Kersey, D. C. & Dehnhard, M. The use of noninvasive and minimally invasive methods in endocrinology for threatened mammalian species conservation. Gen. Comp. Endocrinol. 203, 296–306 (2014).Article 
    CAS 

    Google Scholar 
    Behringer, V. & Deschner, T. Non-invasive monitoring of physiological markers in primates. Horm. Behav. 91, 3–18 (2017).Article 
    CAS 

    Google Scholar 
    Higham, J. P., Stahl-Hennig, C. & Heistermann, M. Urinary suPAR: A non-invasive biomarker of infection and tissue inflammation for use in studies of large free-ranging mammals. R Soc Open Sci. 7, 191825 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Heistermann, M. & Higham, J. P. Urinary neopterin, a non-invasive marker of mammalian cellular immune activation, is highly stable under field conditions. Sci Rep. 5, 16308 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Higham, J. P. et al. Evaluating noninvasive markers of nonhuman primate immune activation and inflammation. Am. J. Phys. Anthropol. 158, 673–684 (2015).Article 

    Google Scholar 
    Behringer, V. et al. Elevated neopterin levels in wild, healthy chimpanzees indicate constant investment in unspecific immune system. BMC Zool. 4, 1–7 (2019).Article 

    Google Scholar 
    Dibakou, S. E., Basset, D., Souza, A., Charpentier, M. & Huchard, E. Determinants of variations in fecal neopterin in free-ranging mandrills. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00368 (2019).Article 

    Google Scholar 
    Löhrich, T., Behringer, V., Wittig, R. M., Deschner, T. & Leendertz, F. H. The use of neopterin as a noninvasive marker in monitoring diseases in wild chimpanzees. EcoHealth 15, 792–803 (2018).Article 

    Google Scholar 
    Behringer, V., Stevens, J. M. G., Leendertz, F. H., Hohmann, G. & Deschner, T. Validation of a method for the assessment of urinary neopterin levels to monitor health status in nonhuman primate species. Front Physiol. 8, 51 (2017).Article 

    Google Scholar 
    Negrey, J. D., Behringer, V., Langergraber, K. E. & Deschner, T. Urinary neopterin of wild chimpanzees indicates that cell-mediated immune activity varies by age, sex, and female reproductive status. Sci. Rep. 11, 9298 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Behringer, V. et al. Cell-mediated immune ontogeny is affected by sex but not environmental context in a long-lived primate species. Front. Ecol. Evol. 9, 272 (2021).Article 

    Google Scholar 
    Müller, N., Heistermann, M., Strube, C., Schülke, O. & Ostner, J. Age, but not anthelmintic treatment, is associated with urinary neopterin levels in semi-free ranging Barbary macaques. Sci. Rep. 7, 41973 (2017).Article 
    ADS 

    Google Scholar 
    Dibakou, S. E. et al. Ecological, parasitological and individual determinants of plasma neopterin levels in a natural mandrill population. Int. J. Parasitol. Parasites Wildl. 11, 198–206 (2020).Article 

    Google Scholar 
    Eisenhut, M. Neopterin in diagnosis and monitoring of infectious diseases. J. Biomark. 2013, 196432 (2013).Article 

    Google Scholar 
    Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol. A Biol. Sci. Med Sci. 69(Suppl 1), S4–9 (2014).Article 

    Google Scholar 
    Basha, S., Surendran, N. & Pichichero, M. Immune responses in neonates. Expert. Rev. Clin. Immunol. 10, 1171–1184 (2014).Article 
    CAS 

    Google Scholar 
    Werner, E. R. et al. Determination of neopterin in serum and urine. Clin. Chem. 33, 62–66 (1987).Article 
    CAS 

    Google Scholar 
    Lucore, J. M., Marshall, A. J., Brosnan, S. F. & Benítez, M. E. Validating urinary neopterin as a biomarker of immune response in captive and wild capuchin monkeys. Front. Vet. Sci. 9, 918036. https://doi.org/10.3389/fvets.2022.918036 (2022).Article 

    Google Scholar 
    Berdowska, A. & Zwirska-Korczala, K. Neopterin measurement in clinical diagnosis. J. Clin. Pharm. Ther. 26, 319–329 (2001).Article 
    CAS 

    Google Scholar 
    Denz, H. et al. Value of urinary neopterin in the differential diagnosis of bacterial and viral infections. Klin. Wochenschr. 68, 218–222 (1990).Article 
    CAS 

    Google Scholar 
    Reibnegger, G. et al. Urinary neopterin reflects clinical activity in patients with rheumatoid arthritis. Arthritis Rheum. 29, 1063–1070 (1986).Article 
    CAS 

    Google Scholar 
    Huber, C. et al. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J. Exp. Med. 160, 310–316 (1984).Article 
    CAS 

    Google Scholar 
    Horak, E., Gassner, I., Sölder, B., Wachter, H. & Fuchs, D. Neopterin levels and pulmonary tuberculosis in infants. Lung 176, 337–344 (1998).Article 
    CAS 

    Google Scholar 
    Fendrich, C. et al. Urinary neopterin concentrations in rhesus monkeys after infection with simian immunodeficiency virus (SIVmac 251). AIDS 3, 305–307 (1989).Article 
    CAS 

    Google Scholar 
    Chan, C. P. Y. et al. Detection of serum neopterin for early assessment of dengue virus infection. J. Infect. 53, 152–158 (2006).Article 

    Google Scholar 
    Wu, D. F., Behringer, V., Wittig, R. M., Leendertz, F. H. & Deschner, T. Urinary neopterin levels increase and predict survival during a respiratory outbreak in wild chimpanzees (Taï National Park, Côte d’Ivoire). Sci. Rep. 8, 13346 (2018).Article 
    ADS 

    Google Scholar 
    Maizels, R. M. & McSorley, H. J. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 138, 666–675 (2016).Article 
    CAS 

    Google Scholar 
    Maizels, R. M. & Yazdanbakhsh, M. Immune regulation by helminth parasites: Cellular and molecular mechanisms. Nat. Rev. Immunol. 3, 733–744 (2003).Article 
    CAS 

    Google Scholar 
    Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Faz-López, B., Morales-Montor, J. & Terrazas, L. I. Role of macrophages in the repair process during the tissue migrating and resident helminth infections. Biomed. Res. Int. 2016, 8634603 (2016).Article 

    Google Scholar 
    Garcia, H. H., Rodriguez, S., Friedland, J. S. Cysticercosis Working Group in Peru. Immunology of Taenia solium taeniasis and human cysticercosis. Parasite Immunol. 36, 388–396. https://doi.org/10.1111/pim.12126 (2014)Article 
    CAS 

    Google Scholar 
    Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Schneider-Crease, I. A., Griffin, R. H., Gomery, M. A., Bergman, T. J. & Beehner, J. C. High mortality associated with tapeworm parasitism in geladas (Theropithecus gelada) in the Simien Mountains National Park, Ethiopia. Am. J. Primatol. https://doi.org/10.1002/ajp.22684 (2017).Article 

    Google Scholar 
    Nguyen, N. et al. Fitness impacts of tapeworm parasitism on wild gelada monkeys at Guassa, Ethiopia. Am. J. Primatol. 77, 579–594 (2015).Article 

    Google Scholar 
    Schneider-Crease, I. A. et al. Helminth infection is associated with dampened cytokine responses to viral and bacterial stimulations in Tsimane forager-horticulturalists. Evol. Med. Public Health 9, 349–359 (2021).Article 

    Google Scholar 
    Roberts, E. K., Lu, A., Bergman, T. J. & Beehner, J. C. Female reproductive parameters in wild geladas (Theropithecus gelada). Int. J. Primatol. 38, 1–20 (2017).Article 

    Google Scholar 
    Beehner, J. C. et al. Corrigendum to “Testosterone related to age and life-history stages in male baboons and geladas” [Horm. Behav. 56/4 (2009) 472-480]. Horm Behav. 80, 149 (2016).Article 

    Google Scholar 
    Erb, R. E., Tillson, S. A., Hodgen, G. D. & Plotka, E. D. Urinary creatinine as an index compound for estimating rate of excretion of steroids in the domestic sow. J. Anim. Sci. 30, 79–85 (1970).Article 
    CAS 

    Google Scholar 
    Tinsley Johnson, E., Snyder-Mackler, N., Lu, A., Bergman, T. J. & Beehner, J. C. Social and ecological drivers of reproductive seasonality in geladas. Behav. Ecol. 29, 574–588 (2018).Article 

    Google Scholar 
    Kaushik, S. & Kaur, J. Effect of chronic cold stress on intestinal epithelial cell proliferation and inflammation in rats. Stress 8, 191–197 (2005).Article 
    CAS 

    Google Scholar 
    Jarvey, J. C., Low, B. S., Pappano, D. J. & Bergman, T. J. Graminivory and fallback foods: annual diet profile of geladas (Theropithecus gelada) living in the Simien Mountains National Park, Ethiopia. Int. J. Primatol. https://doi.org/10.1007/s10764-018-0018-x (2018).Article 

    Google Scholar 
    Gowda, C., Hadley, C. & Aiello, A. E. The association between food insecurity and inflammation in the US adult population. Am. J. Public Health. 102, 1579–1586 (2012).Article 

    Google Scholar 
    Becker, D. J. et al. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J. Anim. Ecol. 89, 972–995 (2020).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1, 1–7 (2014).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. https://www.R-project.org/.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).
    Google Scholar 
    Heinonen, S. et al. Infant immune response to respiratory viral infections. Immunol. Allergy Clin. North Am. 39, 361–376 (2019).Article 

    Google Scholar 
    Teran, R. et al. Immune system development during early childhood in tropical Latin America: Evidence for the age-dependent down regulation of the innate immune response. Clin. Immunol. 138, 299–310 (2011).Article 
    CAS 

    Google Scholar 
    van de Pol, M. & Verhulst, S. Age-dependent traits: a new statistical model to separate within- and between-individual effects. Am. Nat. 167, 766–773 (2006).Article 

    Google Scholar 
    Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).Article 
    CAS 

    Google Scholar 
    Petrovsky, N., McNair, P. & Harrison, L. C. Diurnal rhythms of pro-inflammatory cytokines: regulation by plasma cortisol and therapeutic implications. Cytokine 10, 307–312 (1998).Article 
    CAS 

    Google Scholar 
    Lasselin, J., Rehman, J.-U., Åkerstedt, T., Lekander, M. & Axelsson, J. Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations. Brain Behav. Immun. 47, 93–99 (2015).Article 

    Google Scholar 
    Auzéby, A., Bogdan, A., Krosi, Z. & Touitou, Y. Time-dependence of urinary neopterin, a marker of cellular immune activity. Clin Chem. 34, 1866–1867 (1988).Article 

    Google Scholar 
    Ansari, A. & Williams, J. F. The eosinophilic response of the rat to infection with Taenia taeniaeformis. J. Parasitol. 62, 728–736 (1976).Article 
    CAS 

    Google Scholar 
    Schneider-Crease, I. A., Snyder-Mackler, N., Jarvey, J. C. & Bergman, T. J. Molecular identification of Taenia serialis coenurosis in a wild Ethiopian gelada (Theropithecus gelada). Vet. Parasitol. 198, 240–243 (2013).Article 
    CAS 

    Google Scholar 
    Terrazas, L. I., Bojalil, R., Govezensky, T. & Larralde, C. Shift from an early protective Th1-type immune response to a late permissive Th2-type response in murine cysticercosis (Taenia crassiceps). J. Parasitol. 84, 74–81 (1998).Article 
    CAS 

    Google Scholar 
    Toenjes, S. A., Spolski, R. J., Mooney, K. A. & Kuhn, R. E. The systemic immune response of BALB/c mice infected with larval Taenia crassiceps is a mixed Th1/Th2-type response. Parasitology 118(Pt 6), 623–633 (1999).Article 
    CAS 

    Google Scholar 
    Gaze, S. et al. Characterising the mucosal and systemic immune responses to experimental human hookworm infection. PLoS Pathog. 8, e1002520 (2012).Article 
    CAS 

    Google Scholar 
    Johnston, M. J. G., MacDonald, J. A. & McKay, D. M. Parasitic helminths: a pharmacopeia of anti-inflammatory molecules. Parasitology 136, 125–147 (2009).Article 
    CAS 

    Google Scholar 
    Cortés, A., Muñoz-Antoli, C., Esteban, J. G. & Toledo, R. Th2 and Th1 responses: Clear and hidden sides of immunity against intestinal helminths. Trends Parasitol. 33, 678–693 (2017).Article 

    Google Scholar 
    White, M. P. J., McManus, C. M. & Maizels, R. M. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. Immunology 160, 248–260 (2020).Article 
    CAS 

    Google Scholar 
    Maizels, R. M. & Holland, M. J. Parasite immunity: Pathways for expelling intestinal helminths. Curr Biol. 8, R711–R714 (1998).Article 
    CAS 

    Google Scholar 
    Zhang, D. & Frenette, P. S. Cross talk between neutrophils and the microbiota. Blood 133, 2168–2177 (2019).Article 
    CAS 

    Google Scholar 
    Wang, J., Chen, W.-D. & Wang, Y.-D. The relationship between gut microbiota and inflammatory diseases: The role of macrophages. Front. Microbiol. 11, 1065 (2020).Article 

    Google Scholar 
    Pallikkuth, S. et al. Age associated microbiome and microbial metabolites modulation and its association with systemic inflammation in a rhesus macaque model. Front. Immunol. 12, 748397 (2021).Article 
    CAS 

    Google Scholar 
    Pierce, Z. et al. The infant gut microbiome is associated with stool markers of macrophage and neutrophil activity. FASEB J. 30, 668–9 (2016).
    Google Scholar 
    Levast, B. et al. Impact on the gut microbiota of intensive and prolonged antimicrobial therapy in patients with bone and joint infection. Front. Med. https://doi.org/10.3389/fmed.2021.586875 (2021).Article 

    Google Scholar 
    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).Article 
    CAS 

    Google Scholar 
    Libertucci, J. & Young, V. B. The role of the microbiota in infectious diseases. Nat. Microbiol. 4, 35–45 (2019).Article 
    CAS 

    Google Scholar 
    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Blaser, M. J. & Falkow, S. What are the consequences of the disappearing human microbiota?. Nat. Rev. Microbiol. 7, 887–894 (2009).Article 
    CAS 

    Google Scholar 
    Brown, E. M., Kenny, D. J. & Xavier, R. J. Gut microbiota regulation of T cells during inflammation and autoimmunity. Annu. Rev. Immunol. 37, 599–624 (2019).Article 
    CAS 

    Google Scholar 
    Gollwitzer, E. S. & Marsland, B. J. Impact of early-life exposures on immune maturation and susceptibility to disease. Trends Immunol. 36, 684–696 (2015).Article 
    CAS 

    Google Scholar 
    Ravi, A. et al. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microbial. Genomics https://doi.org/10.1099/mgen.0.000293 (2019).McLaren, M. R. & Callahan, B. J. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190592 (2020).Article 

    Google Scholar 
    Ragonnaud, E. & Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing 18, 2 (2021).Article 

    Google Scholar 
    Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).Article 

    Google Scholar 
    Cattadori, I. M. et al. Impact of helminth infections and nutritional constraints on the small intestine microbiota. PLoS ONE 11, e0159770 (2016).Article 

    Google Scholar 
    Houlden, A. et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: Effects reversed by pathogen clearance. PLoS ONE 10, e0125945 (2015).Article 

    Google Scholar 
    Holm, J. B. et al. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli. PLoS ONE 10, e0125495 (2015).Article 

    Google Scholar 
    Peachey, L. E., Jenkins, T. P. & Cantacessi, C. This gut ain’t big enough for both of us. Or is it? Helminth–microbiota interactions in veterinary species. Trends Parasitol. 33, 619–632 (2017).Article 

    Google Scholar  More

  • in

    Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis

    Coyne, J. A. & Orr, H. A. Speciation 83–178 (Sinauer, 2004).Dieckmann, U., Doebeli, M., Metz, J. A. & Tautz, D. Adaptive Speciation (Cambridge University Press, 2004).Butlin, R. K., Galindo, J. & Grahame, J. W. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos. T. Roy. Soc. B 363, 2997–3007 (2008).Article 

    Google Scholar 
    Smadja, C. M. & Butlin, R. K. A framework for comparing processes of speciation in the presence of gene flow. Mol. Ecol. 20, 5123–5140 (2011).Article 

    Google Scholar 
    Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).Article 
    CAS 

    Google Scholar 
    Kulmuni, J., Butlin, R. K., Lucek, K., Savolainen, V. & Westram, A. M. Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers. Philos. T. Roy. Soc. B 375, 20190528 (2020).Article 

    Google Scholar 
    Hofreiter, M. & Stewart, J. Ecological change, range fluctuations and population dynamics during the Pleistocene. Curr. Biol. 19, R584–R594 (2009).Article 
    CAS 

    Google Scholar 
    Longman, J., Mills, B. J. W., Manners, H. R., Gernon, T. M. & Palmer, M. R. Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nat. Geosci. 14, 924–929 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Thomson, R. C., Spink, P. Q. & Shaffer, H. B. A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins. Proc. Natl Acad. Sci. USA 118, e2012215118 (2021).Article 
    CAS 

    Google Scholar 
    Chaboureau, A. C., Sepulchre, P., Donnadieu, Y. & Franc, A. Tectonic-driven climate change and the diversification of angiosperms. Proc. Natl Acad. Sci. USA 111, 14066–14070 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).Article 

    Google Scholar 
    Haffer, J. Speciation in Amazonian forest birds. Science 165, 131–137 (1969).Article 
    ADS 
    CAS 

    Google Scholar 
    Ebdon, S. et al. The Pleistocene species pump past its prime: evidence from European butterfly sister species. Mol. Ecol. 30, 3575–3589 (2021).Article 

    Google Scholar 
    Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).Article 

    Google Scholar 
    Baker, H. G. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9, 347–349 (1955).
    Google Scholar 
    Fisher, R. The Genetical Theory of Natural Selection 125–129 (Oxford University Press, 1930).Endler, J. A. Geographic Variation, Speciation, and Clines. Monographs in Population Biology Vol. 10, 53–65, 142–150 (Princeton University Press, 1977).Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Ispolatov, J. & Doebeli, M. Diversification along environmental gradients in spatially structured populations. Evol. Ecol. Res. 11, 295–304 (2009).
    Google Scholar 
    Rettelbach, A., Servedio, M. R. & Hermisson, J. Speciation in peripheral populations: effects of drift load and mating systems. J. Evol. Biol. 29, 1073–1090 (2016).Article 
    CAS 

    Google Scholar 
    Wright, S. I., Kalisz, S. & Slotte, T. Evolutionary consequences of self-fertilization in plants. Proc. R. Soc. Lond. Ser. B 280, 20130133 (2013).
    Google Scholar 
    Hu, X.-S. Mating system as a barrier to gene flow. Evolution 69, 1158–1177 (2015).Article 
    CAS 

    Google Scholar 
    Glémin, S. How are deleterious mutations purged? Drift versus nonrandom mating. Evolution 57, 2678–2687 (2003).
    Google Scholar 
    Warwick, S. I., Francis, A. & Al-Shehbaz, I. A. Brassicaceae: species checklist and database on CD-Rom. Plant Syst. Evol. 259, 249–258 (2006).Article 

    Google Scholar 
    Warwick, S. I., Al-Shehbaz, I. A. & Sauder, C. A. Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA. Can. J. Bot. 84, 269–281 (2006).Article 
    CAS 

    Google Scholar 
    Hohmann, N. et al. Taming the wild: resolving the gene pools of non-model Arabidopsis lineages. BMC Evol. Biol. 14, e224 (2014).Article 

    Google Scholar 
    Novikova, P. Y. et al. Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat. Genet. 48, 1077–1082 (2016).Article 
    CAS 

    Google Scholar 
    Perrier, A. & Willi, Y. Intraspecific variation in reproductive barriers between two recently-diverged, allopatric Arabidopsis species. J. Evol. Biol. https://doi.org/10.1111/jeb.14122 (2022). (in press).Griffin, P. C. & Willi, Y. Evolutionary shifts to self-fertilisation restricted to geographic range margins in North American Arabidopsis lyrata. Ecol. Lett. 17, 484–490 (2014).Article 
    CAS 

    Google Scholar 
    Willi, Y., Fracassetti, M., Zoller, S. & Van Buskirk, J. Accumulation of mutational load at the edges of a species range. Mol. Biol. Evol. 35, 781–791 (2018).Article 
    CAS 

    Google Scholar 
    Schmickl, R., Jørgensen, M. H., Brysting, A. K. & Koch, M. A. The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the Amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol. Biol. 10, e98 (2010).Article 

    Google Scholar 
    Pyhäjärvi, T., Aalto, E. & Savolainen, O. Time scales of divergence and speciation among natural populations and subspecies of Arabidopsis lyrata (Brassicaceae). Am. J. Bot. 99, 1314–1322 (2012).Article 

    Google Scholar 
    Dyke, A. S. in Quaternary Glaciations – Extent and Chronology, Part II: North America (Elsevier, Amsterdam, 2004).Kirkpatrick, M. & Ravigné, V. Speciation by natural and sexual selection: models and experiments. Am. Nat. 159, S22–S35 (2002).Article 

    Google Scholar 
    Igic, B., Lande, R. & Kohn, J. R. Loss of self‐incompatibility and its evolutionary consequences. Int. J. Plant Sci. 169, 93–104 (2008).Article 

    Google Scholar 
    Willi, Y. & Määttänen, K. Evolutionary dynamics of mating system shifts in Arabidopsis lyrata. J. Evol. Biol. 23, 2123–2131 (2010).Article 
    CAS 

    Google Scholar 
    Lucek, K. & Willi, Y. Drivers of linkage disequilibrium across a species’ geographic range. PLoS Genet. 17, e1009477 (2021).Article 
    CAS 

    Google Scholar 
    Pironon, S. et al. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm: the centre-periphery hypothesis. Biol. Rev. 92, 1877–1909 (2017).Article 

    Google Scholar 
    Encinas-Viso, F., Young, A. G. & Pannell, J. R. The loss of self-incompatibility in a range expansion. J. Evol. Biol. 33, 1235–1244 (2020).Article 

    Google Scholar 
    Jarne, P. & Auld, J. R. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60, 1816–1824 (2006).
    Google Scholar 
    Foxe, J. P. et al. Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 64, 3495–3510 (2010).Article 

    Google Scholar 
    Koski, M. H., Layman, N. C., Prior, C. J., Busch, J. W. & Galloway, L. F. Selfing ability and drift load evolve with range expansion. Evol. Lett. 3, 500–512 (2019).Article 

    Google Scholar 
    Prior, C. J. & Busch, J. W. Selfing rate variation within species is unrelated to life‐history traits or geographic range position. Am. J. Bot. 108, 2294–2308 (2021).Article 

    Google Scholar 
    Skeels, A. & Cardillo, M. Reconstructing the geography of speciation from contemporary biodiversity data. Am. Nat. 193, 240–254 (2019).Article 

    Google Scholar 
    Sánchez-Castro, D., Perrier, A. & Willi, Y. Reduced climate adaptation at range edges in North American Arabidopsis lyrata. Glob. Ecol. Biogeogr. 31, 1066–1077 (2022).Article 

    Google Scholar 
    Roessler, K. et al. The genome-wide dynamics of purging during selfing in maize. Nat. Plants 5, 980–990 (2019).Article 
    CAS 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).Hu, T. T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476–481 (2011).Article 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 

    Google Scholar 
    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).Article 
    CAS 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).Article 
    CAS 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article 
    CAS 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article 
    CAS 

    Google Scholar 
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).Article 
    CAS 

    Google Scholar 
    Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).Article 

    Google Scholar 
    Marchi, N. et al. The genomic origins of the world’s first farmers. Cell 185, 1842–1859 (2022).Article 
    CAS 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).Article 
    CAS 

    Google Scholar 
    Genete, M., Castric, V. & Vekemans, X. Genotyping and de novo discovery of allelic variants at the Brassicaceae self-incompatibility locus from short-read sequencing data. Mol. Biol. Evol. 7, 1193–1201 (2020).Article 

    Google Scholar 
    Lynch, M. et al. Genome-wide linkage-disequilibrium profiles from single individuals. Genetics 198, 269–281 (2014).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article 
    CAS 

    Google Scholar 
    Nychka, D., Furrer, R., Paige, J. & Sain, S. fields: tools for spatial data. R package version 14.1 https://github.com/dnychka/fieldsRPackage (2021).Asquith, W. lmomco—L-moments, censored L-moments, trimmed L-moments, L-comoments, and many distributions. R package version 2.4.7 (2022).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Lemon, J. Plotrix: a package in the red light district of R. R. N. 6, 8–12 (2006).
    Google Scholar 
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R. N. 5, 9–13 (2005).
    Google Scholar 
    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R Second edition (Springer, 2013). More